
Northeastern University

Computer Engineering Dissertations Department of Electrical and Computer
Engineering

January 01, 2015

Resource management in enterprise cluster and
storage systems
Jianzhe Tai
Northeastern University

This work is available open access, hosted by Northeastern University.

Recommended Citation
Tai, Jianzhe, "Resource management in enterprise cluster and storage systems" (2015). Computer Engineering Dissertations. Paper 32.
http://hdl.handle.net/2047/d20018667

http://iris.lib.neu.edu/comp_eng_diss
http://iris.lib.neu.edu/elec_comp_eng
http://iris.lib.neu.edu/elec_comp_eng
http://hdl.handle.net/2047/d20018667

Contents

Abstract 3

1 Introduction 4

1.1 Computational Resource Management in Cluster Systems 5

1.2 Data Management in Multi-tiered Storage Systems 6

1.3 Data Management in Flash-based Storage Systems 7

2 Background 10

2.1 Multi-tiered Cluster Systems . 10

2.2 Load Balancers in Cluster Systems . 11

2.3 Bursty Workloads in Real Systems . 13

2.4 Multi-tiered Storage System . 15

2.5 Host-side Flash in Storage System . 17

3 Computational Resource Management in Cluster Systems 19

3.1 Motivation . 19

3.2 New Load Balancer: ArA . 21

3.2.1 Static Version . 21

3.2.2 Online Version . 24

3.2.3 Performance Improvement of ArA Pred 27

3.2.4 Sensitivity Analysis on Experimental Parameters 28

3.3 Case Study: Amazon EC2 . 30

3.4 Summary . 32

4 Flash Resource Management in Storage Systems 33

4.1 Live Data Migration in Multi-tiered Storage Systems 33

4.1.1 System Architecture . 34

4.1.2 Migration Algorithm LMsT . 35

4.1.3 Performance Evaluation of LMsT 43

4.2 vFRM: Flash Resource Manager in VMware ESX Server 52

4.2.1 Motivation . 52

4.2.2 vFRM Design and Algorithms . 55

4.2.3 Evaluation . 59

4.3 G-vFRM: Improving Flash Resource Utilization Among Multiple Hetero-

geneous VMs . 63

4.3.1 Motivation . 63

1

4.3.2 New Global Version of vFRM Among Multiple Heterogeneous VMs 65

4.3.3 Performance Evaluation of G-vFRM 73

4.3.4 Hit Ratio . 73

4.3.5 IO Cost . 74

4.4 Summary . 75

5 Conclusion and Future Works 76

2

Abstract

In this thesis, we present our works on resource management in large scale systems, es-

pecially for enterprise cluster and storage systems. Large-scale cluster systems become

quite popular among a community of users by offering a variety of resources. Such sys-

tems require complex resource management schemes for multi-objective optimizations and

should be specific to different system requirements. In addition, burstiness has often been

found in enterprise workloads, being a key factor in performance degradation. Therefore,

it is an extremely challenging problem of managing heterogeneous resources (e.g., comput-

ing, networking and storage) for such a large scale system under bursty conditions while

providing performance guarantee and cost efficiency.

To solve this problem, we first investigate the issues of classic load balancers under

bursty workloads and explore the new algorithms for effective resource allocation in cluster

systems. We demonstrate that burstiness in user demands diminishes the benefits of some

existing load balancing algorithms. Motivated by this observation, we develop a new class

of burstiness-aware load balancing algorithms. First, we present a static version of our

new load balancer, named ArA, which tunes the schemes for load balancing by adjusting

the degree of randomness and greediness in the selection of computing sites. An online

version of ArA has been developed as well, which predicts the beginning and the end

of workload bursts and automatically adjusts the load balancers to compensate. The

experimental results show that this new load balancer can adapt quickly to the changes

in user demands and thus improve performance in both simulation and real experiments.

Secondly, we work on data management in enterprise storage systems. Tiered storage

architectures provide the shared storage resources to a large variety of applications which

might demand for different service level agreements (SLAs). Furthermore, any user query

from a data-intensive application could easily trigger a burst of disk I/Os to the back-end

storage system, which eventually causes performance degradation. Therefore, we present

a new approach for automated data movement in multi-tiered storage systems aiming to

support multiple SLAs for applications with dynamic workloads at the minimal cost.

In addition, Flash technology can be leveraged in virtualized environments as a secondary-

level host-side cache for I/O acceleration. We present a new Flash Resource Manager,

named vFRM, which aims to maximize the utilization of Flash resources with the min-

imal I/O cost. It identifies the data blocks that benefit most from being put on Flash,

and lazily and asynchronously updates Flash. Further, we investigate the benefits of the

global versions of vFRM, named g-vFRM, for managing Flash resources among multiple

heterogeneous VMs. Experimental evaluation shows that both vFRM and g-vFRM al-

gorithms can achieve better cost-effectiveness than traditional caching solutions, and cost

orders of magnitude less memory and I/O bandwidth.

3

1 Introduction

Large-scale resource management systems are being employed in an increasing number of

application areas these days. Examples of these systems include High Performance Com-

puting (HPC), enterprise information systems, data centers, cloud computing and cluster

servers. In particular, resource management is an important research topic which is re-

quired by any man-made system and affects in system evaluation in two basic criteria, i.e.,

performance and cost. Efficient resource management has a direct positive effect on sys-

tem performance and cost. Managing resources at large scale while providing performance

guarantee and cost efficiency by using of underlying hardware resources (e.g., computing,

networking and storage) is an extremely challenging issue. Such scaled environment pro-

vides shared resources as an unified hosting pool, which requires a central mechanism for

resource provisioning and resource allocation based on the demands of multiple remote

clients [1, 2].

The basic resource management schemes are classified as follows. Admission control

prevents system from accepting workloads in violation of high-level policies and avoids

the additional loads competing with the works already in progress. Capacity allocation

schedules resource for individual instances which might be subject to multiple global opti-

mization constraints. An instance is a service activation. Load balancing usually works as

the function to evenly distribute workloads among a shared resource pool or works as the

function of server consolidation that concentrates resources and uses the smallest number

of servers while switching the others to standby mode. Auto scaling releases or alloca-

tions resources on demand and on-the-fly adjusts a pool of system resources for unplanned

spike loads. Another classification of resource management policy is directly related to

system evaluation of performance criterion aiming for quality of service guarantee and

performance isolation. In this dissertation, we works on resource management in large-

scale systems, especially, for the load balancing in the cluster systems and the capacity

allocation and quality of service guarantee in enterprise storage systems.

A large-scale resource management infrastructure is a complex system with a large

number of shared resources. These are subject to different system architectures, het-

erogeneous underlying hardware resources and unpredictable requests from multiple re-

mote clients. For example, there are different virtualization architectures (e.g., Para-

virtualization vs. full virtualization) which require different software designs. Further,

such systems can be virtualized in different layers (e.g., software defined networking and

software defined data center). Additionally, there are different computing models as plat-

form, e.g., cluster computing, distributed computing, utility computing and grid comput-

ing in general. Except the difference in system architectures, the underlying hardware is

evolved over time. GPU is in a class by itself which goes beyond CPU and basic graphic

4

controller functions as a programmable and powerful computational device. NAND-based

Flash is being widely deployed as the cache in the storage systems to improve the I/O

performance and reduce the power consumption. Flash can be deployed as an entire Flash

server or works as a whole storage tier combined with conventional storage devices as a

multi-tiers systems. Furthermore, some approaches leverages Flash as a secondary-level

host-side cache to accelerate IO operations. Thus, resource management is extremely chal-

lenging by requiring complex policies for multi-objective optimization and should be spe-

cific to different system requirements. In modern large-scale environments, the variety and

the burstiness of workloads are often found as the key factors in performance degradation.

Since the cluster system is exposed as a shared resource pool to variously remote appli-

cations and many applications are no longer designed as single-program-single-execution,

the load balancer in cluster systems may be involved in a large number concurrent and

dependent jobs. Furthermore, launching jobs from different applications during a short

time can easily introduce an arrival burstiness.

1.1 Computational Resource Management in Cluster Systems

In a traditional multi-server cluster, a front-end dispatcher plays an important roll in

dispatching incoming jobs among those back-end servers. Such a front-end dispatcher is

featured as a redirect buffer without central waiting queue while each back-end server

has its own queue for waiting jobs and a separate processor that operates under the first-

come first-serve (FCFS) queuing discipline. A simple yet powerful load balancing in a

dispatcher-based cluster system is significantly critical for system performance, such as

average waiting time, average response time, system utilization, and job slowdown, etc.

Lots of prior researches have investigated the characteristics and algorithm optimization

of such featured cluster systems [3–5]. Examples of these policies include Join Shortest

Queue (JSQ), the size-based AdaptLoad [6] and the Min-Min/Max-Min algorithms [7],

etc. However, these methods only consider the Poisson arrival streams as well as the

exponentially distributed service time and the fixed number of choices (i.e., servers). To

implement better resource allocation in cluster systems, we present a adaptive load bal-

ancing algorithm, named ArA. We first use a queuing model to demonstrate the negative

effects of burstiness on system performance. We use a detailed simulation to verify that the

conventional load balancing algorithms do not perform well in the presence of burstiness.

We then describe our static ArA algorithm which tunes the load balancer by adjusting the

best number of servers as targeting candidates based on the trade-off between randomness

and greediness. To select an effective server for an incoming job, static ArA periodically

queries the load information (e.g., queue length and utilization) from each server as the

ranking criteria and then selects the top K servers as the best candidates. The higher

5

ranking values, the more likely jobs can be served with shorter queuing times. Then, the

incoming job will be randomly submitted to a server among these K candidates. K is a

fix number in static ArA. While this approach gives very good performance, tuning the

number of K can be difficult. We therefore design our online ArA algorithm. In this

version, a burst on-off prediction algorithm is designed by using the index of dispersion

to accurately forecast the workload changes in user demands and system loads, and then

online ArA can re-adjust the degree of randomness on-the-fly according to the workload

changes.

1.2 Data Management in Multi-tiered Storage Systems

Except resource management in cluster systems, we also present data management in

enterprise storage systems. One of the most important issue in data management is where

to store the data sets and how to make them efficiently accessible. In this topic, we

mainly focus on two aspects, 1) how to implement an auto-tiering algorithm in tiered

storage system which moves data between types or classes of storage so that the most

active data is on the fastest type of storage and the least active is on the most cost-

effective class of storage, 2) how to improve the conventional caching algorithms in order

to best utilize Flash resources in storage systems.

Tiered storage systems have gained prominence in modern enterprise storage arrays

which combines SSDs with traditional HDDs. The SSD tier is used to cache the most active

data by providing performance guarantee while the HDD tier is used to provide storage

capacity for the remaining less active data. However, such hybrid storage architecture

introduces the complexity of data management and maintenance. The performance im-

provement in tiered storage systems is subject to effectively place the right data at the the

right tier during the right time. One of the main issues in data management is regarded to

the diversity of SLAs. The enterprise storage arrays (e.g., SAN and NAS) often provide

the shared resources or services to a large variety of applications which might demand

for different performance goals. Hence, these storage systems should have the capability

of controlling resources to achieve the performance goals of various applications and then

to meet their associated SLAs. Yet, real application workloads are much more diverse

and complex, which dynamically change over time. Bursty workloads and traffic surges

are often found in enterprise data centers, which can cause different data temperatures

(e.g., hot/cold) in the fundamental storage pools. Here, the term of hot/cold means the

high/low access rate. Under bursty conditions, the traditional HDDs then yield poor QoS

to the application, leading to the high latency of I/O operations and a large number of

SLA violations.

Therefore, in the work, we present a new approach for automated data movement in

6

multi-tiered storage systems, which migrates the data across different tiers, aiming to sup-

port multiple SLAs for applications with dynamic workloads at the minimal cost. Using

trace-driven simulations, we verify that bursty workloads and traffic surges that are often

found in storage systems, dramatically deteriorate the system performance, causing high

I/O latency and large numbers of SLA violations in low performance tiers. In order to

mitigate such negative effects, hot data that are associated with those bursty workloads

should be migrated to high performance tiers. However, extra I/Os due to data migra-

tion as well as the newly migrated bursty workloads can incur additional SLA violations

to latency-sensitive applications in high performance tiers. Therefore, we designed a live

data migration algorithm, called LMsT, in multi-tiered storage systems, which can (1)

counteract the impacts of burstiness by efficiently utilizing the high-performance devices

to improve the QoS for loose-SLA applications; and (2) minimize the potential delays

to latency-sensitive applications by introducing priority-based queuing discipline which

classifies I/Os by their corresponding SLA goals and serves them with different logical

buffers. Furthermore, we show that LMsT can automatically detect all the possible mi-

gration candidates and verify the feasible ones by estimating the risk of SLA violations and

quantifying the performance benefits via both the SLA and the performance constraints.

1.3 Data Management in Flash-based Storage Systems

Flash resources in storage systems can be allocated either within a storage array (e.g., NAS

and SAN) or it can be located on the server itself. One popular approach of leveraging

Flash technology in virtualization environments today is using Flash as a secondary-level

host-side cache. Such Flash can be served as both write buffer and read cache to hold

metadata and data and be synchronized with back-end magnetic drives. Lots of previous

works studied how to utilize Flash within conventional storage solutions to construct an

efficient data management system [8, 9]. In these works, however, they leverage some

conventional caching policies [10–13] such as LRU and its variants to maintain the most

recent accessed data for future reuse while some other works intended to design a better

cache replacement algorithm by considering frequency in addition to recency [14,15]. These

caching algorithms determine the cache admission and eviction on each data access which

is independent of the practical I/O behavior, especially in virtualized storage systems.

While straightforward, these conventional caching approaches have disadvantages in the

following two aspects: 1) Cost- and performance-effectiveness. Since the cache is statically

pre-allocated to each virtual disk, and the caching algorithm computes the cache admission

and eviction independent of the I/O activities of other virtual machines, it is difficult for

the hypervisor to cost-effectively partition and allocate Flash resources among multiple

heterogeneous virtual machines with different workloads. 2) Scalability. Since caching is

7

usually implemented with a fine-grained cache line size (e.g. 4KB, 8KB), it requires a

large number of CPU cycles for operations such as cache lookup, eviction, page mapping,

etc., a large amount of memory space for maintaining cache metadata such as mapping

table, LRU list, hash table, etc., and a fair amount of I/Os to update the content in

Flash [16]. As the size of Flash storage grows to hundreds of GB or even several TB,

the high cost of CPU, memory and I/O bandwidth reduces the benefit of virtualization,

where virtual machines are contending the same pool of resources from host. Even worse,

it hinders the deployment of Flash resources in large scale.

To address these problems, we explore the Flash usage model from the hypervisor’s

point of view, and define a new set of goals: maximize the performance gain, and minimize

the incurred cost for CPU, memory and I/O bandwidth. With re-defined goals of using

Flash, we design VMware Flash Resource Manager (vFRM) to manage Flash resources

in the virtual machine environment. Based on long-term observation of the I/O access

patterns, vFRM uses the heating and cooling concepts to model the variation of I/O pop-

ularity of individual blocks. With better understanding of the variation of I/O popularity,

it predicts the most popular blocks in the future and places them into the Flash tier to

maximize the I/O absorption ratio on Flash, which eventually maximizes the performance

benefits from Flash resources. In addition, this leads to a great saving in memory space

for keeping the metadata, and a significant reduction in I/Os that are needed for updating

the contents in Flash, because vFRM updates the placement of data blocks between two

tiers in a lazy and asynchronous manner.

In this thesis, our main contributions regarding resource allocation are summarized as

follows:

1. Investigation of the impact of burstiness on load balancing in the cluster systems;

2. Presentation of a new class of load balancing algorithms, called ArA, in both static

and dynamic versions;

3. Presentation of a new approach for automated data movement in multi-tiered storage

systems and verification of the effectiveness and the robustness of LMsT algorithm

by trace-driven simulations;

4. Presentation of a new Flash resource manager, called vFRM, which aims to maxi-

mize the utilization of Flash resources with minimal I/O cost;

5. Investigation the benefits of g-vFRM for managing Flash resources among multiple

heterogeneous VMs.

The remainder of this thesis is organized as follows. In Section 2, we discuss the

background for resource management in cluster systems and introduce the background for

8

data management in storage systems. Section 3.1 demonstrates the effects of burstiness

and information query delay in load balancer. In Section 3.2, we first present a static

version of ArA, (see Section 3.2.1) which tunes the load balancer by adjusting the trade-

off between randomness and greediness, as well as an online version, (see Section 3.2) which

predicts the beginning and the end of workload bursts and automatically adjusts the load

balancer to compensate. Performance evaluation of the load balancer ArA is presented in

Section 3.2.2 and Section 3.3. Section 4.1.1 demonstrates the architecture of a multi-tiered

storage system. Section 4.1.2 presents the LMsT algorithm for automated data migration

in multi-tiered storage systems. Section 4.1.3 evaluates the effectiveness and robustness of

LMsT using trace-driven simulations. In Section 4.2.1, we discuss the goals of leveraging

Flash and analyze disk I/O traces of real workloads. Section 4.2.2 describes the details of

vFRM design. Section 4.2.3 evaluates vFRM in contrast with existing caching solutions.

In Section 4.3.1, we classify workloads into two categories and analyses access patterns of

workloads. Section 4.3.2 presents the the global version g-vFRM. Section 4.3.3 evaluates

the effectiveness of g-vFRM algorithm in both hit ratio and IO cost. Section 4.4 gives

a summary of data management in storage systems. Finally, we draw the conclusion and

future works in Section 5.

9

2 Background

2.1 Multi-tiered Cluster Systems

In today’s climate, cluster systems are established as an industry standard for develop-

ing client-server applications. The large-scale cluster computing environments are being

deployed in an increasing number of application areas these days. Examples of these sys-

tems include High Performance Computing (HPC), enterprise information systems, data

centers, cloud computing and cluster servers. For example, multi-server cluster systems

have been widely deployed in web-based services involved in the well-known flash crowd

phenomenon in Web 2.0 workloads [17]. Lots of prior research have investigated the char-

acteristics and algorithm optimization of such featured cluster systems [3–5]. Specifically,

in a cluster, shared resources are provided as an unified hosting pool, which requires a

central mechanism for resource provisioning and resource allocation based on the demands

of multiple remote clients [1, 2].

A lot of research work [18–20] has been carried out on the study of multi-server clusters

with a single system image, i.e., a set of homogeneous hosts behave as a single resource

pool. Figure 1 illustrates the model of a simple cluster system. In such a multi-server

cluster, a front-end dispatcher plays an important roll in dispatching incoming jobs among

those back-end servers based on a certain algorithm. Such a front-end dispatcher is fea-

tured as a redirect buffer without central waiting queue while each back-end server has its

own queue for waiting jobs and a separate processor that operates under the FCFS queu-

ing discipline. In our work, we focus on the load balancing policy design for a front-end

dispatcher in a multi-server cluster system. Nowadays, increasingly growing opportunity

and commercial interest have arisen for both academic and industrial researchers to de-

sign and manage extensive applications and services in cluster systems which have been

extended to a variety of platforms and infrastructures by providing pools of fundamental

resources.

Dispatcher
Arrivals

service node

...

Figure 1: The model of a cluster system with N service nodes.

For example, cloud computing becomes quite popular among a community of cloud

10

users. Cloud computing platforms, such as those provided by Microsoft, Amazon, Google,

and IBM, let developers deploy applications across computers hosted by a central orga-

nization. Cloud computing has become an important technology that affects our daily

life by providing a shared “cloud” of servers as an unified hosting pool and scalable re-

sources provisioning for multiple remote clients based on their demands [1, 2]. In the

cloud, clients could access the services and deploy their own required platforms and in-

frastructures through application programming interfaces (APIs) over a large network of

computing resources. Clients obtain the advantages of a managed computing platform,

without having to commit resources to design, build and maintain the network. Yet, an

important problem that must be addressed effectively in the cloud is how to manage QoS

and maintain SLAs for cloud users that share cloud resources.

In cloud platforms, resource allocation (or load balancing) takes place at two levels.

First, when an application is uploaded to the cloud, the load balancer assigns the re-

quested instances to physical computers, attempting to balance the computational load

of multiple applications across physical computers. Second, when an application receives

multiple incoming requests, these requests should be each assigned to a specific appli-

cation instance to balance the computational load across a set of instances of the same

application. For example, in Amazon EC2, a real cloud platform that provides pools

of computing resources to developers, Elastic Load Balancing (ELB) is the default load

balancing service that redirects all the incoming application requests for load dispatch

across multiple Amazon EC2 instances [21]. Application designers can direct requests to

instances in specific availability zones, to specific instances, or to instances demonstrating

the shortest response times. In another approach to balancing load in cloud computing

systems, the load balancer can itself be an application that accepts incoming requests,

monitors the availability of resources within the cloud, and distributes the requests. This

approach can be applied the Microsoft and Amazon cloud computing infrastructures, as

well as those of Google and IBM.

