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Abstract The spatial responses of many of the cells
recorded in all layers of rodent medial entorhinal cortex
(mEC) show mutually aligned grid patterns. Recent exper-
imental findings have shown that grids can often be better
described as elliptical rather than purely circular and that,
beyond the mutual alignment of their grid axes, ellipses tend
to also orient their long axis along preferred directions. Are
grid alignment and ellipse orientation aspects of the same
phenomenon? Does the grid alignment result from single-
unit mechanisms or does it require network interactions?
We address these issues by refining a single-unit adaptation
model of grid formation, to describe specifically the sponta-
neous emergence of conjunctive grid-by-head-direction cells
in layers III, V, and VI of mEC. We find that tight alignment
can be produced by recurrent collateral interactions, but this
requires head-direction (HD) modulation. Through a com-
petitive learning process driven by spatial inputs, grid fields
then form already aligned, and with randomly distributed
spatial phases. In addition, we find that the self-organiza-
tion process is influenced by any anisotropy in the behavior
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of the simulated rat. The common grid alignment often ori-
ents along preferred running directions (RDs), as induced
in a square environment. When speed anisotropy is pres-
ent in exploration behavior, the shape of individual grids
is distorted toward an ellipsoid arrangement. Speed anisot-
ropy orients the long ellipse axis along the fast direction.
Speed anisotropy on its own also tends to align grids, even
without collaterals, but the alignment is seen to be loose.
Finally, the alignment of spatial grid fields in multiple envi-
ronments shows that the network expresses the same set of
grid fields across environments, modulo a coherent rotation
and translation. Thus, an efficient metric encoding of space
may emerge through spontaneous pattern formation at the
single-unit level, but it is coherent, hence context-invariant,
if aided by collateral interactions.

Keywords Hippocampus · Entorhinal cortex ·
Grid cells · Conjunctive grid-by-head-direction cells ·
Firing rate adaptation · Competitive network · Remapping

1 Introduction

Internal representations of space appear necessary for any
agent, such as a rat or a robot, to navigate in a spatial context
and to distinguish between different contexts to which food
or danger, for example, may be associated (Si et al. 2007;
Samu et al. 2009; Milford et al. 2010). Spatial cognition
and memory have been long investigated in rodents particu-
larly in the hippocampus and related cortices, a region that
in humans has been associated with episodic memory for-
mation, since (Scoville and Milner 1957). Place cells were
discovered in the rat hippocampus, showing specific firing
activity whenever the rat enters a specific portion of the envi-
ronment, the place field (O’Keefe and Dostrovsky 1971).
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Head direction (HD) cells were found in the rat postsu-
biculum, firing steadily when the animal points its head
toward a specific direction in the environment (Taube et al.
1990). These two distinct systems provide simple, distributed
population coding of the location and heading direction of
the animal.

In recent years, cells with more complex spatial codes have
been discovered in the rat medial entorhinal cortex (mEC),
one synapse upstream to the hippocampus. Grid cells, found
to be particularly abundant in layer II of mEC (perhaps about
half of stellate cells there) have multiple firing fields posi-
tioned on the vertices of remarkably regular triangular grids,
spanning the environment which the animal explores (Fyhn
et al. 2004; Hafting et al. 2005). Conjunctive grid-by-head-
direction cells, found along a smaller proportion of pure grid
cells in the deeper layers of mEC, show firing selectivity to
HD in addition to (perhaps slightly less precise) spatial tun-
ing as grid cells (Sargolini et al. 2006). The precise geometric
tessellation provided by the activity of grid cells has stimu-
lated a series of experimental and theoretical studies on the
mechanisms underlying the emergence and the function of
grid cells (Giocomo et al. 2011).

Theoretical models of grid cell formation may be grouped
in three main categories. The first type of models shows how
grid fields may emerge from the attractor states induced, in
continuous attractor networks, from structured recurrent con-
nectivity (McNaughton et al. 2006; Fuhs and Touretzky 2006;
Guanella et al. 2007; Burak and Fiete 2009; Navratilova et al.
2011). The spatial layout of recurrent collateral connections
of the network, assumed to be permanent or at least pres-
ent during the developmental stage of grid cell formation,
ensures that triangular spatial firing patterns are stable states
of recurrent dynamics. Grid units in a continuous attractor
network model are able to perform path integration by prop-
agating the activity in the network in correspondence with the
movement of the animal, in a way similar to previous models
for place cells or HD cells (Zhang 1996; Samsonovich and
McNaughton 1997; Walters and Stringer 2010).

The second class of models relates the periodic firing of
grid cells to sub-threshold membrane potential oscillations,
and proposes that grid fields may result from interference
between a theta-related baseline oscillator and other veloc-
ity-controlled oscillations which originate either in different
dendrites of a neuron or in different neurons (Burgess et al.
2007; Giocomo et al. 2007; Burgess 2008; Hasselmo 2008;
Zilli and Hasselmo 2010). The frequency difference between
these velocity-controlled oscillators is small, so that the low-
frequency “envelope” of the interference pattern corresponds
to the spatial periodicity of grid cells. This hypothesis is in
part supported by recent findings that the spatial periodicity
of grid cells is susceptible to the suppression of theta oscil-
lations by pharmacological silencing of the medial septum
(Koenig et al. 2011; Brandon et al. 2011).

The third class of models on grid cell formation argues
that grid fields may not require detailed ad hoc mechanisms
like structured connectivity or theta oscillations, rather they
may emerge spontaneously from a general feature of cortical
cell activity, like firing rate adaptation (Kropff and Treves
2008) or, equivalently, other types of temporal modulation
(Garden et al. 2008). Such temporal modulation is shown in
computer simulations to sculpt the spatial modulation of grid
cells through a self-organization process that, averaged over a
long developmental time of one or two weeks (Langston et al.
2010; Wills et al. 2010), leaves as a footprint on each unit
the regular periodicity found in real grid cells. A simple ana-
lytic model “explains” this spontaneous pattern formation as
an unsupervised optimization process at the single-unit level
(Kropff and Treves 2008).

An interesting aspect of the adaptation model, which moti-
vates the present study, is that the emergence of perfect grid
symmetry requires a perfectly isotropic distribution of rat
trajectories and speed, once averaged over the long (but not
infinite) learning period. Any deviation from perfect isot-
ropy, e.g., because the animal spends the relevant develop-
mental period (for a rat, somewhere between P15-P35, say)
mainly in a rectangular cage and tends to move along the
walls, or because it runs a bit faster along some particular
directions, would be expected to induce distortions in all
grids units. Excitingly, such deviations in the geometry of
grid maps have been observed recently and described as an
ellipticity effect (Stensland et al. 2010). This phenomenon
cannot be explained as small random deviations from the
perfect symmetry, because of its extent and remarkable con-
sistency across the population. Not only, as observed earlier,
do grid axes show nearly the same alignment across all simul-
taneously recorded grid units, but also the long axes of the
corresponding ellipses appear to loosely orient with either
one of the two major ellipse clusters, depending on their
spacings (Stensland et al. 2010).

Can the mutual alignment result from the same single-unit
mechanisms that produce the individual grid patterns? With
perfect isotropic grids, the answer is obviously negative, and
in fact Kropff and Treves (2008) pointed at a mechanism
that can align grid cells at a population level, but based on
collateral interactions between them. With the observed an-
isotropies, however, the situation might be different, as both
alignment and common orientation might develop along the
(common) anisotropy axes.

In this article, we address four main questions on grid
formation. First, are HD-modulated network interactions
necessary for grid alignment? Second, is the common grid
orientation influenced by the shape of the environment?
Third, can speed anisotropy in the exploration behavior of the
animal explain the observed ellipticity effect? Finally, does
the proposed self-organization model describe coherent grid
maps across different environments (Fyhn et al. 2007)?
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To address these questions, the rest of the article is orga-
nized as follows. The network model is first introduced in
Sect. 2. In Sect. 3, grid alignment in cylinder environments
is studied, and it is compared with what occurs in square
environments in Sect. 4. We investigate in Sect. 5 the effects
of exploration with speed anisotropy. Grid realignment in
multiple environments is discussed in Sect. 6. Finally, the
results of the study are discussed in Sect. 7.

2 Network model

In Fig. 1, we present a diagram of the network that we use
for simulations. It is intended to model conjunctive grid-by-
head-direction cells in layers III, V, and VI of mEC. In layer V,
which receives strong projections from the subiculum and the
CA1 region of the hippocampus, about 20 % of the putative
pyramidal cells are estimated to be conjunctive grid-by-head-
direction cells, along with a very small proportion of pure grid
cells and more than 60 % of HD cells (Boccara et al. 2010).
In layer III, which projects to CA1, the proportion of con-
junctive cells is similar to that of layer V, but the proportion
of HD cells is much lower (20 %), and there is an extra 20 %
of pure grid cells. These layers present a prominent recurrent
connectivity, denser in layer V (around 12 %) than in layer
III (around 9 %) (Dhillon and Jones 2000). Layer II of mEC,
where the highest proportion and the best quality of pure grid
cells are found (around 50 %), lacks two critical elements that
in our model go hand by hand: recurrent collateral connec-
tions and HD information. In this article, we assume that
layer II maps can self-organize using inputs which include
conjunctive maps, an assumption that is discussed in a sep-
arate study currently in progress. Here, we focus therefore
on the learning process in layers III to VI, and neglect the
possible influence there of the feedback from layer II.

