
Self-Scheduled H1 Control of LinearParameter-Varying Systems:A Design ExamplePierre ApkarianCERT-DERA,31055 Toulouse Cedex, Franceemail: apkarian@saturne.cert.fr Pascal GahinetINRIA Rocquencourt, BP 10578153 Le Chesnay Cedex, Franceemail: gahinet@colorado.inria.fr Greg BeckerDept. of Mechanical EngineeringUniversity of Cal. Berkeleyemail: beckerg@erg.berkeley.eduAbstractThis paper is concerned with the design of gain-scheduled controllers with guaranteed H1 perfor-mance for a class of Linear Parameter-Varying (LPV) plants. Here the plant state-space matrices areassumed to depend a�nely on a vector � of time-varying real parameters. Assuming real-time measure-ment of these parameters, they can be fed to the controller to optimize the performance and robustnessof the closed-loop system. The resulting controller is therefore time-varying and automatically \gain-scheduled" along parameter trajectories.Based on the notion of quadratic H1 performance, solvability conditions are obtained for continuous-and discrete-time systems. In both cases, the synthesis problem reduces to solving a system of LinearMatrix Inequalities (LMIs). The main bene�t of this approach is to bypass most di�culties associatedwith more classical schemes such as gain interpolation or gain scheduling techniques.The methodology presented in this paper is applied to the gain-scheduling of a missile autopilot.The missile has a large operating range and high angles of attack. The di�culty of the problem isreinforced by tight performance requirements as well as the presence of 
exible modes that limit thecontrol bandwidth.1 IntroductionFollowing the terminology of (?), Linear Parameter-Varying Systems (LPV) are linear time-varying plantswhose state-space matrices are �xed functions of some vector of varying parameters �(t). Hence LPV systemsare described by state-space equations of the form:_x = A(�(t)) x+B(�(t)) uy = C(�(t)) x+D(�(t)) u:From a practical point of view, LPV systems have at least two interesting interpretations:� they can be viewed as linear time-invariant (LTI) plants subject to time-varying parametric uncertainty�(t),� they can be models of linear time-varying plants or result from the linearization of nonlinear plantsalong the trajectories of the parameter �.The �rst class of plants falls within the scope of the LTI robust control techniques described, e.g., in (?; ?; ?;?; ?). For the second class of plants, the parameter � is no longer uncertain and can often be measured in realtime during system operation. Consequently, the control strategy can exploit the available measurements of� to increase performance.Until recently, hardly any theoretical framework existed for systematic gain-scheduling of LPV systems. Acustomary \heuristic" approach consisted of dividing the parameter space into areas of small variations wherethe plant was regarded as LTI. An LTI controller was then derived for each frozen value of the parameter�, and the overall control law was constructed via gain scheduling or gain interpolation techniques. Themain shortcoming of such schemes is to obliterate the time-varying nature of LPV plants (?; ?). As a result,there is no guaranty of satisfactory performance and robustness along all possible trajectories of �(t). In1



fact, these gain-scheduled controllers are not even guaranteed to stabilize the LPV plant, except in the caseof slowly-varying parameters (?).An important and original contribution toward the elimination of this intrinsic weakness is found in (?;?). The main thrust of this work is the development of a new controller structure dedicated to the gainscheduling task. This approach is restricted to LPV plants where measurements of �(t) are available in realtime, and constructs time-varying controllers with the same parameter dependence as the plant. That is,_x = AK(�(t)) x+ BK(�(t)) yu = CK(�(t)) x+DK (�(t)) ywhere y denotes the vector of measurements and u the control inputs. By incorporating the parametermeasurements, this controller adjusts to the variations in the plant dynamics in order to maintain stabilityand high performance along all trajectories �(t). In other words, the controller is \self-scheduled," that is,automatically gain-scheduled with respect to �.A �rst technique for parameter-dependent controller synthesis is based on the Small Gain Theorem andapplicable to LPV plants with an LFT (Linear Fractional Transformation) dependence on the parameter �(?; ?). A drawback of the LFT formulation is that the variations of � are allowed to be complex, thus intro-ducing some conservatism when parameters are known to be real. Signi�cant improvements can be obtainedby using instead the notion of Quadratic H1 Performance. This notion is closely related to quadratic sta-bility (?; ?) and seeks a single quadratic Lyapunov function to ensure H1-like performance for all possibletrajectories of the LPV plant (?; ?). In this framework, the parameter is treated as real and should enterthe state-space matrices of the LPV plant in an a�ne fashion. A detailed discussion of the conservatismof Small Gain and Quadratic H1 Performance approaches is provided in (?). The improvement essentiallycomes from the ability of the Quadratic H1 Performance formalism to handle real parameters. Note howeverthat this approach remains conservative in the face of slowly varying parameters since quadratic Lyapunovtechniques allow for arbitrarily fast parameter variations.This paper considers the class of LPV plants where� the state-space matrices depend a�nely on the time-varying parameter �,� the measurements of � are available in real time.The focus is on the practical synthesis and applications of parameter-dependent controllers with QuadraticH1 Performance. A simple and uni�ed framework is then proposed to handle both continuous- and discrete-time LPV systems. The derivation technique is an extension of (?) to LPV plants and makes extensive use ofthe Bounded Real Lemma (BRL) formulation of H1 performance. Under mild assumptions, the synthesisproblem is reduced to solving a system of Linear Matrix Inequalities (LMI), which in turn falls within thescope of reliable and e�cient convex optimization techniques (?; ?).The remainder of the paper is organized as follows. Section ?? gives the notation and some de�nitionsregarding LPV plants with an a�ne parameter dependence. Useful concepts and tools are recapped inSection ??, as well as the central notion of Quadratic H1 Performance. The synthesis problem is formallystated in Section ?? and solutions are characterized in Section ??. Finally, a physically motivated applicationis presented in Section ?? and solved using these techniques and the software package LMI-Lab, part ofthe LMI Control Toolbox for use with Matlab (?; ?).2 Notations and De�nitionsThroughout the paper, matrix transfer functions will be denoted P (�) where � stands for the Laplacevariable s in the continuous-time case and for the Z-transform variable z in the discrete-time case. Similarly,� will stand for the time t (2 R+) in the continuous-time case and for the time samples k (2 Z+) in thediscrete-time case. When su�ciently clear from the context, � or the time-dependence � will be omitted.The notation �:x stands for dxdt for continuous-time signals and for xk+1 for discrete-time signals.For a stable real-rational transfer function P (�), the H1 norm is de�ned in the usual way:� kP (s)k1 = sup!2R�max(P (j!)) for continuous-time systems� kP (z)k1 = sup�2[0;2�] �max(P (ej�)) for discrete-time systems ,2