2.2 Load Balancers in Cluster Systems

A good scheme for load balancing in a dispatcher-based cluster system is significantly crit-

ical for system performance, such as average waiting time, average response time, system

utilization, and job slowdown, etc. Most importantly, the market for cloud computing

services has emerged and been dramatically growing. Providing a simple yet powerful

load balancing policy to meet the varying application demands and SLAs in the cloud

environment is significant and challenging.

A lot of previous studies have been focusing on developing load balancing policies for a

large-scale clustered computing system over the past decades [18–20,22,23]. Examples of

11

these policies include Join Shortest Queue (JSQ) and the size-based AdaptLoad [6]. JSQ

has been proven to be optimal [24] for a cluster with homogeneous servers, when there is no

prior knowledge of job sizes and the job sizes are exponentially distributed. The extended

version of JSQ was later presented in [25] which considers the non-decreasing failure rates

in job size distribution. However, [26] evaluated the performance of JSQ under various

workloads by measuring the mean response times and found that the performance of

JSQ clearly varies with the characteristics of different service time distributions. The

optimality of JSQ quickly disappears when job service times are highly variable and

heavy-tailed [27–29].

Recently, size-based policies were proposed to balance the load in a cluster system,

only using the knowledge of the incoming job sizes. The literature in [6, 22, 28, 30, 31]

have shown that such size-based policies can be deployed in cluster systems to achieve

the minimum job response times and job slowdowns. The AdaptLoad policy being a

representative example of size-based policies, has been developed to improve average job

response time and average job slowdown by on-the-fly building the histogram of job sizes

and distributing jobs of similar sizes to the same server [6]. However, such size-based

solutions are not adequate if the job service times are temporally dependent [19]. Not

all size-based policies require a prior knowledge of the job service time distribution as

the empirical distribution may be estimated on-the-fly by collecting statistics of the past

workload seen by the system [6]. A required condition for size-based policies is that upon

job arrival at the dispatcher, an accurate estimate of the job service time is possible. This

condition restricts our discussion here to systems where accurate estimation of job service

times is possible.

Other load balancing policies have been developed as well for cluster environments. For

example, the Min-Min and the Max-Min algorithms focus on the problem of scheduling

a bag of tasks and assume that the execution times of all jobs are known in advance [7].

Meta-schedulers, like Condor-G [32], rely on the accurate queuing time prediction in

scheduling jobs on computing grids. However, accurate predictions become more chal-

lenging in the current virtualized and multi-tiered environments. Recently, techniques

of advance-reservation and job preemption were presented to allocate jobs in cluster sys-

tems [33]. Yet, extra system overheads and job queue disruptions could decrease the

overall system performance.

Each of the above classic policies is widely used because of its simplicity and efficiency.

However, there is no universal policy which claims to be the best in all circumstances

since the workload distribution is also a key factor on the system performance. Previous

studies believed that the requests follow an exponential distribution and thus designed

the policies based on this assumption. As research goes deeper, people realized that it is

not always the case especially in the cluster systems and cloud environments, since many

12

applications in these systems are no longer single-program-single-execution applications.

These applications involve a large number of concurrent and dependent jobs, which can be

executed either in parallel or sequentially. Simultaneously, launching jobs from different

applications during a short time period can immediately cause a significant arrival peak,

which further aggravates resource competitions and load unbalancing among computing

sites. Also, as the number of these applications significantly increases in recent years, the

present of traffic surges becomes more frequent. As a result, how to counteract burstiness

and maintain high quality of service and system availability becomes imminently important

but challenging as well. However, conventional methods unfortunately neglect cases of

bursty arrivals and cannot capture the impacts of burstiness on system performance.

2.3 Bursty Workloads in Real Systems

Bursty workloads are often found in multi-tier architectures, large storage systems, and

grid services [34–36]. Internet flash-crowds and traffic surges are familiar examples of

bursty traffic, where bursts of requests are aggressively clustered together during short

periods and thus create spikes with extremely high arrival rate. Burstiness or temporal

surges in the traffic to modern Internet systems generally turns out to be catastrophic

for performance, leading to dramatic server overloading, uncontrolled increase of response

times. We argue that the presence of burstiness can cause load unbalancing in clouds and

consequently degrade the overall system performance.

(b)(a)

0

200

400

600

800

1000

 0 1000 3000 5000 7000

N
um

 o
f a

rr
iv

al
s

Time (s)

0

4

8

12

16

20

 0 20 40 80 100
Days since 8/1/01

 60T
ra

di
ng

 v
ol

um
e

(x
 1

e+
06

)

Figure 2: Illustrate burstiness in (a) arrival rates of TCP packages and (b) daily trading
volume of IBM stock.

We give two examples of real-world situations where burstiness exists. The first work-

load, LBL-TCP-3, includes information from all TCP packets sent by Lawrence Berkeley

Laboratory over a two-hour period in January, 1994 [37]. Each packet has a time-stamp,

and the trace includes 1.8 million packets. Figure 2(a) shows a clear bursty pattern in

the number of arrivals per second over the entire trace. The second workload, S&P500,

13

consists of intra-day trading volumes for all stocks listed in the S&P 500 trading index.

The dataset includes the number of trades executed for each stock at one-minute inter-

vals over 11 years from 1998-2009. Trading volumes can be bursty, as described by [38].

Sudden fluctuations in a stock’s trading volume can be a result of the distribution of news

that changes a stock’s value, the effect of nightly and weekly interruptions in trading, as

well as the intrinsically chaotic behavior of the stock market. An example of this bursty

behavior for a single stock’s trading volume is shown in Figure 2(b).

Burstiness and temporal dependent structure can be captured by autocorrelation func-

tion (ACF). Autocorrelation is a mathematical measurement of correlation coefficient in

statistics and probability theory. Autocorrelation is used as a statistical measure of the

relationship between a random variable and itself [39]. Consider a set of random variables

Xn, the following equation defines the autocorrelation ρX(k) of Xn for different time lags

k:

ρX(k) = ρXt,Xt+k
=

E[(Xt − µ)(Xt+k − µ)]

σ2
, (1)

where E is the expected value, µ is the mean and σ2 is the common variance of Xn. The

parameter k is called the lag and represents the distance between the observed value at

different time and itself, i.e.,X(t+k) and Xt. The values of ρX(k) fall in the range [−1, 1].

If ρX(k) =0, then there is no autocorrelation (independence) at lag k . In most cases

ACF converges to zero as k increases. A positive value of ρX(k) indicates there exists

autocorrelation of Xi while a negative value implies anti-autocorrelation. A high absolute

value of ρX(k) implies that there is strong temporal locality on Xn, i.e., the value of Xi has

a high probability to be followed by another variable with the same value of magnitude.

The decay rate of ACF determines if the process has a weak or strong correlation. We

consider the process as high autocorrelation case if the value of Xi is greater than 0.4. An

independent process is determined only if ρX(k) = 0 at lag k.

In [39], the authors observed the existence of correlated (dependent) flows over a wide

range of Internet traffic including WEB servers, E-mail servers, User Accounts servers and

Software Development servers in both inter-arrival times (i.e., the arrival process) and

service times (i.e., the service process). Their work also examined the different impacts

of autocorrelation under both open and close systems. In an open system with infinite

buffers, the autocorrelation in the arrival or service process of a queue will only affect

the performance of downward queue. While in multi-tiered systems with a close loop

structure, if ACF exists in any of the tiers, then it propagates across the entire loop in the

closed system and is present in the arrival stream of tiers that precede that tier [39, 40].

Although it balances the load among all queues (decreases mean queue length and mean

response time of the bottleneck queue and increases those of the non-bottleneck queue),

the overall performance (mean round trip time and mean throughput) still degrades.

14

Index of dispersion I can also be considered to characterize the burstiness in workloads.

From the mathematical and statistical perspective, the index of dispersion is a normalized

measure of the dispersion of a probability distribution. From the characterization of

burstiness case, it is defined as follow:

I = SCV (1 + 2

∞
∑

k=0

ρk), (2)

where SCV is the squared coefficient of variation and ρk is the autocorrelation on lag-

k. Note that I = 1 when the distribution is exponential. Thus, the index of dispersion

can be considered as the ratio of the observed autocorrelation with respect to a Poisson

distribution and the value of I can thus be used as a good indicator of autocorrelation.

In Section 3.2.2, we use index of dispersion as a metric to detect the burst on-off status

in workloads.

2.4 Multi-tiered Storage System

The volume of data in today’s world has been tremendously increased. For example,

Facebook revealed that its system each day processes 2.5 billion pieces of content and

more than 500 terabytes of data, including 83 million pictures. Being one of the largest

databases in the world, Google processes more than 25 petabytes of data per day. As

more and more people use different types of devices such as smartphones and laptops,

data comes from everywhere, including body sensors for collecting medical data and GPS

devices used to gather traffic information. Such massive and diverse data sets will then

lead to challenging issues for system designers to address. One of the most important issues

is where to store these gigantic data sets and how to make them accessible. By providing

a way to combine various storage media types, multi-tiered storage architectures become

attractive in enterprise data centers for achieving high performance and large capacity

simultaneously.

In 1990s, flash-based SSDs were first introduced to maintain the data in the memory

chips. NAND flash memory is the basic building block of SSDs as electronic non-volatile

storage medium. A typical SSD is composed of host interface logic (e.g., SATA and PCI

Express), an array of NAND flash memories, and a SSD controller. Read and Write

operations are performed at the granularity of a page (e.g., 4KB), while erase operation

is performed at the granularity of a block (e.g., 64 pages). Nowadays, SSDs have gained

prominence in enterprise arrays and been successfully used as a replacement of HDDs

because of significant performance improvement (i.e., higher IOPS and lower latency)

and low energy consumption. Yet, given the fact that SSDs are more expensive per

gigabyte (GB) and have a limited number of writes over the life time, a multi-tiered storage

15

platform, which combines SSDs with traditional HDDs (e.g., FC/SAS and/or SATA), has

become an industrial standard building block in an enterprise data center, where SSDs

are used as the top tiers to guarantee fast data access while the traditional HDDs function

as the bottom tiers to provide large storage capacity. However, from service provider’s

perspective, how to efficiently manage big data across these hybrid storage resources in

order to provide high quality of service is still a core and difficult problem due to the

following two issues.

The first issues in resource management is regarded to the diversity of SLAs. Modern

enterprise data centers often provide shared storage resources to a large variety of ap-

plications which might demand for different performance goals such that different SLAs

have to be met. Hence, these data centers need to be SLA-aware in the management of

shared storage resources in multiple storage tiers to achieve different performance goals

for applications and meet their associated SLAs. In this work, we refer to SLA as I/O

latency (or I/O response time) in millisecond (ms). Intuitively, latency-sensitive appli-

cations with strictly high SLAs should occupy SSDs to avoid SLA violations while the

traditional HDDs like FC and SATA disks should be assigned to serve the applications

with loose SLAs.

Second, an effective resource management has to dynamically adjust its policy ac-

cording to different application workloads. In practice, workloads may change over time.

Bursty workloads and traffic surges are often found in enterprise data centers. For exam-

ple, a user query from a data-intensive application might easily trigger a scan of a gigantic

data set and then bring a burst of disk I/Os into the system, which will eventually cause

disastrous SLA violations, performance degradation and even service unavailability on

the traditional slow HDDs. Thus, ideally, SSDs should serve applications under bursty

workloads in order to mitigate their burdens, even if these applications require loose SLAs.

As enterprises consolidate a variety of applications that require different service lev-

els, it becomes an urgent demand to build a multi-tiered storage platform for providing

different levels of service and performance in the storage domain [41]. Therefore, stor-

age tiering techniques are introduced to dynamically deliver appropriate resources to the

business, targeting at performance improvement, cost reduction and management simpli-

fication. Because of its significant importance, the technology of storage tiering has been

recognized by ESG’s 2011 Spending Intentions Survey [42], as one of the top 10 planned

storage investments in the next couple years. The market landscape report [43] from ESG

further points out that the present market of storage tiering can be classified into five

main segments, including array-based migration, array-based caching, file system-based,

software tools and archive emphasis. Especially, many industrial companies have already

developed their own automatic tiering technologies and released the relative products, such

as IBM Easy Tier for DS8000 [44], EMC Fully Automated Storage Tiering (FAST) for

16

Celerra [45], and HP Adaptive Optimization for 3PAR [46]. These new tiering techniques

indeed differ in many features, including the number and the type of tiers, the direction

and the frequency of data migration among tiers, the capability of learning and training,

and the granularity in tiering, etc.

A large literatures on storage management have been developed for the years. Recently,

[47–54] proposed several new techniques (algorithmic or theoretical) to explore the effective

data migration in storage systems. For example, [47,48] have investigated the idea of using

edge-coloring theory for data migration and achieved a near-optimal migration plan by

using polynomial-time approximation algorithms. Triage, an adaptive controller, has been

proposed in [50] to address the problem of performance isolation and differentiation in a

consolidated data center. By throttling storage access requests, Triage ensures high system

availability even under overload conditions. Later, [49] focused on minimizing the overhead

of data migration by automatically detecting hotspots and reconfiguring the system based

on the bandwidth-to-space ratio. [54] proposed a dynamic tier manager, named EDT-

DTM, which performs dynamic extent placement once the system is running to satisfy

performance requirements while minimizing dynamic power consumption. However, we

argue that none of the existing studies take account of both the on-the-fly migration

penalties and the various application SLAs for data migration in multi-tiered storage

systems.

A cost model [51] has been developed to solve the problem of efficient disk replace-

ment and data migration in a polynomial time. [52] implemented the QoS guarantee of

performance on foreground work by leveraging a control-theoretical approach to dynam-

ically adapt migration speed. [53] proposed a lookahead data migration algorithm for

SSD-enabled multi-tiered storage systems, where the optimal lookahead window size is

determined to meet the workload deadlines. However, the work [53] assumes that the I/O

profile exhibits a cyclic behavior and does not consider different application SLAs in their

algorithm.

2.5 Host-side Flash in Storage System

On the other side, there is an increasing host-based deployment of NAND-based flash as a

second-level cache [16,55–62], given its low latency and low power consumption. Host-side

flash-based caching offers a promising new direction for optimizing access to data that

has been being widely accepted in modern storage systems. Memcached is a distributed

memory caching system by adding a scalable object caching layer to speed up dynamic

Web applications and alleviate database load [8]. However, Memcache is more like an

in-memory data store rather than a caching strategy in a storage system. Flashcache is a

kernel module which is built using the Linux Device Mapper (DM) and works primarily

17

as a write back block cache in general purpose [9]. Recently, Facebook announced a new

data management infrastructure, called TAO, in which its caching layer is designed as

a globally distributed in-memory cache running on a large collection of geographically

distributed server clusters [63].

There are many research literature that studied the problem of how to best utilize

the flash resources as a cache-based secondary-level storage system or integrated with

HDD as a hybrid storage system. Some conventional caching policies [10–13] such as LRU

and its variants maintain the most recent accessed data for future reuse while some other

works intended to design a better cache replacement algorithm by considering frequency in

addition to recency [14,15]. These caching algorithms determine the cache admission and

eviction on each data access which is independent of the practical I/O behavior. [64] uses

the flash resources as a disk cache and adopts an LRU-based wear-level aware replacement

policy. SieveStore [59] presented a selective and ensemble-level disk cache by using SSDs

to store the popular sets of data. [65] proposed a hybrid storage system, called Hystor, by

fitting the SSD into the storage hierarchy. The SSD plays a major role by identifying the

performance- and semantically-critical data and timely retaining these data to the SSD.

[54] presented a SSD-based multi-tier solutions to perform dynamic extent placement using

tiering and consolidation algorithms. In these existing schemes [54,65], Flash resources are

managed using caching policies such as LRU or its variants, aiming to maintain the most

likely-to-be accessed data for future reuse. While straightforward, these approaches fail

to fully exploit Flash resources in terms of cost- and performance-effectiveness. Moreover,

they limit the scalability with respect to the ever-increasing size of Flash storage.

To address these problems, a new Flash usage model should be explored with a new

set of goals: consolidating the use of flash so as to maximize performance gain, while min-

imizing management cost and operational cost [66,67]. In other words, instead of solving

the performance issues of individual workload, we focus on improving the utilization of

the CAPEX of flash resources, and reducing the OPEX that is needed for managing and

operating them.

18

3 Computational Resource Management in Cluster Systems

Cloud computing nowadays becomes quite popular among a community of cloud users by

offering a variety of resources. However, burstiness in user demands often dramatically

degrades the performance of applications in the cloud. In order to satisfy peak user

demands and meet SLAs, effective resource allocation schemes are highly demanded in

the cloud. However, we find that conventional load balancers unfortunately neglect cases

of bursty arrivals and thus experience significant performance degradation.

Motivated by this problem, we propose a new class of burstiness-aware algorithms

which attempt to balance bursty workloads across all computing sites in the cloud and

then improve the overall system performance. The contributions of this work include:

1. investigation of the impact of burstiness on load balancing in the cluster systems;

2. presentation of a new class of load balancing algorithms in both static and dynamic

versions;

3. implementation of a new algorithm, named ArA, as a new load balancer in Amazon

EC2;

4. evaluation of the proposed algorithms under both bursty and non-bursty workloads

by simulations and real experiments in Amazon EC2.

3.1 Motivation

In this section, we first demonstrate the impact of burstiness on load balancing in a

distributed simulation environment, which is developed on the CSim library [68]. We

refer the interested readers to [69] for the details on system design and remark that such

a simulation environment can be used to simulate a cloud computing framework. In our

simulation, the system consists of N computing sites, where each site runs the First-

In-First-Out (FIFO) policy to schedule the assigned jobs. The specifications of a job,

including job inter-arrival time and job execution time, are created based on the specified

distributions and methods.

To select an effective site for an incoming job, a load balancer periodically queries

the load information (e.g., queue length and site utilization level) about each site as the

ranking criteria from the host resource management systems. The load balancer then

selects a computing site that has the highest ranking value (such as the shortest queue

length) among all sites of the targeting application. The higher ranking values, the more

likely we can complete jobs with shorter queuing times and thus obtain better system

performance. Such a load balancing scheme can be referred to as “greedy” because it

19

always selects the top-ranked site for service. We also evaluate another load balancing

scheme, dubbed as Rand, which randomly selects one among all available sites.

To demonstrate the performance impact of bursty arrivals, we run the simulations

under three different arrival processes with burstiness profiles as shown in Figure 3. Each

arrival process is drawn from a 2-state Markovian-Modulated Poisson Process (MMPP)1

that can be parameterized to have the same mean equal to 10s but three different levels of

burstiness: strong, weak, and non-bursty, such that the corresponding values of index of

dispersion I are equal to 313.5, 32.25, and 1, respectively, see the detailed discussion of I

in Section 2.3. Here, we remark that the index of dispersion has been frequently used as a

measure of burstiness in the analysis of time series and network traffic [71,72]. The higher

I indicates stronger burstiness in workloads. We observe that the number of arrivals are

significantly varied under the three different workloads. In all experiments, the system

consists of N = 16 sites and has an average site utilization equal to 50%.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25 30 35 40 45 50

N
um

 o
f a

rr
iv

al
s

Time (1000s)

(a) Strong Bursty

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 5 10 15 20 25 30 35 40 45 50

N
um

 o
f a

rr
iv

al
s

Time (1000s)

(b) Weak Bursty

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 5 10 15 20 25 30 35 40 45 50
N

um
 o

f a
rr

iv
al

s
Time (1000s)

(c) Non−Bursty

Figure 3: Number of arrives per second under the three workloads with mean inter-arrival
times equal to 10s.

Table 1 shows the average response times of two load balancers. We first observe

that burstiness in arrivals dramatically degrades the system performance under both two

algorithms. As the intensity of burstiness increases, such negative impacts on system

performance become more significant. More importantly, the “greedy” load balancer,

Qlen, outperforms when there is no burstiness in arrivals yet ceases to be effective due to

the imbalance of load among computing sites when the workload arrival process is bursty.

We interpret this effect by observing that the greedy algorithms cannot detect system

load surges on computing sites during bursty arrivals because of the delay in updating

load information from sites, and thus make incorrect decisions based on the outdated

information. For example, once a job is assigned to a computing site, the associated load

information (e.g., the present queue length) of that site cannot be updated immediately

at the load balancer. As a result, the load balancer always submits the bursty arrivals to

that top-ranked site within the delay period2. Consequently, significant load is incurred

1Markovian-Modulated Poisson Process (MMPP) is a special case of the Markovian Arrival Process
(MAP) [70], which is used here to generate bursty flows because it is analytically tractable.

2In our simulation, we set the information query delay D as 1 second. The sensitivity analysis to D

20

on that particular site, resulting in the performance degradation under bursty workloads.

Table 1: Mean response times of two load balancers under the three workloads. The
number of computing sites is N = 16 and the information query delay is D = 1s.

Response Strong-bursty Weak-bursty Non-bursty
time Fig. 3 (a) Fig. 3 (b) Fig. 3 (c)

Rand 1520.9s 168.5s 80.5s

Qlen 6541.5s 466.5s 7.6s

We stress that such an information query delay unfortunately is unavoidable in real

systems because when a job is submitted to a site, it takes non-negligible time for that par-

ticular site to update the information about system load. Similarly, the communication

for querying and broadcasting such load information between the distributed load bal-

ancers and the sites via network also take a non-negligible amount of time among clouds.