The critical difference with the previous adaptation model
(Kropff and Treves 2008) is that now we assign a central role
to HD information, which, as we show, is a key element for
grid alignment. A preferred HD, θi , is introduced arbitrarily
for each conjunctive unit i , to modulate its inputs. θi is uni-
formly sampled from all angles. This assumption is based
on our own analysis of the HD selectivity of the conjunctive
cells recorded by Sargolini et al. (2006), in which we did not
find significant clustering of HDs with respect to either the
reference frame or grid axes. Each conjunctive unit receives
afferent spatial inputs, which as discussed in (Kropff and
Treves 2008) we take for simplicity to arise from regularly
arranged “place” units, and collateral inputs from other con-
junctive units (Fig. 1). The overall input to conjunctive unit
i at time t is then given by ht

i

ht
i = fθi (ω

t )

⎛
⎝∑

j

W t−1
i j r t

j + ρ
∑

k

Wik�
t−τ
k

⎞
⎠ , (1)

Wik

Conjunctive units

i k

Wt
i j

“Place” units
j

Head direction units

Fig. 1 A sketch of the network model for conjunctive cells in deep
layers of mEC. Connections are shown only for unit i . Place units are
fully connected to conjunctive units. Conjunctive units are connected
to all other conjunctive units without self-connections. Each conjunc-
tive unit is assumed to be modulated by one HD unit, representing the
overall effect of angular modulation from the local network

with ρ = 0.2 a factor weighing, relative to feed-forward
inputs, collateral inputs relayed with a delay τ = 25 steps.
In the model, each time step corresponds to 10 ms in real time,
so the collateral interaction describes temporally diffuse
and delayed processes, rather than straightforward AMPA-
mediated excitation. fθi (ω

t ) is a tuning function that has
maximal value when the current HD ωt of the simulated rat is
along the preferred direction θi of the unit, as in (Zhang 1996)

fθ (ω) = c + (1 − c) exp[ν(cos(θ − ω) − 1)], (2)

where c = 0.2 and ν = 0.8 are parameters determining the
minimal value and the width of HD tuning.

The weight W t
i j connects place unit j to conjunctive

unit i , while Wik connects conjunctive unit k to unit i .
For simplicity, throughout this article, we only consider the
self-organization of the feed-forward weights, keeping the
collateral weights fixed at convenient values, which we will
discuss in Sect. 2.2. A model in which collateral weights are
also the result of self-organization will be discussed else-
where.

It is possible that conjunctive cells receive place-cell-like
inputs from the hippocampus already when they develop their
firing maps. Studies on the development of the spatial repre-
sentation system in the rat may be taken to show that place
cells and HD cells develop adult-like spatial and directional
codes somewhat earlier than grid cells do (Langston et al.
2010; Wills et al. 2010). The firing rate of a place unit j is
modeled by an exponential function centered in its preferred
firing location x j0

r t
j = exp

(
−|xt − x j0|2

2σ 2
p

)
, (3)

where xt is the current location of the simulated rat. σp =
5 cm is the width of the firing field. The place field of a
place unit is arranged such that the distances to neighboring
fields of other place units are about 5 cm. Note that the pre-
cise and regularly arranged location-specific inputs of place
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units are used only to speed up the learning process. The net-
work model works in qualitatively the same way with broad
spatial inputs, but at the cost of longer learning time (Kropff
and Treves 2008).

The firing rate � t
i of conjunctive unit i is determined by

� t
i = �sat arctan[gt (αt

i − μt )]
(αt
i − μt ), (4)

where �sat = 2
π

, so that the maximal firing rate is 1 (in arbi-
trary units). 
(·) is the Heaviside function. The variable αt

i
represents a time-integration of the input hi , adapted by the
dynamical threshold βi

αt
i = αt−1

i + b1(h
t−1
i − β t−1

i − αt−1
i ),

β t
i = β t−1

i + b2(h
t−1
i − β t−1

i ), (5)

where βi has slower dynamics than αi [b2 is set to b2 = b1/3,
and in our time steps corresponds to a time scale of roughly
300 (ms)−1, with b1 = 0.1 � 100 (ms)−1]. Owing to the
adaptation dynamics, a unit that fires strongly in the recent
past tends not to fire in the near future, because of a high
threshold.

In Eq. 4, the gain gt and threshold μt are two param-
eters chosen at each time step to keep the mean activity
a = ∑

i � t
i /Nm EC of the conjunctive units and the spar-

sity s = (
∑

i � t
i )

2/(Nm EC
∑

i � t
i

2
) within a 10 % relative

error bound from pre-specified values, set at a0 = 0.1 and
s0 = 0.3, respectively. The values of gt and μt are deter-
mined through iterations

μt,l+1 = μt,l + b3(a
l − a0),

gt,l+1 = gt,l + b4gt,l(sl − s0). (6)

Here l is the index of the iteration within simulation step t .
b3 = 0.01 and b4 = 0.1 are positive step sizes in iteration. al

and sl are the mean and the sparsity of the conjunctive units
when the gain gt,l and threshold μt,l are applied. The gain
and threshold at the end of the iteration are used in Eq. 4 to
determine the activity of conjunctive units.

With constant running speed, neural fatigue is invariant
with respect to all directions. Conjunctive units self-organize
firing fields into hexagonal/triangular grids in two-dimen-
sional (2D) space, as the virtual rat explores the environment.
This configuration of fields corresponds to the minimum of
an energy function (Kropff and Treves 2008), consistent with
an hexagonal tiling being the most compact one to arrange
circles in 2D space (Petkovic 2009).

2.1 Learning feed-forward weights

The feed-forward weights are adaptively modified according
to a Hebbian rule

W̃ t
i j = W t−1

i j + ε(� t
i r t

j − �̄ t−1
i r̄ t−1

j ). (7)

Here �̄ t
i and r̄ t

j are estimated mean firing rates of conjunctive
unit i and place unit j

�̄ t
i = �̄ t−1

i + η
(
� t

i − �̄ t−1
i

)
,

r̄ t
j = r̄ t−1

j + η
(

r t
j − r̄ t−1

j

)
, (8)

while ε = 0.005 is a moderate learning rate, intended to
produce gradual weight change, and η = 0.05 is a time aver-
aging factor.

After each learning step, the new weights are normalized
into unitary norm ∑

j

W t
i j

2 = 1. (9)

Before learning, the feed-forward weights are initialized as
random numbers (1−ξ)+ξu and then normalized according
to Eq. 9. Here ξ = 0.1, and u is a random variable uniformly
distributed in [0, 1]. Through competitive learning, conjunc-
tive units that win the competition are associated to the input
units that provide strong inputs. As a result, firing fields of
conjunctive units are anchored to places where inputs are
strong simultaneously with recovery from adaptation, and
are stabilized as the learning proceeds.

2.2 Collateral weights

In this article, the collateral weights are assigned before any
learning takes place in the feed-forward weights. The basic
function of collateral weights is to favor postsynaptic units
to develop fields with certain spatial shifts relative to pre-
synaptic units. The direction of the shift is determined by the
preferred HDs of the units. More specifically, the weight Wik

for the connection from unit k to i is calculated in the fol-
lowing way (Fig. 2). Each conjunctive unit i is temporarily
assigned an auxiliary field, the location (xi , yi ) of which is
randomly chosen among the place fields in the environment.
Once the weights are fixed, these auxiliary fields assigned to
the conjunctive units are removed from the simulation. The
collateral weight between unit k and i is calculated as

Wik =
[

fθk (ωki ) fθi (ωki ) exp

(
− d2

ki

2σ 2
f

)
− κ

]+
, (10)

where [·]+ is a threshold function, with [x]+ = 0 for x < 0,
and [x]+ = x otherwise. κ = 0.05 is an inhibition param-

θk θi

ωki

(xk yk)

(xi yi)

Fig. 2 Assignment of the fixed collateral weight from unit k to unit i
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eter to favor sparse weights. fθ (ω) is the HD tuning func-
tion defined in Eq. 2. ωki is the direction of the line from
field k to i . σ f = 10cm is the width of spatial tuning.
dki = √[xi − (xk + � cos ωki )]2 + [yi − (yk + � sin ωki )]2

is the distance between field k and i with offset � = 10 cm.
Note that � corresponds to the distance that the simulated rat
travels during τ steps with the fixed speed vs = 0.4 m/s used
in most simulations in this article, i.e., � = 40×25×0.01 =
10 cm.

Normalization is performed on Wik similarly as in Eq. 9.
The resulting weight structure allows strong collateral inter-
actions between units that have similar HDs, and meanwhile
avoids co-activation, to produce grids with certain spatial
shifts.

In the following sections, we are going to show how, with
the same set of fixed collateral weights and adaptable feed-
forward weights, units in the network develop grid fields
in single and multiple environments with various boundary
shapes, and with different exploration behaviors of the virtual
rat.

3 Grid alignment in cylinder environments

To test whether collateral connections align grid fields in our
model, we first simulate the network for a virtual rat ran-
domly exploring a cylinder environment, where trajectories
are completely isotropic. For simplicity, we assume that when
the rat runs in a certain direction, it points its head toward the
running direction (RD) most of the time. Therefore, in our
simulations, the HD and the RD are not distinguished.