where �max(M ) stands for the largest singular value of a matrix M . For real symmetric matrices M , thenotation M > 0 stands for "positive de�nite" and indicates that all the eigenvalues of M are positive.Similarly,M < 0 means "negative de�nite", that is, all the eigenvalues of M are negative.With these notations in mind, LPV systems are given in state-space form by the equations:�:x = A(�� )x+B(�� )u (2.1)y = C(�� )x+D(�� )u (2.2)where x; u; y denote the state, input, and output vectors, respectively, and �� is a time-varying vector of realparameters. When \freezing" �� to some given value �, the LPV system (??)-(??) becomes an LTI systemof transfer function: G(�) = D(�) +C(�)(�I � A(�))�1B(�):Both LPV and LTI properties of such systems are interesting. LPV properties are global since they concernthe behavior of the system along all possible trajectories �� . In contrast, the LTI behavior is only localaround some particular value � of the parameters.Matrix polytopes are de�ned as the convex hull of a �nite number of matrices Ni with the same dimen-sions. That is, Co fNi : i = 1; :::; rg := f rXi=1 �iNi : �i � 0; rXi=1 �i = 1 gWe restrict ourselves to LPV systems where(a) the parameter dependence is a�ne, that is, the state-space matrices A(�� ), B(�� ), C(�� ), D(�� ) dependa�nely on �� ,(b) the time-varying parameter �� varies in a polytope � of vertices �1; �2; : : : ; �r. That is,�� 2 � := Co f�1; �2; : : : ; �rg:These vertices correspond to all combinations of extremal parameter values.Though not fully general, this description encompasses many practical situations. From (a){(b), it is clearthat the state-space matrices A(�� ), B(�� ), C(�� ), D(�� ) range in a polytope of matrices whose vertices arethe images of the vertices �1; �2; : : : ; �r . In other words,� A(�) B(�)C(�) D(�) � 2 Co��Ai BiCi Di� := �A(�i) B(�i)C(�i) D(�i)� : i = 1; :::; r� (2:3)Because of this property, and with a slight abuse of language, we will refer to such LPV plants as \polytopic"in the sequel.De�nition 2.1 (Polytopic LPV Systems)An LPV system is called \polytopic" when it can be represented by state-space matrices A(�� ), B(�� ), C(�� ),D(�� ) where the parameter vector �� ranges over a �xed polytope, and the dependence of A(:); B(:); C(:); D(:)on � is a�ne. �3 Useful ToolsA central tool in our formulation and derivation technique is the Bounded Real Lemma (BRL). Given anLTI system G(�) and a state-space realization G(�) = D+C(�I �A)�1B of G, we introduce the BRL mapB�[A;B;C;D](:; :) de�ned for symmetric matrices X and positive scalars 
 by:Bs[A;B;C;D](X; 
) := 0@ATX +XA XB CTBTX �
 I DTC D �
 I1A for � = s (3.1)Bz[A;B;C;D](X; 
) := 0B@�X�1 A B 0AT �X 0 CTBT 0 �
 I DT0 C D �
 I 1CA for � = z: (3.2)With this notation in mind, the Bounded Real Lemma has the following general statement.3



Theorem 3.1 (Bounded Real Lemma) Given a continuous- or discrete-time transfer function G(�) of(not necessarily minimal) realization G(�) = D + C(�I � A)�1B, the following statements are equivalent:(i) A is stable and kD +C(�I � A)�1Bk1 < 
(ii) there exists a positive de�nite solution X to the matrix inequality:B�[A;B;C;D] (X; 
) < 0 (3:3)�This theorem is only valid for LTI systems. However, the Bounded Real Lemma can be extended to LPVsystems in conjunction with the notion of Quadratic H1 Performance.De�nition 3.2 (Quadratic H1 Performance) The LPV system�:x = A(�� )x+B(�� )u (3.4)y = C(�� )x+D(�� )u (3.5)has Quadratic H1 Performance 
 if and only if there exists a single matrix X > 0 such thatB�[A(�);B(�);C(�);D(�)](X; 
) < 0 (3:6)for all admissible values of the parameter vector �.Then the Lyapunov function V (x) = xTXx establishes (global) stability and the L2 gain of the in-put/output map is bounded by 
. That is, kyk2 < 
kuk2along all possible parameter trajectories �� . �For LTI systems (� frozen), Quadratic Performance is equivalent to internal stability with an H1 bound