Therefore, we argue that such deleterious effects due to burstiness and information query

delay must be considered in the performance evaluation and load balancer design for cloud

computing.

3.2 New Load Balancer: ArA

We present a new load balancing algorithm, called “ArA”, for adaptive resource allocation

in cloud systems, which attempts to counteract the deleterious effect of burstiness by al-

lowing some randomness in the decision making process and thus improve overall system

performance and availability. In the remainder of this section, we first present a static ver-

sion of ArA, (see Section 3.2.1) which tunes the load balancer by adjusting the trade-off

between randomness and greediness in the selection of sites, as well as an online ver-

sion, (see Section 3.2) which predicts the beginning and the end of workload bursts and

automatically adjusts the load balancer to compensate. Performance evaluation of the

proposed load balancer ArA is presented in Section 3.2.2 and Section 3.3.

3.2.1 Static Version

To address the load unbalancing problem caused by burstiness, we present a new load

balancer which can balance bursty workloads across available resources and thus improve

the overall system performance. Later, we show how this new load balancer can be de-

ployed for load balancing across a set of instances of the same application in a real cloud

platform.

We observed in Section 3.1 that under non-bursty conditions the “greedy” methods

that always select the best site, obtain better performance than the “random” ones. But

will be given in the next subsections.

21

we also observed the advantage of distributing jobs randomly among all computing sites

under bursty conditions. This observation inspires us to design a new ArA algorithm

which adjusts the randomness and the greediness in the decision making process.

Algorithm: static version of ArA

1. initialize
a. number of candidates: K = k;
b. information query delay: D = d;

/* load information updating*/
2. for each window of D time

a. send queries to all computing sites for load information;
b. update load information received from all computing sites;
end

/* site selection process */
3. upon each job arriving

a. sort all sites Si, 1 ≤ i ≤ N , by current load information;
b. set S = {S1, S2, ..., SK}; /* get K sites with least load */
c. set s = uniform(1,K); /* randomly select one site from

the candidate set S */
d. submit the job to site Ss;
end

Figure 4: The high level idea of the static ArA.

Given an incoming job and N available computing sites, ArA finds K sites, where

K ≤ N , as the best candidates for serving that job, using queue length as the ranking

criterion. Then, that particular job will be randomly submitted or enqueued to one

site among the selected K candidates. The value of K in ArA is critical for system

performance, which in turn should be set appropriately based on the intensity of burstiness

in workloads. For example,

• under the case of no burstiness in arrivals, K is set to small values (i.e., close to 1).

It turns out that ArA performs exactly the same as the “greedy” load balancer,

always selecting the best site with shortest queue length;

• under the case of extremely strong burstiness in arrivals, the number of best can-

didates is set equal (or close) to the total number of available sites, i.e., K = N .

Consequently, ArA has behavior similar to the “random” method, which allows the

bursty workload to be shared among all sites, therefore alleviating the imbalance of

load;

• otherwise, K is set to the value between 1 and N .

22

As a result, ArA dispatches the load among sites by combining the features of both

Qlen and Rand. Figure 4 presents the high level idea of this static version of ArA.

Greedy

Random

Greedy

Random

Greedy

Random

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of candidates (K)

(a) Strong Bursty

R
es

po
ns

e
tim

e
(s

)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
es

po
ns

e
tim

e
(s

)

Number of candidates (K)

(c) Non−Bursty

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
es

po
ns

e
tim

e
(s

)

Number of candidates (K)

(b) Weak Bursty

Figure 5: The average response times of the ArA load balancer as a function of the
number of candidates K under (a) strong bursty workload, (b) weak bursty workload, and
(c) non-bursty workload. The average response times of the Qlen and Rand load balancers,
as well as the best performance of ArA (see the black bars) are also marked in the plots.

In order to evaluate the performance of ArA, we here investigate the sensitivity analy-

sis over a range of bursty conditions and statically set the value of K from 1 to N . Figure 5

shows the average response times under ArA as a function of the number of candidates

K, as well as ones under both Qlen (see the left most bar in the figure) and Rand (see the

right most bar in the figure) policies. These results give us a first proof of concept that

ArA with an appropriate K value can be beneficial for performance of cloud applications

23

with bursty arrivals. For example, in the case of non-bursty condition, a small K (e.g.,

K = 3 in Figure 5 (c)) allows ArA to achieve performance similar to Qlen, which greedily

chooses the best candidate for the incoming jobs and thus obtains the best performance.

As burstiness becomes stronger, the value of K then keeps increasing which allows ArA

to behave almost the same as Rand counteracting the load unbalancing problem incurred

by burstiness, see Figure 5 (a). We also notice that our static ArA achieves very similar

performance as the algorithm in [73], which considers the supermarket model such that

customers can randomly choose a constant number of servers and waits for service at the

one with the fewest customers.

However, such performance improvements depend on the degree of randomness that

is introduced by the number of top candidates K. A good choice of K can result in

significant performance improvements, but an unfortunate choice may also result in poor

performance. Furthermore, real traffic of dynamic cloud environments indeed changes over

times: extremely busy in some periods and quite idle in other periods. We thus remark

that with a fixed K both static ArA and the algorithm in [73] cannot always achieve the

best performance across different bursty conditions. To quickly adapt to the changes in

user demands, an effective way for online adjusting K, instead of using a fixed K, becomes

imminently important in cloud systems.

3.2.2 Online Version

Here, we design an online version of ArA which can re-adjust the degree of randomness

(i.e., K) on-the-fly according to the workload changes. We first leverage the knowledge of

burstiness to develop predictors which can accurately detect the changes in user demands

and then present the online ArA which dynamically shifts between the “greedy” and the

“random” schemes based on the predicted information.

On-Off Predictor: We incorporate the index of dispersion [71,72] I to detect bursts

in the incoming traffic. The advantage of I is that it can qualitatively capture burstiness

in a single number and thus provide a simple yet powerful way to promptly identify the

start and the end of a bursty period. As discussed in Section 2.3, the joint presence

of variance and autocorrelations in I is sufficient to discriminate traces with different

burstiness intensities and thus to capture changes in user demands.

To understand how I performs as a single measure, we illustrate the arrival rates

(i.e., the number of arrivals per 100 seconds) of a bursty workload across the time in

Figure 6 (a). The trace shown in this plot consists of two idle phases and one single

peak phase. We divide the whole trace into five parts during the following time windows:

W1 = [40K, 50K),W2 = [50K, 55K),W3 = [55K, 64K),W4 = [64K, 70K), and W5 =

[70K, 75K), where only windows W2 and W4 cover both idle and peak phases while the

24

remaining windows include only one phase. We also measure the corresponding index of

dispersion for each window, see the values of I marked in the plot. We notice that the

values of I are quite small when the trends of traffic are stable during both idle and peak

phases, e.g., windows W1,W3, and W5, however, for the windows with clear changes in

traffic, e.g., W2 with the burst arriving and W4 with the burst ending, the values of I

significantly increase. This observation indicates that dramatic changes in I can be used

as a measure criterion to detect the start and the end of bursty arrivals and further predict

the changes in user demands.

3.49

37.7 4.79 35.27

3.67

W1 W2 W3 W4 W5

(a) (b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 7.6 7.8 8 8.2 8.4 8.6 8.8
Time(x100Ks)

−10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 4 4.5 5 5.5 6 6.5 7 7.5

N
um

 o
f a

rr
iv

al
s

Time (x10Ks)

N
um

 o
f a

rr
iv

al
s

 0 5 10 15 20 25 30 35 40 45 50

 0
 50

 100
 150
 200
 250
 300
 350

N
um

 o
f a

rr
iv

al
s

 0 5 10 15 20 25 30 35 40 45 50

 On

 OffP
re

di
ct

 r
es

ul
ts

Time (x 1000s)

Time (x 1000s)

(c)

Figure 6: Illustrating (a) the index of dispersion that are measured within five monitoring
windows under a bursty workload, (b) prediction results that accurately capture the start
and the end of bursts, where the solid lines are actual traffic (i.e., arrival rates across time)
and dashed lines show the detection of when burstiness starts (state “on”) and when it
ends (state “off”), and (c) prediction results for the strong bursty workload, see Fig. 3(a),
where the above plot shows the detection and the bottom plot presents the actual traffic.

In [74], an algorithm has been proposed to use I coupled with information about the

current and previous arrival rates to detect changes in arrival intensities. In this paper, we

25

consider to exploit this algorithm for identifying changes in cloud user demands. However,

we also find that the algorithm in [74] cannot accurately detect the start and the end of

some bursts. Especially, the end of a burst is easily missed because of the deficiency of the

algorithm, which results in the unnecessary delay in the detection of changes from peak

to idle. In addition, the monitoring window size used in [74] is too large, which although

is beneficial to capture the state transition, further extends the delay of detection in the

ending of bursts.

In order to improve the prediction accuracy, we refine the algorithm by dynamically

adjusting the monitoring window size m instead of a fixed value in [74] to trade off the

contradiction of monitoring window size and detection delay. To shorten the detection

delay, a small window size is preferred which however may miss the detection of state

changes, especially the end of bursts. This is because m now is too short to provide

sufficient samples for readjusting I from small values to large ones, see W3 and W4 in

Figure 6. In our algorithm, we initially choose a small value of m, but dynamically

enlarge the monitoring window (e.g., 2m requests) to collect enough samples for updating

I, given that the original window size (i.e., m) is not large enough.

Figure 6 (b) shows the outputs of the algorithm, where state “on” indicates the start of

a burst and state “off” means the end of a burst. We can see that the changes of states “on”

and “off” correctly follow the actual bursts plotted in solid lines in the figure. One should

notice that the algorithm is slower in the detection of an idle period. This is the outcome

of our new dynamic window size, which indeed has negligible impacts on our new load

balancer’s performance because of few arrivals during idle periods. Figure 6 (c) further

validates the effective of this new predictor algorithm, illustrating the accurate prediction

results for the arrival traffic with strong burstiness, as shown in Figure 3 (a). We expect

that this new refined predictor can accurately forecast the changes in user demands and

thus can provide significant valuable information to ArA for effectively load balancing in

clouds.

Online Adjusting of K: Motivated by the fact that Internet flash-crowds and traffic

surges often present in real systems, we now propose a new load balancing algorithm,

named ArA Pred, that detects the phases of “burst” and “idle” in user demands and

further discriminates these two phases by introducing different degrees of randomness

in an online fashion. In particular, when the predictor detects the start of a burst, we

increase the degree of randomness by setting K to a large value th l close to the total

number of available sites. On the other hand, when the predictor detects the start of an

idle period, the value of K is be decreased to a small value th s close to 1. The degree of

greediness is then increased and ArA performs closely to Qlen. As a result, by leveraging

the knowledge of burstiness, this new load balancer can quickly adapt to changes in user

demands by shifting between the “greedy” and the “random” schemes, and thus optimize

26

the utilization of available resources and application performance by making a smart site

selection for cloud users. The high level idea of the online ArA is described in Figure 7.

Algorithm: online ArA

1. initialize
a. the large threshold thl for K; /* e.g., thl = ⌈0.5 ∗N⌉ */
b. the small threshold ths for K; /* e.g., ths = 1 */

2. run the prediction algorithm;
3. upon the detection of changes in user demands

a. if detect the start of “burst”
then increase K to thl;

b.if detect the start of “idle”
then decrease K to ths;

c. use K for the site selection process as shown in Fig. 4;
end

Figure 7: The high level idea of the online ArA.

3.2.3 Performance Improvement of ArA Pred

To investigate the performance of the online ArA, we here consider a case such that

user demands arriving during the “burst” and the “idle” phases both have non-negligible

impacts on the system load, as well as the overall system performance. For example, in

the arrival trace used by the following experiments, there are almost half of traffic arriving

when the system is relatively idle, although 51% of jobs aggregate in bursts. It becomes

sophisticated and time consuming to search a good value of K for the static version. Some

value of K may benefit the arrivals during “idle” periods but degrade the performance of

those in the “burst” periods, vice versa. Thus, adjusting values of K based on the changes

in traffic becomes more important to such a case.

Figure 8 depicts the performance measures (e.g., the average response times) under

the online version of ArA. The results under the greedy (e.g., Qlen) and the random (e.g.,

Rand) algorithms are plotted in the figure as well. Also, in order to evaluate the prediction

algorithm, we present the results for a new version of ArA, dubbed as ArA Opt, that

assumes to have a prior knowledge of each job’s arrival time and thus makes an exact

detection of when the burst starts and when it ends. This version thus provides an upper

bound for ArA Pred. Note that when both ths and thl are equal to 1, ArA Pred

performs exactly as Qlen. In all experiments, the number of computing sites is N = 16,

the average utilization of each computing site is 50%, and the information query delay

is D = 1s. Additionally, we here fix the small threshold ths as 1 but change the large

threshold thl from 1 to 16 in Figure 8 (a), while fix the large threshold thl as 14 but change

the small threshold ths from 1 to 16 in Figure 8 (b).

27

Greedy

Best

Random

Optimal

Greedy

Optimal
Random

Best

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

 1000
 1040
 1080
 1120
 1160
 1200
 1240
 1280

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

)

Number of Candidates (K)

(a) Fixed Small Threshold

 1000
 1040
 1080

 1160
 1200
 1240
 1280

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 1120

R
es

po
ns

e
tim

e
(s

)

Number of Candidates (K)

(b) Fixed Large Threshold

Figure 8: The average response times under the online version of ArA, where (a) the
small threshold ths is kept as 1 while the large threshold thl is changed from 1 to 16, and
(b) the small threshold ths is changed from 1 to 16 while the large threshold thl is kept as
14. The performance under Qlen, Rand and ArA Opt are also plotted. Here, the number
of computing sites is N = 16, and the average site utilization is 50%, and the information
query delay is D = 1s.

The results shown in Figure 8 first confirm that neither Qlen nor Rand is able to obtain

good performance for this workload. Qlen even presents the worst behavior because of the

moderate burstiness in arrivals. Instead, our new algorithms ArA Pred and ArA Opt

significantly improve the system performance, using distinguished values of K for the

phases with different burstiness intensities. Also, ArA Pred performs closely to the one

with optimal forecasting, validating the accuracy of our prediction algorithm.

More importantly, ArA Pred can always achieve such performance improvements as

long as thl is larger than some thresholds (e.g., 8 in Figure 8 (a)) and ths is smaller than

some thresholds (e.g., 6 in Figure 8 (b)). This is because jobs in a “burst” phase could

be almost equally distributed among all the sites in the following cases: when K = 8 and

the duration of a “burst” phase is short (e.g., around 2s), the jobs in this phase may be

sent randomly to the top 8 sites in the first second and to the remaining 8 sites in the

second seconds, leading to the similar results as the case that K = 16 and all jobs are

sent randomly to 16 sites in two seconds. Therefore, we argue that the results shown

in Figure 8 demonstrate that our algorithms ArA Pred has more robustness, which

provides a simple yet flexible knob for deciding the value of K. In contrast, the static

version described in Section 3.2.1 and the algorithm proposed in [73] require more efforts

to tune the values of K, which is sophisticated when the workload is dynamically changed.

3.2.4 Sensitivity Analysis on Experimental Parameters

Now, we turn to analyze the effects of different experimental parameters on ArA Pred’s

performance. We first focus on investigating the sensitivity of ArA to the network size

(i.e., the number of computing sites) by evaluating job response time for N = 8, 16, and

28

32. In all experiments, we scale the mean service times in order to fix the site utilization

levels equal to 50%. All the other parameters are kept the same as the experiments shown

in Figure 8.

The performance results under the four algorithms are shown in Table 2(a). These

results first confirm that the conventional algorithms (e.g., Rand and Qlen) poorly behave

under all the three network sizes, and our new ArA ones improve the system performance

by discriminating bursty periods from non-bursty ones. We also observe that as the

system becomes larger (i.e., N increases), jobs experience worse response times under the

“greedy” and the “random” methods. But, such a performance trend disappears under

the two ArA ones. We interpret that as the number of sites becomes larger, it is more

likely for Qlen (resp. Rand) to make wrong decisions for bursty (resp. non-bursty) traffic,

resulting in more dramatic degradation on system performance. On the other hand, by

online adjusting the values of K for bursty and non-bursty traffic, two ArA algorithms

select the good sites for incoming jobs, which may have less loads (i.e., the number of

queuing jobs) as the number of sites increases and thus reduce the waiting times for those

jobs.

(a)

network Load Balancer
size Rand ArA Opt ArA Pred Qlen

8 1089.25 1063.39 1064.66 1101.02
16 1109.33 1056.07 1059.00 1244.32
32 1148.38 1042.79 1051.21 1751.43

(b)

delay Load Balancer
time Rand ArA Opt ArA Pred Qlen

1s 1109.33 1056.07 1059.00 1244.32
2s 1111.07 1057.76 1062.97 1692.26
6s 1110.77 1063.23 1070.57 3653.21

(c)

site Load Balancer
load Rand ArA Opt ArA Pred Qlen

30% 487.83 471.05 473.04 606.62
50% 1109.33 1056.07 1059.00 1244.32
80% 4220.09 3964.39 3968.77 4138.34

Table 2: Sensitive analysis of system parameters (a) network size, (b) delay time, and (c)
site load on ArA Pred performance.

As the existence of delays in computing and communicating the site load information

29

is critical to the algorithm performance, we investigate the sensitivity of load balancers

to information query delay D. In this set of experiments, we fix all the other parameters,

e.g., N = 16 and site utilization is 50%, but increase D to 2s and 6s. The reason to set

D = 6s is because the average duration of bursty periods is equal to 6s as well, which

then provides an extreme case such that all jobs arriving during bursty periods are either

sent to a single site or fully randomly sent to one of all sites in average. Table 2(b) shows

the performance results. First, different delay times do not affect the performance of the

“random” algorithm because the candidate site is always selected randomly no matter how

long the delay is. However, for the “greedy” algorithm, the performance becomes worse as

the delay time increases. This is because more jobs in bursty periods are then sent together

to the same site due to the outdated load information and thus the load of that particular

site significantly increases, causing serious load unbalancing and bad performance. For

both of the ArA algorithms, we observe again the performance improvement compared

to the other two conventional ones. Also, the delay time has less impact on the ArA

performance. This is because after detecting the start of bursty periods, ArA quickly

shifts to the “random” scheme.

In order to understand the performance benefit of the algorithm when the system

reaches critical congestion, we turn to analyze the impacts of utilization levels on ArA

performance. We here conduct experiments with three different site utilization levels:

30%, 50% and 80% by scaling the mean service times, while keeping the other parameters

fixed as the experiments shown in Figure 8. The performance measures provided by four

load balancing algorithms are illustrated in Table 2(c). We observe that both two ArA

algorithms achieve better performance than the conventional ones (e.g., Rand and Qlen)

across all three utilization levels.

In summary, the extensive experimentation produced in this section has validated

that ArA using prediction information can effectively improve the system performance,

compared to the conventional load balancers which ignore the effects of burstiness in

arrivals. The sensitivity results on network size, delay time, and system load have further

demonstrated that the gains of ArA are visible in a variety of different conditions.

3.3 Case Study: Amazon EC2

To further verify the effectiveness of our new load balancer, we implement and evaluate

the ArA algorithms as well as the conventional ones (i.e., Rand and Qlen) in Amazon

EC2, a real cloud platform that provides pools of computing resources to developers for

flexibly configuring and scaling their compute capacity on demand. Figure 9 illustrates

the basic framework of our implementation in Amazon EC2.

In particular, we replace the Elastic Load Balancing (ELB) in Amazon EC2 with our

30

Figure 9: The overview framework of our implementation in Amazon EC2.

load balancing (LB) service and then direct all the incoming application requests to this

new LB service for load dispatch across multiple Amazon EC2 instances. This new LB

service is then run at a High-CPU Medium Instance which provides five EC2 compute

units for compute-intensive applications. We also lease 8 Small Standard Instances as

servers, each of which has one EC2 compute unit and 1.7GB memory by default. Such

a configuration of instances aims to ensure that the system bottleneck is not our load

balancer while the overall performance is dominated by the load balancing algorithms as

well as the processing capability of each server instance.

We then conduct real experiments in Amazon EC2 by running microbenchmarks like

the execution of Fibonacci numbers. As illustrated in Figure 9, multiple users can si-

multaneously send HTTP requests to our load balancer instance. Each HTTP request

contains an URL, which includes a decision maker ID and the corresponding job size pa-

rameters. Once the load balancer receives an HTTP request, Apache Tomcat, an installed

Java Servlet container, parses that request’s header and then selects a server instance for

serving that request according to the implemented load balancing algorithm. Here, on

each of server instances, the sar command was run for measuring and reporting the CPU

utilization every 1 second to load balancer via advert board. The chosen server instance

then calculates a Fibonacci number and sends the result back to a client through the

load-balancer instance.

In terms of evaluation, we measured end-to-end response times (i.e., the duration

between request submission and reply receiving) for the QoS assessment and monitored

utilization levels at each site (or application instance) for the load balance assessment.