Each step in the simulation is taken to correspond to 10 ms
of real time. Each run of a simulation lasts for 8 × 106 steps,
or over 22 h real time. The speed of the simulated rat is held
fixed at vs = 0.4 m/s during the trajectory. This is close to
the peak speed of real rats in active exploration. Considering
the time a real rat spends not in exploration, a run of the sim-
ulation is intended to correspond to the developmental time
scale for the emergence of grid cells (Langston et al. 2010;
Wills et al. 2010). At each step, the RD is chosen by using
a pseudorandom Gaussian distribution with mean equal to
the direction in the previous time step and an angular stan-
dard deviation σR D = 0.2 radians. Very importantly, the new
direction cannot lead the rat outside the limits of the envi-
ronment. If so, the selection process is repeated until a valid
direction is chosen. This has the effect of favoring trajectories
along the walls of the environment. The overall appearance of
the trajectory is comparable with those of actual rats, reflect-
ing also the natural tendency of naïve animals to run along
the walls of the enclosure.

The number of place units is 500 and the number of con-
junctive units is 250. Place units are fully connected to con-

junctive units. Each conjunctive unit receives connections
from all other conjunctive units except itself. In the following
simulations, we use the above-mentioned default parameters,
including the number of units in the network, the number of
simulation steps, the speed and the noise in RD, unless stated
differently.

3.1 Collateral connections align the grids

In the first simulation covered in this section, the rat runs in
a cylinder environment with a diameter of 125 cm. Fig. 3a
plots part of a typical trajectory. The RD of the rat in this
environment is uniformly distributed (Fig. 3b), making the
cylinder environment a suitable control condition to compare
to anisotropy later.

3.1.1 Gridness scores

Figure 4a shows four examples of the spatial maps of the con-
junctive units in the network. The multiple firing fields of the
units locate on the vertices of triangular grids. To better reveal
grid structure, the autocorrelograms of the spatial firing maps
are calculated (Fig. 4b). The {x ,y} pixel in an autocorrelo-
gram is the correlation between the original firing map and
its shifted version by the vector {x ,y}. The peaks away from
the center of the autocorrelogram indicate the directions and
distances at which the shifted map has a high overlap with the
unshifted one. The six maxima that are closer to the center of
each autocorrelogram are then detected, and the three max-
ima with positive y coordinates (white markers in Fig. 4b)
define the orientations of the three grid axes (the autocorre-
logram is redundant by definition, the lower part resulting
from the rotation of the upper part by 180◦). The orientation
of the first grid axis, i.e., the one with the lowest angle with
respect to the x axis, is used as the orientation of a grid. The
mean distance of the three maxima away from the center is
defined as the spacing of a grid. The average spacing of the
grids, determined in our model by the adaptation parameters
(Kropff and Treves 2008), is about 58 cm, comparable to the
grid spacings observed in experiments (Hafting et al. 2005).

Averaged into angular bins, the angular map of the firing
of each unit shows HD selectivity, matching the HD tuning
curve of the unit (Fig. 4c). This obviously results from the
HD modulation on the inputs to conjunctive units (Eqs. 1–2).

The spatial periodicity of conjunctive units is measured by
the gridness score, as in (Sargolini et al. 2006). We thus cut a
ring area in each autocorrelogram with inner and outer radii
chosen with a view to contain the six maxima closest to the
center and exclude the rest. We then correlate the original ring
with its rotated versions, expecting to obtain for a perfect grid
a very positive (negative) correlation coefficient for rotations
at even (odd) multiples of 30◦. The gridness index is defined
as the difference between the mean correlation for even
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Fig. 3 Running directions in a
cylinder environments are
isotropic. a A trajectory of the
virtual rat with 3 × 104 steps;
b the running directions (RDs)
of an entire trajectory in a
8 × 106-step simulation are
uniformly distributed in all
directions
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The histogram of the gridness scores of all units is pre-
sented in Fig. 4d. Most units have high gridness score.

3.1.2 Within-trial grid alignment

To quantify the coherence in aligning grids, we define a
within-trial grid alignment score as the standard deviation
of the orientation averaged over the three grid axes, with low
values indicating tight grid alignment. Here, a trial indicates
an entire simulation, and should not be confused with running
a single recording session with a real rat.

The orientation histograms of the three grid axes are dis-
played in Fig. 4e, one color for each. Fig. 4f shows for all the
250 conjunctive units in the simulation the locations of the
three maxima defining the grid axes. They clearly cluster into
three clouds, indicating similar orientations and spacings for
all units. In the simulation shown in Fig. 4, the alignment
score is 2.967◦, indicating (very) tight grid alignment.

3.1.3 Spatial phases

While grids are aligned, the spatial phases of all grids (shown
relative to the best grid, as a conventional reference) are dis-
tributed in an area with diameter similar to the grid spacing
(Fig. 4g). This means that grids cover the whole environment
more or less randomly.

3.1.4 Collateral interactions

The collateral weights are sparse and are stronger for units
with similar HDs (broken lines in Fig. 4h), a relationship
given by Eq. 10. When the connectivity of collateral connec-
tions is reduced to 50 %, the network is still able to align
grids (data not shown). Therefore, the exact strength of the
collateral connectivity is not critical for the model. Strong
collateral weights pair units that are moderately correlated in
spatial firing maps (correlation coefficients up to about 0.8),
because of the delay parameter τ in synaptic transmission
(Fig. 4i).

In summary, with fixed collateral weights, the grid fields
of model units align to a common orientation while the rel-
ative spatial phases between them are randomly distributed
in the environment. The firing of each unit is conjunctively
modulated by a spatial triangular grid and by its HD input.

3.2 Absence of collateral interactions leads to random grid
orientations

Figure 5a, b verify that, without collateral interactions, units
in the network still have triangular firing maps, as a result
of adaptation. But grid orientations are random, lacking the
tight alignment produced by collateral interactions (Figs. 5c,
d vs. 4e, f). The minor alignment that can be produced by
speed anisotropy on its own is discussed later.

3.3 Grid development with speed variation

Constant running speed is not a requirement of the model. To
check this, we have simulated a rat with variable speeds, and
left unchanged the method of choosing RDs. The trajectory
of the simulated rat is then composed of epochs with positive
or negative accelerations. The lengths of epochs are Poisson
random numbers with 3 steps as the mean, roughly matching
available behavioral data (Sargolini et al. 2006). The speed
at the end of each epoch is drawn from a truncated Gauss-
ian distribution. A two-sided truncation is applied to keep the
speed both positive and symmetrically distributed around the
mean. The mean of the truncated Gaussian distribution is the
same as the constant speed used in most simulations in this
article, i.e., 0.4 m/s. The speed within each epoch is a linear
interpolation between the speeds at the start and end of the
epoch.

Regardless of different levels of speed standard deviation,
grid fields form with high gridness scores (Fig. 6a), tight grid
alignment and similar spacings (data not shown). Even for
large speed standard deviation, 16.1 cm/s, i.e., 40 % rela-
tive to the mean speed, the changes in mean gridness, mean
standard deviation of grid orientations and mean gridness are
all within ± one standard deviation error bar when averaged
across simulations.
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Fig. 4 Grid alignment in a cylinder environment. a Spatial firing rate
maps of example units in a cylinder environment. Unit number and
maximal firing rate (in arbitrary units) are indicated above each rate
map; b Autocorrelograms of the maps shown in a. Gridness score and
grid orientation (in degrees) are indicated above each autocorrelogram;
c Angular firing maps (blue solid lines) of the same units as in (a)
with, in green, the tuning curve of the HD input to each unit shown.
The red dash–dot lines indicate preferred HDs of the units; d Histo-
gram of the gridness scores of all conjunctive units in the simulation;
e Histograms of the angles of the three grid axes, plotted with different
colors for each axis. The within-simulation grid alignment score, i.e.,

the standard deviation (in degrees) of the orientation averaged over the
three grid axes, is indicated at the top of the panel; f Scatter plot of
the locations of the three peaks found in autocorrelograms (as shown
by the white markers in (b); g Two dimensional histogram of spatial
phases relative to the best grid. The grayscale encodes the number
of units, the phases of which fall into a 2.5 × 2.5 cm2 spatial bin.
White color represents zero, and darker colors represent larger numbers.
h Collateral weight Wik as a function of θk . The broken line is θi ; i Scat-
ter plots between collateral weights and the spatial correlations of the
fields between pre- and post-synaptic units. (Color figure online)

3.4 Gradual grid development

Although grid formation is a gradual process, grids are
expressed at relatively early stages of development (Langston
et al. 2010; Wills et al. 2010). In adult rats, grids appear after
a first exposure to a novel environment, but need several days

of experience to become stable (Barry et al. 2009). Consis-
tent with these findings, conjunctive units in our network also
show early expression of grids, within a gradual formation
process. As shown in Fig. 6b, grids can be observed already
20 min after the simulated rat has started to explore the envi-
ronment (speed standard deviation is 40 % relative to the
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Fig. 5 Grids are not aligned without collateral connections (ρ = 0).
a Units in the network still show tr iangular spatial responses when
there is no collateral interaction in the network. Unit number and max-
imal firing rate (in arbitrary units) are indicated above each rate map;
b Autocorrelograms of the maps shown in (a). Gridness score and
grid orientation (in degrees) are indicated above each autocorrelogram;

c The histograms of the orientations of the grid axes, plotted with dif-
ferent colors for each axis, are broad, resulting in high grid alignment
scores, as indicated at the top of the panel; d The locations of the three
peaks found in autocorrelograms [as shown by the white markers in (b)]
are not clustered as in Fig. 4f

mean speed). With longer exploration, the grid fields become
both more triangular and more tightly aligned to a common
orientation, as quantified by the increasing mean gridness and
the decreasing mean standard deviations of grid orientations
(Fig. 6c, d). Grids stabilize after about 14 h of continuous
exploration. The mean spacing of the grids does not show big
changes during development (Fig. 6e). Both the time scales
of early grid appearance and of grid stabilization at the pop-
ulation level are comparable with experimental results, con-
sidering the time spent by a real rat in rest and sleep.

