
Genomic selection in plant breeding:
from theory to practice
Jean-Luc Jannink, Aaron J. Lorenz and Hiroyoshi Iwata

Advance Access publication date 15 February 2010

Abstract
We intuitively believe that the dramatic drop in the cost of DNA marker information we have experienced should
have immediate benefits in accelerating the delivery of crop varieties with improved yield, quality and biotic and
abiotic stress tolerance. But these traits are complex and affected by many genes, each with small effect.
Traditional marker-assisted selection has been ineffective for such traits. The introduction of genomic selection
(GS), however, has shifted that paradigm. Rather than seeking to identify individual loci significantly associated
with a trait, GS uses all marker data as predictors of performance and consequently delivers more accurate predic-
tions. Selection can be based on GS predictions, potentially leading to more rapid and lower cost gains from breed-
ing. The objectives of this article are to review essential aspects of GS and summarize the important take-home
messages from recent theoretical, simulation and empirical studies. We then look forward and consider research
needs surrounding methodological questions and the implications of GS for long-term selection.
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INTRODUCTION
It has been predicted for over two decades that

molecular marker technology would reshape breed-

ing programs and facilitate rapid gains from selection

[1, 2]. Currently, however, marker-assisted selection

(MAS) has failed to significantly improve polygenic

traits [3, 4]. While MAS has been effective for the

manipulation of large effect alleles with known

association to a marker [5], it has been at an impasse

when many alleles of small effect segregate and no

substantial, reliable effects can be identified [6].

The weaknesses of traditional MAS come from

the way MAS splits the task into two components,

first identifying QTL and then estimating their

effects. QTL identification methods can make

MAS poorly suited to crop improvement: (i) bipar-

ental populations may be used that are not represen-

tative and in any event do not have the same level of

allelic diversity and phase as the breeding program as

a whole [7, 8]; (ii) the necessity of generating such

populations is costly such that the populations may

be small and therefore underpowered; (iii) validation

of discoveries is then warranted, requiring additional

effort; (iv) the separation of QTL identification from

estimation means that estimated effects will be biased

[9–11], and small-effect QTL will be missed entirely

[12] as a result of using stringent significance

thresholds.

Association mapping (AM) applied directly to

breeding populations has been proposed to mitigate

the lack of relevance of biparental populations

in QTL identification [13] and QTL have been

mapped in this way [14, 15]. This practice neverthe-

less retains the disadvantage of biased effect estimates

and therefore poor prediction of line performance

[12, 16].
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The solution to this quandary lies not in seeking

single markers associated with single large effects but

in capitalizing on the developing capacity for scoring

many markers at low cost. Add to this capacity novel

statistical methods that enable the simultaneous esti-

mation of all marker effects and you get genomic

selection (GS;[16]). GS uses a ‘training population’

of individuals that have been both genotyped and

phenotyped to develop a model that takes genotypic

data from a ‘candidate population’ of untested indi-

viduals and produces genomic estimated breeding

values (GEBVs). These GEBVs say nothing of the

function of the underlying genes but they are the

ideal selection criterion. In the plant breeding con-

text, untested individuals would belong to a broader

population defined as a crop market class or the

breeding program as a whole. In simulation studies,

GEBVs based solely on individuals’ genotype have

been remarkably accurate [16–18]. These accuracies

have held up in empirical studies of dairy cattle

[19–21], mice [22, 23] and in biparental populations

of maize, barley and Arabidopsis [24]. Given decreas-

ing genotyping costs and stagnant or increasing

phenotyping costs, and the ability to select individ-

uals much earlier in the breeding cycle, GS is revo-

lutionizing both animal [19, 25] and plant [26, 27]

breeding.

In this context, the objectives of this article are to

review essential aspects of GS and summarize the

important take-home messages from recent theoret-

ical, simulation and empirical studies. We then look

forward and consider research needs surrounding the

questions of best prediction methods, most informa-

tive training population design, and implications of

GS for long-term selection.