 on the transfer function G(�) = D(�) + C(�)(�I � A(�))�1B(�). However, this equivalence does notextend to general LPV systems since Quadratic H1 performance requires the existence of a �xed quadraticLyapunov function for the entire operating range.A di�culty with condition (??) is the in�nite number of constraints it imposes. In the special caseof polytopic LPV systems however, this condition can actually be reduced to a �nite set of LMIs. Usingconvexity, it is easily shown that (??) will hold for all (A(�); B(�); C(�); D(�)) if and only if it holds at thevertices (Ai; Bi; Ci; Di) for i = 1; : : : ; r. The following result formalizes this fact.Theorem 3.3 (Vertex Property)Consider a polytopic LPV plant described in state-space form by�:x = A(�� )x+B(�� )u (3.7)y = C(�� )x+D(�� )u (3.8)with �A(�) B(�)C(�) D(�)� 2 P := Co��Ai BiCi Di� : i = 1; :::; r� : (3.9)The following statements are equivalent:(i) this LPV system is stable with Quadratic H1 Performance 
,(ii) there exists a single matrix X > 0 such that, for all �A(�) B(�)C(�) D(�)� 2 P,B�[A(�);B(�);C(�);D(�)](X; 
) < 0 (3.10)(iii) there exists X > 0 satisfying the system of LMIs:B�[Ai ;Bi;Ci;Di](X; 
) < 0; i = 1; 2; : : : ; r: (3:11)Proof: Statements (i) and (ii) are equivalent by de�nition, and the equivalence of (ii) and (iii) is a directconsequence of the fact that �A(�) B(�)C(�) D(�)� = rXi=1 �i �Ai BiCi Di�with �i � 0 and Pri=1 �i = 1. �4



4 Self-Scheduled H1 Control of LPV SystemsThis section formulates an H1-like control problem for polytopic LPV systems. By H1 control, we meancontrol with a Quadratic H1 Performance as de�ned in Section ??. Assuming complete measurement of�� , the controller is allowed to incorporate these measurements in the same LPV fashion as the plant. Theresulting LPV controllers exploits all available information on �� to adjust to the current plant dynamics (seeFigure ??). This provides smooth and automatic gain-scheduling with respect to the varying parameters �.In the sequel, we consider LPV plants mapping exogenous inputs w and control inputs u to controlledoutputs q and measured outputs y, i.e.,�:x = A(�� )x+B1(�� )w + B2(�� )uq = C1(�� )x+D11(�� )w +D12(�� )uy = C2(�� )x+D21(�� )w +D22(�� )u (4:1)The plant is further assumed to be polytopic conformably to De�nition ??. That is,0@ A(�� ) B1(�� ) B2(�� )C1(�� ) D11(�� ) D12(�� )C2(�� ) D21(�� ) D22(�� )1A 2 P := Co8<:0@ Ai B1i B2iC1i D11i D12iC2i D21i D22i1A ; i = 1; 2; : : :; r9=; (4:2)where Ai; B1i; : : : denote the values of A(�� ); B1(�� ); : : : at the vertices �� = �i of the parameter polytope.The problem dimensions are given byA(�� ) 2 Rn�n; D11(�� ) 2 Rp1�m1 ; D22(�� ) 2 Rp2�m2 (4.3)We seek an LPV controller of the form:�:xK = AK(�� )xK +BK (�� )yu = CK(�� )xK +DK(�� )y (4:4)that guarantees some Quadratic H1 Performance 
 for the closed-loop system of Figure ?? (see De�nition??). This will ensure that� the closed-loop system is quadratically stable over P,� the L2-induced norm of the operator mapping w into q is bounded by 
 for all possible trajectories �� .The controller order k is de�ned as the size of the matrix AK(�). With the notation
(�) := �AK(�) BK (�)CK(�) DK(�)� ;the closed-loop system is described by the state-space equations:�:xcl = Ac`(�)xcl +Bc`(�)wq = Cc`(�)xcl +Dc`(�)w (4:5)where Ac`(�) = A0(�) + B 
(�) C; Bc`(�) = B0(�) + B 
(�) D21Cc`(�) = C0(�) + D12 
(�) C; Dc`(�) = D11(�) + D12 
(�) D21 (4.6)and A0 = �A(�) 00 0k�k� ; B0 = �B1(�)0 � ; C0 = (C1(�); 0)B = � 0 B2Ik 0 � ; C = � 0 IkC2 0 � ; D12 = (0; D12) ; D21 = � 0D21� : (4.7)The assumptions on the plant are as follows:(A1) D22(�� ) = 0 or equivalently D22i = 0 for i = 1; 2; : : :; r,5