Figure 10 presents the performance of the online ArA in our Amazon EC2 model, where

burstiness was injected into the arrivals of HTTP requests. The results under both Qlen

and Rand are also plotted in the figure. We observe that consistently to our simulations,

31

Greedy Random

Best

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 1 2 3 4 5 6 7 8

R
es

po
ns

e
tim

e
(s

)

Number of Candidates (K)

Figure 10: The average end-to-end response times under Rand, Qlen and our online ArA

where the small threshold ths is kept as 1 while the large threshold thl is changed from 1
to 8.

none of the conventional load balancers (e.g., Qlen and Rand) is able to obtain good

performance under bursty workload, while our online ArA algorithm achieves significant

performance improvements by dynamically shifting between “greedy” and “random” ac-

cording to the workload changes. The best performance under ArA is obtained when

K is equal to 4 such that the relative improvements are 48% over Qlen and 50% over

Rand, respectively. We also observe that the measured utilization levels at all 8 server

instances are quiet close to each other, i.e., about 41% in average, which indicates a good

load balancing across multiple Amazon EC2 instances.

3.4 Summary

In this work, we have described our new adaptive load balancing algorithms for clouds

under bursty workloads. Our new static ArA algorithm tunes the load balancer by adjust-

ing the trade-off between randomness and greediness in the selection of sites. While this

approach gives very good performance, tuning the algorithm can be difficult. We therefore

proposed our new online ArA algorithm that predicts the beginning and the end of work-

load bursts and automatically adjusts the load balancer to compensate. We show that

the online algorithm gives good results under a variety of system settings. This approach

is more robust than the static algorithm, and does not require the algorithm parameters

to be carefully tuned. We conclude that an adaptive, burstiness-aware load balancing

algorithm can significantly improve the performance of cloud computing systems.

32

4 Flash Resource Management in Storage Systems

Storage is another critical resource in contemporary computer systems. Especially, data

intensive applications demands on high I/O throughput, small response time and large

capacity. Today, the volume of data in the world has been tremendously increased. Large-

scaled and diverse data sets are raising new big challenges of storage, process, and query.

Particularly, real-time data analysis becomes more and more frequently. With low la-

tency and low power consumption, NAND-based flash memory is being widely deployed

as the cache in the storage systems to improve the I/O performance and reduce the power

consumption. Flash is either combined with magnetic mediums as a tiered storage or is

directly used as a second-level cache for read cache and write buffer. Such two archi-

tectures introduce more layers in both the hardware implementation and software design

and management. By this way, it indeed increases the complexity and challenges in the

resource management of Flash-based storage systems. Therefore, the traditional designs

of I/O path and the conventional caching management methods are no longer fit for the

new storage architectures.

The contributions of our works include:

1. Investigation of the architecture of tiered storage systems;

2. Exploration of efficient methods to support multiple SLAs for applications with

dynamic workloads;

3. Presentation of a new approach for automated data movement in multi-tiered storage

systems and verification of the effectiveness and the robustness of the algorithm by

trace-driven simulations;

4. Investigation of I/O access patterns in enterprise storage systems;

5. Presentation of a new Flash resource manager and evaluation of the performance

improvement in Flash hit ratio and I/O cost.

4.1 Live Data Migration in Multi-tiered Storage Systems

Tiered storage architectures, which provide a way to combine SSDs with HDDs, there-

fore become attractive in enterprise data centers for achieving high performance and large

capacity simultaneously. However, from service provider’s perspective, how to efficiently

manage all the data hosted in data center in order to provide high QoS is still a core

and difficult problem. The modern enterprise data centers often provide the shared stor-

age resources to a large variety of applications which might demand for different SLAs.

Furthermore, any user query from a data-intensive application could easily trigger a scan

33

Figure 11: The structure of a multi-tiered storage system.

of a gigantic data set and inject a burst of disk I/Os to the back-end storage system,

which will eventually cause disastrous performance degradation. Therefore, in the paper,

we present a new approach for automated data movement in multi-tiered storage sys-

tems, which migrates the data on-the-fly across different tiers, aiming to support multiple

SLAs for applications with dynamic workloads at the minimal cost. Detailed trace-driven

simulations show that this new approach significantly improves the overall performance,

providing higher QoS for applications and reducing the occurrence of SLA violations. Sen-

sitivity analysis under different system environments further validates the effectiveness and

robustness of the approach.

4.1.1 System Architecture

In a traditional data center, the storage system straightforwardly provides resources to

meet application demands. There is no coordinated orchestration in such an environment.

However, with the introduction of storage tiering and virtualization technologies, the layers

of abstraction between applications and back-end fundamental resources become obscured,

which raises a big issue for allocating storage resources among the applications in order

to meet various performance goals. To well understand the interaction of these individual

layers, we here present an architectural overview of a multi-tiered storage system which

is considered in this paper. As shown in Figure 11, the system consists of four main

components: application, server, logical unit (LUN), and back-end storage pool.

The application component in the top layer is used to represent the applications who

can access the shared storage resources in data centers. We classify these applications into

34

several categories according to their SLA requirements, e.g., SLAH , SLAM , and SLAL.

For example, the latency-sensitive applications should be assigned to SLAH class and then

be allocated to high-performance tiers in order to meet their strictly high SLAs. Further-

more, each application with its own I/O workload specifications is assigned to a virtual

machine (VM) which provides a virtual disk to support the associated SLA requirement.

The hypervisor, as a virtual machine monitor (VMM) in the server component, supports

multiple VMs to access the shared back-end storage pool and allocates virtualized disk

resources among VMs to achieve their different performance goals.

The LUN component abstracts the fundamental storage pool and supports the storage

virtualization by building a mapping table to connect virtual disk resources with physical

disk resources. Therefore, the LUN component hides the information of the underlying

hardware devices to applications while enables multiple applications to share virtualized

storage resources without noticing the accesses and the contentions from the others.

The back-end storage pool is modeled as a multi-tiered system, which consists of dif-

ferent disk devices such as SSD, FC/SAS, and SATA. For example, Figure 11 shows three

tiers in the storage pool, each of which groups the same type of disk devices and is specified

with different performance features, e.g., service rate, power consumption, and physical

capacity.

Through storage virtualization in the LUN component, the storage pool can provide

the fundamental disk resources as the module of allocation unit (ALUN) which is set to

1GB as the minimal capacity/migration unit for thin-provisioning in sub-LUN level. Via

the mapping table, each virtual ALUN in the hypervisor is then dedicated to a physical

ALUN in the storage pool. The virtual center (e.g., VMware vCenter [75]) is responsible

to analyze the resource usage in virtualization layers and to deploy tools for resource

management. The virtualized storage manager monitors workload changes of physical

ALUNs in sub-LUN level and transfers such information to virtual center. Meanwhile,

the hypervisors provide the corresponding SLA requirements to the virtual center. We

remark that our new migration method can be implemented as a new module in the virtual

center, which is able to use all these information to make the decisions for data migration,

and then send the decisions back to the virtualized storage manager which will execute

the corresponding migration procedure.

4.1.2 Migration Algorithm LMsT

In this section, we present our new data migration algorithm LMsT. Our objective is to

improve the system performance in terms of I/O response time while the application SLAs

are still satisfied after the migration processes. In the rest of this section, we first present

a formulation for data migration and give an overview of our new algorithm. Then, we

35

show how LMsT addresses the formulated problem in detail.

4.1.2.1 Overview and Problem Formulation

We use data temperature as an indicator to classify data into two categories according to

the access frequency: hot data has a frequent access pattern and cold data is occasionally

queried. Also, we consider a multi-tier storage structure consisting of two tiers, high

performance tier equipped with SSDs and low performance tier using FCs. Because of

the high hardware cost, high performance tier has a much smaller capacity than low

performance tier. We note that our solution can be easily extended for data categories

with more temperature levels and for storage systems with more than two tiers.

In practice, high performance tier is often reserved for applications which have strictly

high SLA requirements. However, from the perspective of improving the overall system

performance, high performance tier is also expected to host hot data regardless of the

data owner’s SLA. To best coordinate between the SLA-based and the performance-based

resource allocations, LMsT automatically reallocates the data across multiple tiers of

drives based on data temperature and SLA requirements. In designing the new algorithm,

we define the following goals that allow LMsT to efficiently utilize the high performance

SSD-tier.

• Goal 1: Latency-sensitive applications with strict SLAs should always be served

in SSD-tier while the applications with loose SLAs should be initially served in

HDD-tier.

• Goal 2: Once the applications with loose SLAs suffer bursty workloads, the cor-

responding hot ALUNs should be migrated to SSD-tier in order to mitigate their

burdens in HDD-tier and avoid SLA violations.

• Goal 3: Extra I/Os caused by the migration process should not violate SLAs of

any applications at both the source and the destination devices.

• Goal 4: The newly migrated hot data in SSD-tier should not bring additional SLA

violations to latency-sensitive applications with strict SLAs.

In particular, assume there are nALUNs {A1, A2, . . . , An} acrossm disks {D1,D2, . . . ,Dm}.

Let xi,j ∈ {0, 1} indicate the association between Ai and Dj , i.e., xi,j = 1 if ALUN Ai is

hosted on disk Dj . Apparently, we have ∀i,
∑

j xi,j = 1. In our solution, an ALUN is the

minimum storage unit to be migrated. LMsT monitors the workload and the performance

for each ALUN and each disk in a predefined time window twin (e.g., 20 minutes in our

36

experiments3), to assist our migration decision.

Let λAi
and λDj

represent the arrival rates (KB/ms) of ALUN Ai and disk Dj , re-

spectively. Then, we have

λDj
=

∑

i

xi,j · λAi
, (3)

λAi
= m(λA′

i
) + α ·∆(λA′

i
), (4)

where m(λA′

i
) and ∆(λA′

i
) represent the mean and the standard deviation of previous

recorded arrival rates λA′

i
, and α is a tuning parameter for conservation. We further classify

I/Os into four categories, i.e., sequential read (SR), random read (RR), sequential write

(SW), and random write (RW) and let µSR
Dj

, µRR
Dj

, µSW
Dj

, and µRW
Dj

denote the corresponding

average service rates for these patterns, respectively. Then, the overall average service rate

for disk Dj can be estimated as,

µDj
= PSR · µ

SR
Dj

+ PRR · µ
RR
Dj

+

PSW · µ
SW
Dj

+ PRW · µ
RW
Dj

, (5)

where PSR, PRR, PSW , and PRW represent the fraction of each category. We also let sDj

denote the average I/O size (KB) for each disk Dj .

In addition, assume each disk Dj has a single I/O queue consisting of l consecu-

tive “logical” buffers {Qj,1, Qj,2, . . . , Qj,l} and each Qj,k serves I/Os with a different

SLA requirement, SLAk (ms), see Figure 12. Without loss of generality, we assume

∀i < k, SLAi < SLAk. Let yi,k ∈ {0, 1} indicate if Ai is associated with SLAk. Thus, Ai

belongs to the buffer Qj,k if xi,j ·yi,k = 1. Table 3 gives the notations that are used in this

paper. The high level idea of our new migration algorithm is also shown in Figure 13.

4.1.2.2 Migration Candidate Selection and Validation

In this subsection, we present how to select candidate ALUNs for migration. Our scheme

consists of two phases: In the first Selection phase, we choose a set of potential migration

candidates based on the workloads of each ALUN and the performance of each disk. Each

potential candidate is represented by a pair value (Ai,Dj) indicating a migration of ALUN

Ai to Dj (xi,j = 0). These migration candidates, if accomplished, will help either improve

the system performance or release SSD resources. In the second phase of validation, we

carefully examine each migration candidate, quantify the benefits, and estimate the risk

of SLA violations. A subset of validated candidates will be selected for actual migration.

3We remark that the setting of twin depends on how frequently the workload changes. If the workload
changes fast, then a small twin is preferred, vice versa.

37

Figure 12: The profile of logical buffers and disk array.

ALGORITHM: The high level description of LMsT

for each time window twin

a. Determine the migration candidates (i.e., ALUNs), see Sec. 4.1.2.2
I. Selection Phase: find the potential candidates (Ai, Dj)

for forward and backward migration;
II. Validation Phase: select a subset of potential candidates

using two sets of constraints, see Eq.s(8) and (16);
b. Determine the trigger time for a migration process, see Sec. 4.1.2.3

I. Estimate the migration duration tmgt for each migration
candidate using Eq.(17);

II. Schedule backward migrations;
III. Schedule forward migrations till the end of window or no

more migration candidates;
end

Figure 13: The high level description of LMsT.

Table 3: Notations in this work.
Ai, i ∈ [1, n] n ALUNs.

Dj , j ∈ [1,m] m disks.

xi,j ∈ {0, 1} indicator of association between Ai and Dj .

λAi
or λDj

I/O arrival rates of Ai or Dj (KB/ms).

µDj
average service rate of disk Dj (KB/ms).

sDj
average I/O size on disk Dj (KB).

SLAk the kth SLA requirement (ms).

Qj,k the kth logical buffer on disk Dj with SLAk.

yi,k ∈ {0, 1} indicator of association between Ai and SLAk.

twin duration of a time window (ms).

tmgt time duration of the migration process (ms).

38

Selection Phase: There are two types of effective migrations that the system can

benefit from. First, if an ALUN hosts hot data in low performance tier, it should be

migrated to high performance tier for improving the performance. We call this migration

as forward migration. Second, if the workload of an ALUN from loose-SLA application

becomes cold in high performance tier, we may migrate that ALUN back to low perfor-

mance tier in order to release the space in high performance tier. Such a migration is

called backward migration. However, it might happen that all ALUNs currently in high

performance tier are hosting hot data. Under this case, LMsT will cancel all forward

migrations if there is no available space in high performance tier.

Two thresholds of I/O workloads τh and τl (τl < τh) are defined to eligible ALUNs for

migration as follows. For an ALUN Ai, if its average workload λAi
> τh, we consider the

data hosted on Ai is hot. If Ai resides in low performance tier, it would be beneficial for

the system to migrate it to high performance tier. Similarly, if an ALUN’s workload is

less than the lower threshold, i.e., λAi
< τl, the data stored on Ai is regarded as cold. We

may move this ALUN Ai to low performance tier, if Ai is allocated in high performance

tier but belongs to an application with loose SLA. By this way, we find a set of ALUNs

that are eligible for either forward or backward migrations.

Furthermore, the destination disk Dj for each eligible ALUN to migrate to is found

such that Dj has the lowest load among those disks that can provide at least one available

ALUN space. Finally, the selection phase yields a set of migration candidates (Ai,Dj) for

the next validation phase.

Validation Phase: In validation phase, we quantify each migration candidate (Ai,Dj)

through the following two conditions: (1.) SLAs have to be met; (2.) average I/O re-

sponse time is expected to be decreased (for forward migration). A candidate is validated

for migration only if both of these two conditions are satisfied. In the next, we quantify

and analyze these performance metrics.

(1.) SLA Constraint: Recall that in our model, each disk array keeps multiple

logical buffers and each buffer servers I/Os with a different SLA as shown in Figure 12.

Upon the arrival of an I/O request, the I/O scheduler inserts it into a particular logical

buffer which contains the requests having the same SLA requirement as the arriving one.

While, within each buffer, all requests are scheduled based on First-In-First-Out (FIFO)

discipline. Specifically, each buffer Qj,k can just hold a limited number of I/O requests in

order to avoid introducing heavy loads to disk Dj and causing additional SLA violations.

Thus, for logical buffer Qj,k, we define MLj,k as the maximal queue length in which

the disk j can handle without causing any SLA violation,

MLj,k = SLAk · µDj
.

39

Additionally, we use QLj,k to denote the accumulated average queue length of logical

buffers from Qj,1 to Qj,k. Let λj,k represent the overall arrival rates of the ALUNs whose

SLAs are equal to or smaller than SLAk in disk j,

λj,k =

k
∑

t=1

n
∑

i=1

xi,j · yi,t · λAi
.

Thus, using Little’s Law, QLj,k can be expressed as

QLj,k = f(λj,k) =
λj,k

µDj
− λj,k

· sDj
. (6)

According to the definitions, QLj,k ≤MLj,k.

With the above analysis, we check the following two rules for each migration candidate

(Ai,Dj),

λDj
+ λAi

< µDj
, (7)

MLj,k ≥ QL′

j,k = f(λj,k + λAi
), for yi,k = 1. (8)

The first rule requires the total arrival rate on the destination disk Dj to be less than the

processing rate µDj
. Similarly, in order to process migration, the arrival rate of the source

disk to which Ai belongs should also be less than its processing rate. The second rule

is for the particular logical buffer with the corresponding SLA that Ai belongs to. After

migration, the new queue length of Qj,k should not exceed the maximal limit MLj,k.

(2.) Response Time Constraint: Now, we turn to the performance constraint in

terms of I/O response time for validating migration candidates. Basically, we estimate

the I/O response time of both the source and the destination disks under the policies with

and without migration and then evaluate the benefit (or the penalty) of each migration

candidate.

For a migration candidate (Ai,Dj), assume Ai is currently hosted on disk Dk, i.e.,

xi,k = 1. Let λ′

Dk
, λ′

Dj
and λ′

Ai
represent the workloads of Dk, Dj , and Ai in the next

time window, respectively. Additionally, let tmgt be the time duration to process a live

migration (tmgt < twin) and ∆λ be the extra transfer rate for serving migration I/Os

during the migration process. We will discuss how to derive tmgt and ∆λ in Section 4.1.2.3.

Assume if validated, the migration (Ai,Dj) will be launched at the current window. With

this particular migration, for both the source disk Dk and the destination disk Dj, the

workloads during tmgt of the current window become λDk
+∆λ and λDj

+∆λ, respectively.

Additionally, in the next time window, their new workloads will be λ′

Dk
−λ′

Ai
and λ′

Dj
+λ′

Ai
,

respectively.

40

Based on the Little’s Law, we can calculate the average response time RTj of disk Dj

as follows,

RTj = g(j, λDj
) =

sDj

µDj
− λDj

. (9)

With Eq.(9), we can evaluate the average I/O response time of both the source and the

destination disks in three periods, i.e., before, during and after the migration process.

Let RTk/j(Ai,Dj) and RT ′

k/j(Ai,Dj) be the average response times of the source disk

Dk or the destination disk Dj under the policies with and without a particular migration

(Ai,Dj), respectively, and RT k/j(Ai,Dj) be the relative benefit (or penalty) in terms of

response time. We then have the following equations:

RTk(Ai,Dj) = (g(k, λDk
) + g(k, λD′

k
)) · twin, (10)

RT ′

k(Ai,Dj) = g(k, λDk
) · (twin − tmgt) +

g(k, λDk
+∆λ) · tmgt + (11)

g(k, λ′

Dk
− λ′

Ai
) · twin,

RT k(Ai,Dj) =
RT ′

k(Ai,Dj)−RTk(Ai,Dj)

RTk(Ai,Dj)
, (12)

RTj(Ai,Dj) = (g(j, λDj
) + g(j, λD′

j
)) · twin, (13)

RT ′

j(Ai,Dj) = g(j, λDj
) · (twin − tmgt) +

g(j, λDj
+∆λ) · tmgt + (14)

g(j, λ′

Dj
+ λ′

Ai
) · twin,

RT j(Ai,Dj) =
RT ′

j(Ai,Dj)−RTj(Ai,Dj)

RTj(Ai,Dj)
. (15)

The response time constraint is designed to compare the overall improvement in average

response time to a threshold e%. The migration candidate (Ai,Dj) is validated only if

the following condition is satisfied.

RT k(Ai,Dj) +RT j(Ai,Dj)

2
> e% (16)

In summary, we defined two sets of migration constraints, related to SLA and perfor-

mance in our migration policy, LMsT, for evaluating each migration candidate. Once a

candidate is validated, the corresponding forward or backward migration process can be

actually performed by LMsT.

41

4.1.2.3 Migration Trigger Time

Given all the validated migration candidates, we now turn to schedule them for actual

migration. To fulfill this schedule, the first key issue is to find out when to trigger the

migration processes. So, in this section, we first introduce the estimation of migration

duration for each candidate, and then present our migration trigger policy for both forward

and backward migration candidates.

Estimation of Migration Duration: If a migration candidate (i.e., ALUN) meets

the SLA constraint in Section 4.1.2.2, then one can expect that both the source and the

destination disks might have extra capabilities to process migration I/Os which acquire

additional transfer bandwidth. Since our migration policy can execute migration I/Os at

any disk idle period, we assume that the disk utilization during the migration process is

100%, then the maximal arrival rate can be equal to the service rate.

Thus, the extra transfer rate ∆λDj
for serving migration I/Os can be obtained as the

gap between the service rate µDj
and the actual arrival rate λDj

of diskDj . Both the source

disk Dk and the destination disk Dj have their own estimated transfer rates. We thus

conservatively select the smaller one, i.e., min{∆λDk
,∆λDj

}, as the mutual transfer rate

for serving extra migration I/Os between the source and the destination disks. In addition,

the total migration capacity might be larger than the capacity of a migration ALUN (i.e.,

1GB) because of additional application write I/Os during the migration process. We here

use a tuning parameter β to multiply the capacity of migration ALUN to assess the actual

migration capacity. Therefore, the migration duration tmgt for each candidate can be

estimated by using the ratio of the estimated migration capacity to the extra transfer rate

∆λ, see Eq.(17).

tmgt =
β · Capacity of ALUN

µi − λi

. (17)

Migration Trigger Policy: Once we obtain the migration duration for each can-

didate, the migration trigger policy needs to decide when to start the migration process.