GENOMIC SELECTIONMETHODS
GS emerged out of a desire to exploit high density

parallel genotyping technologies [16]. At such high

densities, it was assumed that linkage phase between

markers or haplotype blocks of markers and causal

polymorphisms would be consistent across families so

that population-wide estimates of marker effects

would be meaningful [16]. The authors also decided

to avoid marker selection in the development of a

prediction model so that estimated marker effects

would be unbiased. A consequence of that decision

was that more predictor effects, p, need to be esti-

mated than the number, n, of available observations.

Furthermore, there may be a high degree of corre-

lation or multicollinearity between the predictors.

In so-called ‘large p, small n’ problems, standard

multiple linear regression cannot be used without

variable selection, which conflicts with the original

goal of avoiding marker selection. An important

danger in the development of a prediction model is

overfitting: an overfitted model can exaggerate

minor fluctuations in the data and will generally

have poor predictive ability. To overcome these

problems, a variety of methods, e.g. best linear unbi-

ased prediction [28], ridge regression [29], Bayesian

regression [16], kernel regression [30, 31] and

machine learning methods [32–34], have been pro-

posed to develop prediction models for GS.

Meuwissen et al. [16] estimated the effects of

two-marker haplotypes though since then it has

become far more common to estimate effects of

single markers directly [35]. To make marker effects

estimable, Meuwissen et al. [16] proposed to model

them as random effects and calculate their best linear

unbiased predictors (BLUP). These random effects

were drawn from a normal distribution, N(0, �2
g ),

where �2
g was obtained by dividing the (known)

genetic variance by the number of effects [17].

This parameterization, where all effects are assumed

to have equal variance, is also called ridge regression

and was first proposed for MAS by Whittaker et al.
[36] in the context of biparental crosses. Note that

assuming all marker effects are drawn from the same

distribution does not mean the effects are all equal

but that they are all equally shrunken toward zero.

The assumption of even distribution of genetic

causation was not satisfactory and Meuwissen et al.
[16] sought to relax it using two Bayesian analyses.

In the first analysis (dubbed BayesA), each effect i is

drawn from a normal distribution with its own vari-

ance: N(0, �2
gi). The variance parameters are in turn

sampled from a scaled inverted chi-squared distribu-

tion. In the second (dubbed BayesB), a further prob-

ability � is given that the marker has no effect at all.

A more complete accounting of these methods and

their relationship to traditional quantitative genetic

models is given in Gianola et al. [37].

In this era of high-throughput data collection,

other disciplines are also confronted with large p
small n problems, and various methods have been

proposed for their solution. Reduced-dimension

regression methods such as partial least squares

regression [PLS; 38] and principal component regres-

sion [PCR; 39] are well-known statistical methods in
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chemometrics that are useful when the researcher is

faced with many variables whose relationships are ill-

understood, and the object is merely to construct a

good predictive model [40]. In both methods, latent

variables are extracted as linear combinations of the

predictors and are used for response prediction. In

PCR, the latent variables are chosen to explain as

much of the variation in the original predictors as

possible. In PLS, the latent variables are chosen so

that the relationship between the latent variables and

response is as strong as possible. The number of latent

variables, generally determined through cross-valida-

tion, is much lower than the number of predictors or

observations, which avoids model overfitting and

achieves stable estimation of regression coefficients

(e.g. genetic effects of genome-wide markers),

though lower prediction accuracies than for BayesB

have thus far been observed [41].

Machine-learning methods, such as support

vector machine [SVM; 42] and random forest [RF;

43], have been successfully applied to data under

large p, small n conditions in various research fields.

Both methods were originally developed to solve a

classification problem, but have been extended to the

domain of regression [44]. The basic idea of SVM

regression is to map samples from the predictor space

to a high-dimensional feature space via a nonlinear

mapping function and to do linear regression in this

latter space [45]. Random Forest is an ensemble pre-

dictor consisting of a collection of tree-structured

predictors, where each tree in the ensemble is

‘grown’ on the basis of a bootstrapped sample of

the training dataset. Each tree individually predicts

the target response and the ‘forest’ (i.e. the ensembles

of ‘trees’) predicts the target response as an average of

individual tree predictions. Since both SVM and RF

build a non-linear prediction model, they may be

especially useful when the relationships between pre-

dictors and responses are nonlinear, as would occur if

epistatic effects account for a significant amount of

genetic variation of a target trait. Non-parametric

regression methods that may also account for non-

additive effects have also been proposed [30, 31, 46],

and in some cases perform favorably [30].

