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Abstract

We show how nonmonotonic inferences may elegantly be interpreted in terms of underlying

expectations. The fundamental idea is that when we reason, we make use of not only the

information that we firmly believe, but also expectations that guide our beliefs without quite

being part of them. We propose two ways of modelling the expectations used in

nonmonotonic reasoning: by expectation sets, equipped with selection functions, and by

expectation relations. For each of these we prove representation theorems and establish

relations with several other modellings in the area, including Poole systems and preferential

models.

We also show that by using the notion of expectation, one can unify the treatment of

the theory of belief revision and that of nonmonotonic inference relations. This is

accomplished by viewing the relation of ‘epistemic entrenchment’ used in Gärdenfors (1988)

and Gärdenfors and Makinson (1988) as a kind of expectation ordering. Thus we see belief

revision and nonmonotonic reasoning as basically the same process, albeit used for two

different purposes.
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1. Introduction

1.1. Motivation

In this paper we want to explore ways in which the concept of an expectation can be used to

give a general framework for nonmonotonic reasoning. The fundamental idea is that when

we reason, we make use of not only the information that we firmly believe, but also the

expectations that guide our beliefs without quite being part of them. Such expectations may

take diverse forms, of which the two most salient are expectation sets and expectation

relations.

On the one hand, our expectations may manifest themselves as propositions, drawn

from the same language as our firm beliefs and indeed not differing from them in kind but at

most in the ways in which we are prepared to use them. So understood, expectations include

not only our firm beliefs as limiting case, but also other propositions that are regarded as

plausible enough to be used as a basis for inference so long as they do not give rise to

inconsistency. The key idea for using this set of propositions can be put informally as

follows:
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α nonmonotonically entails β iff β follows logically from α together with ‘as many as

possible’ of the set of our expectations as are compatible with α.

The technical problem is essentially one of unpacking the innocent-looking ‘as many as

possible’.

On the other hand, our expectations may appear as an ordering between propositions,

and in particular among those that we do not believe. The key idea for using this relation

may be expressed informally thus:

α nonmonotonically entails β iff β follows logically from α together with all those

propositions that are ‘sufficiently well expected’ in the light of α.

The technical problems here are essentially those of unpacking the ‘sufficiently well

expected’, and of ascertaining the most appropriate conditions on the expectation ordering

itself.

These two ideas are evidently closely related, but not quite the same. One difference

that suggests itself already from the above summary formulations is that on the former we

will tend to have a multiplicity of possible sets of auxiliary premises (due to the existence of

many maximal consistent sets), and their elements will be determined ‘globally’. By

contrast, the latter formulation points towards a unique set of auxiliary premises, whose

elements are determined ‘locally’. Our formal development will clarify the exact relationship

between the two manifestations of the underlying notion of expectation, as well as their

relationship to other approaches, such as that in terms of preferential models. (For a third

analysis of expectations in terms of activities in neural networks, see Balkenius and

Gärdenfors (1991)).

But before turning to technicalities, let us illustrate the gist of the first conceptualization

by a simple example. ‘α nonmonotonically entails β’ will be denoted α  β as usual.
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Example 1.1. Let the language L contain the following predicates:

Sx: x is a Swedish citizen

Ix: x has Italian parents

Px: x is a protestant

Αssume that the set of expectations contains Sb →  Pb and Sb 3  Ib →  ¬Pb, for all

individuals b. Assuming that the set of expectations is closed under logical consequences it

also contains Sb → ¬Ib and, of course, the logical truth Sb 3 Ib → Sb. If we now learn

that b is a Swedish citizen, that is Sb, this piece of information is consistent with the

expectations. Thus, according to the recipe above, we can conclude that Sb  Pb.

On the other hand, if we learn both that b is a Swedish citizen and has Italian parents,

that is Sb 3 Ib, then this information is inconsistent with the set of expectations and so we

cannot use all expectations when determining which inferences can be drawn from Sb 3 Ib.

The most natural expedient is to give up the expectation Sb → Pb and the consequence

Sb →  ¬Ib. The contracted set of expectations which contains Sb 3 Ib →  ¬Pb and its

logical consequences contains ‘as many as possible’ (in a sense to be made precise below) of

the sentences in the set of expectations that are compatible with Sb 3 Ib. So, by the general

rule above, we have Sb 3 Ib  ¬Pb, illustrating the nonmontonicity of .

Our treatment of expectation sets in Section 2 can be seen as generalizing work of

Poole (1988), whilst our treatment of expectation orderings in Section 3 is a prolongation of

work of a number of authors, including in particular Dubois and Prade (see e.g. Dubois

(1986) and Dubois and Prade (1988), (1991a), (1991b)). At the same time, our formal work

is influenced by recent developments in the logic of belief change, where the concept of

expectation has been extensively investigated. In particular, our treatment of expectation sets

in Section 2 is inspired by the theory of ‘partial meet’ contractions and revisions in the logic

of belief change, as developed by Alchourrón, Gärdenfors, and Makinson (1985) and also

set out in the book Gärdenfors (1988). Likewise our treatment of expectation orderings in

Section 3 takes its departure from the theory of epistemic entrenchment as a determinant of

belief revision, as set out in Gärdenfors and Makinson (1988) and again in book form in

Gärdenfors (1988). 
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Such assistance from the logic of belief change is itself only to be expected, especially

in view of the close connections, noted in Makinson and Gärdenfors (1990), between

properties that may hold of belief revision operators, and those that may hold of

nonmonotonic inference relations. Nevertheless, our exposition will be such as to make the

present paper self-contained, without requiring familiarity with the belief revision literature.

Connections with that literature are explained subsequently, in Section 4.

Here is should also be noted that our choice of the word ‘expectation’ should not be

confused with the notion of ‘expected utility’ in decision theory. ‘Expected utility’ has to do

with expectations of the values of various outcomes, whilst our notion of expectation

concerns beliefs about the world. Our use of ‘expectation’ thus comes closer to the everyday

use.

1.2. Technical assumptions

We shall work with a language L which is based on propositional logic. It will be assumed

that L is closed under applications of the boolean connectives ¬ (negation), 3 (conjunction),

v (disjunction), and → (implication). We will use α, β, γ, etc. as variables over sentences in

L. It is also convenient to introduce the symbols Å and ⊥ for the two sentential constants

‘truth’ and ‘falsity’.

All the different expectations will be formulated in L. In contrast to many other theories

of nonmonotonic reasoning there are thus no default rules or other additions to the basic

language, such as modal operators, that will be used to express the defeasible forms of

information.

We will assume that the underlying logic includes classical propositional logic and that

it is compact. Recall that a logic is said to be compact iff whenever α is a logical consequence

of a set A of sentences, then there is a finite subset A' of A such that α is a logical

consequence of A'. If A logically entails α we will write this as A 7 α. We assume that 7,

like classical entailment, satisfies the deduction theorem and ‘disjunction in the premises’,

i.e. that A ∪ {β v γ} 7 α whenever both A ∪ {β} 7 α and A ∪ {γ} 7 α. Other details of L

are left open. Where A is a set of sentences we shall use the notation Cn(A) for the set of all

logical consequences of A, i.e. Cn(A) = {α: A 7 α}.



— 6 —

Several kinds of nonmonotonic inference relations will be studied. The inference

relation  will sometimes be written with a subscript to mark that it belongs to a particular

family of inference relations. We will also introduce the notation C(α) for the set of all

nonmonotonic conclusions that can be drawn from α, that is, β ∈ C(α) iff α  β. Again,

the operation C will sometimes be decorated with a subscript. All proofs are reserved for

Appendix II.

1.3. Postulates for nonmonotonic inference operations

In this section we shall briefly review some postulates for nonmonotonic inference relations.

We shall consider only inferences from finite sets of premises, in this respect following

Kraus, Lehmann, and Magidor (1990) rather than Makinson (1989) which considers

inferences from arbitrary sets of premises. All of the postulates to be presented, with one

exception, are familiar from the above two papers — the exception being that of

‘Consistency Preservation’ which is introduced in Makinson and Gärdenfors (1990) and

discussed in the general review Makinson (to appear). However, we shall group the

postulates rather differently than in any of the above references, so as to bring out

Lindström's (1990) concept of an ‘inference operation’ and our own concept of ‘basic’

postulates for nonmonotonic inference, corresponding to the ‘basic’ postulates for belief

revision, following Gärdenfors (1988) and Makinson and Gärdenfors (1990).

Following Lindström (1990) we say that a relation  between propositions is an

inference relation iff it satisfies the four conditions:

If α 7 γ, then α  γ (Supraclassicality)

If 7 α ↔ β and α  γ, then β  γ (Left Logical Equivalence)

If 7 β → γ and α  β, then α  γ (Right Weakening)

If α  β and α  γ, then α  β 3 γ (And)

Clearly, Supraclassicality implies:

α  α (Reflexivity)
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and Right Weakening and And together imply, using the compactness of 7:

If α  βi for all βi ∈ B and B 7 γ, then α  γ (Closure)

Conversely, Reflexivity, Left Logical Equivalence, and Closure together imply Supra-

classicality, Right Weakening and And, and so constitute an equivalent definition of an

inference relation (in fact, the one used by Lindström).

By the basic postulates for nonmonotonic inference we mean the above four for the

concept of an inference relation plus the following, where  α → β is an abbreviation for

Å  α → β:

If α  β, then  α → β (Weak Conditionalization)

If ¸ ¬α and  α → β, then α  β (Weak Rational Monotony)

If α  ⊥, then α 7 ⊥ (Consistency Preservation)

These basic postulates correspond, under the translation of Makinson and Gärdenfors

(1990), to the ‘basic postulates’ of the logic of belief revision. The key idea of that

translation is that a statement of the form β ∈ K*α, where K*α is the revision of a belief

state K by a sentence α, is seen as a nonmonotonic inference from α to β given the set K of

sentences as background expectations. So the statement β ∈ K*α for belief revision is

translated into the statement α  β for nonmonotonic logic (or into α K β, if one wants to

emphasize the role of the background beliefs). It turns out, as shown there, that the

translations of the postulates (K*1) - (K*6) from Gärdenfors (1988) correspond respectively

precisely to Closure, Reflexivity, Weak Conditionalization, Weak Rational Monotony,

Consistency Preservation, and Left Logical Equivalence, and thus collectively to the basic

postulates for .

By the extended set of postulates for nonmonotonic inference we mean the basic

postulates plus the following three:
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If α  β and β 7 α, then α  γ iff β  γ (Cumulativity)

If α  γ and β  γ, then α v β  γ (Or)

If α ¸ ¬β and α  γ then α 3 β  γ (Rational Monotony)

We recall that Cumulativity is equivalent (given the basic postulates) to the conjunction of the

following two postulates:

If α  β and α 3 β  γ, then α  γ (Cut)

If α  β and α  γ, then α 3 β  γ (Cautious Monotony)

and that it is also equivalent to:

If α  β and β  α, then α  γ iff β  γ (Reciprocity)

Strictly speaking, Cumulativity is redundant in our extended set of postulates, as follows

from observations of Kraus, Lehmann and Magidor (1990), and Freund, Lehmann and

Morris (1991). For Cut follows easily from Conditionalization, And, and Right Weakening,

whilst Cautious Monotony follows easily from Rational Monotony, And, Right Weakening,

Consistency Preservations and Supraclassicality.

The postulate Or is also known as ‘Disjunction in the Premises’ and also, especially in its

infinitary form, as ‘Distribution’. It is equivalent to the following, given the basic postulates

for inference relations:

If α 3 β  γ, then α  β → γ (Conditionalization)

Conditionalization is the translation in Makinson and Gärdenfors (1990) of the postulate

(K*7) for belief revision. Weak Conditionalization is the special case when α = Å .

Similarly, for Rational Monotony and its weak version. Rational Monotony is equivalent to

the translation in Makinson and Gärdenfors (1990) of the postulate (K*8) for belief revision.

The following is an easy consequence of the extended set of postulates:
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If α v β  γ, then α  γ or β  γ (Disjunctive Rationality)

This principle will be useful in Section 2 in proving a representation theorem for the

extended set of postulates. We recall the verification (cf. Lehmann and Magidor (1990) or

Makinson (to appear)). Suppose α v β  γ, but α ¸ γ. From the latter we have by Left

Logical Equivalence that (α v β) 3 α ¸ γ so that by Rational Monotony α v β  ¬α, so by

Reflexivity, And and Right Weakening α v β  β. Putting this together with α v β  γ

gives us by Cautious Monotony that (α v β) 3 β  γ, so by Left Logical Equivalence β  γ

as desired.

2. Expectation inference operations based on sets

2.1. Maximal subsets and selection functions

Any set of propositions in L that are, intuitively, playing the role of ‘expectations’ will be

denoted Δ. The problem of this section is how to determine which elements of the set Δ of

expectations to give up when adding a new piece of information α that is inconsistent with

Δ. A general idea is to start from Δ and then give some recipe for choosing which

propositions to delete from Δ to form a subset of Δ which does not contain α as a logical

consequence. According to the general criterion we should look at as large a subset of Δ as

possible.

The following notion is useful: A set D is a maximal subset of Δ that fails to imply α if

and only if (i) D 1 Δ, (ii) α ∉ Cn(D), and (iii) α ∈ Cn(D') for every D' with D 1 D' 1 Δ.

The set of all maximal subsets of Δ that fail to imply α will be denoted Δ⊥α. Using the

assumption that 7 is compact it is easy to show that this set is nonempty, unless α is

logically valid.

We now turn to a first solution to the problem of determining when α  β holds, that

is, determining when α nonmonotonically implies β. The idea is to use the sets in Δ⊥¬α for

the construction since these sets are maximally consistent with α. As is notorious, it is in

general not possible to select a unique maximal subset of Δ that fails to imply ¬α. To take a

trivial example, if Δ is the set of all logical consequences of β → δ and γ → ¬δ, and we put
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α = β 3 γ then there are two maximal subsets of Δ consistent with α, one containing β → δ

and the other containing γ → ¬δ. One must thus be content with picking out the ‘most

relevant’ maximal subsets.

Technically, this can be done with the aid of a selection function SΔ depending on Δ,

or more briefly S when Δ is taken as fixed. This is a function of one argument, and the

elements of its domain are sets of the form Δ⊥α for some formula α. They are thus subsets

of Δ. A selection function is required to satisfy Ø ≠ S(Δ⊥α) 1 Δ⊥α in the principal case

that Δ⊥α is non-empty, and to satisfy S(Δ⊥α) = {Δ} in the limiting case that Δ⊥α is

empty. Note that as a particular application of the principal case we have that if Δ⊥α = {Δ},

then also S(Δ⊥α) = {Δ}. Note also that whenever Cn(α) = Cn(β), then Δ⊥α = Δ⊥β so that

S(Δ⊥α) = S(Δ⊥β).

Definition 2.1. An expectation inference operation CΔ,S is defined, for all α ∈ L, by the

equation CΔ,S(α) = ∩{Cn({α} ∪ D): D ∈ S(Δ⊥¬α)}, where Δ is a non-empty default set

and S is a selection function. CΔ,S is closed when Δ = Cn(Δ), and is consistently generated,

when Δ is consistent.

This definition is one way of making the general rule above technically precise. Intuitively,

when we want to determine whether α Δ,S β, that is, whether β ∈ CΔ,S(α), we consider

the ‘most relevant’ maximal subsets of Δ that fail to imply ¬α, which are picked out by the

selection function S. If α → β belongs to all of these maximal subsets, then β belongs to

Cn({α} ∪ D) for all D in S(Δ⊥¬α) and so, by the definition, α Δ,S β. In other words, we

take with a grain of salt the initial idea, mentioned in Section 1.1, of adding to α ’as many as

possible’ of the sets of our expectations as are compatible with α. We do not choose a single

maximal α-consistent subset of Δ, but intersect certain among them.

Before turning to the theoretical aspects of the definition, a potential objection must be

considered. Since we express defaults by formulas in an ordinary first order language ruled

by classical logic, contrapositions of expectations in a closed Δ are also in Δ. Assume, for

example that ‘Computer scientists typically don't know about nonmonotonic logic’ (write

this as C → ¬N) is in Δ. If we assume that Δ is closed (or even just closed under logical

equivalence), both C →  ¬N and N →  ¬C are then in Δ, where the latter formula
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corresponds to ‘People who know about nonmonotonic logic are normally not computer

scientists’. Intuitively, these two sentences do not function in the same way in default

reasoning: From the fact that somebody is a computer scientist we want to conclude that she

does not know anything about nonmonotonic logic, but we don’t want to conclude that

somebody is not a computer scientist from the fact that he know about nonmonotonic logic.