Since the forward and the backward migrations have different goals, they need to be

triggered separately in each time window. For example, the candidates from backward

migrations need to be triggered at the beginning of each time window in order to release the

spaces in high performance tier. Once all backward migrations are done, the policy starts

to schedule forward migrations. But, it is possible that the whole migration processes (i.e.,

backward plus forward migrations) exceeds a time window. As a result, some candidates

cannot be successfully migrated within that particular time window. Under this case, the

policy abandons all the migration candidates which have not been responded yet. For

simplicity, our migration trigger policy assumes that each disk, either as the source or as

the destination, only serves one migration candidate at any time.

42

Table 4: Device parameters of two tiers
Disk Type Disk Number Total Capacity Service Rate

SSD 2 40GB 500MB/s

FC 5 100GB 160MB/s

4.1.3 Performance Evaluation of LMsT

In this section, we use representative case studies to evaluate the effectiveness of our new

LMsT algorithm. A trace-driven simulation model to emulate a multi-tier storage system

as shown in Figure 11. Without loss of generality, we assume that in our model the

application components have two priority levels with different SLA requirements such

that the SLAs of high and low priority applications are equal to SLAH = 1ms and

SLAL = 20ms, respectively. We also assume two tiers of disk drives in the storage pool,

i.e., SSD and FC. We remark that the number of disk drives in each tier is fixed in all

the following experiments. The device parameters of these two tiers are shown in Table 4.

Initially, the virtual ALUNs of applications with strict SLAs (i.e., SLAH) are all mapped

to SSDs. Whereas, FCs are initially assigned to low priority applications with loose SLAs.

In the following subsections, we first investigate the benefits of LMsT through a

representative case study and later use synthetic traces to show the performance of LMsT

under different system workloads. We also investigate the performance impact by tuning

two constraints (see Section 4.1.2.2) and further validate the effectiveness of LMsT by

comparing its performance with an existing migration policy.

4.1.3.1 Performance Improvement

To validate the performance improvement of LMsT, we consider a representative case,

where the total active storage capacity is 70GB and 50% of each virtual ALUN’s arrival

flows are bursty across the overall simulation period. Here, active storage capacity refers

to the amount of space that is used to store the data for application. That is, given the

total 100GB storage capacity and the 70GB active storage capacity, we have the remaining

30GB capacity to be free. Recall that each applications requests 10 ALUNs, each of which

has the capacity of 1GB. Therefore, we have totally 7 applications in this experiment, i.e.,

2 applications with high priority and 5 applications with low priority. In particular, we

generate a synthetic trace of I/O jobs for each virtual ALUN such that an I/O trace consists

of 30 time slots, each of which lasts around 20 minutes. The specifications of an I/O job

include I/O arrival time, I/O locality, and I/O size, in which I/O locality is uniformly

distributed within an ALUN and I/O size is drawn from an exponential distribution. In

addition, according to different arrival rates, a time slot can be further characterized as

“idle” or “bursty”, such that the inter-arrival times of I/O jobs that arrive during a bursty

43

I B I I B

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

A
rr

iv
al

 R
at

e
(I

O
/m

in
)

Time (minute)

Figure 14: Example of arrival flows (i.e., number of I/Os per minute) to a virtual ALUN.
In this window, we have 3 “idle” (I) and 2 “bursty” (B) time slots.

period are drawn from a 2-state Markov-Modulated Poisson Process (MMPP) while the

I/O arrival process of an idle period is exponentially distributed. Figure 14 shows an

example of the arrival flows to a virtual ALUN.

In all experiments, we set the mean arrival rates in “idle” time slots of high and low

priority applications to be equal to 10 KB/ms and 5 KB/ms, respectively, while we double

the mean arrival rates in “bursty” time slots for both two types of applications, i.e., 20

KB/ms for high priority ones and 10 KB/ms for low priority ones. The mean I/O size is

100KB and the FIFO policy is used to schedule I/Os from all the virtual ALUNs.

In addition, the performance metrics that are considered here include:

• M Resp: the mean of I/O response times that are measured from the moment when

an application submits an I/O request to the moment when that particular I/O

request is completed.

• V Ratio: the fraction of I/Os whose response times exceed the predefined SLAs, e.g.,

SLAH = 1ms and SLAL = 20ms, for those from high and low priority applications,

respectively.

• V T ime: the mean violation times that are the difference between the actual I/O

response times and the predefined SLAs.

Figure 15 shows the performance comparisons between NMsT and LMsT, where

we use the NMsT policy as the base case to normalize our LMsT’s performance. The

NMsT policy is defined as no migration processes among multiple storage tiers in which

the hot data is served in SSDs and the cold data is served in FCs. We observe that LMsT

significantly improves the overall system performance. For example, I/Os experience faster

response times under LMsT than under NMsT. This is because our new policy better

utilizes SSDs by migrating all validated bursty traffic from FCs to SSDs. Consequently,

LMsT enables fewer I/Os from low priority applications to be violated and meanwhile

44

 0

 20

 40

 60

 80

 100

 120

M_Resp V_Ratio V_Time

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
%

)

NMsT LMsT

Figure 15: Comparing the system performance between NMsT and LMsT in the case of
70GB capacity and 50% burst.

reduces the violation times. More importantly, LMsT executes its migration processes

using the priority-based queuing discipline at SSDs, i.e., migration I/Os always have the

lowest priority and new application I/Os migrated from FCs still have lower priority than

the original application I/Os with high SLAs. Therefore, the I/Os from high priority

applications in SSDs are still guaranteed to meet the corresponding SLAs.

To further investigate the migration impacts, we illustrate each disk’s utilization as

well as each application’s performance under both NMsT and LMsT in Table 5. Here,

disk utilization is defined as the ratio of the disk busy time over the duration of the whole

simulation. Compared to NMsT, the SSDs (i.e., D1 and D2) under LMsT are now better

utilized with higher utilization while the I/O loads on FCs (i.e., D3, ...,D7) are significantly

reduced, resulting in lower utilization, see Table 5.

Table 5 provides the performance data for each application by showing its average I/O

response time (i.e., M Resp) and the fraction of I/Os whose response times are beyond

the predefined SLAs (i.e., V Ratio). Given the results shown in the table, it is clear

that all the low priority applications (i.e., App3, ..., App7) obtain tremendous performance

improvement, experiencing lower response times and less violation ratios, and thereby

receiving the high QoS. Moreover, the performance of high priority applications (i.e.,

App1 and App2) keeps almost the same despite a very slight degradation due to the extra

migrated I/Os.

Table 5: Each application’s performance under NMsT and LMsT in the case of 70GB

data size and 50% burst.
Data Size 70GB High Priority Low Priority

50% Burst App1 App2 App3 App4 App5 App6 App7

NMsT
M Resp (ms) 1.30 1.27 382.29 366.60 368.52 350.12 380.55

V Ratio (%) 7.06 6.90 41.75 40.37 41.65 40.28 40.59

LMsT
M Resp (ms) 1.34 1.32 131.01 137.75 139.53 125.49 124.53

V Ratio (%) 7.73 7.53 21.55 22.36 22.28 19.94 19.34

45

4.1.3.2 Sensitivity Analysis on System Workloads

Now, we turn to analyze the effectiveness and robustness of LMsT under various ex-

perimental conditions. We first focus on exploring the sensitivity of LMsT to different

system workloads. Later, we investigate the sensitivity analysis of LMsT to our migration

constraints.

In order to study the impacts of system loads and burstiness profiles on LMsT’s

performance, we vary the total active storage capacities (e.g., 40GB, 70GB and 100GB)

and the percentage of arrival flows which are bursty, e.g., 30%, 50% and 70%. Recall that

the active capacity refers to the amount of space in the storage pool that has been used to

store the data for applications. Table 6 shows the configuration of applications and disks in

the case of different active capacities. As we assume that each application requests ALUNs

of 10GB, varying the overall active capacities change the number of applications as well,

see the columns of Num H and Num L in Table 6. For example, in the case of 40GB, we

have totally 4 applications such that 1 application has high priority and the other 3 ones

have low priority. Since we keep the fixed number of disks (i.e., 2 SSDs and 5 FCs), the

initial active capacity (see the columns of C SSD and C FC in Table 6) and the load of

each disk is increased as well when the total active capacity increases. Finally, we remark

that the combination of increasing active capacity and burst ratio further exacerbates the

bursty load to the system. For example, when the active capacity increases to 100GB and

the burst ratio is 70%, the total number of time slots (see N TS in Table 6) at FCs reaches

to 2100, i.e., 70 ALUNs at FCs times 30 slots/ALUN. Consequently, the total number of

bursty slots at FCs becomes larger then 1400, see the row of Burst TS in Table 8.

Table 6: Configuration of applications and disks under different storage active capacities,

where Num H (Num L) is the number of high (low) priority applications and C SSD

(C FC) gives the initial active capacity of SSD (FC), and N TS is the total number of

time slots at the FC-tiers.
Data

Num H Num L
C SSD C FC

N TS
Size (×2) (×5)

40GB 1 3 5GB 6GB 900

70GB 2 5 10GB 10GB 1500

100GB 3 7 15GB 14GB 2100

The experimental results of LMsT under 9 workload combinations are shown in Ta-

ble 7. We also present the results of NMsT as well as the relative improvement with

respect to NMsT in the table. First of all, we observe that under all the 9 workloads,

LMsT achieves non-negligible performance improvement in terms of the mean I/O re-

46

sponse time (M Resp), the fraction of I/Os that are SLA violated (V Ratio), and the

mean SLA violation times (V T ime). For example, under the case of 40GB and 30%

burst, LMsT dramatically accelerates the average I/O response times by up to 83% rel-

ative improvement over NMsT and decreases the number of SLA-violated I/Os with the

relative improvement over NMsT up to 78%. This indicates that LMsT provides the

high QoS to low priority applications and meanwhile maintains the SLAs for high priority

ones.

Also, we find that burstiness in arrival flows does deteriorate the overall system per-

formance under both LMsT and NMsT policies. Such performance degradation becomes

more significant when the arrivals become more bursty, i.e., the bursty ratio increases.

Similarly, the increasing active storage capacity degrades the system performance as well

because the overall disk loads are increased. This further results in strict migration con-

straints, allowing fewer bursty ALUNs to be migrated. In addition, the combination of

large active storage capacity and high bursty ratio makes the relative improvement over

NMsT less visible, e.g., in the case of 100GB and 70% burst, the relative improvements

with respect to all the three performance metrics diminish.

47

Table 7: Sensitive analysis of system workloads with active storage capacity of (a) 40GB,

(b) 70GB, and (c) 100GB. The burst ratio is set to 30%, 50% and 70%.

(a)

Data Size NMsT

40GB 30% Burst 50% Burst 70% Burst

M Resp (ms) 29.45 66.93 127.43

V Ratio (%) 7.16 13.72 21.80

V T ime (ms) 381.17 463.15 562.29

Data Size LMsT

40GB 30% Burst 50% Burst 70% Burst

M Resp (ms) 5.04 (82.89%) 15.17 (77.33%) 35.71 (71.98%)

V Ratio (%) 1.58 (77.94%) 4.67 (65.98%) 9.87 (54.70%)

V T ime (ms) 271.16 (28.86%) 295.45 (36.21%) 337.15 (40.04%)

(b)

Data Size NMsT

70GB 30% Burst 50% Burst 70% Burst

M Resp (ms) 67.11 205.20 433.90

V Ratio (%) 12.00 25.78 39.68

V T ime (ms) 533.41 775.47 1075.62

Data Size LMsT

70GB 30% Burst 50% Burst 70% Burst

M Resp (ms) 24.65 (63.27%) 73.51 (64.18%) 140.44 (67.63%)

V Ratio (%) 6.21 (48.23%) 15.09 (41.46%) 28.35 (37.96%)

V T ime (ms) 370.86 (30.47%) 466.64 (39.82%) 553.46 (48.55%)

(c)

Data Size NMsT

100GB 30% Burst 50% Burst 70% Burst

M Resp (ms) 195.02 716.30 1675.73

V Ratio (%) 30.00 47.18 61.74

V T ime (ms) 631.72 1502.26 2699.83

Data Size LMsT

100GB 30% Burst 50% Burst 70% Burst

M Resp (ms) 72.59 (62.78%) 290.50 (59.44%) 1324.17 (20.98%)

V Ratio (%) 18.85 (37.15%) 36.49 (22.66%) 56.67 (8.21%)

V T ime (ms) 368.39 (41.68%) 781.28 (47.99%) 2322.53 (13.95%)

48

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 (

%
)

Alpha

(a) SLA Constraint

 0

 20

 40

 60

 80

 100

−5 −4 −3 −2 −1 0 1 2 3 4 5

R
at

io
 (

%
)

Penalty/Benefit of Response Time (e%)

(b) Response Time Constraint

migration ratio ratio of response time

Figure 16: Ratios of system performance between LMsT and NMsT using different pa-
rameters in (a) SLA constraint and (b) response time constraint.

4.1.3.3 Sensitivity Analysis on Parameters in Migration Constraints

Recall that the key idea of LMsT is to improve the QoS for low priority applications via

on-the-fly moving their hot data to SSDs, and meanwhile without causing additional SLA

violations to high priority applications. Therefore, it is critical to set the right parameters

for the migration constraints in order to achieve the best performance of LMsT. To address

this issue, we here conduct a set of experiments to investigate the sensitivity of LMsT

to the key parameters in two sets of migration constraints, i.e., SLA constraint shown in

Eq.(8) and response time constraint shown in Eq.(16).

We show the performance results measured from the experiments, where we vary the

parameter α of SLA constraint in Figure 16 (a) and the parameter e% of response time

constraint in Figure 16 (b). All other parameters in these experiments are kept the same.

Additionally, the total active storage capacity is set of 70GB and 50% of arrival flows to

FCs are bursty. Then, we have 2 applications with high priority and 5 applications with

low priority, see Table 6. In these experiments, we measure the migration ratio of bursty

ALUNs in FC-tier and the response time ratio between LMsT and NMsT.

We first tune the parameter α in Eq.(4) to control the arrival rates to an ALUN and

the associated disk. As the value of α increases, LMsT then conservatively migrates the

ALUNs of low priority applications from FCs to SSDs due to the current heavy load (i.e.,

larger arrival rate) at SSDs. That is, the number of ALUNs which can be validated for

migration by the SLA constraint in Eq.(8) becomes less, so that the migration ratio de-

creases, see Figure 16 (a). However, the trend of the response time is not straightforward.

As we discussed, LMsT with a large α conservatively migrates ALUNs and thus obtains

less improvement in response times. On the other hand, when α is set to a small value, a

large number of ALUNs may be aggressively moved to SSDs, which thus dramatically in-

49

creases the load at SSDs and degrades the performance of the corresponding applications.

We observe that the most benefits of LMsT are actually achieved when α is close to 0.3.

As shown in Eq.(16), the parameter e% is used as a threshold to determine the overall

improvement in average response time, where the negative or positive value of e% (e.g.,

−5% or 5%) indicates the penalty or benefit in terms of response time. That is, when

the relative benefit or penalty over NMsT is more or less than e%, an ALUN will then

be validated for migration. Consequently, a large value of e% indicates a conservative

migration process, so that the migration ratio decreases and the ratio of response time

between LMsT and NMsT increases, see Figure 16 (b).

4.1.3.4 Performance Comparisons with SMsT

In this section, we further validate the effectiveness of LMsT by comparing its performance

with a migration algorithm, named SMsT, which is commonly used to suspend all the

I/Os from an associated application when an ALUN is being in the migration process.

That is, with a synchronization consideration, the migration I/Os are given the higher

priority than the regular I/Os ones which request to access those to-be-migrated ALUNs.

Table 8 shows the resultant comparison between LMsT and SMsT. We remark that under

SMsT, all the other application I/Os which do not access to-be-migrated ALUNs still have

higher priority than the migration I/Os during the migration process.

To identify the effectiveness of LMsT, we here use Mgr Resp to represent the mean

response time of the particular application I/Os which would access the to-be-migrated

ALUNs during migration processes. In Table 8, the first important observation is that our

new migration policy achieves much better performance (i.e., Mgr Resp) under different

workloads compared to SMsT. This is because by using the synchronization mechanism,

LMsT can effectively eliminate the negative impacts of migration on regular application

I/Os, avoiding unnecessary delays to their execution.

Besides the results of mean response times, we also show the total number of time

slots (Burst TS) that have bursty arrivals in all the ALUNs of 5 FCs, as well as the

fraction of bursty time slots (Mgr Ratio) which are validated to be migrated, see Table 8.

As the heavy bursty loads reduce the capability of both SSDs and FCs to migrate data,

few migration candidates can be validated by our migration constraints. Therefore, we

observe that as active storage capacity and bursty load increase, the total number of

bursty time slots increases, whereas the migration ratio decreases. This further verifies

the experimental results in Table 7. Both large Burst TS and low Mgr Ratio incur non-

negligible performance degradation. For example, in the case of 100GB and 70% burst,

LMsT achieves the smallest relative improvements over NMsT, compared to all the other

cases.

50

Table 8: Sensitive analysis of migration policies under system workloads with active stor-
age capacity of (a) 40GB, (b) 70GB, and (c) 100GB. The burst ratio is set to 30%, 50%
and 70%. Here, Mgr Resp is the mean response time of the application I/Os which access
the to-be-migrated ALUNs and Burst TS is the number of bursty time slots in all the
ALUNs of 5 FCs, and Mgr Ratio is the migration ratio over Burst TS.

(a)

Data Size 30% Burst 50% Burst 70% Burst
40GB LMsT SMsT LMsT SMsT LMsT SMsT

Mgr Resp (ms) 13.31 140.22 66.89 165.81 194.79 296.38

Burst TS 267 428 591

Mgr Ratio (%) 87.64 89.72 89.85

(b)

Data Size 30% Burst 50% Burst 70% Burst
70GB LMsT SMsT LMsT SMsT LMsT SMsT

Mgr Resp (ms) 73.39 162.22 235.75 329.73 336.99 495.15

Burst TS 418 725 1038

Mgr Ratio (%) 89.71 76.41 49.62

(c)

Data Size 30% Burst 50% Burst 70% Burst
100GB LMsT SMsT LMsT SMsT LMsT SMsT

Mgr Resp (ms) 79.60 188.55 266.88 371.58 323.67 418.77

Burst TS 644 1073 1464

Mgr Ratio (%) 53.73 25.82 12.98

51

As a final remark, it is interesting to observe that in the case of 40GB active capacity,

the migration ratios are similar across different bursty loads (i.e., 30%, 50% and 70%

burst). This is because that the overall system load is very low under this case, therefore,

most of the bursty ALUNs can be migrated to SSDs no matter how heavy the bursty load

is.

4.2 vFRM: Flash Resource Manager in VMware ESX Server

One popular approach of leveraging Flash technology in virtualization environments to-

day is using Flash as a secondary-level host-side cache. Although this approach delivers

I/O acceleration for a single VM workload, it might not be able to fully exploit the out-

standing performance of Flash and justify the high cost-per-GB of Flash resources. In

this section, we propose a new VMware Flash Resource Manager, named vFRM, which

aims to maximize the utilization of Flash resources with minimal CPU, memory and I/O

cost for managing and operating Flash. vFRM adopts the ideas of heating and cooling

to identify data blocks that can benefit the most from being put in Flash, and lazily

and asynchronously migrates data blocks between Flash and spinning disks. Experimen-

tal evaluation of the prototype shows that vFRM achieves better cost-effectiveness than

traditional caching solutions, and costs orders of magnitude less I/O cost.

4.2.1 Motivation

Flash resources are usually deployed as host-side cache for the data center. The most

significant benefit by deploying Flash in a system is mainly in the consideration of perfor-

mance improvement, i.e., increasing I/O throughput and reducing I/O latency. However,

this deployment inevitably introduces extra operational cost to system.

4.2.1.1 Goals and Metrics

Instead of improving I/O performance of an individual VM, we aim to maximize the

utilization of Flash resources and minimize the cost incurred in managing Flash resources.

Maximizing Flash Utilization: When people buy an SSD, they are actually paying

for performance rather than storage space. Therefore, we consider Input/Output Oper-

ations Per Second (IOPS), a common performance measurement, as the metric of Flash

utilization and redefine one of our primary goals as maximizing IOPS utilization. As IOPS

capabilities of Flash devices vary across different models, we alternatively use I/O hit ratio

as the metric of Flash utilization. I/O hit ratio is defined as the fraction of I/O requests

that are served by Flash. The higher the I/O hit ratio, the better the utilization of Flash

resources. In order to achieve high I/O hit ratio, the most frequently accessed data should

be put on Flash media. As I/O hit ratio increases, the processing efforts required for

52

these I/O requests are offloaded from the back-end storage array to the Flash tier and the

storage array can thus allocate more processing power to serve other I/O requests, which

actually improves the I/Os that are not served from Flash. This further improves the

total cost of ownership (TCO) in terms of financial (IOPS/$) and power (IOPS/KWH)

efficiency of storage systems.