SIMULATION RESULTS
Overall performance and analysis
method
Meuwissen et al. [16] and Habier et al. [17] evaluated

the accuracies of ridge regression and BayesB using

similar approaches assuming additive gene action and

a heritability of 0.5. Forward-simulation of the pop-

ulation was performed to reach mutation-drift equi-

librium under conditions that generated about 50

segregating QTL. For both studies, however, the

expected effective QTL number [in the sense of

ref. 12] was low: only 6 and 13 for Meuwissen et
al. and Habier et al. respectively. We believe both

of these numbers are unrealistic to model polygenic

traits. For a training population size of 1000, respec-

tive GS accuracies were 0.66 and 0.64 for ridge

regression and 0.79 and 0.69 for BayesB. The greater

overall accuracy and greater difference between ridge

regression and BayesB in Meuwisen et al. [16] can

probably be attributed to the larger variances gener-

ated by individual QTL in that study.

Zhong et al. [18] took a different approach to

simulation: rather than generating marker data from

an ideal population in mutation–recombination–drift

equilibrium, they took actual marker data from a

diverse set of 42 lines of two-row barley. This

approach retains the effects on linkage disequilibrium

of the more complex and realistic demographic his-

tory of a crop. Of the markers available, 1040 were

retained as evenly distributed over the genetic map.

Training populations were simulated by randomly

mating the founders to generate 500 lines and assum-

ing a trait heritability of 0.4 with 80 QTL. In this

case, the accuracies for ridge regression and BayesB

were 0.62 and 0.61, respectively. The superiority of

BayesB over ridge regression found in previous sim-

ulations was thus reversed in this case.

Two main take-home messages can be derived

from the accuracies obtained in these simulation stu-

dies. First, in all cases, GS provided accuracies greater

than might be achieved on the basis of pedigree

information alone. Thus, if the objective is to accel-

erate the breeding cycle by making selections prior

to extensive phenotyping, GS is the solution.

Second, the more complicated random effect distri-

bution used by the BayesB method is only useful if

markers pick up strong associations with QTL. Such

strong associations will occur when QTL effects

themselves are large [particularly as in ref. 16] and

when the associated markers are in high-linkage dis-

equilibrium with the QTL. The importance of

strong association can be confirmed in simulations

by putting the QTL allelic states in the marker data-

set, providing so-called perfect markers to the analy-

sis. This situation improves predictions from BayesB

more than from ridge regression [18].
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Marker type and density
Solberg et al. [35] used the simulation conditions of

Meuwissen et al. [16] to evaluate the effect of marker

density and of SSR-like multiallelic markers versus

SNP-like biallelic markers. They found that similar

accuracies were achieved in different populations if

the marker density scaled with each population’s

effective size (Ne). Historic recombination between

loci scales linearly with Ne so that maintaining a fixed

amount of recombination between loci also requires

marker density to scale linearly with Ne [47].

As might be expected, accuracy increased with den-

sity though gains for a fixed density increment

decreased at high density. Even at the highest

tested densities of 2Ne SSR markers per Morgan or

8Ne SNP markers per Morgan, accuracy had not

reached a plateau. Comparing the two marker

types, they found that for similar accuracies, the

SNP markers required a density of 2 to 3 times

that of the SSR. Finally, assembling pairs of adjacent

markers into haplotype blocks tended to decrease

accuracy relative to considering all markers separately

[35]. In these previous simulations, GEBVs were

predicted on progeny of the training population. If

predictions for less-related individuals are needed,

higher marker density is needed [47]. Both the

number of markers and the training population size

will need to scale with Ne and with the length of the

recombination genetic map marker L. When pre-

dicting GEBVs of individuals that are not more clo-

sely related to the training population than second

cousins, Meuwissen [47] found that 10�Ne markers

per Morgan and a training population size of Ne
�L

generated accuracies between 0.73 and 0.83. The

accuracy of BayesB benefitted more from increased

marker density than that of ridge regression.