4 The effect of the shape of the environment

As shown in the previous section, grid fields align mutu-
ally to each other in cylinder environments. As cylinder has
no preferred direction, and the common alignment emerging
in one simulation bears no relation with the one emerging
in another, leading to the expectation that different animals
would show differently aligned grid units, if these were to
form prevalently in cylinder environments. Rodent cages are
usually rectangular, however, and a rectangle does have pre-
ferred directions. Is the orientation of grid units in different
rats influenced by the shape of the training environment? The
current section is devoted to this issue, namely, to the coher-
ence of grid orientation across rats, i.e., in our case, across
simulations. In contrast to the standard simulations in the pre-

vious section, we simulate virtual rats in a 125 × 125 cm2

square environment, which leads to a (simulated) anisotropic
exploration. We also vary the standard deviation σRD in RDs,
which affects the degree of behavioral anisotropy.

4.1 Running direction anisotropy induced in square
environments

Rats, and especially naïve ones, have a natural tendency to
run along the walls of the environment. Therefore, their tra-
jectories would reflect the anisotropy of the enclosing perim-
eter. Our virtual rat in a square box has a probability higher
than chance of following the walls, simply because of the
random walk mechanism described earlier. While in the cyl-
inder environment the trajectory is necessarily isotropic, fol-
lowing the walls in a square box will result in the emergence
of four preferred RDs (Fig. 7 left column). The RD distri-
butions for square environments exhibit four peaks centered
around the directions parallel to the walls (Fig. 7 right col-
umn). In contrast, in a cylinder environment, the RD distri-
bution is uniform (Fig. 3b). The non-uniformity of the RD
distribution in square environments is stronger when the stan-
dard deviation in RDs is smaller (Fig. 7b).

In an environment with anisotropic boundary, if one RD
is preferred systematically, then the network would associ-
ate the activity of conjunctive units more strongly to places
following the preferred RD, and would effectively orient one
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Fig. 6 The variation in speed does not influence grid formation.
a Grids show similar mean gridness scores at the end of simulations
performed with different speed standard deviation relative to the mean
speed. Error bars indicate ± standard deviation across 5 simulations; b
Grid fields appear in the early phases of the simulation and stabilize with
more experience in the environment. Grid fields and the corresponding
autocorrelograms are ordered in rows for three example units from the

same network. Maps formed after the same amount of exploration are
arranged in the same column; c Mean gridness increases with respect
to the amount of exploration (speed standard deviation is 40 % relative
to the mean speed). Gray area is the ± standard deviation; d Standard
deviation of grid orientations; e Mean spacing of the grids with gridness
larger than 0.25

of the grid axes along this direction, forcing the other two
grid axes to follow. We would expect to see coherent grid
orientation across rats in such conditions.

4.2 Inter-trial grid orientation coherence in square
environments

To quantify the coherence in orienting grids across simu-
lations in environments with the same shape, an inter-trial
grid orientation coherence score is defined to measure the
periodicity of the sum of the mean orientation distribution
of grid axes, averaged across trials. Assuming perfect 30◦

periodicity, rotating the orientation distribution would yield
a very positive (negative) autocorrelation coefficient at even
(odd) multiples of 15 degrees of rotation. The orientation
coherence score is given by the difference between the mean
correlation for even and odd rotations. Note that such score
is in the range [−2, 2].

Grid fields show tight alignment in individual simulations
in square environments, irrespective of the shape of the envi-
ronment or RD standard deviation (Fig. 8a, b, c). To see
any common orientation across simulations, we performed
multiple simulations in square and cylinder environments
with RD standard deviation σRD = 0.2 radians and in square
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Fig. 7 Square environments
induce more running along the
sides. The left panels show parts
of typical trajectories. The
corresponding distributions of
RDs in simulations are depicted
in the right panels. a The default
standard deviation in RD,
σRD = 0.2 radians; b A
simulation with σRD = 0.15
radians, demonstrating stronger
anisotropy in the trajectories
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Fig. 8 Square environments tend to orient the aligned grid fields along
the directions of the sides, compared with cylinder environments. a–c
Grid fields align to each other in square environments (left column:
σRD = 0.2 radians, middle column: σRD = 0.15 radians) and in a cylin-
der environment (right column: σRD = 0.2 radians) in three individual
simulations. The alignment score, i.e., the mean standard deviation (in
degrees) of the orientations averaged over the three grid axes, is indi-

cated at the top of each panel. The same data in Fig. 4e is shown in (c)
again; d–f The sum of the orientation distributions of the three grid axes
averaged over 70 simulations. In square environments, the orientation
distribution of the three grid axes shows periodic clusters, which are
distinct from the random fluctuations of the average orientation distri-
bution. The number at the top of each panel indicates the coherence of
grid orientation
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environments also with σRD = 0.15 radians. In each of the
three conditions, 70 independent simulations were conducted
with different seeds for the random number generator. Aver-
aged and normalized over these 70 trials, the sum of the
mean orientation distribution of the three grid axes in square
environments shows a significant concentration at multiples
of 30◦ (Fig. 8d, e). That is, the common orientation of the
grid fields is more likely to align along the walls of square
environments. The inter-trial coherence of grid orientation
in square environments is much larger than that in cylinder
environments (Fig. 8d, e vs. f).

Results in Fig. 8 indicate that although the running-direc-
tion anisotropy associated with training in square environ-
ments does not influence grid alignment, it may strongly
modulate the coherence in grid orientation across simula-
tions. That is, running-direction anisotropy produces a sin-
gle orientation for the aligned grids in each simulation, but
two clusters of prevailing common orientations across sim-
ulations, at 30 (or rather, 90) degrees of each other, i.e., with
one grid axis aligned to a wall of the square environment.

In the real system, two main orientations are observed in
the same experiment [across grid units with different char-
acteristic grid spacings (Stensland et al. 2010)], not quite
orthogonal to each other, but also not aligned to the walls
of the testing environment. It could well be that these pre-
vailing orientations reflect other environments, where rats
were caged during development. A rat who develops in a
square or rectangular cage, however, is expected to experi-
ence not only RD anisotropy, as tested in the model, but also
speed anisotropy. To disentangle a potential contribution of
the latter, in the following section we introduce speed anisot-
ropy, and compare its effects with those of running-direction
anisotropy.

5 Speed anisotropy

Having observed that grid orientation is influenced by the
non-uniformity of RDs, in this section we focus on another
factor in the trajectories of the simulated rat, namely running
speed, and investigate whether the shape of the grids can be
influenced by an anisotropic speed distribution in exploration
behavior, even with no anisotropy in the boundary conditions
(i.e., in cylinder environments). In this section, the simula-
tions are identical to those in Sect. 3, except that the virtual
rat explores the cylinder environment running faster in four
preferred directions, as visualized in Fig. 9

vt = vs

[
q + (1 − q)

| sin(ωt )|3 + | cos(ωt )|3 − 1/
√

2

1 − 1/
√

2

]
.

(11)
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−0.4
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 0.2

 0.4

Fig. 9 Polar plot of the speed of the simulated rat with respect to RDs.
The maximal speed is vs = 0.4 m/s, and the minimal speed is 60 % of
vs

Here ωt is the current RD of the rat. The speed now can go
from a minimum of 24 cm/s to a maximum of vs = 40 cm/s
depending on the RD. q = 0.6 is the ratio between the two
speed extremes.

As in the standard simulations in Sect. 3, the RD distri-
bution of the trajectory is quite uniform (Fig. 10). In the RD
distribution there is a tiny over representation of RDs parallel
to the diagonals. This tiny distortion is originated by the fact
that when the rat is running faster it takes a shorter time for it
to reach the boundary, where it is forced to turn. However, the
effect appears much smaller than that because of the square
shape of the environment in Sect. 4, and its direct influence
on grid alignment is negligible.

5.1 Ellipticity

Figure 11a, b show the spatial maps as well as the autocorre-
lograms of four example conjunctive units from the network.
Similar to the case with constant speed, grids align with each
other, and the phases are kept broadly distributed in the envi-
ronment (Fig. 11c, d, e). However, the average gridness score
is somewhat lower as compared to the case with constant
speed (Fig. 11f). The reason is that, with speed anisotropy,
the grids are distorted, showing grid axes with non-equal
lengths, as can been seen carefully in Fig. 11c. Among the
three axes of a grid, the axis that passes through the maximum
farthest from the origin is identified as the long grid axis. In
our simulations with speed anisotropy, conjunctive units tend
to develop maps that share the same grid axis as the long one
(in the simulation of Fig. 11c this corresponds to the axis
with orientation around 100◦), indicating that grid distortion
happens predominantly along one direction. Another way to
quantify this distortion, introduced in (Stensland et al. 2010),
is to fit an ellipse that passes the six maxima close to the cen-
ter of the grid autocorrelogram (white curves in Fig. 11b).
These ellipses deviate from perfect circles, indicating mod-
ified grid structures. We find that such ellipses are roughly
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Fig. 10 Speed anisotropy does
not strongly influence RD
distribution in cylinder
environments. a A trajectory of
the rat with 2 × 104 steps in a
cylinder environment; b RD
distribution of an entire
trajectory in a 8 × 106-step
simulation
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aligned in each map with the corresponding long grid axis,
laying within 30◦ of it (Fig. 11g, h). The flattening of an
ellipse is measured by ellipticity, i.e., the ratio between the
major and minor axes. Note that the ellipticity of a perfect
circle is 1. In the simulation, the median of the ellipticity
distribution of the grids is about 1.15 (Fig. 11i).