Minimizing CPU, Memory and I/O Cost in Managing Flash: CPU, Memory

and I/O bandwidth are needed in Flash resource management. Today, a single Flash-

based SSD can easily reach up to 1TB and Flash resources are usually managed at a fine

granularity (e.g., 4KB or 8KB). Hence, it is fairly likely to incur a high fraction of in-

memory footprint for the Flash related metadata. For example, if the memory footprint

equals to 1% of Flash space, then 10GB metadata is required for a SSD with 1TB size.

Such a large memory footprint limits the scalability of deploying Flash resources with

large capacity. Therefore, our second primary goal is to minimize the cost incurred in

managing and operating Flash resources.

4.2.1.2 I/O Access Patterns

The benefits of fully utilizing Flash are mainly motivated by the observations of I/O access

patterns from workload studies. The effective workload studies can imply the accurate

modeling, simulation, development and implementation of storage systems. [76] introduced

twelve sets of long-term storage traces from various Microsoft production servers and

analyzed workload characterizations in terms of block-level statistics, multi-parameter

distributions, file access frequencies, and other more complex analyses. [77] presented an

energy proportional storage system by effectively characterizing the nature of I/O access

on servers using dynamic I/O workloads by consolidating the cumulative workload on a

subset of physical volumes proportional to the I/O workload intensity. [78] developed a

mechanism for accelerating cache warm-up based on detailed analysis of block-level data-

center traces. They examined traces to understand the behavior of I/O reaccesses in two

dimensions, e.g., temporal and spatial behaviors. [79] is another good example of technique

design motivated by workload analysis in which they proposed a write offloading design

to save energy in enterprise storage by a better understand of I/O patterns.

We analyze disk I/O traces of various workloads to understand I/O access patterns.

First, we use a set of block I/O traces collected by MSR Cambridge in 2007 to understand

volume access patterns in production systems [79]. Each trace contains block I/Os within

one week and each data entry in the trace describes an I/O request, including time-stamp,

disk number, logical block number (LBN), number of blocks and the type of I/O (i.e.,

read or write). Totally, there are 36 MSR-Cambridge traces representing a variety of

workloads. In this paper, we select six of them as representative and summarize these

53

traces in Table 9.

Table 9: Selected MSR-Cambridge Traces. VS denotes the volume size and WSS denotes
the working set size.

Name Server VS(GB) WSS(GB)

mds0 Media Serv. 33.9 3.23

src12 Source Control Serv. 8.0 2.80

stg0 Web Staging Serv. 10.8 6.63

usr0 User Home Dir. 15.9 4.28

web0 Web/SQL Serv. 33.9 7.48

prn0 Printer Serv. 66.3 16.90

For each trace, we partition the entire LBNs address space into bins (with an equal

width of 1MB) and count the number of I/O accesses for each bin in every hour over a

period of seven days. Figure 17 plots the distributions of I/O popularity across different

bins and its variation over time, where the x-axis represents the LBN range, the y-axis

represents the time and the z-axis represents the I/O popularity of bins. In addition,

the grey-scale is used to represent I/O popularity. A darker scale represents a greater

popularity.

To further validate our observations in I/O access patterns, we select the other three

real workload variants. The first trace is collected from Microsoft Exchange Server 2007

SP1 using the event tracing for a duration of 24 hours. The second one is measured

from Microsoft RADIUS Back-end SQL Server for a duration about 17 hours [76]. The

third trace is collected by Florida International University (FIU) from the first of four

different end-user and developer home directories during 24 hours [77]. All these traces

are block level disk I/Os with the same I/O properties as MSR traces. Figure 18 shows

the distributions of I/O popularity across different LBN bins and different time periods.

Among a number of interesting findings, we summarize three key observations that inspire

the design of vFRM:

[Obv. 1] The block access frequency exhibits a bimodal distribution. Most of the bins

are accessed rarely (i.e., less than 10 times a day), while a small fraction of the bins are

accessed extremely frequently (i.e., more than thousands of times a day). This implies

that only a small number of bins are popular enough to be placed on Flash tier, while

most of the remaining bins are not deserved for the high performance yet expensive Flash

resource. This observation also motivates that vFRM is suitable to be managed in a coarse

granularity (i.e., 1MB bin).

[Obv. 2] The distribution of I/O popularity does not vary significantly over time. This

implies that vFRM does not need to actively and frequently update contents of Flash. A

lazy and asynchronous approach should be sufficient for minimizing operational cost.

54

Figure 17: I/O popularity analysis of selected Cambridge traces

Figure 18: I/O popularity analysis of three traces

[Obv. 3] The distribution of I/O popularity varies across workloads and volumes. This

implies that different applications lead to diverse distributions of popular bins and thus

need different amount of Flash resources.

4.2.2 vFRM Design and Algorithms

Inspired by the above observations, we design vFRM, a Flash resource manager to man-

age data blocks at the granularity of hypervisor file system block. vFRM dynamically

relocates the data blocks between the Flash tier and the spinning disk tier to gain the most

performance benefits from Flash. Additionally, it does the data block relocation lazily and

asynchronously, which significantly reduces the cost for CPU, memory and I/O incurred

in managing Flash resources. By having the Flash tier absorbing more I/O requests from

VMs, vFRM lessens the contention for the I/O bandwidth of the underlying storage,

which in turn accelerates the I/O access for data on the spinning disk tier. Note that

we intentionally skip the availability problem of locally attached Flash device, which is

beyond of the goals of this paper. In this paper, we assume that the Flash device already

has a high availability.

55

4.2.2.1 Main Architecture

Figure 19: vFRM ’s architecture overview.

Figure 19 shows the architecture overview of vFRM, which consists of three major

components: (1) a modified VMware Virtual Machine File System (VMFS) that allows

composing a hybrid file with mixed blocks from both the spinning disk tier and the Flash

tier via block mapping; (2) a tiering manager that monitors I/O activities, makes migration

decisions, and then generates tiering tasks for migrating hot blocks into the Flash tier and

cold blocks out to the spinning disk tier; and 3) a pool of migrator threads that execute

the migration tasks.

4.2.2.2 Hybrid File

A Virtual Machine Disk (VMDK) is essentially a file on a VMFS volume with all of its

blocks allocated from the same VMFS volume [80]. In this work, we propose a new type

of file, called hybrid file, to extend the VMDK from spinning media to Flash media. A

hybrid file comprises two files: a base file and a peer file. As such, the hybrid file can span

across both tiers with the hot blocks in its peer file on the Flash tier and the cold ones in

its base file on the spinning disk tier.

The peer file is a sparse file and its internal blocks keep the same logical offset in

VMDK as their corresponding blocks in the base file. When overlapping these two files,

we get a hybrid file with the mixed blocks from both the spinning media and the Flash

media. The VMFS file block address resolution mechanism is designed to identify the

location of a requested block (i.e., in the peer file or in the base file) and to seamlessly

re-direct the I/O to the right tier. Although the peer file has the same size of address

space as its base file, it does not necessarily occupy the same size of Flash resources. In

fact, it is mostly sparse, because only a small portion of the blocks are allocated as hot

56

blocks on the Flash tier. As each hot block keeps the same logical offset in both files,

there is no need to add an extra mapping table to store the location mapping information

of hot blocks between the Flash tier and the spinning disk tier. Moreover, we can use the

inode pointer cache of the peer file as the block look up table, which further eliminates

the need for an extra lookup table. If a block has been migrated to the Flash tier, the

corresponding block will have been allocated and the inode pointer cache of the peer file

can indicate the existence of this block. As a result, we have another saving of the memory

space for the lookup table.

During the migration of Flash resources, the dirty blocks on the Flash tier of the source

host need to be migrated to the Flash tier of the destination host if the Flash tier cannot

be accessed by both source and destination hosts. If the Flash tier is not shared and there

is not Flash on the destination host, vFRM will collapse this hybrid file via writing the

dirty blocks back to the spinning disk tier. In the virtualized environment, a virtual disk

is a file on VMFS, the design of hybrid file automatically enables hybrid storage for VMs.

4.2.2.3 Basic Data Structure

Heat map: Heat map is used to represent the I/O popularity statistics. Each 1MB

block of the files on VMFS has on-Flash metadata associated with it as heat map. The

per-block metadata contains 16 bytes to record the number of I/O accesses in which each

2 Bytes denotes the I/O access count that happened in one epoch (e.g., 5min). In our

implementation, we store the I/O statistics for the previous 8 epochs. The details of the

usage of I/O statistics to predict the I/O popularity can be found in Section 4.2.2.4. In

addition, we have 8 bytes of metadata to represent the logical address of the file descrip-

tor and 4 bytes for the logical offset of the block. Thus, each 1MB block requires 28

bytes to hold the popularity statistics, which is only 0.0027% of the size of VMDK. More

importantly, heat map does not necessarily to be pinned in memory. It only needs to be

retrieved in memory for every 5 minutes when we want to use it to figure what blocks need

to be migrated into Flash tier and what blocks need to be migrated out. This essentially

can be translated to zero memory consumption. We will discuss more of the details in the

following sections.

Tiering map: Tiering map is used to represent placement of the blocks between two

tiers. A tiering map is specifically associated with a file and saved alongside the VMDK

descriptor. It can be used to quickly warm-up the hot blocks after migration of Flash

resources. In the tiering map, one bit represents in which tier a block is located. Therefore

the metadata footprint overhead is only about 0.00001% of the size of VMDK. The same

as the heat map, tiering map does not need to be pinned in memory permanently.

57

4.2.2.4 Temperature-based Tiering Manager

The main task of a tiering manager is to migrate data blocks between spinning disk tier

and Flash tier to gain the most performance benefit from Flash. There are four steps to

place a block on the right tier.

• The I/O stats collector collects the I/O activities at runtime and periodically flushes

the I/O popularity statistics to disk.

• The tiering manager identifies the most popular blocks in the scope of all VMDK

files based on a temperature-based model. We will discuss the temperature-based

model in the following section.

• The tiering manager further generates a set of migrate-in (i.e., hot data into Flash)

and migrate-out (i.e., cold data out of Flash) tasks.

• The migrators finally execute migration tasks. As a block migration involves modi-

fying the file inode, all migration tasks are performed in the context of transactions

to ensure the consistency of VMFS in case of host crash.

I/O Popularity Prediction Model: We now define a temperature-based model for

predicting the I/O popularity of each block. In this model, we apply the concepts of heat-

ing and cooling to represent the variation of I/O popularity with time passing. When I/O

requests flow to a block, that particular block gets heated. With time passing, the heated

block cools down. In general, we consider m minutes (e.g., m = 5 in our experiments) as

an epoch and let T (i) denote the estimated (or predicted) temperature of a block during

the ith epoch. Assume that for each epoch, we always have N previous epochs available.

We then use the following equation to calculate a block’s temperature:

Ti =
N
∑

j=1

H(Mi−j) · C(j), (18)

where Mi−j is the number of I/O requests to that block in the past (i− j)th epoch.

H(Mi−j) and C(j) denote the heating contribution and cooling factor respectively that

are from the I/O requests in the past (i− j)th epoch.

Specifically, we defineH(Mi−j) as a linear function, such that the heating temperature

in the (i− j)th epoch is proportional to the number of I/O requests during that epoch.

H(Mi−j) = λ ·Mi−j . (19)

Here, λ is a tunable constant that determines how important one workload is relative

to other workloads. The greater the λ is, the faster the block gets warmed up with the

58

same number of I/O requests. We define the cooling factor C(j) as a function of the time

distance (i.e., j epochs) from the current epoch.

Cj =

{

N+1−j
N , 1 ≤ j < N

2 + 1
1

2j−3 ,
N
2 + 1 ≤ j ≤ N

. (20)

Such a cooling factor represents the declining heating effects with time passing. Currently

we adopt a cooling scheme that linearly cools down in the first half of epochs and exponen-

tially cools down in the second half of epochs. The heuristic behind this cooling scheme

is that recent I/O activities have more influence than the ones in the past.

Using the above equations, we update instant and cumulative temperatures for each

block every m minutes and then re-order all the blocks according to their cumulative

temperatures. The hottest blocks should be placed in the Flash tier based on the available

capacity of Flash resources while the remaining blocks will be kept on the spinning disk

tier.

4.2.3 Evaluation

In this section, we present our experimental results to demonstrate the effectiveness of

vFRM for a single enterprise workload with respect to our primary goals: maximizing

Flash utilization and minimizing IO cost incurred in managing Flash. We first introduce

the performance metrics and how they are measured to evaluate the effectiveness of our

Flash managing algorithms. We then present the evaluation by implementing vFRM as

a trace-replay simulation program. For comparison, we also treat Flash as a second-level

cache and implement the LRU, ARC [14] and CAR [81] caching solutions in our simulation.

Table 10: The necessary SSD and MD operations for all caching conditions.
(a) Operations for IO Access Cost

Read Hit Read Miss Write Hit Write Miss

LRU/ARC/CAR
SSD Read

MD Read +
SSD Write SSD Write

(4KB) SSD Write

vFRM/g1-vFRM
SSD Read MD Read SSD Write MD Write

(128KB)

(b) Operations for Flash Update Cost

LRU/ARC/CAR Evict Dirty Page
(4KB) SSD Read + MD Write

vFRM/g1-vFRM Admin Hot Bin Evict Cold & Dirty Bin
(128KB) MD Read + SSD Write SSD Read + MD Write

59

Table 11: Measured average IO response times of various types of IO operations at Flash
and spinning disk.

Latency TSsdRead (µs) TSsdWrt (µs) TMdRead (µs) TMdWrt (µs)

4K Sequential 53 59 63 92

128K Sequential 558 1242 1070 1104

4K Random 135 58 7671 3922

128K Random 790 1241 8665 4942

4.2.3.1 Performance Metrics

We first introduce two performance metrics: IO hit ratio and IO cost. We consider a

combination of these two metrics as a criterion to evaluate the effectiveness of our Flash

managing algorithms. We also discuss the approaches which we used to calculate the

overall IO cost under both the proposed and the conventional Flash managing algorithms.

IO Hit Ratio: IO hit ratio is defined as the fraction of IO requests that are served

by Flash. An IO request might contain more than one page. We say an IO request to be

Flash hit only when all of its associated pages are cached in Flash. Higher IO hit ratio

indicates that more IOs can be accessed from Flash directly which accelerates the overall

IO performance. Thus, one of our primary targets is to increase IO hit ratio for improving

Flash utilization.

IO Cost: IO cost consists of two parts: IO access cost and Flash contents updating

cost. Specifically, IO access cost can be represented as IO response time or IO throughput

(e.g., IOPS). For example, in the case of read miss, LRU reads missed pages from MD and

caches them in Flash. Thus, the corresponding IO access cost is the time spent during

this procedure. Moreover, extra time is needed to flush (or evict) dirty pages when newly

accessed pages are administrated but Flash is full. We here consider such data movements

between Flash and MD as Flash contents updating cost and include this cost in the overall

IO cost.

We use Eq.(21) to calculate the overall IO cost CIO, where CIOResp and CF lashUpdate

represent the IO access cost and the Flash contents updating cost, respectively. All N

terms indicate the access numbers of SSD Read (NSsdRead), SSD Write (NSsdWrt), MD

Read (NMdRead), and MD Write (NMdWrt), while all T terms (e.g., TSsdRead and TMdRead)

show the corresponding average IO latency for each operation. Specially, the basic IO sizes

for the conventional caching algorithms and vFRM/g1-vFRM are specified as 4KB

and 128KB, respectively. Since our Flash resource manager uses bins of large spacial

granularity (i.e., 1MB) as migration unit, large IOs (e.g., 128KB) can be employed in

operation to improve disk IO performance. Therefore, all T terms for the conventional

caching algorithms and vFRM/g1-vFRM are the corresponding disk performance of

60

4KB and 128KB IOs, respectively.

CIO = CIOAccess + CF lashUpdate

= NSsdRead · TSsdRead +NSsdWrt · TSsdWrt

+NMdRead · TMdRead +NMdWrt · TMdWrt, (21)

Table 10 further presents the related IO operations for IO access (see (a) in the table)

and Flash contents updating (see (b) in the table) under both the conventional caching

algorithms and our Flash resource managers (vFRM and g1-vFRM) when we are in

four different scenarios, i.e., read hit, read miss, write hit, and write miss. As shown in

Table 10(a), when we have a read or write miss, our Flash managers always redirect IOs

to the spinning disk without updating the contents in Flash, and thus only trigger the

operation of MD read/write, which is different from the conventional caching algorithms.

As shown in Table 10(b), the conventional caching algorithms need a SSD read and a MD

write to evict a dirty page from Flash to spinning disks. While our Flash managers only

trigger move-in (for hot bins) and move-out (for cold bins) operations every epoch (e.g.,

5 minutes). Thus, we count the number of hot and cold bins and consider 8 IOs of MD

Read and SSD Write (resp. SSD Read and MD Write) for administrating (resp. evicting)

a hot (resp. cold) bin in Flash as each IO operation is 128KB and the bin size is 1MB.

Table 11 illustrates the actual average IO response times (in microseconds) of various

types of IO operations at both Flash and spinning disk devices. These results were mea-

sured from an Intel DC S3500 Series SSD with the capacity of 80GB and a Western

Digital WD20EURS-63S48Y0 hard drive with 2TB and 5400 RPM. As the conventional

caching algorithms use 4KB as the cache line size while vFRM and g1-vFRM set the

bin size of 1MB and update Flash contents using the IO size of 128KB, we present in

Table 11 the measured response times for two levels of granularity (i.e., 4KB and 128KB)

in both sequential and random modes. These results will be used to calculate the overall

IO cost as shown in Eq.(21).

4.2.3.2 Performance Evaluation For A Single Enterprise VM

IO Hit Ratio: In this section, we conduct experiments to verify the effectiveness of

vFRM for a single enterprise VM. We first evaluate the IO hit ratio (i.e., the fraction

of IO requests that are served by Flash) under vFRM using the representative MSR-

Cambridge traces introduced in Section 4.2.1.2. Each trace represents the workload from

a dedicated VM in the virtualized storage systems. For simplicity, we treat every workload

as equally important (i.e., setting λ equal to one). We will evaluate the impact of λ in

61

the clustering environment in our future work. The IO hit ratios with the conventional

caching schemes (e.g., LRU, ARC and CAR) are also measured. We conduct experiments

with various Flash sizes ranging from 100MB to 4GB and replay each trace separately.

Figure 20 clearly shows that as the size of Flash increases, the IO hit ratio of vFRM

catches up or even outperforms those of LRU, ARC and CAR for most of the workloads.

As the capacities of Flash devices are usually large, vFRM is pratically better in improving

Flash utilization (e.g., IOPS) than classical caching solutions.

 75

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000

H
it

R
at

io
 (

%
)

Cache Size (MB)

(a) mds0

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000

H
it

R
at

io
 (

%
)

Cache Size (MB)

(b) src12

 75

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000

H
it

R
at

io
 (

%
)

Cache Size (MB)

(d) usr0

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1000 2000 3000 4000

H
it

R
at

io
 (

%
)

Cache Size (MB)

(c) stg0

LRU ARC CAR vFRM

Figure 20: IO hit ratios of vFRM, LRU and ARC.

IO Cost: For both vFRM and existing caching solutions, internal IO costs are needed

for both IO response and Flash contents updating, which is another type of performance

criterion incurred in managing and operating Flash resources. vFRM only updates the

contents every migration epoch (e.g., 5 minutes). In contrast, conventional caching up-

dates the contents on every cache miss. Figure 21 shows the overall IO costs under both

vFRM and LRU/ARC/CAR caching schemes. Here, Flash size is set to 4GB. The num-

bers on top of each vFRM bar denote the relative improvement of the number of IOs in

relative of LRU. Lower percentage implies more reduction. We observe that in all cases,

the IO costs of vFRM is far less than those of the other three classic caching solutions. In

62

fact, most of them are order of magnitude better than the costs with LRU, ARC or CAR.

For example, IO costs for mds0 workload is only 31.87% of that of LRU solution. With

such a great saving, vFRM can have more Flash IO bandwidth serving the IO requests,

which further improves the VM’s IO performance.

55
.6

2%

31
.8

7% 54
.6

0%

30
.8

2%

LRU

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

mds0 src12 stg0 usr0

P
er

ce
nt

ag
e

of
 IO

 C
os

t (
%

)

vFRMCARARC

 0

Figure 21: IO costs by using MSR-Cambridge traces. The relative IO costs with respect
to LRU are also shown on the bars of vFRM.