GS in biparental populations
Thus far, we have only discussed GS in the context

of population-wide linkage disequilibrium, where

the population might be defined as an entire breed

of cattle, a market class of a crop (e.g. hard red

wheat), or perhaps a breeding program. Because

plants can often produce very large full sibships (an

F2 population derived from a single F1 by selfing is an

example of such a sibship), however, there is also a

tradition of QTL detection, MAS and GS within

such sibships [i.e. in F2, recombinant inbred line,

or doubled haploid populations; 24, 48–50]. These

simulations have almost exclusively used ridge

regression. Some interesting results are (i) very low

marker densities, on the order of eight per Morgan,

can deliver accuracies close to the maximum

observed; (ii) using ridge regression, there was a

marker density optimum above which accuracy

declined [48]; (iii) accuracy assuming true marker

variances were known was only marginally higher

(0–8%) than assuming all marker variances were

equal [48]; (iv) GS can out-perform phenotypic

selection even when the biparental population is

composed of very few (e.g. 35) individuals [50].

As an overall population improvement strategy, no

study has contrasted performing GS within biparen-

tal crosses to performing it across a breeding program

as a whole. The primary advantage we see to the

former approach is its low marker density need.

The primary disadvantages are (i) that it requires

separate model training within each cross: it seems

suboptimal not to analyze all crosses jointly (as would

occur if GS were performed over the breeding pro-

gram as a whole); and (ii) the first generation of

progeny from a cross cannot be selected on the

basis of prior information but needs to be pheno-

typed. This practice slows down the breeding cycle

relative to program-wide GS.

Joint use of linkage disequilibrium and
co-segregation
The need for high marker densities in GS may be

reduced if the candidate population consists of prog-

eny of the training population. In that case, an evenly

spaced low-density subset of the markers typed on

the training population can be used on the candi-

dates, and scores for the full complement of markers

can be inferred by co-segregation [51]. This

approach has also been proposed for association map-

ping in humans [52] and plants [53]. Assuming par-

ents were always typed at high density, loss of

accuracy due to typing the candidates at a density

of only one marker every 10 cM ranged between

4% and 6% [51]. This loss was compared to what

might be incurred if a low-density marker panel

was developed by selecting markers most strongly

associated with the trait. The performance of this

latter approach depended on the number of QTL

simulated, with lost accuracy ranging from 1% to

3%. The slightly greater losses of the evenly spaced

compared to the selected marker approach must be

set against its greater ease of development and its

potential universality across traits and populations

or breeds [51]. In addition, the evenly spaced mar-

kers will become fixed more slowly than those
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directly selected upon, increasing their long-term

value.

THEORETICAL STUDIES
Theoretical studies have yielded important results on

three topics: (i) the sources of GS accuracy; (ii) accu-

racy formulated as a function of QTL number and

training population size; and (iii) impacts of GS on

long-term response. GS models genetic variance in

two ways [17]. As expected, it uses markers in strong

LD with QTL by estimating associated marker allele

effects. However, as somewhat of an unanticipated

side effect of GS arithmetic, it also uses marker data

to model genetic relationships between individuals in

the training and prediction populations. Accuracy of

breeding values then also depends on the strength of

predicted individuals’ relatedness to training individ-

uals with phenotypes, much as it would when using

pedigree information to perform prediction.

The way genetic relationships enter into GS can be

demonstrated most clearly by showing that the ridge

regression model is equivalent to (provides the same

predictions as) a mixed model analysis in which

random individual effects co-vary according to a kin-

ship matrix calculated using marker data [17, 54].