In other words, we don’t want contraposition to be valid of nonmonotonic inference

relations.

However, the fact that C → ¬N and N → ¬C are both in Δ does not mean that they

must be used in the same way in nonmonotonic reasoning. In particular it does not follow

that C Δ,S ¬N iff N Δ,S ¬C. The reason for this is that the two ‘premises’ C and N are

not symmetrical – the class of people satisfying N is very small. In order words, it is natural

to assume in this example that ¬N belongs to Δ. And, by logical closure, if ¬N is in Δ, so

is N → C (as well as N → ¬C). If we now want to check what N nonmonotonically entails,

we have to select some maximal subsets of Δ. And the most natural selection function picks

out those subsets where N → C are included, and consequently N nonmonotonically entails

C rather than ¬C! On the other hand, if C is consistent with Δ, which is reasonable in the

example, then we immediately have that C nonmonotonically entails ¬N, so contraposition

is indeed not valid as a general rule for nonmonotonic inferences.

Clearly, in terms of the customary distinction, Definition 2.1 is a sceptical approach to

nonmonotonic reasoning, rather than a ‘choice’ or ‘liberal’ one. A ‘liberal’ definition would

use union rather than intersection; a ‘choice’ definition would choose one of the items over

which the intersection is performed. It should be noted that expectation inference operations

are here only defined for finite sets of premises, which can always be replaced by their

conjunction α, which is the single formula in the definition above. However, as shown by

Freund, Lehmann and Makinson (1990), there is a canonical way of extending any such

finitary relation to cover infinite sets of premises.

When Δ is closed under logical consequence, i.e., when Δ = Cn(Δ), another way of

interpreting Definition 2.1 becomes available when we consider the sets Cn({α} ∪ D). It

can easily be shown (using the assumption that Δ = Cn(Δ)) that in the principal case when

¬α ∈ Δ it holds that for any D ∈ Δ⊥¬α and for any β ∈ L, we have either α → β ∈ D or
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α → ¬β ∈ D. This means that when ¬α ∈ Δ  we have either β ∈ Cn({α} ∪  D) or

¬β ∈ Cn({α} ∪  D), for any β ∈ L. Thus, for any D ∈  Δ⊥¬α, Cn({α} ∪  D) can be

identified with an interpretation or a world which makes α true (this is the terminology used

by Shoham (1988) and Kraus, Lehmann, and Magidor (1990)). In this sense the selection

function S, if suitably constrained, can be seen as indirectly picking out a set of ‘preferred’

α-worlds and α Δ,S β holds when β is true in all the preferred α-worlds.

We are thus quite close to the preferential models of Shoham (1988), generalized in

Makinson (1989), Kraus, Lehmann and Magidor (1990), and Lindström (1990) – cf. also

Katsuno and Mendelzon (1991). Technically, Shoham’s models are considerably less

general than ours: they assume that the preferred models are determined by minimalization of

all classical models under a partial ordering. Those of Makinson (1989) and Kraus,

Lehmann and Magidor (1990) are in some ways less general than ours, and in other ways

more so. Less general, in that they still require that preferred models are determined by

minimization under a relation; more general in that the relation holds between ‘states’ that

need not be well-behaved as classical models. Lindström’s constructions are in all respects at

least as general as ours, and in some respects more – covering, for example, infinite premise

sets. Beyond these technical considerations of levels of generality there is also a basic

difference of gestalt between the present models ans the others mentioned. In this paper we

are seeing preferences between worlds as merely a byproduct, and we are taking

nonmonotonic inference relations to be generated directly out of a set, usually far from

complete, of propositions that serve as ‘expectations’.

Definition 2.1 offers a wide class of inference operations because no particular

constraints are put on the selection function. In order to select a particular nonmonotonic

inference rule, one must provide some way of describing the underlying selection function.

This would be the natural step to take if one wants to implement an inference operation in a

theorem proving program. We shall not pursue this line here, but instead strive for a meta-

theoretic description of the class of expectation inference operations by examining which

general conditions on inference operations they satisfy. The conclusion of this investigation

will be a representation theorem, closely related to that of Lindström (1990) but rather

simpler in its formulation. Section 2.3 reviews the relevant syntactic conditions for , and
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Section 2.4 states and proves the representation in terms of expectation inference relations

Δ,S.

2.2. Poole systems

It is also interesting to compare the general definition of an expectation inference operation

with Poole's approach to nonmonotonic reasoning as presented in his (1988). A Poole

system can be described as a pair ªΔ,Kº where Δ and K are both sets of sentences (not

necessarily closed under Cn). Poole calls Δ the set of ‘default propositions’, and K is called

the set of ‘constraints’ of the system. He too works with the general idea that when

determining the nonmonotonic consequences of α we should look at the maximal subsets of

Δ that are consistent with α and K. So given a Poole system ªΔ,Kº, and using the

terminology from the exposition of Poole's idea given in Makinson (to appear) we can

define its associated ‘extension family function’ by the rule that for every α

e(α) = {Cn(α ∪ D: D is maximal among the subsets D' of such Δ that α ∪ D' ∪ K is

consistent}.

Now Poole in effect defines that α ‘explains’ β if there is some extension E in e(α) such that

β ∈ E. (Poole's definition can be found on p. 29 of his (1988) and the result connecting this

definition to extensions on p. 30.) This is evidently a ‘liberal’ conception, using existential

generalization. Nevertheless, if we adopt the ‘sceptical’ approach, we can define a Poole

inference operation CΔ,K by the rule that CΔ,K(α) = ∩e(α). Now, it is easy to see that in the

case when the set K of constraints is empty, the sceptical Poole inference is the special case

of an expectation inference operation where the selection function is defined by the rule

S(Δ⊥¬α) = Δ⊥¬α. In other words, for this special case the selection function makes no

selection at all among the elements of Δ⊥¬α but considers them as equally relevant.

However, as shown in Makinson and Gärdenfors (1990), if the set Δ of expectations is

assumed, as in what follows, to be closed under logical consequence, then the special case

becomes a degenerate case: CΔ,K(α) reduces to Cn(α) whenever α is inconsistent with Δ,

and to Cn(Δ ∪ {α}) when α is consistent with Δ. Thus the Poole inference relation is of

interest only when the set Δ of expectations is taken on the level of ‘presentation’ rather than
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on the level of ‘content’. An analogous phenomenon holds, of course, for the logic of belief

revision, as was shown by Alchourrón and Makinson (1982).

2.3. Representation theorems using expectation sets

Lindström (1990) proves a representation theorem for inference relations in terms of

selection functions. A difference of presentation between his result and the theorems to be

presented below is that his selection functions do not operate on maximal subsets of Δ that

do not entail ¬α, but rather on maximal theories containing α. There are also some

differences of content: he makes a distinction between ‘states’ and maximal theories (which

he calls ‘worlds’); he also operates in a more general setting where one allows infinite sets of

premises for the nonmonotonic inference operation.

In this section it will be shown that the set of basic postulates for nonmonotonic

inference relations exactly characterizes the class of expectation inference relations. The

proof of the following representation theorem is a kind of translation of the corresponding

theorem for belief contraction (Observation 2.5 in Alchourrón, Gärdenfors, and Makinson

(1985), Theorem 4.13 in Gärdenfors (1988)). The formal structures of the two areas are

very similar, even if the translation itself involves some tricky technical details. On the

conceptual level, the representation theorem provides a new perspective on nonmonotonic

reasoning that is based on natural and independently motivated constructions.

Before formulating the representation theorem, we recall the following very useful

lemma (Lemma 2.4 of Alchourrón, Gärdenfors, and Makinson (1985). For the sake of

making the exposition self-contained we include its proof, along with those of the other

lemmas and theorems, in Appendix II.

Lemma 2.2. Suppose that Δ = Cn(Δ). If D ∈ Δ⊥α, then D ∈ Δ⊥β for all β ∈ Δ such that

β ∉ D.

Theorem 2.3. A nonmonotonic inference relation  satisfies the set of basic postulates if

and only if there exists a closed and consistently generated expectation inference relation

Δ,S such that α  β iff α Δ,S β, for all α and β.
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For Theorem 2.3, no restrictions are put on the selection function. The theorem shows that

for nonmonotonic inference operations based on such selection functions we can in general

only expect the basic postulates to be satisfied, but not, for example, Cumulativity. A very

natural condition on a selection function is the following:

(SC) If S(Δ⊥¬α) 1 Δ⊥¬β 1 Δ⊥¬α, then S(Δ⊥¬β) = S(Δ⊥¬α)

The interpretation is that if the set of maximal subsets in Δ⊥¬β is included in the set Δ⊥¬α

and the ‘preferred’ maximal subsets in Δ⊥¬α are all members of Δ⊥¬β, then these are also

the best in Δ⊥¬β. Note that for ¬α, ¬β ∈ Δ the condition that Δ⊥¬β 1 Δ⊥¬α holds just

if ¬α 7 ¬β, that is β 7 α (cf. the condition called ‘Aizerman’ in Lindström (1990)).

It is now perhaps not surprising that adding this requirement on the selection function

corresponds to making the generated nonmonotonic inference relation cumulative, and vice

versa:

Theorem 2.4. A nonmonotonic inference relation  satisfies the set of basic postulates

and Cumulativity if and only if there exists a closed, consistently generated expectation infe-

rence relation Δ,S where S satisfies (SC) such that α  β iff α Δ,S β, for all α and β.

Additional connections between conditions on selection functions and properties of the

generated nonmonotonic inference relations are studied in Lindström (1990), albeit in a

slightly more general setting.

A further strengthening of the requirements for a selection function would be to

demand that it is generated by some underlying ‘preference’ relation in the following sense:

Definition 2.5. A selection function S is relational over Δ iff there is a relation ⁄ over the

subsets of Δ such that for all α with ¬α ∉ Cn(∅), it holds that S(Δ⊥¬α) = {D ∈ Δ⊥¬α:

D ⁄ D' for all D' ∈  Δ⊥¬α}. S is transitively relational iff S is relational under some

transitive relation ⁄.

Theorem 2.6. Any relational closed expectation inference relation Δ,S satisfies Or.
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Theorem 2.7. Any transitively relational closed expectation inference relation Δ,S

satisfies Rational Monotony (as well as Or and thus also Cumulativity).

It is possible to prove also the converse of Theorem 2.7. For this representation theorem, we

need some preparatory lemmas.

Lemma 2.8. Suppose that Δ = Cn(Δ) and α, β ∈ Δ. Then Δ⊥α3β = Δ⊥α ∪ Δ⊥β.

Lemma 2.9. Suppose that Δ = Cn(Δ) and D ∈ Δ⊥α. Then Δ % Cn(D ∪ {α}).

Lemma 2.10. Suppose that Δ = Cn(Δ), ¬α ∈ Δ and D ∈ Δ⊥¬α. Then:

(a) D = Cn(D ∪ {α}) ∩ Δ

(b) C(α) % Cn(D ∪ {α}) iff C(α) ∩ Δ % D, whenever C satisfies Right Weakening.

Lemma 2.11. Let  be any inference relation satisfying the extended set of postulates. If

α  γ and ¬α 7 γ then α v β  γ for any β.

Theorem 2.12. An inference relation  satisfies the extended set of postulates iff there is

a closed, consistently generated, and transitively relational expectation inference relation

Δ,S with  = Δ, S.

The proofs of the lemmas and the theorem, which parallels the representation theorem 4.4

for belief contraction in Alchourrón, Gärdenfors, and Makinson (1985), are given in

Appendix II.

3. Expectation inference operations based on orderings

3.1. Expectation orderings

Although we have been able to prove some representation results in the previous section, the

use of selection functions as a mechanism for generating nonmonotonic inferences is not

very satisfactory from a computational perspective. One reason is that it is extremely costly

to compute the maximal subsets in Δ⊥¬α, especially when Δ is assumed to be closed under

logical consequence. Another reason is that a functional description of a selection function

is, in general, not available, even in the most favourable situation that the selection function
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is relational. A general algorithm for computing an expectation inference relation would have

to solve the multiplied effects of these two problems.

From a computational point of view it would be much more natural to work with an

ordering of the sentences in Δ rather than with an ordering of the maximal subsets of Δ, let

alone a general selection function defined on Δ. And from the epistemological perspective it

seems intuitively plausible that our expectations about the world do not all have the same

strength. For example, we consider some rules to be almost universally valid, so that an

exception to the rule would be extremely unexpected; while other rules are better described

as rules of thumb that we use for want of more precise information. An exception to the

latter type of rule is not unexpected to the same degree as in the former case. In brief, our

expectations are all defeasible (unless logically valid), but they exhibit varying degrees of

defeasibility. An alternative way of phrasing the idea is to speak of the degrees of firmness

of our expectations in some sense that need not be assumed to correspond to degrees of

probability. In fact, as we shall see, the postulates to be presented in this section for such an

ordering are incompatible with a simple ‘threshold probability’ interpretation although, as

shown by Lehmann and Magidor (1990), building on work of Adams, Pearl and others, it

is compatible with an account in terms of ‘limiting values’ of probabilities.

It will also be seen that on this approach, unlike that of Section 2, there is no need to

fix a set Δ of expectations in advance. The expectation ordering will cover all sentences, and

the set of expectations, or ‘real possibilities’ as one might wish to call them, can be

constructed out of the ordering in a natural way, as made up of those sentences that are

strictly more to be expected than a contradiction.

In order to make these ideas more precise, we shall now assume that there is an

ordering ≤ of the sentences in L. ‘α ≤ β’ should be interpreted as ‘β is at least as expected

as α’ or ‘α is at least as surprising as β’. ‘α < β’ will be written as an abbreviation for ‘not

β ≤ α’ and ‘α ≈ β’ is an abbreviation for ‘α ≤ β and β ≤ α’. Note that the relation ≤ is not

part of the object language, but is used on the meta-level to compare formulas from the

object language. This is in contrast to Lewis’s (1973) notion of ‘comparative possibility’

which otherwise shows many formal similarities with ≤. The relation ≤ will be assumed to

satisfy the following postulates:
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(E1)  If α ≤ β and β ≤ γ, then α ≤ γ (Transitivity)

(E2)  If α 7 β, then α ≤ β (Dominance)

(E3)  For any α and β, α ≤ α 3 β or β ≤ α 3 β (Conjunctiveness)

The first postulate on the expectation ordering is very natural for an ordering relation. The

second postulate says that a logically stronger sentence is always less expected. From this it

follows that the relation ≤ is reflexive. The third constraint is crucial for the results to come,

but presumably the one that is most open to query. It concerns the relation between the

degree of expectation of a conjunction α 3 β and the corresponding degrees of α and β.

From (E2) it follows immediately that α 3 β ≤ α and α 3 β ≤ β, so (E3) entails that

α 3 β ≈ α or α 3 β ≈ β. Clearly we cannot interpret the degrees of expectation directly in

terms of their probabilities, since (E3) is violated by any probability measure, as observed by

Dubois (1986). Appendix I.2 comments on the relation between expectation orderings and

the ‘qualitative necessity measures’ of Dubois and Prade.

Note that the three conditions imply connectivity: either α ≤ β or β ≤ α. For by (E3)

and (E2) either α ≤ α 3 β ≤ β or β ≤ α 3 β ≤ α and we conclude by (E1). The dominance

condition also immediately implies that α 3 ¬α ≤ β, and thus the three conditions together

imply that for all α ∈ L, either α ≤ β for all β ∈ L or ¬α ≤ β for all β ∈ L. By way of

comparison, (E1) to (E3) are three of the five conditions used in Gärdenfors (1988) and

Gärdenfors and Makinson (1988) to define a notion of ‘epistemic entrenchment’ for the logic

of theory change. Section 4 comments more closely on the relationship between the two

concepts.

Let us now return to how the ordering ≤ can be used to determine when α

nonmonotonically imples β. According to the key idea of this section α  β means that β

follows from α together with all the propositions that are ‘sufficiently well’ expected in the

light of α. How well is ‘sufficiently well’? A natural idea is to require that the added

sentences be strictly more expected than ¬α in the ordering. This idea was already used by

Rott (1991) in the context of the logic of belief revision; see also Appendix I.2. It motivates

the following:
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Definition 3.1.  is a comparative expectation inference relation iff there is an ordering ≤

satisfying (E1) - (E3) such that the following condition holds:

(C) α  γ iff γ ∈ Cn({α} ∪ {β: ¬α < β})

Recalling that by the three conditions on expectation orderings we have ¬α ≤ βi for all i ≤ n

iff ¬α  ≤ β1 3  ... 3  βn, it is immediate, using the compactness of Cn, that (C ) is

equivalent to:

α  γ iff either α 7 γ or there is a β ∈ L with α 3 β 7 γ and ¬α < β

and henceforth we use these two formulations interchangeably. Further equivalent

formulations will be established in Theorem 3.5 below.