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θFigure 1: LPV Control of LPV Systems(A2) B2(�� ); C2(�� ); D12(�� ); D21(�� ) are parameter-independent or equivalently,B2i = B2; C2i = C2; D12i = D12; D21i = D21for i = 1; 2; : : :; r: (4.8)(A3) The pairs (A(�); B2) and (A(�); C2) are quadratically stabilizable and quadratically detectable over�, respectively.Quadratic detectability of (A(�); C2) is equivalent to the quadratic stabilizability of (A(�)T ; CT2 ). Byquadratic stabilizability of (A(�); B2) over �, we mean (for continuous-time systems) the existence of amatrix X > 0 such that NT (A(�)TX +XA(�))N < 0 for all � 2 �; (4:9)where N denotes the null space of BT2 . Using the a�ne parameter dependence and a convexity argument,this is equivalent to the existence of a matrix X > 0 satisfyingNT (ATi X +XAi)N < 0; i = 1; 2; : : : ; r: (4:10)The third assumption is necessary and su�cient to allow quadratic stabilization of the polytopic LPVplant by an output feedback LPV controller. Assumption (A1) can often be removed by rede�ning the plantoutput y. If Assumption (A2) is not satis�ed, the computation of a solution requires solving a problemwith an in�nite number of constraints and is therefore not easily tractable (?). Yet, this di�culty can bealleviated by pre- and/or post-�ltering of the control inputs u and/or the measured outputs y. Speci�cally,de�ne a new control input ~u and a new measured output ~y by:� �:xu = Auxu +Bu~uu = Cuxu � �:xy = Ayxy +Byy~y = Cyxy : (4:11)Assuming (A2), the resulting LPV plant is described by �:x�:xu�:xy ! =  A(�� ) B2(�� )Cu 00 Au 0ByC2(�� ) 0 Ay! xxuxy !+ B1(�� )0ByD21(�� )!w+ 0Bu0 ! ~u (4.12)q = (C1(�� ) D12(�� )Cu 0 ) xxuxy !+D11(�� )w (4.13)~y = ( 0 0 Cy ) xxuxy ! : (4.14)Note that the control and the measurement matrices are now parameter-free. The �lter bandwidth must bechosen larger than the desired system bandwidth. With this constraint, the proposed pre- and post-�lteringwill not signi�cantly alter the original problem and preserve the conditions of assumption (A3). Note alsothat whenever the plant model includes actuator and sensor dynamics then the control and measurementmatrices are parameter-free. Hence, the proposed �ltering operations are not restrictive in a practicalperspective. In the sequel, we assume that these �ltering operations have been performed beforehand sothat (A1)-(A3) hold. Note also that similar de�nitions and transformations apply to the discrete-time case.5 Characterization and Computation of SolutionsThis section gives necessary and su�cient conditions for solvability of the Quadratic H1 Performance prob-lem discussed in the previous section. As earlier, we assume that the LPV plant is polytopic subject to6



(A1)-(A3) and that the parameter value �� is measured in real time. If we restrict ourselves to LPV con-trollers, there is no loss of generality in assuming that the controller is polytopic as well. Indeed, if someLPV controller 
(�) has quadratic performance 
, its values 
i := 
(�i) at the vertices �i of the parameterbox must satisfy the Bounded Real Lemma, which ensures that the polytopic LPV controller of vertices 
iyields the same performance as shown next.Based on the Vertex Property (Theorem ??) of polytopic LPV systems, we devise the following con-structive approach to LPV synthesis:� �rst compute a matrixXc` > 0 and adequate (LTI)H1 controllers 
i at the vertices �i of the parameterpolytope � = ( rXi=1 �i�i : �i � 0; rXi=1 �i = 1)� De�ne the LPV controller 
(�) as an \interpolant" of the vertex controllers 
i. Here the interpolationis based on the position of � in the polytope � (with respect to the vertices �i). More precisely, alongsome trajectory �(� ) = rXi=1 �i(� )�iof the parameter, the state-space matrices AK(�); BK (�); CK(�); DK (�) of 
(�) will be given by� AK(�) BK(�)CK(�) DK (�) � := rXi=1 �i
i = rXi=1 �i�AKi BKiCKi DKi� :The �rst step enforces stability and H1 performance over the entire parameter polytope � and for arbitraryparameter variations (see Theorem ??). It must be emphasized that a naive interpolation of LTI controllerswould generally fail to ensure stability and performance over �. Our approach is valid only because a singleLyapunov function V (x) = xTXc`x is used over the entire operating range. While the vertex controllers 