Exploring these two sources of GS accuracy,

Habier et al. [17] showed that ridge regression is

more effective at capturing genetic relationships

because it fits more markers into the prediction

model. In contrast, BayesB is more effective at cap-

turing LD between markers and QTL. Because these

marker–QTL linkages are tight, recombination does

not cause them to decay rapidly, and accuracies

from BayesB persist longer than those from ridge

regression [17, 18]. Habier et al. [17] developed a

regression approach to quantify the relative impor-

tance of the two sources, finding that under their

simulation conditions 39% and 21% of GS accuracy

was due to capturing genetic relationships for ridge

regression versus BayesB. Similar equivalencies have

been shown by Piepho [55], who compared GS to

spatial analyses of field trials.

This research on the sources of GS accuracy has

bearings on predicting overall accuracy and on the

impacts for long-term selection. Analytical models of

GS accuracy at the moment account solely for accu-

racy due to markers in strong LD with QTL [54, 56].

Daetwyler et al. [56] assumed additive and indepen-

dent loci and modeled locus effects as fixed.

They derived the correlation between predicted

and true breeding value as

rgĝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2

�h2 þ 1

s

where � is the ratio of the number of phenotyped

individuals, nP, to the number of loci, nG and h2 is

the entry-mean basis heritability for the trait.

Hayes et al. [54] increased the realism of the ana-

lysis by modeling locus effects as random and deriv-

ing an approximation for the effective number of

independent chromosome segments, which indicates

how many effects the GS model must estimate.

While the predicted accuracies they developed

look unwieldy, they can already begin to answer

interesting questions. For example, if a program is

constrained primarily by the number of field plots

that it can evaluate, will accuracy be maximized by

evaluating many unreplicated individuals (i.e. plant-

ing each plot to a unique individual), or can accuracy

be increased by replicating individuals across plots

(i.e. using several plots to evaluate one individual

with lower error)? For both the Daetwyler et al.
[56] and the Hayes et al. [54] analyses, one can

show that GS accuracy should be maximized by a

strategy of evaluating unreplicated individuals. This

conclusion was also reached for maximizing QTL

detection power [57]. These analytical predictions

can be contrasted to simulations of the same

phenomenon. Zhong et al. [18] simulated cases of a

training population of 504 at a heritability of 0.4

versus a training population of 168 at a heritability

of 0.67. This mimicked the relative heritabilities for

one versus three independent repeated measures.

Realized accuracies were 0.61 versus 0.62 for

BayesB and 0.62 versus 0.66 for ridge regression.

In other words, stochastic simulation gave the oppo-

site result to what was expected from theory.

The theory, however, considers only the component

of accuracy due to LD between markers and QTL.

When heritability increases, the component due to

genetic relationships will gain in importance and, as

observed, ridge regression should benefit more from

that than BayesB.

The relative importance of LD between markers

and QTL versus genetic relationships in determining

accuracy also affects the loss of genetic diversity

through GS, that is, the impact of GS on long-

term gain. GS should maintain greater genetic

diversity while increasing selection gains for the fol-

lowing reason [58]: in the absence of markers, more

170 Jannink et al.
 at Pennsylvania State U

niversity on M
ay 9, 2016

http://bfg.oxfordjournals.org/
D

ow
nloaded from

 

http://bfg.oxfordjournals.org/


accurate predictions of individual breeding value are

possible by using information from relatives.

This information not only increases selection gain

but also increases the correlation between predicted

breeding values for relatives. For example, in the

absence of progeny testing, predicted breeding

values for full sibs on the basis of family information

are identical. In turn, the greater correlation in pre-

dicted breeding values between relatives causes more

frequent co-selection of relatives and concomitant

decline in genetic diversity. The key problem with

information from relatives is that it contributes noth-

ing to predicting the value of the specific alleles each

progeny received from its parents, the so-called

Mendelian segregation term [58]. GS mitigates this

problem because those specific alleles are in LD with

markers that have estimated effects. Compared to

traditional BLUP evaluation, therefore, the correla-

tion between predicted breeding values of relatives

will be lower under GS. Given accuracy due to LD

between markers and QTL, less loss of genetic diver-

sity and greater long-term gains should be possible

under GS [59].