Note that the definition of  makes sense only on the finitary level. For it makes

essential use of the negation ¬α of the proposition α serving as premise, and the negation

of an infinite set of propositions is not defined unless we admit infinitely long disjunctions

into our language. On the other hand, as in Section 2, it is possible to proceed to the

infinitary level indirectly, by first defining the finitary relation  as above and then taking its

‘canonical extension’ to the infinitary level, as defined in Freund, Lehmann and Makinson

(1990). Such passage to canonical extensions preserves satisfaction of the extended set of

postulates, mentioned in Theorem 3.2 below. It may perhaps also be possible to proceed to

the infinitary level directly, by appropriately lifting the relation ≤ to one between subsets of

L and generalizing the definition (C) by using inconsistency under Cn as a substitute for

negation. However, in this section we shall, for simplicity, remain at the finitary level.

We refer again to the syntactic postulates on inference relations that were listed in

Section 1.3. Here in Section 3 we are no longer particularly interested in dividing them into

subgroups, e.g. Lindström's postulates for an inference relation, the ‘basic’ postulates, and

the remaining conditions. We wish to consider them all together. There are of course various

ways of making a reduced list from which the extended set of postulates, and thus all the

conditions mentioned in Section 1.3, follow. One handy such list, which we shall use is:

Supraclassicality, Left Logical Equivalence, And, Consistency Preservation, Cut, Or, and

Rational Monotony. All the postulates of the extended set follow from this reduced list. The
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only one for which this is not immediately obvious is Cautious Monotony. We can derive it

using Rational Monotony and Consistency Preservation, as follows. Suppose that α  γ

and α  β; we need to show α 3 γ  β. On the one hand, if α ¸ ¬γ we have by Rational

Monotony that α 3 γ  β as desired. On the other hand if α  ¬γ we have by And that

α  γ 3 ¬γ so by Consistency Preservation α 7 γ 3 ¬γ so that by classical logic α 3 γ 7 β

and we may conclude that α 3 γ  β.

Theorem 3.2. Let ≤ be an expectation ordering over L. Then the inference relation ≤ that

it determines by (C) satisfies the extended set of postulates of Section 1.3.

It is also possible to prove a converse of Theorem 3.2, serving as a representation theorem:

Theorem 3.3. Let  be any inference relation on L that satisfies the extended set of

postulates. Then   is a comparative expectation inference relation, i.e., there is an

expectation ordering ≤ over L such that  = ≤.

The proof is based on the following definition of the expectation ordering: α ≤ β iff either

α 3 β ∈ Cn(∅) or ¬(α 3 β) ¸ α. This definition, and the verification that it yields the

desired properties, parallel those used in Gärdenfors and Makinson (1988) to represent

contraction operations in terms of epistemic entrenchment relations.

For the sake of comparison, we note that the second disjunct of the definition of α ≤ β

is closely connected with a relation R introduced by Lehmann and Magidor (1990) in the

course of proving a different representation theorem for nonmonotonic inference relations

satisfying all of the listed postulates other than Consistency Preservation. They put α R β iff

α v β ¸ ¬α (Definition 16 and text just before Definition 30). Clearly, we have by Left

Logical Equivalence and Right Weakening that our second disjunct ¬(α 3 β) ¸ α holds iff

¬α v ¬β ¸ ¬¬α iff ¬α  R ¬β.

To some extent the construction presented in this section reminds one of Brewka's

(1989, 1990, 1991) use of ‘preferred subtheories’ as a way of handling default reasoning.

There are, however, major differences, as explained in Appendix I.2.

3.2. Belief valuations
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In this subsection we show how the notion of an expectation ordering may be given an

alternative formulation in terms of ‘belief valuations’. Formally, the two are trivially

equivalent, but the latter provides a quite different gestalt and a connection with probabilistic

approaches to nonmonotonic reasoning.

We define a belief scale to be any pair (S,⁄) where S is a non-empty set and ⁄  is a total

ordering of S (i.e. transitive, connected and hence also reflexive, and antisymmetric).

Intuitively, we think of this as a generalization of the real interval [0,1] with its familiar total

ordering.

By a belief valuation into (S,⁄) we mean any function f: L æ S satisfying the following

two conditions for all α,β ∈ L:

(F1) Cn(α) = Cn(β) implies f(α) = f(β),

(F2) f(α 3 β) = min(f(α),f(β)),

where Cn is as explained in Section 1.2, and min is minimality with respect to the relation ⁄

over S. Belief valuations may be thought of as akin to probability distributions. The

condition (F1) holds, of course, for any probability distribution, whilst (F2) clearly does

not. The condition (F2) requires that f is a homomorphism between conjunction in the

language and the min operation in the belief scale. However the conditions do not explicitly

require, or even imply, any similar homomorphism for disjunction, nor for negation. In this

respect, belief valuations are quite unlike the usual evaluation functions for many-valued

logics, which are homomorphisms for all logical connectives of their languages. It is also a

further difference from probability distributions, which make negation homomorphic with

subtraction from unity. On the other hand, there are close connections with work of Shackle

(1961), Spohn (1987), and Dubois and Prade (1986, 1988, 1991a, 1991b). These

connections are discussed in Appendix I.

Note that whenever α 7 β then f(α) ⁄ f(β), for any belief valuation f. For if α 7 β

then Cn(α) = Cn(α 3 β) so by (F1) and (F2), f(α) = f(α 3 β) = min(f(α),f(β)) ⁄ f(β).

This in turn implies that the image f(L) of L under f, which will in general be a proper subset

of S, will have a unique greatest element 1f under ⁄, and a unique least element 0f under ⁄.
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Moreover, instead of a homomorphism property, negation satisfies the following condition:

for all α ∈ L, either f(α ) = 0f or f(¬α ) = 0f. For α 3  ¬α  7  β for all β ∈ L, so

f(α 3 ¬α) ⁄ f(β), so f(α 3 ¬α) = 0f, so by (F2) either f(α) = 0f or f(¬α) = 0f.

Given a belief valuation f into a belief scale (S,⁄) we can define a nonmonotonic

inference relation f or more briefly  when the context is clear, in a manner parallel to

(C):

(Cf) α f γ iff γ ∈ Cn({α} ∪ {β ∈ L: f(¬α) Œ  f(β)})

or equivalently:

α f γ iff either α 7 γ or there is a β ∈ L with α 3 β 7 γ and f(¬α) Œ  f(β) .

It is thus possible to generate inference relations from belief valuations. Clearly, if (S,⁄) is a

belief scale and f is a valuation into it, then the generated inference relation f does not

depend on any elements of S outside f(L). In other words, every inference relation

determined by a belief valuation f into a scale (S,⁄) is determined by the same evaluation onto

the scale (f(L),⁄).

It is not surprising that this approach to nonmonotonic reasoning is equivalent to that

described in Section 3.1 in terms of expectation orderings. In other words:

Theorem 3.4. Expectation orderings and belief valuations generate precisely the same

class of nonmonotonic inference relations.

The essential idea of the verification is simply to take quotient structures on propositions,

determined by the relation α ≈ β holding iff both α ≤ β and β ≤ α.

3.3. Expressing defaults by expectation orderings

As an argument in favour of using expectation orderings for nonmonotonic reasoning we

want to show in this section that an expectation ordering contains enough information to

express, in a very simple way, what we require with respect to default information. The

principal idea is that a default statement of the type ‘F's are normally G's’ can be expressed

by saying that ‘if something is an F then it is less expected that it is non-G than that it is G’.
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This formulation is immediately representable in an expectation ordering by assuming that

the relation Fb → ¬Gb < Fb → Gb holds for all individuals b.

Before we turn to an illustration of the mechanisms, we prove a simple theorem that

provides us with several reformulations of the condition in (C) which will be useful in

analyzing examples. Let us call a set Γ of sentences a cut of an expectation ordering ≤ iff

β ∈ Γ whenever α ∈ Γ and α ≤ β, for all α and β.

Theorem 3.5. Let ≤ be any expectation ordering. Then for all sentences α, β, γ, the

following are equivalent:

(1) γ ∈ Cn({α} ∪ {β: ¬α < β})

(2) α 7 γ or ¬α < α → γ

(3) α 7 γ or α → ¬γ < α → γ

(4) α 7 γ or α → γ is in the greatest cut of ≤ that does not contain ¬α.

To illustrate the general idea of expressing defaults of the form ‘F's are normally G's’ as a

set of relations Fb → ¬Gb < Fb → Gb for all individuals b, assume that all we know about

b is that Fb. We want to decide the nonmonotonic consequences of this fact. It can be

determined immediately, via (C) and (3) of Theorem 3.5, that Fb  Gb. It can also be

determined that Fb ¸ ¬Gb. For on the one hand applying (E2) to our assumption we have

¢ Fb → ¬Gb, i.e., Fb ¢ ¬Gb; and on the other hand, by the asymmetry of <, we have

not Fb →  ¬Gb < Fb →  Gb, so we may again apply part (3) of Theorem 3.5. Further

information about b, for example that Hb, will mean that we no longer need to check

whether Fb → ¬Gb < Fb → Gb, but rather whether Fb 3 Hb → ¬Gb < Fb 3 Hb → Gb,

which may give a different answer (cf. Example 3.7 below). This is exactly how we want a

default rule to operate.

Example 3.6. Let us suppose that L contains the following predicates:

Sx: x is Sicilian

Bx: x is blond

Hx: x is hot-tempered
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Αssume that we have the default rules ‘Sicilians are normally hot-tempered’ and ‘Blond

persons are normally not hot-tempered’. According to the rule given above, we express

these defaults by a number of ordering relations of the form Sb → ¬Hb < Sb → Hb and

Bb → Hb < Bb → ¬Hb, respectively, for various individuals b.

From this we conclude, as above, that if all we know about Fiora is that she is a

Sicilian, then we expect her to be hot-tempered (and we don’t expect her to be blond); and if

all we know about Lucia is that she is blond, then we expect her to be cool (and don’t expect

her to be a Sicilian). Now, suppose that, contrary to our expectations, Amadeo is a blond

Sicilian, that is Sa 3 Ba. What can be concluded concerning his temper? (This example is a

variation of the so called ‘Nixon Diamond’).

If we know that Ba 3  Sa and we want to decide whether Ha or ¬Ha follows

nonmonotonically, this can be determined, via (C) and (3) of Theorem 3.5, by looking for

the strictly greater of Ba 3 Sa → Ha and Ba 3 Sa → ¬Ha in the expectation ordering. Three

cases are possible: (1) Ba 3 Sa → Ha < Ba 3 Sa → ¬Ha. In this case, we conclude that

Ba 3 Sa  ¬Ha. (2) Ba 3 Sa → ¬Ha < Ba 3 Sa → Ha. For similar reasons, we conclude

that Ba 3  Sa  Ha. (3) Ba 3  Sa →  ¬Ha ≈ Ba 3  Sa →  Ha. In this case, neither

Ba 3 Sa  Ha, nor Ba 3 Sa  ¬Ha will hold.

None of these three possibilities is ruled out by the two ordered pairs Sa → ¬Ha <

Sa →  Ha and Ba →  Ha < Ba →  ¬Ha. The reason is that it follows from (E2) that

Sa → Ha ≤ Ba 3 Sa → Ha and that Ba → ¬Ha ≤ Ba 3 Sa → ¬Ha. Consequently, the

maximum of Ba 3 Sa →  Ha and Ba 3 Sa →  ¬Ha will be at least as high as each of

Sa → Ha and Ba → ¬Ha in the expectation ordering. But on the other hand, the two given

comparisons do not suffice to determine which, if any, of Ba 3  Sa →  Ha and

Ba 3 Sa → ¬Ha is the greater. So, the information available does not permit us to conclude

anything concerning Ha or ¬Ha.

To sum up, the nonmonotonic consequences one can draw from the premise that

Ba 3 Sa depends on which is chosen to be the maximal element of Ba 3 Sa → Ha and

Ba 3 Sa → ¬Ha in the expectation ordering. The default relations Sa → ¬Ha < Sa → Ha

and Ba → Ha < Ba → ¬Ha are not sufficient to determine this choice.
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A general principle about nonmonotonic reasoning is that more specific information about an

individual should override less specific when it comes to applying various kinds of default

information. Let us call this idea the specificity principle. Suppose we know that a certain

individual is a bird and indeed, more specifically, is an emu. Now, birds fly by default, but

emus don't. The specificity principle requires that only the more specific default information

that emus don't fly is applicable when reasoning about the properties of this individual (this

information can, of course, be overridden by some still more specific facts or laws).

Another well known principle is that of using all the relevant information available. Let

us call this the full information principle. If we know that b is an emu and, hence, that b is a

bird, we should use both of these facts when drawing inferences. Note that neither the

specificity principle nor the full information principle governs the power or behaviour of the

inference relation itself. They are pragmatic guides for choosing what parts of the

information at our disposal to consider on the left hand side of the inference relation. In this

way, they tell us what questions to ask, rather than what answers to give.

The specificity principle tells us that we should use the most specific information in

our premises, whereas the full information principle tells us that we should use all relevant

information. Does this make a difference? Is there any clash? In a system such as that of

expectation relations – and indeed in any system in which Left Logical Equivalance is

satisfied and there is flexibility in expanding the background consequence operation to take

account of known specificities – the two principles give the same results. In effect, their

equivalence is a weak form of Cumulativity: If α 7 β, then α  γ iff (α 3 β)  γ. This

rather abstract feature may be illustrated by a simple example.

Example 3.7. Let Bb stand for the fact that a given individual b is a bird, Eb for the fact

that it is an emu, and Fb for the fact that it flies. We assume that being an emu is more

specific information than being a bird and that this is reflected in the background

consequence operation, i.e., Eb 7 Bb. We also assume the two default rules that birds

normally fly and that emus normally don't fly which are expressed by the following two

expectation relations:

Bb → ¬Fb < Bb → Fb
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Eb → Fb < Eb → ¬Fb

Note that these imply, using (E2), that Bb ¢ ¬Fb and Eb ¢ Fb.

We are given a b and told that it is an emu. We know from our background

consequence operation that it is a bird. The question is: Should we conclude that it flies?

Now it is easy to calculate from the assumptions of the example, using definition (C) and

Theorem 3.5 (any of the four criteria there will do), that:

Bb  Fb whilst Bb ¸ ¬Fb

Eb  ¬Fb whilst Eb ¸ Fb

Eb 3 Bb  ¬Fb whilst Eb 3 Bb ¸ Fb

Our question thus becomes: Given Eb and Bb, which should be the premise of the

nonmonotonic inference: Eb alone, Bb alone, or the conjunction Eb 3 Bb? The answer

according to the specificity principle is Eb; according to the full information principle it is

Eb 3 Bb. As can be seen above, these give the same result under our approach if 7 is

appropriately chosen to reflect the specificity principle.

Another way of representing a default statement "F's are normally G's" would be as

Fb 3 ¬Gb < Fb 3 Gb, for all individual constants b, which is reminiscent of Lewis'

representation of counterfactuals in terms of "comparative possibility" (see Lewis (1973),

Section 2.5). Provided the ordering is properly understood, this is not a conflict, but a

duality. If we define the dual ≤d of the expectation ordering ≤ by the rule α ≤d β iff

¬β ≤ ¬α (so that postulates (E1) and (E2) continue to hold of ≤d but (E3) becomes

dualized to α v β ≤d α or α v β ≤d β), then our representation Fb → ¬Gb < Fb → Gb is

equivalent to Fb 3 ¬Gb <d Fb 3 Gb.

3.4. Equivalence with nice preferential models

One of the best known semantic approaches to nonmonotonic reasoning is that of

preferential models, as devised by Shoham (1988) and generalized and studied in depth by

Makinson (1989), Kraus, Lehmann and Magidor (1990) and Lehmann and Magidor (1990),
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with an overview in Makinson (to appear). There are slight differences of presentation and

of detail, compared in Dix and Makinson (1991); here we shall follow the formulation of

Makinson (1989; to appear).