ican be computed o�-line, the LPV controller matrices A(�); B(�); C(�); D(�) must be updated in real timebased on the parameter measurement �� . The notion of interpolating LPV controller is formalized in thenext theorem.Theorem 5.1 Consider a continuous- or discrete-time LPV polytopic plant (??) and assume (A1)-(A3).Given some positive scalar 
, the following statements are equivalent:(i) there exists a k-th order LPV controller solving the Quadratic H1 Performance problem with bound 
,(ii) there exist some (n + k) � (n + k) positive de�nite matrix Xcl and k-th order LTI controllers 
i =�AKi BKiCKi DKi� such thatB�[Ac` (�i);Bc`(�i);Cc`(�i);Dc`(�i)](Xcl ; 
) < 0 (i = 1; 2; : : : ; r) (5:1)where �1; : : : ; �r are the vertices of the parameter polytope and Ac`(�i) = A0(�i) + B
iC; : : : with thenotation (??).If (i) or (ii) is satis�ed, a possible choice of LPV controller is the polytopic controller given in state-spaceform by 
(�) := rXi=1 �i
i = rXi=1 �i�AKi BKiCKi DKi� (5:2)where (�1; : : : ; �r) is any solution of the convex decomposition problem:� = rXi=1 �i�i: (5:3)Proof: (Necessity part) From De�nition ??, Quadratic H1 Performance 
 is equivalent to the existence ofa positive de�nite matrix Xc` 2 R(n+k)�(n+k) such that for all � 2 �:B�[Ac` (�);Bc`(�);Cc`(�);Dc`(�)](Xc`; 
) < 0: (5.4)7



Selecting � := �i and using the notation 
i := 
(�i) immediately yields (ii).(Su�ciency part) Assume now that (ii) holds for Xc` > 0 and some 
i's, and consider the polytopic LPVcontroller 
(�) =Pri=1�i
i. Since this controller makes the closed-loop system (??) polytopic, the VertexProperty of Theorem ?? is applicable and guarantees for all � 2 � thatB�[Ac` (�);Bc`(�);Cc`(�);Dc`(�)](Xc`; 
) < 0: (5.5)This exactly says that the closed-loop system has Quadratic Performance 
 over the parameter range �. �The core of the LPV synthesis problem is therefore to compute a single Lyapunov matrix Xc` > 0 andLTI controllers 
i which satisfy the system of LMIs (??). Here the di�culty lies in the fact that the sameLyapunov function should be used for all vertices. Fortunately, computing an adequate Xc` (if any) reducesto solving some system of LMIs. Once the Lyapunov matrix Xc` is determined, adequate vertex controllers
i are easily deduced by solving the corresponding Bounded Real Lemma inequality (??) at each vertex.The LMI-based solvability conditions are given in the following theorem.Theorem 5.2 (Convex Solvability Conditions)Consider a continuous LPV polytopic plant (??) and assume (A1)-(A3). Let NR and NS denote bases ofthe null space of �BT2 ; DT12� and (C2; D21), respectively.There exists an LPV controller guaranteeing Quadratic H1 Performance 
 along all parameter trajecto-ries in the polytope � = ( rXi=1 �i�i : �i � 0; rXi=1 �i = 1)if and only if there exist two symmetric matrices (R;S) in Rn�n satisfying the system of 2r + 1 LMIs:� NR 00 I �T 0@ AiR+ RATi RCT1iC1iR �
I B1iD11iBT1i DT11i �
I 1A� NR 00 I � < 0 (i = 1; : : : ; r) (5.6)� NS 00 I �T 0@ ATi S + SAi SB1iBT1iS �
I CT1iDT11iC1i D11i �
I 1A� NS 00 I � < 0 (i = 1; : : : ; r) (5.7)� R II S � � 0: (5.8)Moreover, there exists k-th order LPV controllers solving the same problem if and only if R, S further satisfythe rank constraint rank ( I � RS ) � k: (5:9)Proof: This is a straightforward application of Theorem ?? above and of the main results of (?). Notethat Assumption (A3) is equivalent to the existence of R;S making the (1; 1) blocks in (??)-(??) negativesubject to (??). �For the discrete-time LPV systems, the 2r constraints (??)-(??) should be replaced by discrete-timeRiccati inequalities. The rank constraint (??) is immaterial in the full-order case (k = n). Hence R;Sare only constrained by LMIs and the problem of �nding a feasible pair (R;S) is convex as well as that ofminimizing 