4.3 G-vFRM: Improving Flash Resource Utilization Among Multiple

Heterogeneous VMs

In a virtualization environment, multiple VMs often share storage services and each VM

has their own workload pattern and caching requirement. In most of such shared vir-

tualization platforms, Flash is statically pre-allocated to each virtual disk (VMDK) for

simplicity and the caching algorithm decides the cache admission and eviction for each VM

only based on IO requests to that particular VM regardless of IOs to the others. Therefore,

it is difficult for the hypervisor to cost-effectively partition and allocate Flash resources

among multiple heterogeneous VMs, particularly under diverse IO demands. In this sec-

tion, we further investigate the benefits of g-vFRM for managing Flash resources among

multiple heterogeneous VMs. Our goal is to fully leverage the outstanding performance

of shared Flash resources under the global view of caching management.

4.3.1 Motivation

To understand various access patterns among multiple heterogeneous VMs, we extend our

trace study by selecting 8 representative IO traces from MSR Cambridge trace set. For

each workload, we calculate IO hit ratios using the LRU caching algorithm with fully

associative cache, 4KB cache line and 1GB cache size. The results in Table 12 show that

the conventional caching algorithms (e.g., LRU) cannot always perform well. For example,

63

Table 12: Statistics for Selected MSR-Cambridge Traces. Volume size denotes the maxi-
mum LBN accessed in disk volume. Working set size denotes the amount of data accessed.
Re-accessed ratio denotes the percentage of IOs whose re-access time is within 5 minutes.

Name Server
Volume Working Set Hit Ratio Re-access

Size (GB) Size (GB) by LRU Ratio

mds0 Media Serv. 33.9 3.23 90.84% 95.35%

src12 Source Control Serv. 8.0 2.80 85.64% 94.81%

stg0 Web Staging Serv. 10.8 6.63 89.28% 92.71%

usr0 User Home Dir. 15.9 4.28 88.25% 96.03%

stg1 Web Staging Serv. 101.7 81.5 34.60% 90.94%

usr2 User Home Dir. 530.4 382.7 19.49% 95.50%

web2 Web SQL Serv. 169.6 76.4 6.20% 95.45%

src21 Source Control Serv. 169.6 22.0 2.82% 96.04%

the IO hit ratio is less than 3% under the “src21” workload. We thus coarsely classify

the workloads into two categories: “cache-friendly” workloads (e.g., mds0, src12, stg0 and

usr0) and “cache-unfriendly” workloads (e.g., stg1, usr2, web2 and src21). As shown in

Table 12, cache-friendly workloads always obtain high IO hit ratios under conventional

caching algorithms, while cache-unfriendly workloads have relatively low hit ratios. We

interpret these results by observing that cache-unfriendly workloads often have larger

volume sizes and working set sizes (see the third and the forth columns in Table 12) than

cache-friendly workloads, where volume size indicates the maximum LBN accessed in disk

volume and working set size indicates the amount of data accessed. This means that the

effectiveness of a cache is decided by its size to some extent. A small cache can only hold

a small amount of data such that most of the cached data might be evicted or flushed out

from the cache before it is reused if the actual working set size is large. Consequently, it

is highly likely that the most recent or frequent data are not buffered in the cache which

thus incurs low IO hit ratio.

To further investigate the differences between cache-friendly and cache-unfriendly

workloads, we partition the entire LBNs address space of each workload into bins (with an

equal width of 1MB) and count the number of accessed bins per 5 minutes over a period

of seven days. Figure 22 shows the results of two representative workloads from each

category. We observe that the cache-unfriendly workloads, (see Figure 22 (c) and (d)),

have more IO spikes than the cache-friendly workloads, (see Figure 22 (a) and (b)). We

also observe that these spikes in cache-unfriendly workloads are much stronger and longer,

which can dramatically degrade IO hit ratios due to the first-time cache miss and even

worse pollute the critical data in Flash. This motivates us to design a new Flash resource

manager which can perform well for both cache-friendly and cache-unfriendly workloads.

64

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 1 2 3 4 5 6 7

N
um

be
r

of
 A

cc
es

se
d

B
in

s
(M

B
)

Time (day)

(b) stg0

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 1 2 3 4 5 6 7

N
um

be
r

of
 A

cc
es

se
d

B
in

s
(M

B
)

Time (day)

(c) usr2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1 2 3 4 5 6 7

N
um

be
r

of
 A

cc
es

se
d

B
in

s
(M

B
)

Time (day)

(d) web2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7

N
um

be
r

of
 A

cc
es

se
d

B
in

s
(M

B
)

Time (day)

(a) src12

Figure 22: Number of accessed bins per 5 minutes of selected Cambridge traces.

4.3.2 New Global Version of vFRM Among Multiple Heterogeneous VMs

The basic idea of the global version of vFRM is to divide Flash resources among multiple

VMs with the goals of fully utilizing Flash and minimizing the operational coat. Intuitively,

there are two straightforward approaches which simply allocate Flash resources among

VMs by either equally assigning Flash to each VM or managing Flash resources in a fair

competition mode. In the former approach, all VMs are purely isolated in using their

own Flash resource and the caching management is fully affected by their own workload

changes. While, the second approach allows all VMs to freely use or share the entire Flash,

such that the caching management is centrally interfered by the intensity of all workload

changes.

Unfortunately, these two straightforward approaches cannot fully utilize the benefits of

Flash, particularly when the workloads frequently change and bursts or spikes of IOs occur

from time to time. If Flash is equally reserved and assigned to all VMs, then VMs with

bursty IOs (or strict SLAs) cannot obtain more Flash resources. On the other hand, the

second approach solves this issue by allowing all VMs to preempt or compete the Flash

based on their present IO demands. Thus, VMs with higher IO demands can occupy

more Flash resources by evicting less-accessed data from other VMs. However, under this

approach, VMs with bursty IOs might occupy almost all the Flash resources and thus

65

Public Zone

 Lower Priority

Evict to MD

Higher Priority

Evict Bins

Private Zone

VM2VM1

Hot

Private Zone Public Zone

Cold

Hot

Hot

Extra Bins

Cold

(a)

(b)

Extra

Bins
Cold

Hot

VM2VM1

VM2

VM1

Figure 23: Flash contents updating procedure of g1-vFRM

pollute the critical caching of other VMs. It is even worse that bursty workloads usually

have less re-accesses in the long term.

To wisely allocate Flash resources among all VMs, we develop the global versions of

vFRM and use the term of g-vFRM to represent all the following global versions of

algorithms. g-vFRM takes the dynamic IO demands of all VMs into consideration and

divides Flash into a private zone and a public zone. Specially, the private zone is designed

for reserving Flash for each VM in order to cache their recently accessed working sets,

while the public zone is used to absorb and handle bursty IOs by being fairly competed

among VMs according to their data popularities. We first implement a global vFRM

algorithm, named “g1-vFRM”, such that all VMs are assigned the equal portion of Flash

that is pre-allocated in the private zone. Algorithm 1 shows the pseudo code of g1-vFRM.

Figure 23 illustrates the Flash contents updating procedure. To manage each VM’s private

Flash, we sort its recently accessed bins (i.e., 1MB) in the non-increasing order of their IO

popularities. The top bins (i.e., with highest IO popularities) are then assigned to private

Flash, see Figure 23(a). This procedure is denoted as UpdatePrivateZone in Algorithm 1.

Meantime, both the residual of the recently accessed bins that cannot be cached in the

private zone due to the limited space (i.e., extraBin in Algorithm 1) and the bins that

are evicted from the private zone with less recency (i.e., evictBin in Algorithm 1) are

66

then flushed into the public zone, see Figure 23(b). The public zone collects these data

sets from all VMs and stores the critical data as much as possible according to their IO

popularities, see the procedure of UpdatePublicZone in Algorithm 1. By this design, if some

VMs receive higher IO demands than others, they can then occupy more Flash resources

in the public zone (e.g., the extra bins of VM1 in Figure 23(b)), especially to handle their

bursty demands. More importantly, bursty VMs cannot arbitrarily pollute the critical

data of other VMs because each VM now owns their isolated Flash in the private zone

which cannot be preempted by other VMs and thus guarantees the performance to some

extent.

67

Algorithm 1: Initial Task Assignment

Input: n: the number of VMs, popBin[i]: accessed bins of the ith VM in last epoch (e.g., 5

min), prvBin[i]: cached bins of the ith VM in private zone, pubBin: cached bins of

all VMs in public zone

Output: flashBin: bins need to be cached in Flash

1 Procedure G1-vFRM()

2 UpdatePrivateZone();

3 UpdatePublicZone();

4 for i← 1 to n do

5 flashBin + = prvBin[i];

6 flashBin + = pubBin;

7 return flashBin;

8 Procedure UpdatePrivateZone()

9 for i← 1 to n do

10 popDiff = bins of popBin[i] which are not in prvBin[i];

11 prvDiff = bins of prvBin[i] which are not in popBin[i];

12 if len(popBin[i]) < len(prvBin[i]) then

13 j = len(popDiff);

14 itemL = number of j bins in prvBin[i] with lowest IO popularity;

15 evictBin + = itemL;

16 prvBin[i] − = itmeL;

17 prvBin[i] + = popDiff ;

18 else

19 evictBin + = prvDiff ;

20 j = len(prvBin[i]);

21 prvBin[i] = number of j bins in popBins[i] with highest IO popularity;

22 extraBin + = the remaining bins of popBins[i] which are not in prvBin[i];

23 return;

24 Procedure UpdatePublicZone()

25 if len(extraBin) ≥ len(pubBin) then

26 j = len(pubBin);

27 pubBin = number of j bins in extraBin with highest IO popularity;

28 else if len(extraBin) + len(evictBin) ≥ len(pubBin) then

29 j = len(pubBin) − len(extraBin);

30 itemH = number of j bins in evictBin with highest IO popularity;

31 pubBin = extraBin + itemH ;

32 else

33 j = len(extraBin) + len(EvictBin);

34 itemL = number of j bins in pubBin with lowest IO popularity;

35 pubBin − = items;

36 pubBin + = extraBin + evictBin;

37 return;

68

Nonetheless, evenly partitioning the private zone cannot achieve the best Flash uti-

lization when heterogeneous VMs share Flash resources and their workloads are diverse

and changing across time. There exist two primary drawbacks of g1-vFRM. First, not

all of the VMs fully utilize their private Flash all the time, because a VM’s working data

set might be less than its private Flash partition. In such a case, the under-utilized pri-

vate space should be used by other VMs more valuably. The second drawback lies in the

fact that evenly partitioning the private zone does not consider the diversity in workload

intensity (e.g., IOPS/GB) as a crucial criterion. For example, some VMs have bins with

relatively high IOPS compared to the other VMs but cannot cache all these popular bins

in the private zone, due to the limited and fixed space by the evenly partition. Therefore,

from a global view, those VMs with more popular bins should reserve more Flash resources

in the private zone in order to improve the overall utilization of Flash.

To overcome these two drawbacks, we propose an improved global vFRM algorithm,

named “g2-vFRM”, which dynamically divides the private zone for each VM based on

their bins’ frequency (i.e., the accumulated access number for each bin) and allows all VMs

to fairly compete the public zone according to bins’ rencencies (i.e., the most popular bins

accessed in recent 5 minutes). Specially, we maintain a counter for each bin in the working

sets of all VMs to record that bin’s accumulated access number, which is used to represent

the bin’s frequency. Such a counter is increased by 1 when the associated bin is accessed.

Thus, a larger counter indicates that a bin is accessed more frequently. As time elapses,

a counter may overflow. Thus, we periodically aging all the counters by right shifting

the values by one bit, so that we can still preserve the relative frequency presented by

the values of counters. The private zone is then used to cache the most frequent bins

with the highest counter values, see the procedure of UpdatePrivateZone in Algorithm 2.

By this way, g2-vFRM selects the cached data in the private zone fully based on their

global frequency, and thus reserves more private Flash for those VMs which have more

popular bins. Moreover, when the distribution of bin popularities varies, g2-vFRM can

dynamically adjust the reservation of private Flash for each VM to cache the most popular

bins and thus fully utilizes the private zone all the time. Meantime, the public zone is

responsible to cache recent working sets of all VMs as well as the data just evicted from

the private zone, see the procedure of UpdatePublicZone in Algorithm 2.

69

Algorithm 2: Initial Task Assignment

Input: binFreq: a dictionary in which key is bin IDs of all VMs and value is the relative

access count for each bin, popBin: accessed bins of all VMs in last epoch (e.g., 5

min), prvBin: cached bins of all VMs in private zone, pubBin: cached bins of all

VMs in public zone

Output: flashBin: bins need to be cached in Flash

1 Procedure G2-vFRM()

2 UpdatePrivateZone();

3 UpdatePublicZone();

4 flashBin = prvBin + pubBin;

5 return flashBin;

6 Procedure UpdatePrivateZone()

7 if len(binFreq) ≤ len(prvBin) then

8 prvBin = binFreq.keys;

9 else

10 j = len(prvBin);

11 itemH = number of j bins in binFreq.keys with highest binFreq.values;

12 evictBin = bins of prvBin which are also in itemH ;

13 prvBin = itemH ;

14 return;

15 Procedure UpdatePublicZone()

16 if len(prvBin) < len(binFreq) ≤ len(flashBin) then

17 pubBin = the remaining bins of binFreq.keys which are not in prvBin;

18 else if len(binFreq) > len(flashBin) then

19 pubBin − = bins of pubBin which are also in prvBin;

20 popBin − = bins of popBin which are also in prvBin;

21 if len(popBin) ≥ len(pubBin) then

22 j = len(pubBin);

23 pubBin = number of j bins in popBin with highest IO popularity;

24 else

25 pubBin + = evictBin;

26 pubBin − = bins of pubBin which are also in popBin;

27 j = len(pubBin) − len(popBin);

28 pubBin = number of j bins in pubBin with highest IO popularity;

29 pubBin + = popBin;

30 return;

70

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28

1 2 4 8 12 16 24 32

H
it

R
at

io
 (

%
)

Cache Size (GB)

(b) cuf4

 25

 30

 35

 40

 45

 50

2 4 8 16 24 32 48 64

H
it

R
at

io
 (

%
)

Cache Size (GB)

(c) all8

 75

 80

 85

 90

 95

 100

1 2 4 8 12 16 24 32

H
it

R
at

io
 (

%
)

Cache Size (GB)

(a) cf4

LRU

ARC

CAR

G1−vFRM

G2−vFRM

Figure 24: IO hit ratios under three workloads (a)“cf4”, (b)“cuf4”, and (c)“all8”.

71

63
.0

0%

37
.4

7%

36
.4

9%
36

.4
9%

36
.4

9%

13
.1

0%
12

.6
9%

13
.3

5%

13
.9

7%

14
.9

0%

15
.5

2%

15
.9

1%

16
.2

1%

15
.2

3%

15
.4

0%

15
.8

6%
15

.1
3%

16
.4

1%
15

.5
6%

16
.8

4%
16

.1
8%

16
.0

8%
15

.5
9%

16
.3

8%
15

.9
6%

16
.5

8%
15

.6
9%

12
.7

7%

14
.0

2%

14
.4

8%

14
.8

5%

15
.6

8%

14
.7

6%

14
.7

0%

65
.2

9%
58

.0
0%

45
.6

6%
39

.2
0%

36
.7

3%

36
.4

9%
15

.8
7%

15
.4

6%

13
.1

2%

61
.3

2%

54
.7

5%
50

.9
5%

38
.8

1%
42

.7
3%

LRU ARC CAR G1−vFRM G2−vFRM

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 4 8 12 16 24 32

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

(c) all4

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 4 8 12 16 24 32

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

(a) cf4

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 4 8 12 16 24 32

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

(b) cuf4

Figure 25: Normalized I/O costs (with respect to LRU) under three workloads (a)“cf4”,

(b)“cuf4”, and (c)“all8’.’

72

4.3.3 Performance Evaluation of G-vFRM

In this section, we evaluate the effectiveness of g-vFRM algorithms on allocating Flash

resources among multiple enterprise applications (or VMs). The evaluation is conducted by

using trace-replay simulations with 8 selected MSR-Cambridge IO traces (see Table 12).

As shown in Section 4.3.1, these MSR-Cambridge IO traces can be classified into two

categories, cache-friendly and cache-unfriendly. Thus, we generate three workloads (“cf4”,

“cuf4”, and “all8”) by mixing 4 cache-friendly traces, 4 cache-unfriendly traces, and all

8 traces, respectively. The time-stamps of IO requests in each trace are normalized by

a unified simulation start time and then used to determine the arrival times for each IO

request in the workload. The metrics considered in our evaluation include Flash utilization

(in terms of IO hit ratio) and Flash managing overhead (with respect with IO cost). For

comparison, we also present the results under three conventional caching algorithms, e.g.,

LRU, ARC and CAR and conduct experiments with various Flash sizes ranging from 1G

to 32G.

4.3.4 Hit Ratio

Figure 24 illustrates IO hit ratios as a function of Flash size under three workloads (i.e.,

“cf4”, “cuf4”, and “all8”). We first observe that all these algorithms (including our

g-vFRM) achieve high IO hit ratios when we have 4 cache-friendly traces (or VMs), see

plot (a) in Figure 24. More importantly, under this cache-friendly workload, g-vFRM

gains better Flash utilization than the conventional caching algorithms. For example, IO

hit ratios under g1-vFRM keep rising to 99% as the capacity of Flash increases, while

IO hit ratios under the conventional ones stop at around 93% when Flash size is larger

than 4GB. We also observe that under the cache-friendly (“cuf4”) and mixed (“all8”)

workloads, the IO hit ratios of g1-vFRM catch up and even slightly overcome some of

the conventional algorithms as Flash size increases. Furthermore, we observe that the hit

ratios of g2-vFRM can overcome the conventional algorithms under all kinds of workloads

as long as the Flash size is larger than a threshold. Such results verify that g2-vFRM

can wisely allocate the Flash resources for VMs based on their dynamic IO characteristics

in both frequency and recency.

We further look closely at IO accesses in these three workloads. As illustrated in

Figure 22, IO spikes frequently appear in most traces such that a large number of bins are

accessed during a short period which thus degrades IO hit ratios due to the first-time cache

miss. Moreover, as the conventional caching algorithms cache data once there is a cache

miss, it is highly likely that those IO spikes pollute the critical data of other applications

(VMs) in Flash, especially bins in these spikes are rarely reaccessed in near future. Our

g1-vFRM algorithm attempts to avoid such cache pollution by reserving private Flash

73

for each VM and further improve IO hit ratio by caching data blocks in both private

and public zones based on their IO popularities. By this way, the spike IOs in a VM

cannot pollute the critical data in other VMs. Consequently, as long as Flash has enough

capacity to hold active working sets of all VMs, g1-vFRM is able to improve IO hit ratio

(or Flash utilization) although g1-vFRM does not update Flash contents upon every IO

miss as the conventional caching algorithms do. On the other hand, when Flash size is

relatively small, especially for those cache-unfriendly traces which have relatively large

working sets (see Table 9), the conventional caching algorithms obtain higher hit ratios

than g1-vFRM by using small cache line size (e.g., 4KB) and on-the-fly updating Flash

contents for each cache miss. However, the cost of such caching algorithms is higher as well,

which will be discussed in the following subsection. Although, g1-vFRM can overcome

the conventional caching algorithms in some cases, but the results are not satisfied enough

under the cache-unfriendly and the mixed workloads. This is because that g1-vFRM still

cannot avoid the cache pollution of spikes for any specific VM in its own private zone.

Thus, g2-vFRM is designed to wisely divide the private zone based on the bins’ global

frequency of all VMs. In this circumstance, the spikes which have barely re-access feature

cannot be cached into the private zone. Thus, g2-vFRM obtains better IO hit ratios by

further eliminating the pollution.

4.3.5 IO Cost

Figure 25 illustrates the normalized overall IO costs with respect to LRU under both g-

vFRM and the conventional caching algorithms when we have 4 cache-friendly traces in

“cf4”, 4 cache-unfriendly traces in “cuf4”, and 8 mixed traces in “all8”. Consistently

with the results for a single VM shown in Section 4.2.3.2, both g1-vFRM and g2-vFRM

significantly reduce the overall IO costs for allocating Flash among multiple VMs compared

to the conventional caching solutions. For example, under the “cuf4” workload (see

Figure 25(a)), the overall IO costs under g1-vFRM is decreased up to 65.29% and the

relative reduction is increasing as Flash size increases. Furthermore, g2-vFRM can beat

g1-vFRM by saving more IO cost, since it can more accurately allocate resources resulting

in better performance in both IO hit ratio and cost. There are two main reasons for both

g1-vFRM and g2-vFRM to have such low IO costs. First, instead of updating Flash

contents upon each cache miss, g-vFRM, like vFRM, generates move-in/move-out tasks

for both private and public zones in every epoch (e.g., 5 minutes). Such a lazy and

asynchronized way allows g-vFRM to reduce the number of extra IOs for Flash contents

updating. Secondly, g-vFRM adopts 1MB as the minimal size of each bin and uses 8

IOs, each of which has the size of 128KB, to move a bin into (or from) Flash, which

reduces the number of IOs and shorten the latency for migrating a bin as well. More

74

importantly, g1-vFRM consumes much less IO cost for managing Flash resources when

we have the “cuf4” and “all8” workloads (see Figure 25(b) and (c)) although the IO hit

ratios of g1-vFRM are slightly lower. We thus conclude that under the consideration of

both Flash utilization (i.e., IO hit ratio) and Flash managing overhead (i.e., IO cost), both

g1-vFRM and g2-vFRM are more effective than the conventional caching algorithms.