We recall that on this formulation, a preferential model is a triple M = ‡M,;,‹° where M

is an arbitrary non-empty set (whose elements are called ‘states’), ‹  is an arbitrary relation

between elements of M (called the ‘preference relation’) and ; is an arbitrary relation

between elements of M and sentences (called the ‘satisfaction relation’). In this version,

there is no distinction drawn between ‘states’ and ‘worlds’ as in the rather more complex

(but less general) formulation of Kraus, Lehmann, and Magidor (1990). Let us say that a

state m ‘preferentially satisfies’ a formula α, denoted m ;‹ α, iff m ; α and there is no

m' ∈ M with m' ‹ m and m' ; α. A preferential model M = ‡M,;,‹° generates an inference

relation M  defined by putting α  M  γ  iff for every m ∈ M, if m ; ‹ α  then

m ; γ. In words, α M γ holds when γ is satisfied in all the ‘preferred’ states satisfying α.

The question arises whether there is any close relationship between preferential models

and our expectation orderings (alias belief valuations). As has been shown above, the latter

satisfy Supraclassicality, Cumulativity and Rational Monotony. In order to cover these

properties, preferential models need to satisfy some further constraints. In the terminology

of Makinson (to appear), they need to be classical, stoppered, and ranked (to be defined

below). Moreover, as preferential models do not in general satisfy Consistency

Preservation, a further special constraint will need to be imposed on them.

We therefore consider the class of all preferential models M = ‡M,;,‹° that are

(1) classical : for all m ∈ M and α,β ∈ L, m ; ¬α iff m 5 α, and m ; α3β iff both

m ; α and m ; β (this property is satisfied for all standard satisfaction relations ;);

(2) ample with respect to Cn: for every proposition α consistent under Cn, there is an

m ∈ M with m ; α;

(3) based on a relation ‹  which irreflexive, transitive, and ranked (the last also known

as ‘modular’ and defined: whenever m ‹ n and not n' ‹ n then m ‹ n');

(4) finitarily stoppered (alias ‘finitarily smooth’). This last condition means: whenever

m ∈ M and m ; α then there is an n ∈ M with either n = m or n ‹ m such that n ;‹ α. In

words, for every formula α that is non-preferentially satisfied by some state in M, there
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exists a better state n that preferentially satisfies α. (This condition is essentially the same as

the ‘limit assumption’ in Lewis (1973)).

A preferential model M satisfying (1) - (4) will be called nice.

We want to show that an inference relation is determined by some expectation ordering

via definition (C) iff it is determined by some nice preferential model via the definition

given just above. The shortest proof of this is indirect, making use of another representation

theorem in the theory of preferential models due to Lehmann and Magidor. For we know by

Theorems 3.2 and 3.3 above that  is determined by an expectation ordering iff it satisfies

the extended set of postulates. And we know from Theorem 5 of Lehmann and Magidor

(1990) that  satisfies those postulates (other than Consistency Preservation with respect to

the background consequence operation Cn) iff it is determined by some preferential model

that has the properties listed above for niceness (other than that of being ample). So it will

suffice to show that when a preferential model is ample with respect to Cn, the inference

relation that it determines satisfies Consistency Preservation with respect to Cn (which is

trivial), and that if  satisifes Consistency Preservation with respect to Cn then the

canonical preferential model built by Lehmann and Magidor is ample with respect to Cn

(which is not difficult).

However, we shall also give a direct proof, for two reasons. First, our purpose is not

only to compare the induced inference relations but also to discover the relationship between

the expectation ordering ≤ that determines  and the preference relation ‹ that determines it.

This is not easily extracted from the indirect argument, but will be explicit in the construc-

tions below. Second, our constructions are rather simpler than those of Lehmann and

Magidor.

We begin by mapping expectation orderings into equivalent nice preferential models.

For the special case that L is finite (modulo equivalence under Cn) Theorem 3.8 below was

in effect established by Dubois and Prade (1991b) using a different construction.

Theorem 3.8. For every expectation ordering ≤ over L, there is a nice preferential model

M = ‡M,;,‹° such that M = ≤.
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The proof is based on the following construction: Put M to be the collection of all maximally

consistent (under Cn) sets of propositions of L. For each m ∈ M, define m ; α to hold for

propositions α ∈ L, iff α ∈ m. The key definition is that of the relation ‹  over M. (For

preliminary orientation, remember that in a preferential model down is ‘better’, in contrast to

an expectation ordering, where up is ‘better’.) Intuitively, the construction we use means:

m ‹ n iff there is a proposition that is falsified by n but is more expected that any proposition

falsified by m. Formally, this is expressed as follows: for m,n ∈ M we put

m ‹  n iff for some proposition α ∈ L we have β ∈ m for every β ∈ L with α ≤ β, but

α ∉ n. In other words, writing α+ for {β ∈ L: α ≤ β}, iff for some proposition α we have

α+
1  m but α  ∉  n. On this construction, some of the required properties of M  are

immediate: that M  is ample (by compactness of Cn), that ; is classical, and that ‹  is

irreflexive. The remainder are verified in Appendix II.

Next, we map nice preferential models into equivalent expectation orderings, giving the

converse of Theorem 3.8.

Theorem 3.9. Let M  = ‡ M,;,‹° be any nice preferential model. Then there is an

expectation ordering ≤ over L such that ≤ = M.

The key idea for the proof is to define, for each proposition α ∈ L, g(α) = {m ∈ M: n ; α

for all n ∈ M with n ‹  m}. Note that {m: m ;‹ ¬α} 1 g(α) though not conversely. Then the

relation ≤ over L is defined by the rule: α ≤ β iff g(α) 1 g(β). It can now be verified that ≤

is an expectation ordering over L, with ≤ = M.

Putting Theorems 2.12, 3.2 to 3.4, and 3.8 to 3.9 together, we can express the main

results as follows:

Theorem 3.10. Let  be any relation between formulas in L. Then the following five

conditions are mutually equivalent:

(1)  is determined by some closed, consistently generated, and transitively relational

expectation inference relation Δ,S.

(2)  is determined by some expectation relation ≤ over L, under definition (C).
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(3)  is determined by some belief valuation from L into some belief scale, under

definition (Cf).

(4)  is determined by some nice preferential model.

(5)  satisfies the conditions of Supraclassicality, Left Logical Equivalence, And,

Cumulativity, Or, Rational Monotony and Consistency Preservation.

In principle it should also be possible to construct maps between the transitively relational

expectation set systems of Section 2 and nice preferential models, as well as between the

former and expectation orderings, to complement the maps between the latter two

established here. We know that they all determine the same postulates for nonmonotonic

inference.

4. A unified treatment of nonmonotonic logic and belief 

revision

Nonmonotonic inference relations have in Section 3 been analysed in terms of an ordering ≤

over a language. Although the notion of a set Δ of ‘expected sentences’ played no explicit

part in that analysis (in contrast to that of Section 2) it can, as we promised at the beginning

of Section 3.1, be constructed out of the ordering ≤. Recall that definition (C) puts α  γ

iff γ ∈ Cn({α} ∪ {β: ¬α < β}). Now clearly a sentence β can occur as an element of a set

{β: ¬α < β} for some α, only if Ö  < β. Thus if we introduce the set Δ of ‘expected

sentences’ by the definition Δ = {β: Ö < β}, definition (C) may equivalently be expressed

thus: α  γ iff γ ∈ Cn({α} ∪ {β ∈ Δ: ¬α < β}.

The elements of Δ may thus be seen as ‘expected sentences’, ‘defeasible beliefs’, or

‘real possibilties’ according to whichever terminology we prefer. They are in principle

available to help us draw conclusions, but are such that when a premise α of a nonmono-

tonic inference is used, some of the elements of Δ yield in case of a conflict with α.

The ordering ≤ is used to ‘chop off’ elements from Δ in case of a conflict with α so

that it can be decided whether α   γ according to the recipe that α   γ  i f f

γ ∈ Cn({α} ∪ {β ∈ Δ: ¬α < β}). The higher up in the ordering a proposition is found, the

less vulnerable it is to deletion; in other words, the less defeasible is the proposition.
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This way of describing how nonmonotonic inferences are determined may be

compared to the situation in belief revision theory. In Gärdenfors (1988) an account is

developed of how a belief state K is revised in the light of new input α. In this theory,

states of belief are modelled by belief sets which are sets of sentences from L. Belief sets

are assumed to be closed under logical consequence. Belief sets model the statics of

epistemic states. For their dynamics we need methods for modifying belief sets. Three

kinds of change are central:

(i) Expansion: A new sentence together with its logical consequences is added to a

belief set K. The belief set that results from expanding K by a sentence α is denoted K+α.

(ii) Revision: A new sentence that is inconsistent with a belief set K is added, but in

order that the resulting belief set be consistent some of the old sentences of K are deleted.

The result of revising K by a sentence α is denoted K*α .

(iii) Contraction: Some sentence in K is retracted without adding any new beliefs. In

order that the resulting belief set be closed under logical consequence some other sentences

from K must be given up. The result of contracting K with respect to α is denoted K-α.

There are two methods of attacking the problem of specifying revision and contraction

operations. One is to present rationality postulates for the processes. Such postulates are

introduced in Gärdenfors (1984), Alchourrón, Gärdenfors and Makinson (1985) and dis-

cussed extensively in Gärdenfors (1988). A guiding idea for these postulates is that changes

should be minimal, so that when changing beliefs in response to new evidence, one should

continue to believe as many of the old beliefs as possible. As was mentioned in Section 2.2,

Makinson and Gärdenfors (1990) showed that the postulates for belief revision can be

translated into postulates for nonmonotonic logic, and vice versa. The key idea for the

translation from belief revision to nonmonotonic logic is that a statement of the form

β ∈ K*α is seen as a nonmonotonic inference from α to β given the set K of sentences as the

set of background expectations. So the statement β ∈ K*α for belief revision is translated

into the statement α  β for nonmonotonic logic (or into α K β, if one wants to emphasize

the role of the background beliefs). Conversely, a statement of the form α   β for

nonmonotonic logic is translated in to a statement of the form β ∈ K*α for belief revision,
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where K is introduced as a fixed belief set. Clearly in this translation K plays the role of Δ in

Section 2 of this paper.

Using this recipe it is possible to translate all the postulates (K*1) - (K*8) for belief

revision from into conditions for nonmonotonic logic. It turns out that every postulate

translates into a condition on  that is valid in some kinds of nonmonotonic inference in the

literature. Conversely, every postulate on  that has been presented above in Section 1.3

translates into a condition on belief revision that is a consequence of (K*1) - (K*8). For

example, Cautious Monotony translates into ‘if β ∈ K*α and γ ∈ K*α, then β ∈ K*α3γ’

which follows from (K*1) - (K*8). To sum up, using the proposed translation it has been

established that there is a very tight connection between postulates for belief revision and

those for nonmonotonic logic.

The second method within belief revision theory of solving the problems of revision

and contraction is to build models of belief revision which can take a belief set (or some

representation of such a set) together with a sentence to be added as input and which gives a

revised belief set as output. One such approach, in terms of partial meet contractions and

revisions was developed in Alchourrón, Gärdenfors, and Makinson (1985) and provides the

inspiration for the account of nonmonotonic inference relations based on expectation sets in

Section 2 of the present paper. However, it is not very computationally oriented. A more

‘constructive’ or computation-friendly approach was adopted in Gärdenfors (1988) and

Gärdenfors and Makinson (1988). It is based on the notion of the epistemic entrenchment of

the propositions in a belief set, ordering the sentences in K. The interpretation of this

ordering is very closely related to that of the expectation orderings in Section 3.1.

The postulates for epistemic entrenchment introduced in Gärdenfors (1988) include the

postulates (E1) - (E3) for expectation orderings of section 3.1 of this paper (with the

notational difference that K replaces Δ). A relation ≤ over a language L is called one of

epistemic entrenchment with respect to a theory K iff it satisfies (E1) - (E3), together with

two further conditions, as follows.

(E4) If K is consistent, then α ∉ K iff α ≤ β for all β (Minimality)



— 33 —

In words, all sentences not in K have the same degree of entrenchment, which is the lowest

of all degrees. A formulation that is equivalent, given (E1) to (E3), is: If K is consistent then

for all α ∈ L, α ∉ K iff α ≤ ¬α. Another equivalent formulation is: If K is consistent then

K = {α: Ö < α}.

(E5) β ≤ α for all β, only if 7 α (Maximality)

This postulate says that the only sentences with a maximal degree of expectation are the

logically valid sentences. Equivalently given (E1) - (E3): If β v ¬β ≤ β then β ∈ Cn(Ø). Of

course, the converse of (E5) is already an immediate consequence of (E2).

It was shown by Gärdenfors and Makinson (1988) that given a theory K closed under

Cn, each relation ≤ of epistemic entrenchment for K determines an operation K-α of

contraction by the following definition (which rather awkwardly and unintuitively involves a

disjunctive formula):

(C-) β ∈ K-α iff β ∈ K and either α ∈ Cn(Ø) or α < α v β.

From this, via the so called Levi identity K*α = Cn((K-¬α) ∪ {α}), the entrenchment

relation determines a revision operation K*α. Both the contraction operation and the revision

operation thus generated satisfy the relevant postulates from Alchourrón, Gärdenfors and

Makinson (1985). Conversely, it was shown in the same paper that each contraction or

revision operation satisfying those postulates can be generated from such an epistemic

entrenchment relation.

From the correspondence between postulates for belief revision and those for

nonmonotonic inferences, developed by Makinson and Gärdenfors (1990), it is thus natural

to expect that the notion of epistemic entrenchment may also be used to generate

nonmonotonic inference relations, and it was such an expectation that provided the original

motivation for the work reported in this paper (also see some preliminary ideas in

Gärdenfors 1990). However, it turns out that the passage from the context of belief revision

to the context of nonmonotonic inference permits two simplifications: the postulates (E4) and

(E5) both become superfluous. As we have remarked, (E4) was needed in the logic of belief

revision in order to relate the entrenchment relation ≤ to the particular belief set undergoing
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contraction or revision. In the context of nonmonotonic inference such a connection is not

necessary. The condition (E5) was needed in the logic of belief revision in order to give an

adequate account of contraction, specifically in order to generate an operation of contraction

that satisfies the postulate of ‘recovery’: K 1 Cn((K-α) ∪ {α}). On the other hand, as

noted in Makinson (1987), recovery is not needed to satify the postulates of Alchourrón,

Gärdenfors and Makinson (1985) for revision; and as we have seen in Section 3.2 of this

paper, (E5) is not needed in order to generate well-behaved nonmonotonic inference

relations.

This last point can also be put in another way: Expectation orderings and epistemic

entrenchment relations generate the same classes of inference relations. Let ≤ be any

expectation relation over L, i.e. satisfying conditions (E1) - (E3), and let  be the inference

relation that it generates by the definition (C) in Section 3.1 of this paper. Then there is an

epistemic entrenchment relation ≤' over L, i.e. satisfying all of (E1) - (E5) for some

consistent belief set K, such that the inference relation ' generated from it under the same

definition is equal to .

To see this first put K = {α ∈ L: ¬α < α}. Then as Dubois and Prade (1991a) have in

effect observed, if ≤ satisfies (E1) - (E3), then K is a consistent belief set and (E4) is also

satisfied. To get all of (E1) - (E5), however, we need to massage the relation ≤ a little.

Define ≤' by putting α ≤' β iff both α ≤ β and it is not the case that α ∈ Cn(Ø) whilst

β ∉ Cn(Ø). Then it is easy to check that ≤' satisfies all of (E1) to (E5) and determines,

under definition (C) of Section 3.1, the same inference relation as does ≤.

Hence we may add to the list of equivalent conditions in Theorem 3.10, the following:

(6)  is generated from some relation ≤ that is an epistemic entrenchment relation with

respect to some consistent belief set K, via definition (C).

Indeed, it is possible to add a further equivalent condition to the list in Theorem 3.10,

illustrating again the close relationships between nonmonotonic inference and belief revision.

(7)  is generated from some relation ≤ that is an epistemic entrenchment relation with

respect to some consistent belief set K, by the sequence of definitions beginning with
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definition (C-) for contraction given above, followed by the Levi definition of revision in

terms of contraction also given above, followed by the definition of α  β to hold iff

β ∈ K*α.

We omit the verification, which is tedious but not particularly difficult.

In summary, there is a very close formal correspondence between belief revisions

based on orderings of epistemic entrenchment and nonmonotonic inference relations based

on expectation orderings. Given a belief set K (a set Δ of expectations) and a proposition α

to be used as the basis for a revision (as a premise for nonmonotonic inference), we use the

ordering to determine which beliefs (expectations) may legitimately be saved (accompany α

as additional premises) for subsequent closure under logical consequence.