 subject to (??)-(??). Once adequate matrices R;S are computed, the Lyapunov matrix Xc`common to all inequalities (??) and the vertex controllers 
i are obtained along the lines of (?; ?). Theconstruction of Xc` from R;S proceeds as follows:� compute full-rank matrices M;N 2 Rn�k such thatMNT = I � RS; (5:10)� compute Xc` as the unique solution of the linear matrix equation �2 = Xc`�1 where�2 := � S INT 0� ; �1 := � I R0 MT � :8



GivenXc`, a possible choice of vertex controllers 
i = �AKi BKiCKi DKi� is any solution of the matrix inequalityB�[Ac`(�i);Bc`(�i);Cc`(�i);Dc`(�i)](Xcl; 
) < 0: (5:11)This LMI in 
i can be solved by the same convex optimization algorithms. However, where no furtherconstraint is placed on 
i it is more e�cient to solve (??) by direct linear algebra techniques such as thosediscussed in (?).6 Self-Scheduled H1 Control of a MissileThis section presents a realistic application of the LPV synthesis technique to the control of a missile pitchaxis.The missile dynamics are highly dependent on the angle of attack �, the air speed V and the altitudeH. These three variables completely de�ne the 
ight conditions (operating point) of the missile. They areassumed to be measured in real-time. Based on the linearization of the missile equations around its 
ightconditions, an LPV model can be developed for this problem. The gain-scheduling technique presented aboveis then readily applicable to the design of a self-scheduled autopilot.We �rst discuss the modelling and the open-loop characteristics of the missile pitch axis dynamics.This preliminary analysis shows the relevance of LPV design for this system. Next we describe the controlproblem and outline the control law computation. Finally, the resulting gain-scheduled controller is validatedby various simulations.6.1 Open-loop analysisIn the sequel it is implicitly assumed that the pitch, yaw and roll axes are decoupled. Although thisassumption ignores some coupling phenomena in the missile, it greatly simpli�es the design procedure whileretaining the main di�culties of the problem. The pitch axis model of the missile is depicted in Figure ??.
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ightcondition and range over a large parameter domain where the stability properties of the missile vary greatly.Moreover, the system can switch between stability and high instability regions. Analyzed as an LTI plant,the characteristic polynomial of the plant (??) reads s2+Z�s+M�. It follows that the plant is LTI unstablewhenever M� is negative. The parameter Z� has a less dramatic impact and in
uences the damping.The missile speed varies betweenMach 0:5 andMach 4. The altitude belongs to the interval [0; 18000] (m:)and the angle of attack evolves between 0 and 40 degrees. This wide variety of operating conditions results9



in a large range of parameter values. Moreover, a small increase in the angle of attack may induce largeparameters variations. The parameter range � is a box de�ned by [�365; 380] for M� and [0:35; 4:35] forZ�.6.1.1 Actuator, Gyro and Flexibility DescriptionsIn addition to the LPV plant dynamics (??), tail-de
ection actuators, gyros, and bending 
exible modesmust be incorporated to the model (see Figure ??). The gyros and actuators are adequately representedby second-order and third-order transfer functions, respectively. Meanwhile, 
exible modes are modelledas a multiplicative output LTI perturbation a�ecting the measurement of the pitch rate q. The frequencyresponses of these components are plotted in Figure ??.6.2 LPV control structureWe use the two-degree-of-freedom synthesis structure of Figure ??. This structure includes a feedforward partK2(�) and a feedback K1(�) and is potentially more powerful to achieve strong performance requirementsthan the usual unity feedback structure.