5.2 Speed anisotropy does not increase inter-trial grid
orientation coherence

Averaged over 70 independent simulations in cylinder envi-
ronments, the orientation of the long grid axis concentrates
along the preferred directions of the speed profile, i.e., 0 and
90◦ (gray bars in Fig. 12a). The other two grid axes only
broadly orient to 60/120 or 30/150◦ respectively (light blue
bars in Fig. 12a), with low inter-trial coherence of grid ori-
entation. In contrast, with constant speed in cylinder envi-
ronments, both the average orientation distribution of grid
axes and of the long grid axis are fairly uniform, reflected
in even lower inter-trial coherence score of grid orientation
(Fig. 12d).

5.3 Speed anisotropy enhances ellipticity

With speed anisotropy in cylinder environments, we observe
that grid maps are more elliptical than those developed from
exploration with constant speed (Fig. 12b vs. e). The differ-
ence is rather subtle, however, as the fluctuations in the length
of the grid axes, and our choosing always the major axis of
the best fitting ellipse, whichever it is, obviously produce an
ellipticity measure distributed above 1, even with constant
speed.

5.4 Inter-trial coherence of ellipse orientation due to speed
anisotropy

We use the direction of the long axis of an ellipse to rep-
resent the ellipse orientation. The effect of anisotropy in

orienting ellipses can be quantitatively measured by defining
inter-trial ellipse orientation coherence score for the one-
dimensional average distribution of ellipse orientations. The
inter-trial ellipse orientation coherence score is calculated the
same way as the inter-trial grid orientation coherence score,
except that 90◦ periodicity is assumed, instead of 30◦ period-
icity. Note that the range of the inter-trial ellipse orientation
coherence score is [−2, 2].

It is evident that speed anisotropy is able to orient the
ellipses (Fig. 12c), around the preferred directions of the
speed profile, a clear difference from the uniformly distrib-
uted ellipse orientation in simulations with isotropic speed,
Fig. 12f.

With speed anisotropy in cylinder environments, the inter-
trial coherence in ellipse orientation is as high as 1.533. How-
ever, with constant speed, still in cylinder environments, the
corresponding inter-trial coherence score is close to zero,
indicating a uniform ellipse orientation distribution. Speed
anisotropy orients ellipses rather loosely, with a width at half-
peak around 30◦. It is reflected also in which of the three grid
axes tends to be the longest, but without apparently forcing
a rigid orientation of the grids themselves, Fig. 12a.

Figure 13 shows a summary of the differences between
speed anisotropy and RD anisotropy, once coupled with
recurrent interactions, with respect to three measures, namely,
inter-trial coherence in grid orientation, inter-trial coherence
in ellipse orientation, and mean ellipticity. One can see that
both anisotropies slightly distort the shape of grid maps into
a somewhat more pronounced elliptical arrangement of the
firing fields. Speed anisotropy induces on average more dis-
tortion (with our parameters), but the average effect is over-
shadowed by the large variability from unit to unit, in what
is an asymmetric ellipticity distribution with a long tail.
The qualitative difference is in what common orientation
emerges: speed anisotropy loosely orients ellipses toward the
fast directions (larger inter-trial coherence in ellipse orienta-
tion), but it does not enforce a tight grid orientation, across
simulations, on the aligned grids (dark circle in Fig. 13a,
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Fig. 11 Grid alignment during exploration in a cylinder environment
with anisotropic speed. a Examples of the fields of conjunctive units.
Unit number, and maximal firing rate (in arbitrary units) are indicated
above each rate map; b The corresponding autocorrelograms of the
fields shown in (a). The white curves show the ellipses determined
from the three maxima found in autocorrelograms. Gridness score, ori-
entation (in degrees) and ellipticity are indicated above each autocorre-
logram; c Histogram of the orientations of the three grid axes. Shown in
front in gray is the orientation histogram of the long grid axes. Indicated
at the top of the panel is the coherence score in grid alignment (mean

standard deviation, in degrees, of the orientation averaged over the three
grid axes), similar as the coherence in grid alignment in the cylinder
environment with constant speed; d The scatter plot of the locations of
the three peaks found in autocorrelograms; e The histogram of spatial
phases (again, relative to that of the best grid); f Histogram of the grid-
ness scores of all conjunctive units in the simulation; g Histogram of
the orientations of the major axes of the ellipses determined from each
autocorrelogram; h Histogram of the angles between the long grid axis
and the ellipse major axis; i Histogram of the ratios between the major
and minor axes of ellipses. The white broken line indicates the median

b). In contrast, RD anisotropy orients grids toward preferred
RDs (larger inter-trial coherence in grid orientation, white
and gray squares in Fig. 13a), but not ellipses. When com-
bined with RD anisotropy, speed anisotropy prevails (the dark
square in Fig. 13a, b). This is likely because speed anisotropy
induces the long grid axes to lie along either 0 or 90◦, and it
constraints the lengths (shorter) and orientation (not at 60◦)

of the other two grid axes; with RD anisotropy, the arrange-
ment of the fields maybe more dependent on the details of the
trajectory taken in each simulation, which does not appear
to restrict much the orientation of the ellipses, seemingly
leaving the grids free to orient themselves. We may conclude
that the shape of the environment and speed anisotropy cause
apparently similar, but subtly distinct effects.
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Fig. 12 Speed anisotropy in cylinder environments distorts the shape
of the grids and orients the ellipses (top row) as compared to explora-
tion with isotropic speed (bottom). a, d Average orientation distribution
of long grid axes (gray) plotted in front of the average orientation dis-
tribution of the three grid axes (blue). The coherence of grid orientation
is indicated at the top of each panel. The blue bars in (b) are the same

measure as the distribution shown in Fig. 8f; b, e Average distribution
of ellipticity. The distribution in (b) is plotted again as the red empty
bars in (e); c, f Average orientation distribution of the major axes of the
ellipses. At the top of each panel, the coherence in ellipse orientation
is noted. It is calculated similarly as the coherence in grid orientation,
but assuming 90◦ periodicity instead of 30◦. (Color figure online)
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Fig. 13 Speed anisotropy and RD anisotropy have different effects
on grid shape and orientation. a, b Five situations are compared with
respect to coherence in grid/ellipse orientation and to ellipticity, based
on the average over 70 independent simulations. The horizontal lines
indicate ± one standard deviation in ellipticity. The two panels share
the same legend to the right ; c The average orientation distribution of
the long grid axes (gray, in front) and the average orientation distri-

bution of all three grid axes (blue, in the back) for the simulations in
square environments without speed anisotropy, the same data as shown
also in Fig. 8d. The coherence in grid orientation is noted at the top of
the panel. d The average distribution of ellipse orientation, also for the
simulations in square environments without speed anisotropy, with the
corresponding coherence at the top. (Color figure online)
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Fig. 14 Grids show a weak tendency to align because of speed anisot-
ropy alone, without collateral connections in the network (ρ = 0).
a Histogram of the orientations of the grid axes (blue, in the back)
together with the histogram of the long grid axes (light gray, in the
front). The coherence in grid alignment is low (the mean standard devi-

ation, in degrees, of the orientation averaged over the three grid axes is
shown at the top of the panel, and it is much higher than with collaterals,
shown in Fig. 11c); b Orientation histogram of the major axes of the
ellipses; c Histogram of ellipticity. (Color figure online)

5.5 Minor grid alignment without collaterals

In the simulations above, collateral interactions among
would-be conjunctive units tend to align their developing
grid fields along common axes. We have considered two addi-
tional factors that influence the alignment, the shape of the
environment, if different from cylindrical, and anisotropy in
running speed. The latter factor, in particular, enhances the
ellipticity of the resulting grids, and affects their ellipse orien-
tations. Its effects are however secondary, in the simulations,
to the primary effect produced by the collaterals.

It is important to note that ellipticity and some degree of
common orientation, however, can be produced also by speed
anisotropy on its own, in the absence of collaterals. This can
be understood by considering a simple abstract model, which
extends the one earlier considered in (Kropff and Treves,
2008) to account for the development of grid fields at the
single unit level. The model describes a single unit in a very
large environment, which then for all practical purposes has
no shape. Hence the abstract model focuses on the effect of
speed anisotropy, which is modeled similarly as in the sim-
ulations, extricating it from the other two factors, the pres-
ence of collaterals, and the shape of the environment. The
model, described in the Appendix, leads to a relation between
the degree of anisotropy and the degree of ellipticity, and it
indicates two orientations, at roughly 90◦ of each other, of
the grids and of the ellipses that best match the assumed
quadrupole anisotropy. Hence it predicts that grids and ellip-
ses would have one of two common orientations even in the
absence of collateral interactions.