Epistemologically, the difference between belief sets and expectations lies only in our

attitude to them, i.e., what we are willing to do with them. For so long as we are using a

belief set K, its elements function as full beliefs. But as soon as we seek to revise K, thus

putting its elements into question, they lose the status of full belief and become merely

expectations, some of which may have to go in order to make consistent place for beliefs

introduced in the revision process.
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5. Conclusion

In this article we have argued that nonmonotonic inferences may elegantly be interpreted in

terms of underlying expectations. These are propositions, just as are our ‘ordinary’ beliefs,

and indeed they include the latter among them. On this approach, there is no need for a

special formalism to express default beliefs. We have proposed two ways of modelling the

expectations used in nonmonotonic reasoning, to wit, by expectation sets equipped with

selection functions (the latter possibly being relationally determined in the sense of Section

2), and by expectation relations. For each of these models we have proved a number of

representation theorems and established their relations to other models in the area, notably

Poole systems and preferential models.

We have also argued that by using the notion of expectation, one can give a unified

treatment of the theory of belief revision and that of nonmonotonic inference relations. This

is accomplished by viewing the relation of ‘epistemic entrenchment’ used in Gärdenfors

(1988) and Gärdenfors and Makinson (1988) as a kind of expectation ordering. Thus we

view belief revision and nonmonotonic reasoning as basically the same process, albeit used

for two different purposes.

Expectations, in the form of sets or orderings, have been treated as primitive concepts.

But where do they come from? One answer is to define an expectation ordering by using a

nice preferential model as in the proof of Theorem 3.9. However, in our opinion, this is like

putting the cart in front of the horse, since orderings of models seems epistemologically

more advanced than orderings of sentences.

A better answer is to view expectations as emerging from learning processes.

Expectations can be regarded as a way of summarising previous experience in a cognitively

economical way. For example, Balkenius and Gärdenfors (1991) show that, under a

particular interpretation, a large class of neural networks can be seen as performing

nonmonotonic inferences based on the ‘expectations’ of the network. The upshot is that we

propose that the question of the genesis of expectations should be delegated to cognitive

science.
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Appendix I. Belief valuations compared

In Section 4 we compared our use of expectation orderings for nonmonotonic inference with

our earlier (1988) use of epistemic entrenchment orderings for belief revision. In this

appendix we briefly review a number of other ideas and constructions in the literature that

are also closely related to expectation orderings.

It is difficult to assign credits here because of the multiplicity of independent

contributions differing more in point of departure and in terminology than in destination, but

we shall attempt to do justice to the earlier work of Shackle, Levi, Cohen, Shafer and Zadeh,

as well as the later but important technical developments of Dubois and Prade, Spohn,

Brewka, and a key idea of Rott. For the sake of the comparisons, it is convenient to take our

constructions in the form that they were given in Section 3.2, i.e., as valuations into belief

scales with conjunction homomorphic to minimality and with nonmonotonic inference

relations generated via rule (Cf).

I.1. Plausibility story

The idea of a plausibility grading of some kind, with valuations into it that to some extent

resemble ordinary probability distributions, yet still behave rather differently from them,

goes back a long way. In particular, the use of the minimum operation to evaluate the

plausibility of compound propositions was suggested by the economist G.L.S. Shackle in a

series of publications culminating in his (1961).

Shackle's background was not that of a logician. Notions such as that of a language

closed under truth-functional connectives, or classical logical consequence, are quite absent

from his apparatus, and his writings are very discursive in style. For this reason it is often

rather difficult to see what the contents and implications of his proposals are. But if we are

willing to do a little interpretation, we can see him as in effect working with two dual

gradings.

Both of them take the real interval [0,1] as their unique domain, and are thus more

highly structured than the arbitrary total orderings that we have been considering in the

present paper. One of his gradings can be thought of as representing degree of belief (or
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confidence, credence, etc), in which conjunction is treated as homomorphic to minimality:

f(α 3 β) = min(f(α),f(β)). The other grading, to which Shackle gives much more attention,

may be thought of as one of degrees of ‘potential surprise’ (or disbelief, information, etc), in

which disjunction is treated as homomorphic to minimality: k(α v β) = min(k(α),k(β)) for

any valuation k. The two gradings appear to be understood as dual to each other. For

example, given a valuation k: L æ [0,1] of potential surprise, we may form a belief valuation

f: L æ [0,1] by putting f(α) = k(¬α) – which, in general, will not be the same as 1 - k(α).

Then clearly, by a calculation that is quite foreign to Shackle's mode of presentation,

f(α 3 β) = k(¬(α 3 β) = k(¬α v ¬β) = min(k(¬α),k(¬β)) = min(f(α),f(β)), under the

background assumption that k(α) = k(β) whenever Cn(α) = Cn(β). An early reconstruction

of Shackle’s ideas can be found in Levi (1966, 1967). In Levi (1967) potential surprise is

called ‘degree of confidence in rejection’.

Essentially the same idea was suggested by Cohen (1970, 1973), also in rather

informal terms, and again in a much more rigorous setting by Shafer (1976). Any function f

from a Boolean algebra into the real interval [0,1] is called by Shafer a ‘consonant belief

function’ iff it satisfies the extremal conditions that f(0) = 0 and f(1) = 1, where the

arguments 0 and 1 are the zero and unit of the Boolean algebra, and the condition f(α 3 β) =

min(f(α),f(β)). If we translate from the language of Boolean algebras to that of propositional

languages, we must add of course the condition that whenever Cn(α) = Cn(β), then f(α) =

f(β). This concept is introduced in Chapter 10 of Shafer (1976) as a special case of a more

general notion of ‘belief function’, which forms the main subject of the book, and which

also covers ordinary probability distributions as another special case. Shafer studies some of

the properties of his consonant belief functions, but the concept of a nonmonotonic inference

relation is not on his agenda, nor on that of Zadeh (1978), who defined dual notions

motivated by the perspective of fuzzy sets. These authors do not raise the question of

defining such relations from belief functions.

I.2. Snakes from scales

Scales are one thing; their use is another. Shackle, Shafer and Zadeh had uses for their

gradings, but as we have mentioned, these did not include the generation of nonmonotonic
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inference relations. On the other hand, Spohn (1987) uses a kind of grading to define a

process of belief revision which can be linked with that of nonmonotonic inference in a

manner akin to that described in Section 4.

Spohn’s gradings are also more constrained than those of this paper, but in a different

way. Instead of the real interval, he considers sets that are not only totally but also well-

ordered, so that they may be identified with initial segments of the class of all ordinal

numbers. Moreover, they are, like Shackle's principal gradings, presented dually as

representing degrees of distance from the expected or given. Lesser ordinals are thus taken

as ‘better’ than larger ones.

Valuation functions k, called by Spohn ‘ordinal conditional functions’, are understood

as acting in the first instance on a set of ‘all possible worlds’ for L, with values in the

ordinals, with at least one world getting the ‘best’ value 0. Derivatively, for propositions

α ∈ L, k(α) is defined to be the ‘best’, i.e. the least value of k(w) for worlds w satisfying α

(in the principal case that α is consistent). Belief sets are identified with such valuations, and

so are more complex objects than mere sets of propositions closed under logical conse-

quence as in the Alchourrón, Gärdenfors, and Makinson (1985) approach to belief revision.

Every Spohn grading is (with order reversed) trivially a belief scale in our sense

(although not conversely). Moreover, if k is an ordinal conditional function then the function

f defined by the Shackle identity f(α) = k(¬α) for all α ∈ L, is a belief valuation in our

sense. To verify (F1), note that if Cn(α) = Cn(β) then Cn(¬α) = Cn(¬β) so that the worlds

satisfying ¬α are just those satisfying ¬β, so the least such worlds are the same, so f(α) =

k(¬α) = k(¬β) = f(β) as required. As for (F2), we need only recall Spohn's definition of

k(α), for propositions α, as the minimum value of k(w) for all the worlds w satisfying α,

from which it follows that k(α v β) = min(k(α),k(β)), and then calculate as above with

Shackle's gradings.

Spohn then employs arithmetic functions on the ordinals to define a revision operation

that takes us from a valuation (alias belief set ) k to another valuation k*(α,a) understood as

‘the result of revising a theory k so as to introduce with degree of firmness a > 0 a

proposition α’. We shall not reproduce his definition here, but note that it is possible to

relate it to our construction of a nonmonotonic inference relation. Following Spohn, define
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the set [k] of all propositions ‘accepted’ by a valuation k to be {β ∈ L: k(¬β) > 0}. This is

easily checked to be a set of propositions closed under logical consequence. It is then

possible to show that [k*(α,a)] = {β ∈ L: α f β}, where f is constructed out of k by the

Shackle identity. Thus we can say: the ‘propositional part’ of any Spohn revision function

can be expressed in terms of the nonmonotonic inference relation generated by a suitable

belief valuation. It is not clear whether the converse is also true. We omit the details of the

verification, which of course depend upon those of the arithmetic definition of Spohn’s

revision function *.

In a number of publications beginning with Dubois (1986), Dubois and Prade have

studied, on a formal level, concepts of ‘qualitative possibility’ and dually ‘qualitative

necessity’. As in the present paper, they do so from two perspectives: that of a relation

between propositions, and that of a valuation into a grading scale.

For relations of ‘qualitative necessity’, Dubois' postulates are indeed equivalent to our

conditions (E1) - (E3) for expectation orderings – with the addition of a nontriviality

condition: Ö < Å. For evaluations, Dubois and Prade follow Shackle, Shafer and Zadeh.

Indeed, their ‘qualitative necessity measures’ are exactly the consonant belief functions of

Shafer. The interesting thing, from our point of view, is what they do with the measures.

Following an idea that can be traced back to Hisdal (1978), Dubois and Prade employ

their qualitative necessity measures to develop a notion of ‘conditional possibility’ and

‘conditional necessity’ which, as the names suggest, are intended to serve as an analogy to

the familiar notion of conditional probability. Given a qualititative necessity measure f, the

conditional necessity of γ given α, written N(γ |α), is defined to be equal to f(¬α v γ) in the

case that f(¬α) < f(¬α v γ) and to be zero otherwise. In a recent paper (1991b) they draw

attention to the fact that given such a measure of conditional necessity, one may generate a

nonmonotonic inference relation  by putting α  γ iff Ν(γ |α) > 0. So defined, however,

 does not quite satisfy Reflexivity. When f(¬α) = 1 we have N(α |α) = 0 and thus α ¸ α.

However, by modifying the treatment of this limiting case, putting α  γ iff either

Ν(γ |α) > 0 or α 7 γ, one obtains an inference relation that can easily be shown, using

criterion (2) of Theorem 3.5, to be identical that given by definition (C) or (Cf) of

Section 3 of this paper.
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The theory of nonmonotonic inference relations based on belief valuations, as set out

in this paper, is thus closely related to that of Dubois and Prade. It differs in five respects:

(1) Our scales are arbitrary total orderings, rather than only the real interval [0,1]; (2) we do

not exclude the trivial valuation f, i.e. we allow the possibility that f(Ö) = f(Å); (3) we

generate the inference relation  directly from the valuation, rather than via a notion of

conditional necessity, which is not only indirect but also contains a certain ‘surplus content’

– as far as  is concerned one doesn't ever need to know the value of N(γ |α), but only

whether or not it differs from zero; (4) we modify the treatment of a limiting case in the

generation of  so as to ensure satisfaction of Reflexivity and Supraclassicality; and (5) we

extend a representation result (Theorem 3.8) established in the finite case only by Dubois

and Prade, and give two further representation results (Theorems 3.3 and 3.9) that they do

not consider.

Rott (1991, Section 5), in a study of belief contraction and revision, observed that the

definition of those operations from an epistemic entrenchment relation as given in

Gärdenfors and Makinson (1988), which makes rather unintuitive use of a disjunction (see

rule (C-) in Section 4 of this paper) can be simplified, so that K*α may be defined as

Cn({α} ∪ {β: ¬α < β}) where < is an epistemic entrenchment relation with respect to K. It

is the translation of this into the language of nonmonotonic reasoning that provides the key

rule (C) for generating nonmonotonic inference relations out of expectation orderings in

Section 3.1 of this paper. The idea of definition (C) can also be found, in dual form in the

context of the logic of counterfactual conditionals, in Lewis (1973) Section 2.6.

Finally, it may be noted that to a limited extent, our work with expectation ordering is

reminiscent of Brewka's (1989, 1990, 1991) use of ‘preferred subtheories’ as a way of

handling default reasoning. He too works only with first order formulas, instead of using a

special formalism for default rules as in Reiter (1980). Corresponding to degrees of

epistemic entrenchment, he introduces ‘levels of reliability’ to order the formulas

representing available information and he uses these levels to define nonmonotonic

inferences in much the same way as we do. Poole’s (1988) theory can be seen as a special

case of Brewka’s where there are only two levels of formulas.
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However, there are some crucial differences betwen Brewka’s approach and ours.

Most importantly, his formulas are only supposed to be ordered (he also considers a

generalization where the formulas are only supposed to be partially ordered). There is thus

nothing in his account that corresponds to the postulates (E2) and (E3), which are, of

course, essential for theorems 3.2 and 3.3. There are no corresponding representation

results in Brewka’s work. Furthermore, what is provable in Brewka’s system depends on

the syntactic form of the premises. Finally, on his definition of nonmonotonic inference it is

impossible to derive inconsistent conclusions from any set of premises, whereas on our

approach this happens as soon as the premises are inconsistent themselves.

Appendix II: Proofs of lemmas and theorems

Lemma 2.2. Suppose that Δ = Cn(Δ). If D ∈ Δ⊥α, then D ∈ Δ⊥β for all β ∈ Δ such that

β ∉ D.

Proof. The following verification is a little more direct that that carried out in lemmas 2.1

and 2.4 for the same result in Alchourrón, Gärdenfors, and Makinson (1985). Suppose

D ∈ Δ⊥α, β ∈ Δ, and β ∉ D. First note that since Δ = Cn(Δ), D = Cn(D), so β ∉ Cn(D).

Now suppose D 1 D' 1 Δ; to complete the proof we need to show that β ∈ Cn(D'). For

this it will suffice to show that both α ∈ Cn(D') and ¬α v β ∈ Cn(D'). The former is

immediate from the fact that D ∈ Δ⊥α. For the second, we indeed have ¬α v β ∈ D 1

Cn(D'), for otherwise D 1 D ∪  {¬α  v  β }  1  Δ since Δ  = Cn(Δ ), so again

α ∈ Cn(D ∪ {¬α v β}), so ¬α v β → α ∈ Cn(D). Since this last sentence is classically

equivalent to α, we have α ∈ Cn(D) contradicting D ∈ Δ⊥α.

Theorem 2.3. A nonmonotonic inference relation  satisfies the set of basic postulates if

and only if there exists a closed, consistently generated, expectation inference relation Δ,S

such that α  β iff α Δ,S β, for all α and β.

Proof. From right to left. Suppose   = Δ,S is a closed and consistently generated

expectation inference relation. We want to show that it satisfies the set of basic postulates.
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Supraclassicality and Left Logical Equivalence are trivial. For Right Weakening it is

sufficient to note that if 7 β → γ and α  β, then α → β ∈ D, for all D ∈ S(Δ⊥¬α) and so

α → γ ∈ D, for all D ∈ S(Δ⊥¬α). Hence α  γ. Similarly, for And it follows from α  β

and α  γ that α → β ∈ D and α → γ ∈ D, for all D ∈ S(Δ⊥¬α) and so α → β 3 γ ∈ D,

for all D ∈ S(Δ⊥¬α). Hence α  β 3 γ.

For Consistency Preservation, suppose α  ⊥. this means that for all D ∈ S(Δ⊥¬α) it

holds that ¬α ∈ D, which can only occur when Δ⊥¬α is empty. Thus ¬α ∈ Cn(Ø) and

hence α 7 ⊥.

Before verifying Weak Rational Monotony and Weak Conditionalization, we observe

that since Δ = Cn(Δ) we have that whenever ¬α ∉ Δ then Δ⊥¬α = {Δ}= S(Δ⊥¬α) so that

C(α) = ∩ {Cn({α} ∪  D): D ∈  S(Δ⊥¬α)} = Cn({α} ∪  Δ). In particular, since Δ  is

assumed consistent ¬Å ∉ Δ and thus C(Å) = Cn({Å} ∪ Δ) = Δ.

For Weak Rational Monotony, suppose ¸ ¬α and α ¸ β, i.e., ¬α ∉ C(Å) = Δ and

β ∉ C(α). We want to show that ¸ α → β, i.e., α→β ∉ C(Å). But since ¬α ∉ Δ we have

C(α) = Cn({α} ∪ Δ), so α→β ∉ Cn(Δ) = Δ and we are done.