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Figure 4: Two-Degrees-of-FreedomControl StructureThe design procedure parallels the customary H1-based loop shaping procedure except that the operatorsto be minimized are now parameter-dependent. We choose a mixed sensitivity criterion adapted to thecontrol structure in Figure ??. The performance objectives are expressed through the sensitivity operatorS(�) while additive robustness is captured by the operator K1(�)S(�).The self-scheduled H1 control problem consists in �nding an LPV controller, denoted in operator formas K(�) := (K1(�);K2(�)) ;that satis�es the following objectives for all admissible trajectories �(t) in �:� internal stability of the closed-loop system of Figure ??,� minimization of the L2-induced gain of the closed-loop operator between � rd� and � ez+ �, where W1and W2 are linear time-invariant weights.The full control structure together with the weights appears in Figure ??. It is readily shown that theunweighted LPV plant P (�) is completely de�ned by the state-space equations:0B@ _xz+er 1CA = 0B@A(�(t)) 0 0 B0 0 0 I�C I �I 00 I 0 0 1CA0B@xrdu1CA ; (6:2)10



where the measurement vector is � er� with e := r�y and A(�) ranges in the polytope Co fAi i = 1; : : : ; 4g.The vertices Ai's are the values of A(�) at the four vertices of the parameter box:�1 := � Z�minM�min� ; �2 := � Z�maxM�min� ; �3 := � Z�minM�max� ; �4 := � Z�maxM�max� :The synthesis structure of Figure ?? is the weighted version of P (�). It is also LPV and ranges in apolytope easily obtained as the convex hull of the weighted vertices of P (�).6.3 Weight selection and synthesisThe selection of weights is based on a frozen-time analysis of the LPV system and follows the same linesas classical H1 synthesis. They must ensure adequate settling-time (0:25 sec.) and high frequency gainattenuation. Finally, based on di�erent closed-loop analyses the following �lters were adopted:� the sensitivity weight is described asW1(s) = �W1�(s) 00 W1q(s)� ;where W1�(s) is a second-order low-pass �lter and W1q(s) is a simple static gain.� the robustness weight W2(s) is a 6th-order Chebyche� high-pass �lter.The corresponding frequency responses are shown in Figure ??.
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 = 1:1 after 100 iterations of the algorithm. Givena solution (R;S), an LPV polytopic controller f
1; : : : ;
4g can be constructed as described in (??). Thevertex controllers 
i's are obtained as solutions to the convex problem (??). Due to a rank loss of 1 in (??),a 9th order controller was computed. The 
i's are (9+1; 9+4) matrices with the partitioning (??). Finally,a formal expression of the LPV controller is derived by solving the convex decomposition problem (??) forthe �i's in the case of a 2-dimensional box �. The following formulas for the state-space data of the LPVcontroller are readily obtained:0BB@ AK � Z�(t)M�(t)� BK � Z�(t)M�(t)�CK � Z�(t)M�(t)� DK � Z�(t)M�(t)� 1CCA := rXi=1 �i(t)�AKi BKiCKi DKi� ; (6:3)where �1 = xy ; �2 = (1� x)y ; �3 = x(1� y) ; �4 = (1� x)(1� y) (6:4)11



with x := Z�max � Z�Z�max � Z�min ; y := M� �M�minM�max �M�min :It is easy to check that the �i's in (??) are convex coordinates as they satisfy 0 � �i � 1 andP4i=1 �i = 1.Now recalling that the parameters Z� andM� are known functions of the 
ight condition through (�; V;H),the controller dynamics can be easily updated in real-time according (??)-(??).6.4 Assessment of the LPV controllerThe resulting LPV controller is now tested through di�erent time-domain simulations. Various parametertrajectories are considered in Figure ??. Trajectory #1 is a smooth trajectory ranging over the (frozen-time)stable and unstable regions of the missile. In contrast, Trajectory #2 is non-smooth and is intended totest the reaction of the LPV control law in the face of abrupt parameter changes. For trajectory #3, thesecond coordinate of the parameter is corrupted by noise up to 10 percent of its nominal value. This lasttest is of fundamental importance for potential real-world implementations of LPV controllers. Indeed, noiseor uncertainties are always present and gain-scheduled controllers must be insensitive to small parameter
uctuations.
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