This argument from theory again relies on the LD

rather than the genetic relationship component of

GS accuracy. Given the importance of the relative

proportion of these two components to many aspects

of GS, we have estimated the components under a

wide simulated range of training population size,

marker density, and genetic architecture conditions

(Figure 1). From this brief exercise, it is clear that

accuracy due to genetic relationships can represent

from a small minority to a large majority proportion

of the overall accuracy. Factors that we looked at that

reduced that proportion were fewer QTL, higher

marker density, larger training population size, and

as expected, BayesB versus ridge regression

(Figure 1). We note that the low marker density,

low training population size setting that we used

(400 markers and 400 individuals) is in the realm

of what might be typical for small public sector

plant breeding programs. Under those circumstances,

the majority of GS is due to genetic relationship

information and therefore the theoretical results

given above may be off the mark.

EMPIRICAL STUDIES
Large-scale empirical studies are not yet available in

the public sector for plants, but insight can be gained

from livestock studies, particularly in dairy cattle.

The largest single study was conducted by

VanRaden et al. [21]. The training population con-

tained over 3500 Holstein bulls with breeding values

measured by progeny testing and genotyped with

38 416 SNP. They achieved accuracies of 0.44 to

0.79 for traits ranging in heritability from 0.04 to

0.50 (though note that the training bulls were char-

acterized by progeny means of high accuracy).

Decreasing marker number by 75% decreased the

accuracy of net merit only from 0.53 to 0.50,

while decreasing the training population size by

68% decreased that accuracy from 0.53 to 0.35.

Increases in accuracy as a function of training popu-

lation size were quite linear up to the maximum size

available. Both ridge regression and a variant of

BayesB [21] gave very similar accuracies.

A review of studies from three other dairy cattle

GS experiments showed similar results [19].

The main observations from these studies are: (i)

GS methods predicted breeding values better than

did pedigree information alone, but less well than

was expected based on simulations; (ii) GS methods

Figure 1: Decomposition of GS prediction accuracy
using the method of Habier et al. [17]. On a genome
comprised of seven chromosomes of 1.5M each, individ-
uals were generated using a coalescent assuming an
effective population size of 100. Round and square sym-
bols, ridge regression and Bayes-B, respectively.
Symbols with gray (inside or around) and without,
40 QTL and 200 QTL, respectively. Black and non-black
symbols, 4000 and 400 markers, respectively. Small
and large symbols, training population size of 400 and
2000, respectively
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that assume many QTL evenly distributed over the

genome (i.e. ridge regression) perform as well as

methods that assume fewer QTL of varying effect

(e.g. BayesB); (iii) decreasing marker numbers did

not strongly affect GS accuracy; and (iv) GS accuracy

increased linearly with training population size. One

interpretation of these observations is that the infini-

tesimal model assumption, ‘an infinite number of

loci, all with infinitesimally small effects’, is closer

to being correct than an assumption of few QTL

(where ‘few’ could mean dozens but not hundreds).

Alternatively, there may be relatively few loci at

which variants have a large effect on the phenotype,

but these variants are at low frequency so that they

each generate little variance. If loci carry several low

frequency, high effect variants, a condition would

arise where substantial genetic variance and high her-

itability would be possible, but where LD between

markers and QTL would generally be low. The LD

component of accuracy would therefore be con-

strained. This is one of the genetic architectures

that is invoked in ‘the case of the missing heritability’

[60]. This case refers to instances of human associa-

tion study where very little variation is explained by

associated markers, even for traits with high herit-

ability to which substantial effort at association has

been applied (e.g. height studied in panels of 30 000

individuals). Recent extensive mapping efforts for

flowering time in maize [61] provide support for

the common gene hypothesis that the many variants

that affect maize flowering time are clustered in a few

common loci. This genetic architecture generates

high heritability and resemblance between relatives

but low association between QTL and markers: it

would lead ridge regression to be more effective

than BayesB.