For Weak Conditionalization finally, suppose ¸ α → β, i.e., α → β ∉ C(Å) = Δ. We

want to show that α ¸ β, i.e., that β ∉ C(α). But since α→β ∉ Δ = Cn(Δ) clearly ¬α ∉ Δ

so C(α) = Cn({α} ∪ Δ) and again since α→β ∉ Δ = Cn(Δ) we have β ∉ Cn({α} ∪ Δ) as

desired.

From left to right: Suppose  satisfies the set of basic postulates. We want to show

that there is a closed, consistently generated expectation inference relation Δ,S such that

α  β iff α Δ,S β, for all α and β.

First of all, put Δ = C(Å). By Closure it follows that Δ = Cn(Δ) and by Reflexivity

Å ∈ C(Å), so Δ is non-empty. Moreover, if Δ is inconsistent under Cn, then ⊥ ∈ Cn(Δ) =

Δ = C(Å) so Å  ⊥, which is impossible by Consistency Preservation. Thus Δ is consistent

under Cn. We define a selection function S as follows. In the limiting case that Δ⊥¬α is

empty (i.e., when ¬α ∈ Cn(Ø)) we put S(Δ⊥¬α) = {Δ}. In the case that Δ⊥¬α = {Δ}

(i.e., when ¬α ∉ Δ) we also put S(Δ⊥¬α) = {Δ}. Finally, when Δ⊥¬α is nonempty and

distinct from Δ  (i.e., when ¬α  ∈ Δ but ¬α  ∉  Cn(Ø)) we put D ∈  S(Δ⊥¬α ) iff

D ∈ Δ⊥¬α and C(α) 1 Cn({α} ∪ D). Note that in the last case, S(Δ⊥¬α) is indeed well-
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defined, in that its identity does not depend upon the choice of α. For if Δ⊥¬α = Δ⊥¬β

and ¬α, ¬β ∈ Δ, then it is easy to show, using compactness of Cn, that Cn(α) = Cn(β)

and thus the inclusion C(α) 1 Cn({α} ∪ D) holds iff the inclusion C(β) 1 Cn({β} ∪ D)

holds.

We need to show that S(Δ⊥¬α) cannot be empty if Δ⊥¬α is not. If Δ⊥¬α ≠ Ø, then

not α 7 ⊥, and hence, by Consistency Preservation, α ¸ ⊥ , i.e., ¬α  ∉  C(α ). Let Γ  =

{α → γ : γ ∈ C(α)}. Now Γ 1 Δ, because if α → γ ∈ Γ, then γ ∈ C(α), so, by Weak

Conditionalization, α → γ ∈ C(Å) = Δ. Hence we have Cn(Γ) 1 Δ. We claim that

¬α ∉ Cn(Γ). For if ¬α ∈ Cn(Γ), there are γ1, ..., γn ∈ C(α) such that (α → γ1) 3 ... 3

(α → γn) 7 ¬α by compactness. It follows that ¬α v (γ1 3  ... 3  γn) 7 ¬α and so

(γ1 3 ... 3 γn) 7 ¬α. But from this we have C(α) 7 ¬α contradicting that α ¸ ⊥. Since

¬α ∉ Cn(Γ) and Γ 1 Δ it follows by compactness there there is some D ∈ Δ⊥¬α with

Γ 1 D. In order to show that D ∈ S(Δ⊥¬α) it remains to show that C(α) 1 Cn({α} ∪ D).

But if γ ∈ C(α), then α → γ ∈ Γ 1 D, so clearly γ ∈Cn({α} ∪ D).

This defines a closed, consistently generated expectation inference relation Δ,S. We

want to show that α  β iff α Δ,S β, for all α and β, which is the same as showing that

C(α) = CΔ,S(α) for all α.

C(α) 1 CΔ,S(α): Suppose that β ∈ C(α). If Δ⊥¬α is empty, it follows that ¬α 87 Å

and hence CΔ,S(α) = Cn({¬Å} ∪ Δ) = L and thus β ∈ CΔ,S(α). If Δ⊥¬α is not empty,

then, by the definition of the selection function S, β ∈ Cn({α} ∪ D) for all D ∈ S(Δ⊥¬α)

and hence β ∈ CΔ,S(α}.

CΔ,S(α) 1 C(α): Suppose that β ∉  C(α). We want to show that β ∉ CΔ,S(α).

Suppose first that ¬α ∉ Δ. Then Δ⊥¬α = {Δ} and hence CΔ,S(α) = Cn({α}∪ Δ). So

clearly it suffices to show that α→β ∉ Δ. Since Δ = C(Å), it follows that ¬α ∉ C(Å) and

since β ∉ C(α) we have by Weak Rational Monotony that α→β ∉ C(Å) = Δ, as desired.

Suppose for the principal case that ¬α ∈ Δ. If Δ⊥(¬α v β) is empty, then β ∈ Cn(α)

and then β ∈ C(α) contradicting our hypothesis. So suppose that Δ⊥(¬α v β) is non-

empty. We have assumed that β ∉ C(α) and hence ¬α v β ∉ C(α). It follows that ¬α v β

∉ C(Å) ∩ C(α) = Δ ∩ C(α) 1 Δ, by the definition of Δ. Since both C(Å) and C(α) are

closed under Cn, so too is their intersection, and so ¬α v β ∉ Cn(C(Å) ∩ Cα)). Hence
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there is a D' ∈ Δ⊥¬α  v  β  such that C(Å ) ∩ C(α ) 1 D'. It follows, using Weak

Conditionalization and Right Weakening that C(α) 1 Cn({α} ∪  D'). This is one

requirement for D' to belong to S(Δ⊥¬α); we must also show that D' ∈ Δ⊥¬α, which is

easily done using Lemma 2.2. Finally, since ¬α  v β  ∉  D', it follows that

β ∉ Cn({α} ∪ D') and hence β ∉ CΔ,S(α).

Theorem 2.4. A nonmonotonic inference relation  satisfies the set of basic postulates

and Cumulativity if and only if there exists a closed, consistently generated expectation infe-

rence relation Δ,S where S satisfies (SC) such that α  β iff α Δ,S β, for all α and β.

Proof. From right to left. Assume that  = Δ,S is an expectation inference relation where

S satisfies (SC). To show that  satisfies Cumulativity suppose that α    β and

β  7 α. We want to show that β  γ iff α  γ. The assumption α    β amounts to

β ∈ Cn({α} ∪ D) for all D ∈ S(Δ⊥¬α). We consider separately the cases that ¬α ∉ Δ and

that ¬α ∈ Δ.

First, suppose that ¬α ∉ Δ. Then {Δ} = Δ⊥¬α = S(Δ⊥¬α) so by the assumption

α  β we have ¬α v β ∈ Δ so that ¬β ∉ Δ. This also means that α  γ iff ¬α v γ ∈ Δ,

and likewise β  γ iff ¬β v γ ∈ Δ. Since Δ is closed under Cn, it will suffice to show that

¬α v β and ¬β v α are both in Δ. But we already have the former, and the latter follows

from the hypothesis that β 7 α.

Next, suppose ¬α ∈ Δ. Since β 7 α we have that ¬β ∈ Δ and also using Lemma 2.2

we get Δ⊥¬β 1 Δ⊥¬α, which is one half of the antecedent of the (SC) condition. To get

the other half, note that if D ∈ S(Δ⊥¬α), then, by our supposition that α  β, ¬α v β ∈ D

and hence ¬β ∉ D, because otherwise ¬α ∈ D.Since ¬β ∈ Δ, we can apply Lemma 2.2 to

conclude D ∈ Δ⊥¬β and thus S(Δ⊥¬α) 1 Δ⊥¬β. The fact that S satisfies (SC) then gives

S(Δ⊥¬β) = S(Δ⊥¬α). Hence if α  γ, i.e., γ ∈ Cn({α} ∪ D) for all D ∈ S(Δ⊥¬α), then

γ ∈ Cn({β} ∪  D) for all D ∈  S(Δ⊥¬β ), i.e., β   γ. Conversely, if β   γ , i.e.,

γ ∈ Cn({β} ∪ D) for all D ∈ S(Δ⊥¬β), then γ ∈ Cn({β} ∪ D) for all D ∈ S(Δ⊥¬α). It

then follows from the assumption α  β, which amounts to β ∈ Cn({α} ∪ D) for all

D ∈ S(Δ⊥¬α), that γ ∈ Cn({α} ∪ D) for all D ∈ S(Δ⊥¬α), i.e., α  γ.
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From left to right: Assume that  satisfies the set of basic postulates and Cumulativity.

Define Δ, S as in the proof of Theorem 2.3 and the expectation inference relation Δ,S as in

Definition 2.1. From that theorem it follows that α  β iff α Δ,S β, for all α and β. We

need to show that S also satisfies (SC). Suppose that S(Δ⊥¬α) 1 Δ⊥¬β 1 Δ⊥¬α. If

¬α ∉ Δ, then S(Δ⊥¬α) = {Δ}, so by the former inclusion and the definition of Δ⊥¬β we

have S(Δ⊥¬β) = Δ⊥¬β = {Δ} = S(Δ⊥¬α) as desired. If ¬β ∉ Δ then Δ⊥¬β = {Δ} so by

the first inclusion and the definition of S(Δ⊥¬α) we have S(Δ⊥¬α) = {Δ} = S(Δ⊥¬β)

again as desired. So suppose that ¬α,¬β ∈ Δ. From the inclusion Δ⊥¬β 1 Δ⊥¬α it then

follows that β 7 α. For any D ∈ S(Δ⊥¬α), it holds that D ∈ Δ⊥¬β and thus ¬β ∉ D from

which it follows that ¬β → ¬α ∈ D by the definition of Δ⊥¬α. Thus β ∈ Cn({α} ∪ D)

for all D ∈ S(Δ⊥¬α), i.e., α  β. From this and β 7 α it follows by Cumulativity that

C(α) = C(β). If D ∈ S(Δ⊥¬α), then C(α) 1 Cn({α} ∪ D) by the definition of S. But

C(α) = C(β) and Cn({α} ∪ D) 1 Cn({β} ∪ D) because β 7 α. Hence D ∈ S(Δ⊥¬β),

again by the definition of S. Conversely, suppose D ∈ S(Δ⊥¬β). Since by hypothesis

S(Δ⊥¬α) 1 Δ⊥¬β and by definition the former cannot be empty, Δ⊥¬β is not empty.

Hence we may say D ∈Δ⊥¬β and hence D ∈ Δ⊥¬α. It follows that α → β ∈ D, by the

definition of Δ⊥¬α. Thus Cn({β} ∪ D) 1 Cn({α} ∪ D). Hence, using the definition of S,

C(α) = C(β) 1 Cn({β} ∪ D) 1 Cn({α} ∪ D). We conclude by the definition of S again

that D ∈ S(Δ⊥¬α).

Theorem 2.6. Any relational closed expectation inference relation Δ,S satisfies Or.

Proof. (The proofs of this and next theorem are basically translations of the corresponding

parts in Observation 4.3 in Alchourrón, Gärdenfors, and Makinson (1985)). Suppose that

γ ∉ C(α v β). We want to show that γ ∉ C(α) or γ ∉ C(β). In the limiting case that

¬(α v β) ∉ Δ we have C(α v β) = Cn({α v β} ∪ Δ) = Cn({α} ∪ Δ) ∩ Cn({β} ∪ Δ)

which includes C(α) ∩ C(β) and we are done. So we may suppose ¬ (α v β) ∈ Δ so that

¬α, ¬β ∈ Δ. From γ ∉ C(α v β) it follows that there is some D ∈ S(Δ⊥¬(α v β)) such

that α v β → γ ∉ D. Hence α → γ ∉ D or β → γ ∉ D. Assume the former, the latter is

parallel. Since α → γ ∉ D we know that ¬α ∉ D and hence D ∈ Δ⊥¬α by Lemma 2.2

since ¬α ∈ Δ. We want to show that D ∈ S(Δ⊥¬α). Suppose D' is any set in Δ⊥¬α.
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Since ¬(α  v  β) ∉ D', it follows by Lemma 2.2 again that D' ∈  Δ⊥¬(α  v  β). By

relationality D ⁄ D' and since D' is an arbitrary set in Δ⊥¬α it follows that D ∈ S(Δ⊥¬α)

and hence that γ ∉ C(α) = ∩{Cn({α} ∪ D): D ∈ S(Δ⊥¬α)}.

Theorem 2.7. Any transitively relational closed expectation inference relation Δ,S

satisfies Rational Monotony (as well as Or and thus also Cumulativity).

Proof. Assume that ¬α ∉ C(β) and γ ∈ C(β), but γ ∉ C(α3β); we want to derive a

contradiction. We need to divide the argument into two cases.

Case 1: Suppose ¬β ∉ Δ. Then Δ⊥¬β = {Δ} so S(Δ⊥¬β) = {Δ}; hence C(β) =

Cn(Δ  ∪  {β}), so ¬α  ∉  Cn(Δ  ∪ {β}), i.e., β  → ¬α  ∉Cn(Δ ) = Δ . It follows that

Δ⊥¬(α3β) = {Δ} and hence S(Δ⊥¬(α3β)) = {Δ}, so C(β) 1  Cn(Δ ∪ (α 3  β}) =

C(α 3 β). Since γ ∈ C(β) we have γ ∈ C(α 3 β) giving a contradiction.

Case 2: Suppose ¬β ∈ Δ. Then since Δ = Cn(Δ) we have ¬(α3β) ∈ Δ too. From the

fact that ¬α ∉C(β) it follows that there is some D ∈ S(Δ⊥¬β) such that β → ¬α ∉ D.

Hence ¬(α3β) ∉ D and Lemma 2.2 gives us D ∈ Δ⊥¬(α3β). From the assumption that

γ ∉ C(α3β) it follows that there is some D'∈ S(Δ⊥¬(α3β)) such that α3β → γ ∉ D'.

Relationality gives us D' ⁄ D. But since α3β → γ ∉ D' it follows that ¬β ∉ D' and hence

by Lemma 2.2 that D' ∈ Δ⊥¬β . But since D' ⁄ D it follows by transitivity that

D' ∈ S(Δ⊥¬β). From the fact that γ ∈ C(β) we then conclude that β → γ ∈ D' and hence

α3β → γ ∈ D' which gives us the desired contradiction.

Lemma 2.8. Suppose that Δ = Cn(Δ) and α, β ∈ Δ. Then Δ⊥α3β = Δ⊥α ∪ Δ⊥β.

Proof. This is lemma 4.1 of Alchourrón, Gärdenfors and Makinson (1985). For

completeness, we recall the proof, which is an easy application of Lemma 2.2. If

D ∈ Δ⊥α3β then α3β ∉ D so α ∉ D or β ∉ D so by Lemma 2.2 either D ∈ Δ⊥α or

D ∈ Δ⊥β. Conversely, if D ∈ Δ⊥α or D ∈ Δ⊥β then D ¢ α3β and by Lemma 2.2 again

D ∈ Δ⊥α3β.

Lemma 2.9. Suppose that Δ = Cn(Δ) and D∈ Δ⊥α. Then Δ % Cn(D ∪ {α}).
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Proof. We recall the verification from Alchourrón and Makinson (1982). If β ∈ Δ = Cn(Δ)

then ¬αvβ ∈ Δ. To show β ∈ Cn(D ∪ {α}) it will clearly suffice to show ¬αvβ ∈ D. But

if ¬αvβ ∉ D then since ¬αvβ ∈ Δ we have D ∪ {¬αvβ} 7 α so by assumed properties of

the background consequence operation (Section 1.2) we have D 7 α contradicting

D ∈ Δ⊥α.

Lemma 2.10. Suppose that Δ = Cn(Δ), ¬α ∈ Δ and D ∈ Δ⊥¬α. Then:

(a) D = Cn(D ∪ {α}) ∩ Δ

(b) C(α) % Cn(D ∪ {α}) iff C(α) ∩ Δ % D, whenever C satisfies Right Weakening.

Proof. For (a) the left to right inclusion is immediate. For its converse, suppose β ∈ Δ and

β ∈ Cn(D ∪ {α}). Since D ∈ Δ⊥¬α and β ∈ Δ we have by Lemma 2.9 that also

β ∈ Cn(D ∪ {¬α}) so, by assumed properties of Cn, β ∈ Cn(D) = D as required.

For (b), the left to right implication is immediate from (a). For the converse

implication, suppose C(α) ∩ Δ % D, where C satisfies Right Weakening, and that

β ∈ C(α). Then clearly ¬αvβ ∈ C(α) ∩ Δ % D so that β ∈ Cn(D ∪ {α}) as required.

Lemma 2.11. Let  be any inference relation satisfying the extended set of postulates. If

α  γ and ¬α 7 γ then αvβ  γ for any β.