The effect predicted by the analytic model is reproduced
in ad hoc simulations. Figure 14 shows that in the presence
of speed anisotropy only, without collateral interactions, grid
units develop with an enhanced ellipticity, and with one of the
grid axes preferentially aligned along one of the two orthog-
onal directions with higher mean speed (in the simulation

of Fig. 14, this happens to be the one at 90◦). The vari-
ance in ellipse orientation is considerable, larger than what
is observed with speed anisotropy and collateral interactions
(Figs. 14b vs. 11g). However, the degree of ellipticity is sim-
ilar, irrespective of the existence of collateral interactions
(Figs. 14c and 11i). The first element that is missing, without
collateral interactions, is crucially the tight alignment of the
grids with each other. This is because, in our model, collateral
interactions align the grids with each other through mutual
iterative convergence, whereas without collaterals the align-
ment only reflects single unit adaptation to what is effectively
a broad shallow valley in a free energy landscape. We present
the abstract model in the Appendix for clarity, but we believe
it to be unlikely that, in the absence of collateral interactions,
speed anisotropy alone can establish a common grid orien-
tation with the tight alignment seen in experimental data.
The second element that is missing without collateral inter-
actions is the invariance in the relative phase of grid maps
across multiple environments, which we will examine in the
next section.

6 Grid realignment in multiple environments

Until now, we have only considered grid alignment in a single
environment. Under dramatic environmental changes, both
the hippocampal and entorhinal neurons develop new maps,
in a process called global remapping (Colgin et al. 2008).
While hippocampal place fields seem to shuffle randomly
during global remapping, grid cells behave in a population-
coherent manner. The new maps preserve the same relative
phases as the old maps, and maintain a common grid orien-
tation, not necessarily the same one as before (Fyhn et al.
2007). In this section, we address the question of how grid
fields may possibly align in multiple environments.
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We simulate the network in two different cylinder envi-
ronments, with identical conditions as in Sect. 3, except for
the number of units. The total number of conjunctive units
is 500. The total number of place units is 900. In each envi-
ronment, 500 of the place units are active. The number of
place units that are active in both environments is 100, i.e.,
20 % of the active place units in one environment. The place
fields of the place units in the first environment are com-
pletely different from those in the second environment. How-
ever, the preferred HDs of the conjunctive units are the same
across environments. The training is interleaved in the two
environments, with 2,000 epochs in each environment, 3,000
steps in each epoch. This leads to 1.2 × 107 training steps in
total.

6.1 Global coherence between two environments

Figure 15a, f compare the spatial fields and corresponding
autocorrelograms of four example conjunctive units in two
environments. In both environments, the grids are aligned,
but to different orientations (Fig. 15b, g). The angular off-
set of the grids in the second environment relative to the
grids in the first environment is about 9◦ counterclockwise.
The spatial phases of the units relative to the best grid in
each environment do not show any clear pattern or cluster-
ing (Fig. 15c, h), as in the simulations with a single learned
environment.

The distribution of ellipse orientations is quite different
across environments (Fig. 15d, i), but the ellipticity distribu-
tion is comparable, with a similar median at 1.16 (Fig. 15e,
j). This value is similar to those of the simulations with speed
anisotropy. This is because 20 % of the place units are active
in both environments but in randomly different locations. As
conjunctive cells need to maintain population coherence, this
randomness acts as a source of noise, imposing additional
constrains on conjunctive units that move their maps away
from perfect gridness. This can be seen as a third source
of ellipticity. The other two sources discussed in previous
sections, i.e., speed anisotropy and RD anisotropy, introduce
ellipticity during grid development by breaking the symmetry
of the trajectories of the simulated rat. The ellipticity caused
by grid realignment in multiple environments is due to the
overlap of the population codes of contextual information,
and is imposed by the structure of the network.

6.2 Invariant phase relationships

In order to determine whether the relative spatial phases of the
units are kept invariant across environments, we select a sub-
population, by taking into account only units that have good
grid maps in both environments (gridness score > 0.75). The
firing map in environment B of each unit in the population
is rotated counterclockwise at multiples of 4.5◦ and cross-

correlated with the corresponding map in environment A,
as in (Fyhn et al. 2007). The cross-environment crosscorre-
lograms thus obtained are averaged over the population, to
get the mean cross-environment crosscorrelograms for this
sub-population.

The mean crosscorrelogram of two groups of grid maps
shows whether the grid maps are related by the same shift
transformation. When two grids have the same orientation
and spacing, the crosscorrelogram between them shows grid
structure. In addition, the relative spatial shift between them
determines the direction and distance that the corresponding
crosscorrelogram is displaced away from the center. Cross-
correlating one group of grids, which have the same orienta-
tion and spacing but distributed spatial phases, with a second
group of grids, which are a shifted version of the first group
for the same amount, will result in a set of crosscorrelo-
grams with grid pattern and identical offset away from the
center. The offset is just the common shift between the two
groups. Adding the crosscorrelograms between the grids in
the two groups preserves a clear grid structure. If a common
rotation of multiples of 60◦ is applied, instead of a com-
mon shift, then the second group of grids still have the same
orientation as the original grids, and each individual cross-
correlogram still keeps a grid structure, but the phases are
changed differently for each grid (Fig. 16), producing cross-
correlograms with peaks appearing in distributed locations.
Thus, the mean crosscorrelogram of the two groups does not
maintain a grid pattern. For a common rotation other than
multiples of 60◦, the rotated grids do not align to the same
orientation as the original grids any more, making it impos-
sible for the mean crosscorrelogram to be a grid. Therefore,
for two groups of grids, the mean crosscorrelogram appears
to be a grid only when there is a coherent shift between the
two groups.

Figure 17a shows that only with a counterclockwise rota-
tion close to 9◦ does the mean cross-environment crosscorre-
logram show a grid structure. This is the angle that aligns the
grid axes of both environments in Fig. 15b, g. Figure 17a
thus indicates that after the angular offset is counter-bal-
anced, the spatial shifts between the grid fields in the two
environments are the same (Fig. 17b). For other rotations, in
contrast, the spatial shifts are different across units, giving
rise to an increasingly flat mean cross-environment cross-
correlogram. The absolute angular offset between the grid
orientations in two environments is not important. Note that
our simulations have fixed HD selectivity across environ-
ments, whereas in rats the preferred HDs of both conjunctive
cells and HD cells appear to rotate coherently by the same
amount in different environments (Sargolini et al. 2006).
Therefore the angular offset between the two sets of grid
maps in our simulations can be considered as the angular
shift after correcting for the HD selectivity shift across envi-
ronments.
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Fig. 15 Grid realignment in environment A (top) and environment B
(bottom). a, f Examples of the spatial fields and autocorrelograms of
four different units in the two environments; the unit number and max-
imal firing rate (in arbitrary units) are indicated above each rate map.
The gridness score, grid orientation (in degrees, between the x-axis and
the nearest grid axis) and ellipticity are indicated above each autocorre-
logram; b, g Scatter plots of the three peaks found in autocorrelograms.
The angular offset of the grids in environment B relative to the grids
in environment A is 9◦ counterclockwise. Noted at the top of the panel

are the mean spacing and the within-trial grid alignment score (mean
standard deviation, in degrees, of the orientations averaged over the
three grid axes); c, h Two dimensional histograms of spatial phases rel-
ative to the best grid in each environment. Each spatial bin represents
a 2.5 × 2.5 cm2 area; white indicates zero units with a phase in that
spatial bin, with more units indicated by progressively darker gray;
d, i Histograms of the ellipse orientations; e, j Histograms of the ellip-
ticity, i.e., the ratio between the length of the major and minor axes of
an ellipse, across all units
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Fig. 16 Rotating a grid map by 60◦ results in a non-linear spatial phase
transform. The spatial periodicity of a grid can be decomposed into
the periodicity along the projection axes ei , defined perpendicularly to
the three grid axes. The orientation of and the period/wavelength along
the third projection axis is constrained by the other two projection
axes. The spatial phases of grids with the same spacing and orientation
can be uniquely represented by points in a rhombus (area in gray).
The sides of the rhombus are parallel to two of the grid axes, and
the length of the side is equal to grid spacing. The spatial phases
are only distinguishable in a rhombus area, because the rhombus is
exactly one period length if projected onto two of the projection axes,
e1 and e2. Points outside the rhombus are equivalent to those in the
rhombus, modulo the wavelength along each projection axis. A grid
with non-zero phase (shown in brown) is rotated by 60◦ (indicated
by the dotted arc) around the origin. The phase of the rotated grid
(in gray) is equivalent to the white dot in the gray rhombus, as the
coordinates (dashed arrows) of the two points along the projection axes
are the same, modulo the wavelength. The phase change caused by the
rotation depends on the initial phase of the grid. (Color figure online)