GS has also been applied to data on a mouse pop-

ulation synthesized from eight inbred mice [22, 23].

Because of this narrow base, alleles that are poly-

morphic are expected to have minor allele frequen-

cies strongly biased toward high values. QTL analysis

of this population did not result in a ‘case of missing

heritability’ [62]. Given this fact, it would be valu-

able to contrast ridge regression and BayesB analyses

in this synthetic population. Such a contrast has not

been performed. The Legarra et al. study used ridge

regression while the Lee et al. study used an analysis

similar to BayesB, but the two studies analyzed dif-

ferent traits. Both studies split the population into a

training half and a validation half in two ways, either

across families (different families ending up in the

different halves) or within families (different individ-

uals within families ending up in the different

halves). For the split across families, only capturing

LD between marker and QTL will be useful for pre-

diction because the families were weakly related.

In contrast, for the split within families, capturing

genetic relatedness will also be useful. Interestingly,

for traits of similar heritability, prediction across

families was more accurate in the Lee et al.
(BayesB-like analysis) study than in the Legarra

et al. (ridge regression) study. Conversely, prediction

within families was more accurate in the Legarra

et al. than the Lee et al. study. We hypothesize that

the high accuracy of the BayesB-like analysis across

families was due in part to the unusual origin of this

population.

FUTURERESEARCH
Training population design
As envisioned in its purest form, GS will dramatically

change the purpose of phenotyping in plant breeding

[27]: phenotyping currently serves to determine

which lines to select; under GS, phenotyping will

serve primarily to train prediction models. While it

is well known that GEBV accuracy increases as the

size of the training population increases [21], to our

knowledge no research has been conducted on train-

ing population design to develop accurate GEBV

models while minimizing resources spent on

phenotyping.

Maximizing marker variance, reducing collinear-

ity between markers and uniformly sampling the

genetic diversity of the breeding program are three

possible objectives of training population design.

Maximizing marker variance might be achieved by

choosing individuals with divergent GEBVs.

Simulations by Zhong et al. [18] suggested that, for

certain GS models, collinearity reduced prediction

accuracy. Collinearity between linked markers

is reduced by recombination, suggesting that prog-

eny that experienced a greater number of total

recombination events should be phenotyped.

This approach has been shown to be useful in

QTL mapping [63]. Uniformly sampling a popula-

tion’s genetic diversity could be achieved by cluster-

ing based on multivariate distance statistics [64].

Such samples should improve estimates of the effects

of rare alleles.

Near-infrared reflectance spectroscopy (NIRS) is

analogous to GS as an application of multivariate
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statistics to model development and prediction. Like

GS, the advantage of NIRS is that a large set of

variables is cheap to measure (NIR spectra) and can

predict variables that are expensive to measure (wet

chemistry measurements). NIRS has been inten-

sively researched for decades [65]. Spectra (absor-

bance values at each of thousands of wavelengths)

are collected on a large population of samples, and

a subset of samples to be phenotyped is chosen.

Prediction typically involves relating phenotypes to

the spectra through PCR or PLS regression [66]. A

common goal of selecting samples for phenotyping is

to evenly span the range of spectral and phenotypic

variation of the population, while minimizing the

size of the set [65]. One multivariate distance

metric often used for selecting samples that uni-

formly span the spectral diversity is the

Mahalanobis distance [H distance; 65, 67]. The H
distance accounts for collinearity between predictors

in calculating their distance [68]. The H distance can

also be used to define a population of samples similar

enough that it could be predicted using a single

training set and to identify outlier samples [67, 69].

In GS, a statistic similar to the H distance based on

marker data could also relate training population

diversity to model accuracy.

Routine use of NIRS involves a continual need

to update the calibration as new variation in the

phenotype is encountered. Several guidelines exist

for deciding when a particular calibration can be

used to predict new samples, and which samples

should be added to the existing training population

[70]. We envision similar guidelines for training pop-

ulation maintenance in GS. Because generations fol-

lowing a given selection event will contain only the

alleles of the parents in each cycle of selection, it may

be most efficient to update the training population

by phenotyping the parents of each selection cycle.