Proof. This lemma parallels observation 3.3 of Alchourrón, Makinson and Gärdenfors

(1985) and its proof is similar. Suppose α  γ and ¬α 7 γ. Now αvβ 87 α v (β3¬α) so

it will suffice to show α v (β3¬α)  γ. By Or it will suffice to show both α  γ and

β3¬α  γ. We have the former by supposition. For the latter, our supposition ¬α 7 γ

gives us β3¬α 7 γ so by Reflexivity β3¬α  γ as desired.

Theorem 2.12. An inference relation  satisfies the extended set of postulates iff there is

a closed, consistently generated, and transitively relational expectation inference relation

Δ,S with  = Δ,S.

Proof. Right to left is already given by theorems 2.3, 2.6, 2.7, so we need only show the

left to right implication. Suppose  satisfies the extended set of postulates. Define Δ, S as

in the proof of Theorem 2.3. Then by that theorem,  = Δ,,S and Δ,S is closed and
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consistently generated. The additional point that remains to be proven is that Δ,S is

transitively relational, i.e. that there is a transitive relation ⁄ over the subsets of Δ = Cn(Δ)

such that for all α with ¬α∉ Cn(Ø):

(∗) S(Δ⊥¬α) = {D ∈ Δ⊥¬α: D ⁄ D' for all D' ∈ Δ⊥¬α}

We define ⁄ as follows: put D ⁄ D' iff D, D' are subsets of Δ and either D = D' = Δ or else the

following three conditions all hold:

(i) D' ∈ Δ⊥¬ψ for some ¬ψ ∈ Δ,

(ii) D ∈ Δ⊥¬ϕ for some ¬ϕ ∈ Δ with C(ϕ) % Cn(D ∪ {ϕ})

(iii) For all γ, if D, D' ∈ Δ⊥¬γ and C(γ) % (D' ∪ {γ}) then C(γ) % Cn(D ∪ {γ}).

This definition of ⁄, and the argument that follows, are essentially translations of those

used in the context of belief contraction in observation 4.4 of Alchourrón, Gärdenfors and

Makinson (1985). Nevertheless, we write the proof out in full, as the details are rather

tricky. We need to show that the identity (*) holds and that the relation ⁄ is transitive.

Verification of the identity (*). Suppose ¬α ∉ Cn(Ø). In the limiting case that ¬α ∉ Δ,

clearly the left and right hand sides of (*) are both equal to {Δ}, using the initial part of the

definition of ⁄. So we suppose without loss of generality that ¬α ∈ Δ.

For the left to right inclusion, suppose D ∈ S(Δ⊥¬α). Then by the definition of S (see

proof of Theorem 2.3) we have D ∈ Δ⊥¬α and C(α) % Cn(D ∪ {α}). Now let

D' ∈ Δ⊥¬α; we need to show D ⁄ D', i.e. we need to show conditions (i), (ii), (iii) above.

Our suppositions give us (i) and (ii) directly, putting ψ = ϕ = α. For (iii), let γ be any

formula and suppose D, D' ∈ Δ⊥¬γ, C(γ) % Cn(D' ∪ {γ} ) and γ  δ whils t

δ ∉ Cn(D ∪ {γ}); we seek a contradiction.

First note that from the last hypothesis ¬γvδ ∉ Cn(D) = D. Also note that ¬γvδ ∈ Δ,

for ¬α ∈ Δ and D ∈ Δ⊥¬α gives D ≠ Δ and so since D ∈ Δ⊥¬γ we have ¬γ ∈ Δ so

¬γvδ ∈ Δ. Thus we may apply Lemma 2.2 to conclude that Δ⊥¬α = Δ⊥¬γvδ, so

D ∈ Δ⊥¬γvδ so by Lemma 2.9, D ∪ {¬γvδ} 7 ¬α. We now split the argument into two

cases, according to whether γ  ¬α.
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In the case that γ ¸ ¬α we can apply Rational Monotony to the supposition γ  δ to

conclude α3 γ  δ so by Conditionalization α  ¬γvδ, i.e., ¬γvδ ∈ C(α) %

Cn(D ∪ {α}) so by the logic of Cn we have D ∪ {¬(¬γvδ)} 7 ¬α. Putting this together

with D ∪ {¬γvδ} 7 ¬α, already established, gives us D 7 ¬α contradicting D ∈ Δ⊥¬α.

In the case that γ  ¬α we recall the supposition C(γ) % Cn(D' ∪ {γ}) to conclude

¬α ∈ Cn(D' ∪ {γ}). But since by supposition D' ∈ Δ⊥¬γ and ¬α ∈ Δ we also have by

Lemma 2.9 that ¬α ∈ Cn(D' ∪ {¬γ}). Putting these two together gives us again D' 7 ¬α

contradicting D' ∈ Δ⊥¬α.

This completes the verification of the left to right inclusion of (*). For the right to left,

suppose D ∈ Δ⊥¬α, but D ∉ S(Δ⊥¬α). We need to find a D' ∈ Δ⊥¬α such that not

D ⁄ D'. By the definition of S, since ¬α ∉ Cn(Ø) and ¬α ∈ Δ and the supposition just

made we have C(α) ˘  Cn(D ∪ {α}). To construct an appropriate D', first put X =

{¬αvβ: α  β} . Since ¬α ∈ Δ = Cn(Δ), X % Δ. Also X ¢ ¬α: otherwise by

compactness and classical logic ¬α v (β1 3 ... 3 βn) 7 ¬α where α  βi for all i ≤ n, so

β13 ... 3βn 7 ¬α so by And and Right Weakening for , α  ¬α so by Consistency

Preservation ¬α ∈ Cn(Ø) contradicting D ∈ Δ⊥¬α.

Since X ¢ ¬α and X % Δ we have by compactness of Cn that there is a D' ∈ Δ⊥¬α

with X % D'. We claim that not D ⁄ D'. Since D ∈ Δ⊥¬α and ¬α ∈ Δ we know that D' ≠

Δ. So to show that not D ⁄ D' we need only show that condition (iii) fails. Since C(α) ˘

Cn(D ∪ {α}) it will suffice to show that C(α) % Cn(D' ∪ {α}). But whenever α  β then

by construction ¬αvβ ∈ X % D' so β ∈ Cn(D' ∪ {α}) as desired.

Verification that ⁄ is transitive. Suppose D ⁄ D' ⁄ D"; we want to show D ⁄ D". If D = D' = D"

= Δ we are done. Suppose one of D, D', D" is distinct from Δ. Then it is clear from the

hypothesis and the definition of ⁄ that they all are. We need to show that (i) holds for D", (ii)

holds for D, and (iii) holds for the pair D, D".

That (i) holds for D" is immediate from D' ⁄ D" and D" ≠ Δ. That (ii) holds for D is

likewise immediate from D ⁄ D' and D' ≠ Δ. For condition (iii), let γ be any formula and

suppose D, D" ∈ Δ⊥¬γ and C(γ) % Cn(D" ∪ {γ}); we need to show that C(γ) %
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Cn(D ∪ {γ}). Since D ≠ Δ clearly ¬γ ∈ Δ. Hence by lemma 2.10 (b) we have C(γ) ∩ Δ %

D" and we need only show that C(γ) ∩ Δ % D.

Since D' ⁄ D" and D" ≠ Δ we know from condition (ii) for D' that there is a ¬β ∈ Δ

with D' ∈ Δ⊥¬β  and C(β) % Cn(D' ∪ {β}). Note that since ¬β, ¬γ ∈ Δ we have

¬β3¬γ ∈ Δ so by Lemma 2.8, Δ⊥(¬β3¬γ) = Δ⊥¬β ∪ Δ⊥¬γ. Hence all of D, D', D" ∈

Δ⊥(¬β3¬γ) = Δ⊥¬(βvγ). Note also that to show C(γ) ∩ Δ % D and complete the proof, it

will suffice to show C(βvγ) ∩ Δ % D. For then, if γ  δ and δ ∈ Δ then γ  ¬γvδ whilst

of course ¬γ 7¬γvδ so, by Lemma 2.11, βvγ  ¬γvδ so ¬γvδ ∈ D and thus since

D ∈ Δ⊥¬γ we can conclude δ ∈ D as needed.

Indeed, it will suffice to show C(βvγ) ∩ Δ % D'. For then by Lemma 2.10 (b),

C(βvγ) % Cn(D' ∪ {βvγ}) and since D ⁄ D' we may apply condition (iii) to the pair D, D' to

conclude that C(βvγ) % Cn(D ∪ {βvγ}) and thus by Lemma 2.10 (b) again that C(βvγ) ∩ Δ

% D.

Now either C(βvγ) %  C(β) or C(βvγ) %  C(γ): otherwise there are ϕ, ψ with

βvγ  ϕ, β ¸ ϕ, βvγ  ψ, γ ¸ ψ so that βvγ  ϕ3ψ whilst β ¸ ϕ3ψ and γ ¸ ϕ3ψ

contradicting Disjunctive Rationality, which is a consequence of the extended set of

postulates (see section 1.3). We consider the two cases in turn, showing that in each case

C(βvγ) ∩ Δ % D' and thus completing the proof.

Suppose for the first case that C(βvγ) % C(β). Recall that C(β) % Cn(D' ∪ {β}) (go

back three paragraphs) whilst ¬β ∈ Δ and D' ∈ Δ⊥¬β so by Lemma 2.10 (b) C(β) ∩ Δ %

D' so by the condition of the case C(βvγ) ∩ Δ % D' and we are done.

Suppose for the second case that C(βvγ) % C(γ). Recall that C(γ) ∩ Δ % D" (go back

five paragraphs) so by the condition of the case C(βvγ) ∩ Δ % D". But since D' ⁄ D" we

may apply condition (iii) to the pair D', D" and the formula βvγ to conclude that

C(βvγ) ∩ Δ % D' and once again we are done.

Theorem 3.2. Let ≤ be an expectation ordering over L. Then the inference relation  that

it determines by (C) satisfies the extended set of postulates of Section 1.3.
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Proof. We verify the reduced list given in Section 1.3.The verifications are all quite

straightforward, but we give them in full. For the proof we use (C) in the form α  γ iff

either α 7 γ or there is a β ∈ L with α 3 β 7 γ and ¬α < β

Supraclassicality is immediate from the definition. For Left Logical Equivalence,

suppose Cn(α) = Cn(α'), and suppose α  γ; we need to show that α'  γ. If α 7 γ then

clearly α ' 7 γ and it follows from (C) that α '   γ so we are done. Suppose for the

principal case that there is a β ∈ L with α 3 β 7 γ and ¬α < β, i.e., not β ≤ ¬α. Since

Cn(α) = Cn(α ') we have α ' 3  β 7  γ; it remains to check that ¬α ' < β, i.e. that not

β ≤ ¬α'. Now, since Cn(α) = Cn(α') we have ¬α' 7 ¬α so that by (E2) ¬α' ≤ ¬α so by

transitivity since not β ≤ ¬α we have not β ≤ ¬α' as desired.

For And, suppose α  γ and α  δ; we want to show α  γ 3 δ. In the case α 7 γ,

α 7 δ we have α 7 γ 3 δ and so α   γ 3 δ as desired. In the case α 7 γ, α 3 β 7 δ,

¬α < β we have α 3 β 7 γ 3 δ and we are done. The third case is similar. In the principal

case that α 3 β 7 γ, ¬α < β, α 3 β' 7 δ, ¬α < β' we have α 3 (β 3 β') 7 γ 3 δ, and by

(E3) we have either β ≤ β 3 β' or β' ≤ β 3 β' so that ¬α < β 3 β', and thus α  γ 3 δ as

required.

For Or, suppose α  γ and α'  γ; we want to show that α v α'  γ. In the case

α 7 γ, α' 7 γ we clearly have α v α' 7 γ and so α v α'  γ. In the case α 7 γ, α' 3 β 7 γ,

¬α' < β we have (α v α') 3 β 7 γ and ¬(α v α') 7 ¬α' so ¬(α v α') ≤ ¬α' < β and we

are done. The third case is similar. In the case α 3 β 7 γ, ¬α < β, α' 3 β' 7 γ, ¬α' < β'

we have (α v α ') 3  (β 3  β ') 7 γ and ¬(α v α ') 7 ¬α,¬α ' so that ¬(α v α ') ≤ ¬α,¬α '

so ¬(α v α') < β, β' so using (E3) ¬(α v α') < β 3 β' and we are done.

For Rational Monotony, suppose α  γ and α ¸ ¬δ; we need to show α 3 δ  γ. In

the case that α 7 γ we have α 3 δ 7 γ and so α 3 δ  γ as desired. In the case α 3 β 7 γ,

¬α < β, we have (α 3 δ) 3 β 7 γ so that we need only check that ¬(α 3 δ) < β. Now

noting that α 3  ¬(α 3  δ) 7 ¬δ, we conclude from our negative hypothesis that not

¬α  < ¬(α 3  δ), i.e., that ¬(α 3  δ) ≤ ¬α . Thus using the hypotheses of the case,

¬(α 3 δ) ≤ ¬α < β and we conclude by transitivity.

For Consistency Preservation, suppose α    γ 3  ¬γ, we need to show that

α 7 γ 3 ¬γ. Suppose α ª γ 3 ¬γ ; we derive a contradiction. By the definition of  there is
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a β with α 3  β 7 γ 3  ¬γ and ¬α < β. From the former we have β 7 ¬α so by (E2),

β ≤ ¬α contradicting ¬α < β.

Finally for Cut we need to show that if α  γ and α 3 γ  δ then α  δ.Suppose that

α  γ and α 3 γ  δ. In the case that α 7 γ we have Cn(α) = Cn(α 3 γ) so by Left Logical

Equivalence it follows that α  δ as desired. Suppose then that α 3 β 7 γ, ¬α < β. If

α 3  γ  7  δ  we have α 3  β  7  δ , ¬α  < β  so α    δ  as desired. So suppose that

(α 3  γ) 3  ε 7  δ, ¬(α 3  γ) < ε. Then α 3  (β 3  ε) 7  δ so we need only check that

¬α < β 3 ε, for which it suffices to have ¬α < β, ¬α < ε. We have the former by the

conditions of the case. As for the latter, we have by (E2) and our suppositions that

¬α ≤ ¬(α 3 γ) < ε and we are done.

Theorem 3.3. Let  be any inference relation on L that satisfies the extended set of

postulates. Then   is a comparative expectation inference relation, i.e., there is an

expectation ordering ≤ over L such that  = ≤.

Proof. Define α ≤ β iff either α 3 β ∈ Cn(∅) or ¬(α 3 β) ¸ α.

Before beginning, we note that Consistency Preservation can also be expressed in the

form: if ¬α   α then α ∈ Cn(∅). For clearly ¬α 7 ¬α so that by Supraclassicality

¬α   ¬α so if ¬α   α then by And ¬α   α 3  ¬α so by Consistency Preservation

¬α 7 α 3 ¬α and thus α ∈ Cn(∅).

To verify the dominance condition (E2), suppose α 7 β and ¬(α 3 β)  α; we need

to show that α 3  β ∈ Cn(∅ ). By the first supposition, ¬(α 3  β ) 7  ¬α  so by

Supraclassicality ¬(α 3 β)  ¬α. Hence by the second supposition using And, ¬(α 3 β)

 α 3 ¬α so that by Consistency Preservation α 3 β ∈ Cn(∅) as desired.

For the conjunction property (E3), suppose that ¬(α 3  (α 3  β))   α  and

¬(β 3 (α 3 β))  β; it will suffice to show that (α 3 (α 3 β) ∈ Cn(∅). The hypotheses

give, by Left Logical Equivalence and And, that ¬(α 3 β)  α 3 β so by Consistency

Preservation α 3 β ∈ Cn(∅) and thus (α 3 (α 3 β) ∈ Cn(∅) as required.

The tricky condition is transitivity (E1). Suppose for reductio ad absurdum that not

α ≤ γ whilst α ≤ β and β ≤ γ. Unpacking the definition of ≤ we thus have the hypotheses

that ¬(α 3 γ)  α and α 3 γ ∉ Cn(∅); whilst either α 3 β ∈ Cn(∅) or ¬(α 3 β) ¸ α,
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and either β 3 γ ∈ Cn(∅) or ¬(β 3 γ) ¸ β. We break the argument into three cases, of

which the last is the principal, and delicate, one.

Case 1: Suppose α 3 β ∈ Cn(∅). Then clearly ¬(β 3 γ) 7 β so by Supraclassicality

¬(β 3  γ)   β so by the last hypothesis β 3  γ ∈ Cn(∅), so we have α 3  γ ∈ Cn(∅)

contradicting the second hypothesis.