4.4 Summary

In this section, we propose LMsT, a live data migration algorithm for efficiently utiliz-

ing the shared storage resources and meeting various application SLAs in a multi-tiered

storage system. Using trace-driven simulations, we have shown that bursty workloads and

traffic surges that are often found in storage systems, dramatically deteriorate the system

performance, causing high I/O latency and large numbers of SLA violations in low perfor-

mance tiers. Therefore, we designed LMsT to counteract the impacts of burstiness and

minimize the potential delays to latency-sensitive applications. Furthermore, we showed

that LMsT can automatically detect all the possible migration candidates and verify the

feasible ones by estimating the risk of SLA violations and quantifying the performance

benefits via both the SLA and the performance constraints. We conducted trace-driven

simulations to evaluate the performance of LMsT policy. A series of sensitivity analy-

sis with respect to storage capacities, burstiness profiles, and parameter settings in the

SLA and the performance constrains further validated the effectiveness and robustness of

LMsT.

The second main contribution in this section is that we explored the way to leverage

Flash as a secondary-level host-side cache in virtualization environments. We analyzed

disk I/O traces of various workloads to understand I/O access patterns. Based on this

study, we designed vFRM to make a cost-effective use of Flash resources in virtualization

environments while reducing the cost for CPU, Memory, and Flash device I/O bandwidth.

Simulation results showed that vFRM not only outperforms traditional caching solutions

in terms of performance utilization, but also incurs orders of magnitude lower cost for

memory and Flash device I/O bandwidth. In addition, vFRM effectively avoids cache

pollution and eventually yields more improvement in I/O performance.

75

5 Conclusion and Future Works

This dissertation presents our works on resource management in large scale systems, es-

pecially for enterprise cluster and storage systems. Resource management is an important

research topic which is required by any man-made system and affects in system evaluation

in two basic criteria, i.e., performance and cost. Efficient resource management has a

direct positive effect on system performance and cost. Large-scale systems provide shared

resources as a pool, which requires a central mechanism for resource provisioning and re-

source allocation based on the remote demands. The basic resource management schemes

include admission control, capacity allocation, load balancing, auto scaling and the kind of

policies directly related to the performance criterion, such as quality of service guarantee

and performance isolation. In this dissertation, we works on the load balancing in the

cluster systems and the capacity allocation and quality of service guarantee in enterprise

storage systems.

We first investigated the impact of burstiness on load balancing in the cluster systems

and then described our adaptive algorithms for load balancing of computing resources

under bursty workloads. Our new static ArA algorithm tunes the load balancer by

adjusting the trade-off between randomness and greediness in the selection of sites. While

this approach gives very good performance, tuning the algorithm can be difficult. We

therefore proposed our new online ArA algorithm that predicts the beginning and the

end of workload bursts and automatically adjusts the load balancer to compensate. We

show that the online algorithm gives good results under a variety of system settings. This

approach is more robust than the static algorithm, and does not require the algorithm

parameters to be carefully tuned. We conclude that an adaptive, burstiness-aware load

balancing algorithm can significantly improve the performance of computing systems.

Apart from resource management in cluster systems, we also investigated data manage-

ment in enterprise storage systems. Storage is another critical resource in contemporary

computer systems. Especially, with low latency and low power consumption, Flash-based

drive is being widely deployed as storage or cache in the storage systems to improve I/O

performance and reduce power consumption. Thus, we further investigate the complexity

and challenges in the resource management of Flash-based storage systems.

We proposed LMsT, a live data migration algorithm for efficiently utilizing the shared

storage resources and meeting various application SLAs in a multi-tiered storage system.

We have shown that bursty workloads in storage systems can deteriorate system perfor-

mance, causing high I/O latency and large numbers of SLA violations in low performance

tiers. In order to mitigate such negative effects, hot data that are associated with those

bursty workloads should be migrated to high performance tiers. However, extra I/Os

due to data migration as well as the newly migrated bursty workloads can incur addi-

76

tional SLA violations to high priority applications in high performance tiers. Therefore,

we designed LMsT to counteract the impacts of burstiness by efficiently utilizing the

high-performance devices, and to minimize the potential delays to latency-sensitive appli-

cations. Trace-driven simulations have been conducted to evaluate the performance of our

new LMsT policy. Compared to the null migration policy, LMsT significantly improves

average I/O response times, I/O violation ratios and I/O violation times.

In the other hand, Flash can be leveraged as a secondary-level host-side cache in vir-

tualization environments. We proposed a new Flash Resource Manager, named vFRM,

which aims to maximize the utilization of Flash resources with minimal I/O cost for man-

aging and operating Flash. vFRM adopts the ideas of heating and cooling to identify data

blocks that can benefit the most from being put in Flash, and lazily and asynchronously

migrates data blocks between Flash and spinning disks. We further investigated the ben-

efits of g-vFRM for managing Flash resources among multiple heterogeneous VMs and

presented three global versions of Flash resource managing algorithms by extending to

deliver IO acceleration in fully leverage the outstanding performance of shared Flash re-

sources under the global view of caching management. Experimental evaluation shows that

both vFRM and g-vFRM can achieve better cost-effectiveness than traditional caching

solutions, and costs orders of magnitude less I/O cost.

In the future, we propose to optimize both vFRM and g-vFRM algorithms to fur-

ther explore the benefits by using Flash as a secondary-level host-side cache. We plan

to optimize vFRM and g-vFRM in space granularity by leveraging the knowledge of

workload statistics. For example, if most of the global bins are sparse, i.e., only a few

pieces of contiguous LBAs are actually accessed in a 1MB size of logical bin, then it is

not necessary to keep the whole bin in Flash. So, we will introduce a mapping table which

only records the logically accessed LBAs in the cached global bins and maps them to the

physical LBAs of Flash. Based on such optimization, more Flash resources can be saved.

In other words, more logical bins can be cached in Flash which will increase the Flash

utilization and then improve the performance.

77

References

[1] P. Chaganti, “Cloud computing with amazon web services,” IBM Technical Library,

pp. 1–10, 2008.

[2] J. Varia, “Building greptheweb in the cloud,” 2008.

[3] V. Cardellini, M. Colajanni, and P. Yu, “Dynamic load balancing on web-server

systems,” IEEE Internet Computing, pp. 28–39, May-June 1999.

[4] T. Kwan, R. McGrath, and D. Reed, “Ncsa’s world wide web server: Design and

performance,” IEEE Computer, pp. 68–74, Nov. 1995.

[5] V. P. et al, “Locality-aware request distribution in cluster-based network servers,” in

Proceedings of ACM 8th Int’l Conf. Architectual Support for Prog. Langs. and Op.

Sys., Oct. 1998.

[6] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo, “Workload-aware load balanc-

ing for clustered web servers,” IEEE Trans. Parallel and Distributed Systems, vol. 16,

no. 3, pp. 219–233, Mar. 2005.

[7] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent tasks

on nonidentical processors,” vol. 24(2), 1977.

[8] B. Fitzpatrick, “Distributed caching with memcached,” Linux Journal, vol. 124, no. 5,

2004.

[9] “Facebook Flashcache,” https://github.com/facebook/flashcache.

[10] E. O’Neil, P. O’Neil, and G. Weikum, “The lru-k page replacement algorithm for

database disk buffering,” in Proceedings of the 1993 ACM SIGMOD international

conference on Management of data, Washington, DC, 1993, pp. 297–306.

[11] M. Kampe, P. Stenstrom, and M. Dubois, “Self-correcting lru replacement policies,”

in Proceedings of the 1st conference on Computing frontiers, Ischia, Italy, 2004, pp.

181–191.

[12] T. Johnson and D. Shasha, “2q: A low overhead high performance buffer management

replacement algorithm,” in Proceedings of the 20th International Conference on Very

Large Data Bases, San Francisco, CA, 1994, pp. 439–450.

[13] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement algorithm for second

level buffer caches,” in Proceedings of the 2001 USENIX Annual Technical Conference,

Boston, MA, 2001, pp. 91–104.

78

[14] N. Megiddo and D. Modha, “Arc: A self-tuning, low overhead replacement cache,”

in Proceedings of the 3rd USENIX Conference on File and Storage Technologies, San

Francisco, CA, 2003, pp. 115–130.

[15] D. Lee, J. Choi, J.-H. Kim, S. Noh, S. L. Min, Y. Cho, and C. S. Kim, “Lrfu: A

spectrum of policies that subsumes the least recently used and least frequently used

policies,” IEEE Transactions on Computers, vol. 50, no. 12, pp. 1352–1361, 2001.

[16] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel, S. Kleiman,

C. Small, and M. Storer, “Mercury: Host-side flash caching for the data center,”

in IEEE 28th Symposium on Mass Storage Systems and Technologies, Pacific Grove,

CA, 2012, pp. 1–12.

[17] T. Schroeder, S. Goddard, and B. Ramamurthy, “Scalable web server clustering tech-

nologies,” IEEE Network, pp. 38–45, May/June 2000.

[18] Y. M. Teo and R. Ayani, “Comparison of load balancing strategies on cluster-based

web servers,” Trans. Soc. for Modeling and Simulation, vol. 77, no. 5-6, pp. 185–195,

Nov. 2001.

[19] Q. Zhang, N. Mi, A. Riska, and E. Smirni, “Performance-guided load (un)balancing

under autocorrelated flows,” IEEE Transactions on Parallel and Distributed Systems

(TPDS), vol. 19, no. 2, pp. 652–665, 2008.

[20] N. Mi, Q. Zhang, A. Riska, and E. Smirni, “Load balancing for performance differ-

entiation in dual-priority clustered servers,” pp. 385–395, 2006.

[21] J. Tai, J. Zhang, J. Li, W. Meleis, and N. Mi, “Ara: Adaptive resource allocation for

cloud computing environments under bursty workloads,” in Proc. of IEEE Interna-

tional Performance Computing and Communications Conference (IPCCC’11), 2011,

pp. 1–8.

[22] H. Feng, M. Visra, and D. Rubenstein, “Optimal state-free, size-aware dispatching

for heterogeneous m/g/-type systems,” Performance Evaluation J., vol. 62, no. 1-4,

pp. 475–492, Nov. 2005.

[23] M. Harchol-Balter and A. Downey, “Exploiting process lifetime distributions for dy-

namic load balancing,” ACM Trans. Computer Systems, vol. 15, no. 3, pp. 253–285,

Aug. 1997.

[24] W. Winston, “Optimality of the shortest line discipline,” Journal of Applied Proba-

bility, vol. 14, pp. 181–189, 1977.

79

[25] R. Weber, “On the optimal assignment of customers of parallel servers,” Journal of

Applied Probability, vol. 15, pp. 406–413, 1978.

[26] R. Nelson and T. Philips, “An approximation for the mean response time for shortest

queue routing with general interarrival and service times,” Performance Evaluation,

vol. 17, pp. 123–139, 1998.

[27] W. Whitt, “Deciding which queue to join: Some counterexamples,” Operations Re-

search, vol. 34, no. 1, pp. 226–244, Jan. 1986.

[28] M. Harchol-Balter, M. Crovella, and C. Murta, “On choosing a task assignment policy

for a distributed server system,” J. Parallel and Distributed Computing, vol. 59, no. 2,

pp. 204–228, Nov. 1999.

[29] F. Bonomi, “On job assignment for a parallel system of processor sharing queues,”

IEEE Trans. on Computers, vol. 39, no. 7, pp. 858–869, 1990.

[30] H. Mor, S. Alan, and Y. R. Andrew, “Surprising results on task assignment in server

farms with high-variability workloads,” in Proceedings of ACM SIGMETRICS 2009

Conference on Measurement and Modeling of Computer Systems., Seattle, WA, June

2009.

[31] E. Bachmat and H. Sarfati, “Analysis of sita policies,” Performance Evaluation,

vol. 67, no. 2, pp. 102–120, 2010.

[32] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G: A computa-

tion management agent for multi-institutional grids,” Cluster Computing, vol. 5, pp.

237–246, 2002.

[33] W. Smith, I. Foster, and V. Taylor, “Scheduling with advanced reservations,” pp. 127

– 132, 2000.

[34] H. Li and M. Muskulus, “Analysis and modeling of job arrivals in a production grid,”

SIGMETRICS Perform. Eval. Rev., vol. 34, no. 4, pp. 59–70, 2007.

[35] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel, “Performance impacts of au-

tocorrelated flows in multi-tiered systems,” Perform. Eval., vol. 64, no. 9-12, pp.

1082–1101, 2007.

[36] A. Riska and E. Riedel, “Disk drive level workload characterization,” in USENIX

Annual Technical Conference, General Track 2006, 2006, pp. 97–102.

[37] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson modeling,” vol. 3,

pp. 226–244, 1995.

80

[38] M. Vlachos, K.-L. Wu, S.-K. Chen, and P. S. Yu, “Correlating burst events on stream-

ing stock market data,” Journal of Data Mining and Knowledge Discovery, vol. 16,

no. 1, pp. 109–133, 2008.

[39] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel., “Performance impacts of

autocorrelated flows in multi-tiered systems,” Performance Evaluation, 2007.

[40] R. Onvural and H. Perros, “equivalencies between open and closed queueing networks

with finite buffers,” Performance Evaluation, vol. 9, 1989.

[41] B. Laliberte, “Automate and Optimize a Tiered Storage Environment-FAST!” White

Paper, 2009, http://www.emc.com/collateral/analyst-reports/esg-20091208-fast.pdf.

[42] B. Lundell, J. Gahm, and J. McKnight, “2011 IT Spending Intentions Sur-

vey,” Research Report, 2011, http://www.enterprisestrategygroup.com/2011/01/

2011-it-spending-intentions-survey/.

[43] M. Peters, “Storage Tiering,” Market Landscape Reports, 2011, http://www.

enterprisestrategygroup.com/2011/07/storage-tiering/.

[44] “IBM DS8000,” http://www-03.ibm.com/systems/storage/disk/ds8000/.

[45] “EMC FAST,” http://www.emc.com/products/launch/fast/.

[46] “HP 3PAR Adaptive Optimization Software,” http://h18006.www1.hp.com/storage/

software/3par/aos/index.html.

[47] S. Khuller, Y. Kim, and Y. Wan, “Algorithms for data migration with cloning,” in

Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems. San Diego, California: ACM, 2003, pp. 27–36.

[48] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. R. Karlin, J. Saia, R. Swaminathan,

and J. Wilkes, “An experimental study of data migration algorithms,” in Workshop

on Algorithm Engineering. London, UK: Springer, 2001, pp. 145–158.

[49] V. Sundaram and P. Shenoy, “Efficient data migration in self-managing storage sys-

tems,” in IEEE International Conference on Autonomic Computing, Dublin, Ireland,

2006, pp. 297–300.

[50] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: performance isolation and differ-

entiation for storage systems,” in Twelfth IEEE International Workshop on Quality

of Service, Palo Alto, CA, 2004, pp. 67–74.

81

[51] B. Seo and R. Zimmermann, “Efficient disk replacement and data migration algo-

rithms for large disk subsystems,” ACM Transactions on Storage, vol. 1, no. 3, pp.

316–345, 2005.

[52] C. Lu, G. A. Alvarez, and J. Wilkes, “Aqueduct: Online data migration with per-

formance guarantees,” in Proceedings of the 1st USENIX Conference on FAST’02.

Monterey, CA: ACM, 2002, pp. 219–230.

[53] G. Zhang, L. Chiu, and L. Liu, “Adaptive data migration in multi-tiered storage based

cloud environment,” in IEEE 3rd International Conference on Cloud Computing,

Miami, FL, 2010, pp. 148–155.

[54] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami, “Cost effec-

tive storage using extent based dynamic tiering,” in Proceedings of the 9st USENIX

Conference on FAST’11. San Jose, CA: ACM, 2011, pp. 20–20.

[55] “VMware Flash Cache Project,” https://wiki.eng.vmware.com/VFC.

[56] “EMC FAST CACHE,” http://www.emc.com/collateral/white-papers/

fast-cache-wp.pdf.

[57] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger, “Argon: Performance

insulation for shared storage servers,” in Proceedings of the 5th USENIX conference

on File and Storage Technologies, San Jose, CA, 2007, pp. 61–76.

[58] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron, “Migrating

server storage to ssds: Analysis of tradeoffs,” in Proceedings of the 4th ACM European

conference on Computer systems, Nuremberg, Germany, 2009, pp. 145–158.

[59] T. Pritchett and M. Thottethodi, “Sievestore: A highly-selective, ensemble-level disk

cache for cost-performance,” in Proceedings of the 37th annual international sympo-

sium on Computer architecture, Saint-Malo, France, 2010, pp. 163–174.

[60] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang, “Ssd

bufferpool extensions for database systems,” Proc. VLDB Endow., vol. 3, no. 1-2, pp.

1435–1446, 2010.

[61] “CBRC,” https://wiki.eng.vmware.com/CBRC.

[62] G. Venkitachalam, F. Tian, B. Weissman, M. Vilayannur, R. Venkatasubramanian,

and J. Ramnarayan, “A case for supporting low-latency direct-attached storage in

the vi platform,” in Proceedings of VMware vRadio 2011, Palo Alto, CA, 2011.

82

[63] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Gi-

ardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and

V. Venkataramani, “Tao: Facebooks distributed data store for the social graph,” in

Proceedings of the 2013 USENIX Annual Technical Conference on ATC’13, San Jose,

CA, 2013, pp. 49–60.

[64] T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based disk caches,” in

Proceedings of the 35th Annual International Symposium on Computer Architecture,

Bejing, China, 2008, pp. 327–338.

[65] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the best use of solid state

drives in high performance storage systems,” in Proceedings of the International Con-

ference on Supercomputing, Tucson, Arizona, 2011, pp. 22–32.

[66] C. A. Waldspurger, “Memory resource management in vmware esx server,” in Proceed-

ings of the 5th symposium on Operating systems design and implementation, Boston,

MA, 2002, pp. 181–194.

[67] E. Bugnion, S. Devine, and M. Rosenblum, “Disco: Running commodity operating

systems on scalable multiprocessors,” in Proceedings of the 6th ACM symposium on

Operating systems principles, 1997, pp. 143–156.

[68] “CSIM19 development toolkit for simulation and modeling,”

http://www.mesquite.com, 2005.

[69] J. Zhang, N. Mi, J. Tai, and W. Meleis, “Decentralized scheduling of bursty workload

on computing grids,” in IEEE International Conference on Communications (ICC),

2011.

[70] M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications.

New York: Marcel Dekker, 1989.

[71] D. Cox and P. Lewis, The Statistical Analysis of Series of Events. New York: John

Wiley and Sons, 1966.

[72] R. Gusella, “Characterizing the variability of arrival processes with indexes of disper-

sion,” IEEE JSAC, vol. 19, no. 2, pp. 203–211, 1991.

[73] M. Mitzenmacher, “The power of two choices in randomized load balancing,” IEEE

Trans. Parallel Distrib. Syst., vol. 12, pp. 1094–1104, October 2001.

[74] A. Caniff, L. Lu, N. Mi, L. Cherkasova, and E. Smirni, “Fastrack for taming burstiness

and saving power in multi-tiered systems,” in Proceedings of the 22nd International

Teletraffic Congress (ITC’10), Amsterdam, The Netherlands, 2010.

83

[75] “VMware vCenter Server,” http://www.vmware.com/products/vcenter-server/

overview.html.

[76] S. Kavalanekar, B. Worthington, Z. Qi, and V. Sharda, “Characterization of storage

workload traces from production windows servers,” in Proceedings of the 2008 IEEE

International Symposium on Workload Characterization, Seattle, WA, 2008, pp. 119–

128.

[77] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “Srcmap: Energy proportional

storage using dynamic consolidation,” in Proceedings of the 8th USENIX Conference

on File and Storage Technologies, San Jose, CA, 2010.

[78] Y. Zhang, G. Soundararajan, M. W. Storer, L. N. Bairavasundaram, S. Subbiah,

A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Warming up storage-level caches

with bonfire,” in Proceedings of the 11th USENIX Conference on File and Storage

Technologies, San Jose, CA, 2013, pp. 59–72.

[79] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading: Practical power

management for enterprise storage,” ACM Transactions on Storage, vol. 4, no. 3, pp.

10:1–10:23, 2008.

[80] S. B. Vaghani, “Virtual machine file system,” SIGOPS Oper. Syst. Rev., vol. 44,

no. 4, pp. 57–70, 2010.

[81] B. Sorav and M. S. Dharmendra, “Car: Clock with adaptive replacement,” in Proceed-

ings of the 4th USENIX Conference on File and Storage Technologies, San Francisco,

CA, 2004, pp. 187–200.

84

	Northeastern University
	January 01, 2015
	Resource management in enterprise cluster and storage systems
	Jianzhe Tai
	Recommended Citation