Empirical and simulation findings should resolve this

question. Theory and practice in other areas such as

Figure 2: Accuracy of breeding value prediction for different GS methods compared to phenotypic selection.
In each graph, a point is one simulation. Starting with 1325 SNP in barley, 80 SNP were removed to serve as
additive-effect QTL. Expected trait heritability was 0.4 but varied between simulations because of covariance
between QTL. Training population size was 400. Dashed lines correspond to mean accuracies for the GS method
(horizontal) and the phenotype (vertical). The lower right-hand graph shows accuracy of the mean across five GS
methods.
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chemometrics could prove to be useful starting

points.

Capitalizing on the strength of different
methods
We have seen that different GS methods use sub-

stantially different approaches to address the large p
small n problem. The methods may therefore capture

different aspects of the marker genotype to pheno-

type map, and could complement each other. If such

complementation occurs, a synthesis of methods

might be superior to any single method. In the

same way that Random Forest averages a number

of predictors to achieve more accurate predictions,

combining methods may be valuable. We have

explored GS accuracy using a series of parametric

and non-parametric methods (Figure 2), the details

of which will be in a forthcoming publication.

In general, the parametric methods (ridge regression

and BayesB) outperformed the non-parametric

methods (PLS, RF and SVM). Our most unexpected

observation, however, was that a simple mean

across all methods did best (Figure 2). Note that

it was just barely superior to the best single

method (ridge regression), but we find it surprising

that by combining ridge regression with other

methods that gave poorer accuracies, a meta-

predictor can emerge that does best of all. Further

theory needs to be explored to understand what

signal is captured by the different methods to deter-

mine how to combine them to obtain maximum

accuracy.

Managing short- and long-term
selection gain
If QTL are in complete LD with markers, theory

shows that GS should cause less inbreeding or loss

of genetic diversity than selection on breeding values

estimated using pedigree information [58].

Obviously, this condition does not hold and, in real-

ity, GS can fall short of phenotypic selection: (i) GS

will not ‘discover’ some QTL and these will drift

rather than be subject to selection [71]; (ii) if

marker and QTL are not in perfect LD, fixing a

marker will not fix the QTL [72]; (iii) finally, as

we have seen, GS does capture some relationship

information increasing the likelihood of co-selection

of relatives. For traditional pedigree-based selection,

methods have been developed to select while con-

straining the rate of increase of relatedness in the

population [73]. For GS, it seems sensible that we

should also take advantage of marker data to manage

inbreeding and optimize long-term selection gains.

For example, Goddard [71] proposed varying the

weight given to marker information as a function

of the allele frequencies at each marker [19]. It

would also be possible to use markers to mimic

within-family selection, a practice that reduces the

rate of inbreeding. We have done within-group

selection by using marker data to cluster selection

candidates and then selecting within clusters

(Figure 3). Such selection reduces short-term but

increases long-term gain. Figure 3 shows that

beyond accelerating selection response, marker data

offers wide possibilities for managing short- and

long-term gains. Research into these possibilities

has just begun [71, 74].

Figure 3: Simulated long-term selection response
to different genomic selection approaches. In each gen-
eration, 200 candidates were evaluated and 20 selected.
Marker data in the founder population came from the
University of Minnesota barley breeding program.
The trait was determined by100 QTL with a heritability
of 0.2. GEBVs were obtained from a BayesB analysis.
Simple phenotypic selection was compared to either
genomic selection performed after phenotyping each
individual (Pheno þ Genotype), or performed prior to
phenotyping (Genomic), in which case it was assumed
that the genomic selection breeding cycle time was
half that of phenotypic selection and that the training
population was updated every other breeding cycle.
‘Clustered’ methods of genomic selection indicate that
marker data were used to group candidates into 20
clusters, and the best candidate in each cluster was
selected. This practice reduced short-term but
increased long-term response.
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