Figure 17c shows the “gridness” scores of the mean cross-
environment crosscorrelogram with respect to the amount of
rotation when a different number of units from the network is
included in the analysis. The “gridness” score defined here is
similar to the one in the method described in Sect. 3. The dif-
ference is that the ring circling the six maxima is centered on
the closest maxima from the center of the crosscorrelogram,
and that the difference in covariance instead of the correlation
coefficient is used to define gridness. This is because most
of the mean cross-environment crosscorrelograms are quite
flat, giving unstable correlation coefficients when normaliz-
ing with small variance. As can be seen in Fig. 17c, with
20 units as a population, it is already possible to infer the
angular mismatch between the fields in two environments.
When only one unit is considered, the gridness of the cross-
environment crosscorrelogram is roughly periodic with
period 60◦. This indicates that with the population code
expressed by grid cells it is possible to keep a unique ori-
entation correspondence across environments in spite of
the orientation symmetry of the grids, and to differen-
tiate locations in an environment by the relative spatial
phases of the grid fields. To represent places on a larger
scale, multiple grid spacings are needed (Solstad et al.
2006; Rolls et al. 2006; Fiete et al. 2008; Si and Treves
2009).
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Fig. 17 The phases of the grids in the two environments rotate and
shift together. a The mean cross-environment crosscorrelogram of the
population after the optimal counterclockwise rotation of 9◦ is shown,
together with some other rotations. The rotation angle is noted on
the top of each panel. The mean cross-environment crosscorrelogram
shows the best grid structure in the case of the specific rotations that
(roughly) match the angular offset between the grid axes in the two
environments. The Mann–Whitney test (Zar 1998) shows that the mean
cross-environment crosscorrelogram after 9◦ rotation has larger mean
than the crosscorrelogram after zero-degree rotation (p = 0.0015);
b After the optimal rotation, the phase shifts of the same units concen-

trate in a small region with size similar to a field of a grid. Note that the
phase shifts of a small number of units fall in a different area, because
of the periodicity of the grid and small fluctuations in the peaks of the
individual crosscorrelograms. The gray crosscorrelogram shown in the
background is the mean cross-environment crosscorrelogram after the
optimal rotation, as shown in (a); c the “gridness” of the mean cross-
environment crosscorrelogram when the population set is increased
from a single grid (# units 1) to the whole selected population. The
gray broken line indicates the optimal rotation leading to the highest
gridness of the cross-environment crosscorrelogram

123



Biol Cybern

7 Discussion

Several conclusions can be extracted from these simulations.
In the first place, we have described how alignment can be
achieved in the model through recurrent collaterals, as long as
they are associated with HD information. Secondly, we have
shown that running-direction anisotropy in behavior, induced
by the shape of the environment, is enough to distort the grid
maps into ellipses, but it has the side-effect, of orientating
one of the grid axes with one of the walls. At the same time,
whether because too weak or localized, this kind of anisot-
ropy fails to align the distortion, measured by the long grid
axis or ellipse direction, into a common orientation. We have
then explored the effect of running speed anisotropy, which
has a milder influence on grid orientation but a stronger one
on the orientation of the ellipses. The same set of collateral
connections in the network achieve global coherence with an
invariant structure of relative phases, which, as we show in
the last part of the article, our model reproduces when the
virtual rat explores two different rooms.

7.1 Mechanisms for grid alignment

Whether grid alignment results from network interactions or
as a consequence of a single unit process is a very interesting
and complex question. In this respect, the literature presents
opposing views.

In models of interference between multiple oscillators, the
grid maps are the result of information processing within a
single neuron (Burgess et al. 2007; Giocomo et al. 2007;
Burgess 2008; Hasselmo 2008). Each grid cell is then inde-
pendent, and the common alignment comes from the fact that
they all share the same path integration inputs. The different
spatial phases are achieved by anchoring each grid cell to a
different set of spatial inputs. This selective anchoring is in a
way analogous to what happens with our place inputs, but it
plays in the oscillator-interference models the minor role of
correcting the errors of path integration, which is the main
source of information used to construct the grid maps.

A completely opposite view to the single unit perspective
comes from the attractor models (McNaughton et al. 2006;
Fuhs and Touretzky 2006; Guanella et al. 2007; Burak and
Fiete 2009; Navratilova et al. 2011). In these, grid maps do
not emerge individually, but as an emergent property of the
population, so that grid maps and grid alignment are intrin-
sically inseparable.

In the adaptation model, as shown by Kropff and Treves
(2008), grid cells with no recurrent collaterals can develop
grid maps with independent random orientations if they are
left to interact weakly through inhibition, a situation that
reminds us of the anatomy of layer II of medial entorhinal
cortex. The introduction of collateral connections with the
necessary HD information to disambiguate firing sequences,

as suggested earlier and proven here, can achieve grid align-
ment, as observed in experiments, thus offering a possible
explanation of why these elements are found together in lay-
ers III to VI and are both absent in layer II. In our model, the
common grid orientation lies on the attractor manifold cre-
ated by the collateral interactions. This attracting property is
a feature shared by the attractor models. In the latter, how-
ever, the collateral interactions have the full job of creating
both grid maps and grid alignment.

It is possible to extend the adaptation model to incorporate
path integration cues into the inputs. Coherent grids in such a
network would still be stable even with weak spatial inputs.

7.2 Grid alignment in layer II of mEC

The alignment of grid cells in layer II is perhaps inherited
from the deeper layers, which send strong projections to
superficial layers (van Haeften et al. 2003). This hypothe-
sis, not developed in the present study, represents an inter-
esting direction of modeling research, which could focus on
how conjunctive cells and grid cells may develop together in
different layers, and perhaps even self-organize into laminar
structures (Kropff and Treves 2008; Treves 2003).

7.3 Functions of collateral connections

The functional difference between feed-forward connections
and collateral connections can be appreciated when mov-
ing to a different environment. In each environment, only
a subset of place units is active. Feed-forward connections
therefore relay environment-specific inputs to the conjunc-
tive units. Collateral connections, however, signal the inter-
actions between conjunctive units by the environment-inde-
pendent geometrical structures they encode. The collateral
weights shown in Eq. 10 encode the correlation between the
activity of a postsynaptic unit and the delayed activity of a
presynaptic unit. With the same feed-forward and collateral
connections, the network is able to provide an efficient met-
ric encoding of space for all environments, as the emerging
grid maps are essentially the same set of grids, almost iden-
tical after a unique rotation and translation. It is likely that
collateral weights can be learned by a Hebbian rule correlat-
ing the activity during the trajectory. Addressing the issue of
learning collaterals will be very instructive for the attractor
models as well, and therefore requires a separate article to be
elaborated in depth.

The delay parameter τ is critical to avoid the collapse of
the subpopulation with similar HDs into a region of synchro-
nous dynamics. The network produces qualitatively similar
results as long as τ ≥ 13 steps, i.e., 130 ms in real time. This
is the time it takes the virtual rat to travel the minimal distance
between two input place fields. Smaller delays do not change
the gridness scores or the alignment of grid maps, but cause
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the spatial phases of the grid fields to collapse, showing a
non-random phase distribution (data not shown). The phase
collapse due to small τ can be understood by the associative
learning between conjunctive units and place units. Small
τ would cause two strongly connected conjunctive units to
fire consecutively in short intervals, during which the place
units show similar population activity. Associative learning
therefore would produce similar grid fields for both units. To
avoid that, the delay between two strongly connected con-
junctive units needs to be long enough so that grid fields are
able to anchor to different locations, resulting in random spa-
tial phases. The exact mechanism that generates this delay is
something that our simple rate-based model does not attempt
to describe, and it could go from several types of slow syn-
aptic potentials to interactions with rhythms, such as phase
precession.

Recurrent collaterals have the side effect of amplifying
what could be seen as a distortion of the idealized grid maps
already at a single cell level. This is due to the attracting
dynamics of the collateral interactions. Both the shape and
the orientation of the grids are reinforced by collateral inter-
actions, converging toward coherence at the population level.

7.4 Elliptic grids due to anisotropic behavior

As we show in the present study, a weaker form of align-
ment of grid cells can be produced with independent single
units, if the behavior of the rat includes some form of anisot-
ropy. This alignment, however, would imply no population
coherence in relative phases with global remapping. Still,
anisotropy might be the reason why grid maps present dis-
tortion or ellipticity. This is not the first time that behavior
is proposed to influence the firing of grid cells. In the hair-
pin maze experiment (Derdikman et al. 2009), rats covered a
two dimensional space but walking through a series of corri-
dors in such a way that the behavioral constraints were those
typical of exploration in one dimension. As a result, the grid
cells showed a fragmented map with several one-dimensional
patches instead of the canonical triangular structure. In our
model, behavior alone creates distortion in the symmetry of
grid maps, which is amplified and made coherent by recur-
rent collaterals. In a way, the distortion observed by Stensland
et al. (2010), coherent at the population level, might be the
price that the system has to pay to get a metric system of
space that is consistent across environments.

7.5 Influence of experience

Grid formation in our model requires as extensive training
experience as that of real rats during a long developmental
time of one or two weeks. Therefore the spacing of the grids
developed in our model stems from the mean exploration
speed of the simulated rat during development as well as the

time constant of adaptation (Kropff and Treves 2008). For
real rats, it is poorly understood how much the geometry of
a map in a new environment depends on the previous expe-
rience. It has been shown that in some over-trained animals
grid maps emerge very fast in a novel environment (Hafting
et al. 2005), but we are far from being able to generalize this
observation to all rats, experienced and naïve (Barry et al.
2009). It is possible that the perfect grid pattern observed
in some rats is a result of the successful generalization of
an isotropic distribution of trajectories in two dimensions,
related to a vast experience in open field environments at
the right age of development, possibly starting around P20.
Such extensive exposure to the open field is far from being
an exclusive natural condition for all rats. It would be inter-
esting to study the adult grid maps of rats raised in a different
environment, e.g., in a system of tunnels. If there is a critical
time window when the geometry of the grid system is devel-
oped, then these animals might have, as adults, grid cells with
peculiar properties even after prolonged training in the usual
two dimensional square boxes. Another interesting aspect
of the problem is what happens during this training period.
Perhaps extensive learning can compensate for part of the
distortion observed in grid maps. The main problem of such
a study is that untrained animals exhibit a very poor coverage
of two dimensional environments, making it hard to compare
the geometry of their spatial maps with trained controls.