Case 2: Suppose β 3 γ ∈ Cn(∅). Then clearly Cn(¬α) = Cn(¬(α 3 γ)) so by the first

hypothesis and Left Logical Equivalence we have ¬α  α, so by Consistency Preservation

α ∈ Cn(∅), and thus again α 3 γ ∈ Cn(∅) contradicting the second hypothesis.

Case 3: Suppose for the principal case that α 3 β ∉ Cn(∅) and β 3 γ ∉ Cn(∅), so

that ¬(α 3  β) ¸ α and ¬(β 3  γ) ¸ β. First we observe that ¬α v ¬β v ¬γ   α. For

clearly we have α 3 ¬β 7 α, so α 3 ¬β  α by Supraclassicality, so by Or, using the

hypothesis of the proof that ¬(α 3 γ)  α, we have ¬(α 3 γ) v (α 3 ¬β)  α, so that by

Left Logical Equivalence ¬α v  ¬β v  ¬γ    α . From this we see that also

¬α v ¬β v ¬γ  β. For the hypothesis of the case that ¬(α 3 β) ¸ α tells us by Left

Logical Equivalence that (¬α v ¬β v ¬γ) 3 ¬(α 3 β) ¸ α; so we may apply Rational

Monotony to conclude that ¬α v ¬β v ¬γ  ¬¬(α 3 β) and so, by Right Weakening,

¬α v ¬β v ¬γ  β. From this we see that in turn ¬α v ¬β v ¬γ  γ. For the hypothesis

of the case that ¬(β  3  γ ) ¸ β  tells us by Left Logical Equivalence that

(¬α v ¬β v ¬γ) 3 ¬(β 3 γ) ¸ β so we may again apply Rational Monotony to conclude

that ¬α v ¬β v ¬γ  ¬¬(β 3 γ) so that by Right Weakening ¬α v ¬β v ¬γ  γ. Putting

these three points together by And we get ¬α v ¬β v ¬γ   α 3  β  3  γ, so that by

Consistency Preservation α 3 β 3 γ ∈ Cn(∅) contradicting the hypothesis α 3 γ ∉ Cn(∅).

It remains to show  = ≤. We recall the definition (C) of the latter: α ≤ γ iff

either α 7 γ or there is a β with α 3 β 7 γ and ¬α < β, i.e. not β ≤ ¬α, i.e., using the

definition of ≤ above, β 3 ¬α ∉ Cn(Ø) and ¬(β 3 ¬α)  β.

Suppose first α  γ; we want to show α ≤ γ. If ¬α ∈ Cn(Ø), then α 7 γ and we are

done. So suppose ¬α  ∉  Cn(Ø). Put β  = ¬α  v  γ. Clearly α  3 β 7 γ. Also clearly

β 3 ¬α = (¬α v γ) 3 ¬α 87 ¬α ∉ Cn(Ø) by hypothesis. Finally, ¬(β 3 ¬α) 87 α  γ

7 ¬α v γ = β so by hypothesized properties of , ¬(β 3 ¬α)  β as desired.



— 55 —

For the converse, suppose α ≤ γ; we want to show α  γ. Now if α 7 γ we have

α  γ by Supraclassicality and we are done. So we may suppose that there is a β with

α 3 β 7 γ, β 3 ¬α ∉ Cn(Ø) and ¬(β 3¬α)  β. Noting that α 87 (α v ¬β) 3 α it will

suffice to show (α v ¬β) 3 α  γ. By Rational Monotony, it will thus suffice to show both

α v ¬β  γ and α v ¬β ¸ ¬α.

For the former, the hypothesis ¬(β 3 ¬α)  β gives by Left Logical Equivalence that

α v ¬β  β, whilst the hypothesis α 3 β 7 γ gives (α v ¬β) 3 β 7γ so by Supraclassi-

cality (α v ¬β) 3 β  γ. Putting the two together with Cut gives α v ¬β  γ as needed.

For the latter, i.e., α v ¬β ¸ ¬α, it will clearly suffice to show that α v ¬β  α but

α v ¬ β ¸ α  3 ¬ α.  By Consistency Preservation the latter follows from α v ¬β ª

α 3 ¬α, i.e. from the hypothesis that β 3 ¬α ∉ Cn(Ø). As for α v ¬β  α we already

have α v ¬β  β and also of course α v ¬β  α v ¬β, so by And and Right Weakening,

α v ¬β  α, completing the proof.

Theorem 3.4. Expectation orderings and belief valuations generate precisely the same

class of nonmonotonic inference relations.

Proof: Let f be any belief valuation into a belief scale (S,⁄). For all α,β ∈ L, define

α ≤f β, or more briefly α ≤ β when the context is clear, to hold iff f(α) ⁄ f(β). Then ≤f is an

expectation ordering over L. Clearly it satisfies (E1), i.e. it is transitive. It satisfies

dominance, (E2), for if α 7 β we have f(α) ⁄ f(β) as already shown in Section 3.2 so that

α ≤ β by the definition of ≤. For the conjunction property (E3) we have either f(α) =

min(f(α),f(β)) = f(α 3 β) or f(β) = min(f(α),f(β)) = f(α 3 β) so either f(α) ⁄ f(α 3 β) or

f(β) ⁄ f(α 3 β) and thus either α ≤ α 3 β or β ≤ α 3 β as desired. Moreover, it is clear

from the definitions (C) and (Cf) that f generates the same inference relation as does the

associated expecta-tion ordering ≤f = ≤, for we have f(¬α) Œ  f(β) iff ¬α  < β , so that

α f γ iff α ≤ γ.

Conversely, let ≤ be an expectation ordering over L. We define a belief scale (S,⁄) and

valuation f by taking a quotient structure over (L,≤) as follows. Put α ≈ β, for α,β ∈ L, iff

both α ≤ β and β ≤ α. It is immediate from the conditions (E1) to (E3) that ≈ is an

equivalence relation well-behaved under ≤ (i.e. α ' ≈ α and β ≈ β ' implies α ≤ β iff
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α' ≤ β'), so we may put S to be the set of all equivalence classes under ≈, put f: L æ S to be

the canonical valuation f(α) = |α| = {α' ∈ L: α ≈ α'}, and finally put f(α) ⁄ f(β) iff α ≤ β,

observing that ⁄ is thus well-defined. It is trivial to verify that ⁄ is transitive, connected and

antisymmetric, and that both (F1) and (F2) hold, so that (S,⁄) is indeed a belief scale and f is

indeed a belief valuation into it. Moreover, it is again clear that ¬α < β iff f(¬α) Œ f(β), so

that the inference relations ≤ and f generated under definitions (C) and (Cf)

respectively, are identical.

Theorem 3.5. Let ≤ be any expectation ordering. Then for all sentences α , γ, the

following are equivalent:

(1) γ ∈ Cn({α} ∪ {β: ¬α < β})

(2) either α 7 γ or ¬α < α → γ

(3) either α 7 γ or α → ¬γ < α → γ

(4) either α 7 γ or α → γ is in the greatest cut of ≤ that does not contain ¬α.

Proof. We first prove that (1) entails (2) Suppose γ ∈ Cn({α} ∪ {β: ¬α < β}). Since Cn

satisfies the deduction theorem we have α → γ ∈ Cn({β: ¬α < β}). But it is easy to see,

using compactness of Cn and properties of ≤, that {β: ¬α < β} is either empty or else

closed under Cn. So either α 7 γ or ¬α < α → γ as desired for (2).

Next we show that (2) implies (3). In the case α 7 γ we are done. So suppose

¬α < α → γ, and suppose for reductio ad absurdum that α → γ ≤ α → ¬γ. Then we have

¬α < α → γ ≤ α → ¬γ so by properties of ≤, ¬α < (α → γ) 3 (α → ¬γ) 7 ¬α, so by

properties of ≤, ¬α < ¬α, giving a contradiction.

Next step is to show that (3) entails (1). If α 7 γ, then (1) is immediate. In the other

case, we recall that ¬α  7 α  → ¬γ  so by (E2) ¬α  ≤ α  → ¬γ < α  → γ, so that

α → γ ∈ {β: ¬α < β}and it follows that γ ∈ Cn({α} ∪ {β: ¬α < β}) as required for (1).

Finally, we need to show the equivalence of (4) to e.g. (2). It suffices to show that

{β: ¬α < β} is in fact the greatest cut of ≤ that does not contain ¬α. Clearly it is a cut of ≤

that does not contain ¬α. And any superset of it most contain some β with β ≤ ¬α and so

any greater cut must contain ¬α.
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Theorem 3.8. For every expectation ordering ≤ over L, there is a nice preferential model

M = ‡M,;,‹° such that M = ≤.

Proof. Put M to be the collection of all maximally consistent (under Cn) sets of

propositions of L. For each m ∈ M, define m ; α to hold for propositions α ∈ L, iff

α ∈ m. The key definition is that of the relation ‹  over M. For m,n ∈ M we put m ‹ n iff for

some proposition α ∈ L we have β ∈ m for every β ∈ L with α ≤ β, but α ∉ n. In other

words, writing α+ for {β ∈ L: α ≤ β}, iff for some proposition α we have α+
1 m but α

∉ n.

We need to verify that M has all the required properties. Some are immediate: that M is

ample (by compactness of Cn), that ; is classical, and that ‹ is irreflexive.

For the transitivity of ‹, suppose m ‹ n ‹  p. Then by the definition of ‹ there are α,β ∈

L such that α+ 1 m, α ∉ n, and β+ 
1 n, β ∉ p. Now by the conditions on an expectation

ordering, either α ≤ β or β ≤ α. But the latter is impossible since β+ 
1 n whilst α ∉ n.

Since α  ≤ β  we clearly have β+ 1  α+, so β+ 
1  m whilst β  ∉  p which gives us

m ‹ p as desired.

For the rankedness of ‹ , suppose m ‹ n and not p ‹  n; we need to show that

m ‹ p. Since m ‹ n, there is an α ∈ L with α+ 
1 m, α ∉ n. Since not p ‹  n we have that for

every β ∈ L, if β+ 1 p then β ∈ n, so in particular since α ∉ n we have α+
$ p. Hence

there is a γ ∈ α+ with γ ∉  p. But since γ ∈ α+, clearly γ+ 
1  α+, so γ+ 1  m. Thus

γ+ 1 m whilst γ ∉ p, so that m ‹ p as required.

Before verifying finitary stoppering and M = ≤, we make the following remark: Let

α be any proposition in L, and consider the set C≤(α) = {γ ∈ L: α ≤ γ}, i.e., recalling

definition (C) in Section 3.1, C≤(α) = Cn({α} ∪ {β ∈ L: ¬α < β)}. From Theorem 3.2

we know that ≤ satisfies both Consistency Preservation and And, hence by the

compactness of Cn we know that whenever α is consistent under Cn so is C≤(α).

For finitary stoppering, suppose m ; α. We want to find an n ∈ M with n ; α, either

n ‹  m or n = m, and such that there is no p ∈ M with both p ; α and p ‹ n. Since m ; α and

; is classical, α is consistent under Cn and thus by the remark above so is C≤(α), so since

M is ample there is an m' ∈ M with C≤(α) 1 m'. Clearly α ∈ m', i.e. m' ; α. We define n
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thus: if m' ‹  m we put n = m'; if not m' ‹  m we put n = m. Then

n ; α and either n ‹  m or n = m. It remains to show that there is no p ∈ M with p ‹ n and p ;

α. Suppose there is such a p. Then by the definition of ‹ , there is a γ with γ+ 1 p and γ ∉ n.

Hence ¬α ∉ γ+, i.e., not γ ≤ ¬α, so ¬α < γ, so γ+ 
1  C≤(α), so since C≤(α) 1  m' we

have γ+ 
1 m'.

In the case that m' ‹  m we have put n = m', which gives us γ+ 1 n, so γ ∈ n giving a

contradiction.

In the case that not m' ‹  m we have put n = m, and by the definition of ‹, for every

proposition δ, δ+ 1 m' implies δ ∈ m, so in particular since γ+ 1 m' we have γ ∈ m = n,

again giving a contradiction and completing the verification of stoppering.

It remains to show that ≤ = M. Recall the definitions: α ≤ γ iff γ ∈ Cn({α} ∪

{β ∈ L: ¬α < β}) whilst α  γ iff m ; γ for all m ∈ M with m ;‹ α. Given that M contains

all maximal sets of propositions consistent under Cn, it will suffice to show that for all m ∈

M, m ;‹ α iff both m ; α and also m ; β for all β with ¬α < β.

Suppose m ;‹ α. Then clearly m ; α. Suppose ¬α < β; we want to show that m ; β.

Since m ; α, α is consistent under Cn, so by our earlier remark the set C≤(α) is consistent

under Cn and so is included in some maximally consistent n which, by the definition of M is

in M. Now clearly n ; α and so since m ;‹ α we have not n ‹ m. Hence for all γ ∈ L, γ+
1

n implies γ ∈ m. But since ¬α < β we have ¬α < δ for all δ with β ≤ δ, which is to say

that β+ 
1 C≤(α) 1 n, so that setting γ = β we have β ∈ m, i.e., m ; β as desired.

Conversely, suppose m ; α and m ; β for all β with ¬α < β. Suppose p ‹  m; we need

to show p 5 α. Since p ‹  m, there is a γ ∈ L with γ+ 1 p, γ ∉ m. From the latter, not ¬α <

γ, i.e., γ ≤ ¬α, so from the former ¬α ∈ p, so p 5 α and we are done. 

Theorem 3.9. Let M  = ‡ M,;,‹° be any nice preferential model. Then there is an

expectation ordering ≤ over L such that ≤ = M.

Proof. For each proposition α ∈ L, define g(α) = {m ∈ M: n ; α for all n ∈ M with

n ‹  m}. Note that {m: m ;‹ ¬α} 1 g(α) though not conversely. Define the relation ≤ over L

by the rule: α ≤ β iff g(α) 1 g(β). We need to verify that ≤ is an expectation ordering over

L, with ≤ = M.
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Condition (E1), i.e. transitivity of ≤, is immediate from the definition. For (E2),

dominance, suppose α 7 β. Then, by the definition of g, we have immediately that

g(α) 1 g(β), so α ≤ β as required. For (E3), the conjunction property, we need to show

that either g(α) 1 g(α 3 β) or g(β) 1 g(α 3 β). Suppose for reductio ad absurdum that

neither holds. Then from the former there are m,n ∈ M with n ‹ m, n 5 α 3 β, and for all p

‹ m, p ; α. And from the latter there are m',n' ∈ M with n' ‹ m', n' 5 α 3 β, and for all p'

‹ m', p' ; β . Hence from the former we have n 5  β and from the latter we have

n' 5 α. Hence not n ‹  m' and not n' ‹ m. The former gives us m' ‹  m; for if not m' ‹ m then

by rankedness using n ‹  m we get n ‹ m' giving a contradiction. Similarly, the latter gives us

m ‹ m'. Thus m ‹ m' ‹  m so by transitivity m ‹ m, contradicting irreflexivity of ‹.

It remains to show that ≤ = M. Suppose first that α ≤ γ. Let m ∈ M and suppose

m ;‹ α. To show α M γ it will suffice to show m ; γ. Since m ;‹ α we have m ; α. Since

; is classical, it follows from the definition of ≤ that to show m ; γ it will suffice to show

m ; β  for all β ∈ L with ¬α  < β . Suppose ¬α  < β , i.e., not β  ≤ ¬α ,  i.e.,

g(β) ˘ g(¬α). Then by the definition of g there is an n ∈ M such that for some p ‹  n,

p ; α whilst for all q ‹  n, q ; β. To show m ; β, it will thus suffice to show m ‹ n. But if

not m ‹  n then since p ‹ n, rankedness gives p ‹  m which combined with p ; α contradicts m

;‹ α.

For the converse, suppose α ¸≤ γ. Then, since M is ample, there is an m ∈ M with

m ; α, m ; β for all β with ¬α < β, but m 5 γ. Hence m 5 ¬α v γ, so not ¬α < ¬α v γ,

i.e., ¬α v γ ≤ ¬α, so by the definition of ≤, g(¬α v γ) 1 g(¬α). Clearly m ; α 3 ¬γ, so

by stoppering there is a p ∈ M with p ;‹ α 3 ¬γ, i.e. p ;‹ ¬(¬α v γ), so by the definition

of g, p ∈ g(¬α v γ) 1  g(¬α ) and also p ; α . But since p ∈ g(¬α ), we have

q ;  ¬α  for all q ‹  p. Putting these two together gives us p ; ‹ α , whilst since

p ;‹ α 3 ¬γ we also have p 5 γ, so finally α ¸M γ as required. 
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