7.6 Regulation of network activity

Our model uses an ad hoc gradient descent mechanism to sta-
bilize network activity. Once the network passes a transient
phase, the gain and threshold do not change much between
time steps. This simple method is intended to be an abstrac-
tion for the homeostasis in a local module in mEC. The mean
activity of a local cortical network can be regulated by inhib-
itory interneurons. To implement such homeostasis in a bio-
logical plausible network, inhibitory units should be intro-
duced to integrate the activity of the excitatory units, which
are in turn inhibited by inhibitory neurons.

7.7 Predictions of the adaptation model

The adaptation model presented in this article provides pre-
dictions about grid cell responses. New experiments can be
carried out, by acting at the relevant postnatal development
stage, to support or falsify the model.

7.7.1 Requirement of head-direction inputs for grid
alignment

In the adaptation model, HD information is necessary for grid
alignment, which is not the case in attractor models. If HD
inputs to the network are sufficiently suppressed, then grid
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alignment disappears, but grid periodicity is less affected.
Inactivation of HD inputs to mEC, e.g., from post-subicu-
lum or thalamus, might clarify whether HD information is
crucial in grid alignment and whether grid alignment is par-
tially independent from grid periodicity.

7.7.2 Involvement of the plasticity in collateral connections

Collateral interactions play a key role in grid alignment.
Collateral connections require grid-like activity to take the
appropriate weights, which therefore are expected to be
reached, in the real system, during postnatal development.
Blocking the plasticity of collateral connections between
conjunctive units should impair grid alignment. Another
experiment might involve assessing the amount of synap-
tic change in collateral connections and correlating it with
the amount of exploration.

7.7.3 Associative learning in afferent connections

The adaptation model assumes afferent inputs, e.g., from the
hippocampus and post-rhinal cortex. Associative learning in
afferent pathways to mEC anchors grids to external refer-
ence frames. Blocking the plasticity of the synapses between
mEC and the hippocampus, post-rhinal cortex or other affer-
ent regions should disrupt grid formation.

7.7.4 Influence of the environment boundary

Our simulation results indicate that anisotropy in RDs, such
as that induced by the boundary of a square environment, ori-
ents one of the grid axes parallel to the preferred directions.
An immediate prediction for experiments is that with rats
raised in a circular environment, grid orientation should be
randomly distributed (across rats), showing no preference for
any particular direction. Such a common preference should
emerge in rats raised in a markedly anisotropic environment.

7.7.5 Influence of speed anisotropy on ellipticity

Speed anisotropy in the simulated trajectories contributes to
deform grids from perfect hexagonal symmetry into an ellip-
tical arrangement of the fields. The simulations in this arti-
cle predict that strong speed anisotropy should enhance grid
ellipticity. The increase in ellipticity caused by speed anisot-
ropy may be tested by training and recording from rats that
run systematically faster in certain directions.
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Appendix: Abstract ellipse model

What does a non-circular, but elliptical arrangement of the
grid map imply, geometrically?

If any two of the three grid axes are not separated by 60◦,
then the lengths of the grid axes cannot be equal any more,
for the grid to retain its canonical periodicity. As Fig. 18 illus-
trates, the grid vertices occur periodically along lines (broken
in the Figure; those passing through the origin are called grid
axes) orthogonal to the three projection axes (the black axes
ei in Fig. 18), provided such lines share three-way intersec-
tions. If the grid is modeled as a simple sum of three cosines,
then the distance between the broken lines of each orientation
is the wavelength λi ≡ 2π/ki of the corresponding cosine,
which has a k-vector of length ki oriented at ei from the x-
axis. To preserve grid structure, the inverse wavelength k3

along the third projection axis e3 is constrained so that the
peaks (red broken lines in Fig. 18) coincide with those along
each of the other two projection axes (blue and green broken
lines). This leads to two equations relating λ3 to λ1 and λ2

and to the angles between them. In the figure, it is assumed
that e1 = 0, but it is easy to write the following equations
considering the general case of nonzero e1

λ3 = λ1

cos(e2 − π/2 − e1)
cos(e3 − e2 − π/2),

λ3 = λ2

cos(e2 − π/2 − e1)
cos(e3 − e1 + π/2).

e1λ1

e2

λ2

e3

λ3

Fig. 18 Non-evenly separated grid axes, i.e., not at π/3 of each other,
imply non-even lengths of the axes themselves, to preserve periodicity,
resulting in an elliptical arrangement of the vertices. In this example, the
grid axes (indicated by the broken lines) are oriented toward at 90, 45,
and 157.5◦. Orthogonal to them are the three projection axes entering
the 2D Fourier transform, at angles ei of 0, 135, and 247.5◦, respec-
tively. The vertices of the grid are arranged on lines at three different
distances λi from each other (and from the origin)
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Fig. 19 The input (a) and output (c) produced by the gradient descent
algorithm that adjusts the ki vectors to minimize a cost function Lanis

that includes a quadrupole term (b, in Fourier space). Depending on the
exact initial condition, the algorithm converges toward the theoretically
optimal solution (which has angles ei = −110, 20,−45 deg and the
two longer ki vectors of identical length) but it stops before reaching

it, as solutions with a jitter of ±2 deg have the same cost, to the fourth
significant digit. d Shows in different colors the orientation distribu-
tion of the three ei s, clustering into two modes. However, the shallow
landscape of the cost function (for any reasonable form of the quadru-
pole anisotropy) indicates that the tight alignment seen experimentally
cannot result from single-unit mechanisms alone

They lead to a solution for e3 and λ3 which may be expressed,
e.g., as

e3 = arccos

⎡
⎣ λ1 cos(e2 − e1) + λ2√

λ2
1 + λ2

2 + 2λ1λ2 cos(e2 − e1)

⎤
⎦ + π + e1,

λ3 = λ1λ2√
λ2

1 + λ2
2 + 2λ1λ2 cos(e2 − e1)

.

It is straightforward to see that these relations translate into
an equivalent, but simpler relation between the k-vectors

k1 + k2 + k3 = 0. (12)

What determines the exact position of the k-vectors?
Considering the abstract model discussed in detail in

(Kropff and Treves 2008), of the development of an individ-
ual grid, the model does not distinguish between a would-be
pure grid and a conjunctive unit. It assumes that at the end of
the developmental process the firing map �i (x) of the unit
minimizes a functional L , which in its basic version takes the
form

L = 1

A

∫

A

dx[∇�(x)]2 + γ

A

∫

A

dx�(x)

×
∫

A

dx′�(x′)K (|x′ − x|), (13)

where K (|�x|) is a kernel expressing neuronal fatigue. The
first term of the cost function expresses a penalty for maps
that vary too much across space, and a preference for smooth
maps. This can be understood from the point of view of the
smoothness of the spatial inputs and the smoothness of the
neuronal transfer function. The second term of the cost func-
tion expresses a penalty for maps in which a neuron has to

fire for very long periods of time, subject to neural fatigue.
In (Kropff and Treves 2008) the grid pattern emerges as a
compromise solution between these opposite requirements.
There we give two examples of the kernel, which can be
treated analytically. The analysis involves going into Fourier
space, where the firing map is decomposed into 2D Fourier
modes

�(x) = a0 +
∑

i

ai cos(ki · x + φi ) (14)

and the functional becomes

L = 1

2

∑
i

a2
i k2

i + γ a2
0 K̃ (0) + γ

2

∑
i

a2
i K̃ (ki ) (15)

where K̃ simply denotes the 2D Fourier transform of the
kernel, and k, again, is the length of the 2D vector k.

As discussed in (Kropff and Treves 2008), among 2D peri-
odic solutions, the favored ones are those with a superposition
of three cosines:

�(x) = 1 + 2

3

3∑
i=1

cos(ki · x) (16)

where for simplicity, we have omitted the phases by suitably
defining the origin.

To model a degree of speed anisotropy, with faster runs,
e.g., along the axes or along the diagonals of a square environ-
ment, one can simply add a quadrupole term to the functional
L , the precise form of which is not essential, like the pre-
cise form of the kernel K is not essential either. One simple
choice is
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Lanis = 1

2

∑
i

a2
i k2

i + γ a2
0 K̃ (0) + γ

2

∑
i

a2
i K̃ (ki )

+ζ
∑

i

[
(k3

xi + k3
yi )/k3

i − 1/
√

2
]
, (17)

where the quadrupole term, with a strength ζ , adds a cost
ζ(

√
2 − 1)/

√
2 for each k aligned with the x- or y-axis, and

no cost for those oriented at ±π/4, hence favoring k vectors
along the diagonals (rotating the quadrupole by π/4 one can
favor instead those aligned with the axes). The addition of the
extra term makes it hard to get analytic solutions, but numer-
ical minima of the cost function can be found with a gradient
descent algorithm that takes into account the additional con-
straint on the triplet of ki vectors and their amplitudes ai ,
i = 1, 2, 3. We performed several numerical minimizations
of Lanis using as initial conditions perfect grids oriented in all
possible directions , with the 3 ki at 2π/3 of each other, their
length such as to minimize L , and ai ≡ 2/3. The numerical
algorithm rapidly converges to a solution with one some-
what shorter k vector aligned with one of the two orthogonal
directions of faster speed (in Fig. 19, 3π/4) and the other two
vectors somewhat longer and more than 2π/3 of each other.
Whatever the initial orientation of the original symmetric
grid, the algorithm finds a solution very close to either of the
two “exact” solutions, the one shown in Fig. 19 and the equiv-
alent reflection along the vertical or horizontal axis. In this
way, when only the single cell level effect is considered, the
shorter vector, indicating roughly the direction of the ellipse,
stands at ±π/4 (or at 0, π/2 if the faster speeds are along the
axes).
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