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Summary We present an analysis of runoff and rainfall data from Rio Grande, a basin
located in the northeast of Brazil. The main challenges we face here are: (i) to model run-
off and rainfall jointly, taking into account their different spatial units, (ii) to use stochas-
tic models where all the parameters have physical interpretations, and (iii) to model these
processes in their original scale, without assuming any transformation to attain normality
of these variables.

The intrinsically uncertain nature of these hydrological processes makes Bayesian anal-
ysis natural in this field. Our approach is based on dynamic models. The effect of rainfall
on runoff is modeled through a transfer function, whereas the amount of rainfall is
obtained after fitting a spatio-temporal model and dealing with the change of support
problem. Besides the computational effort to implement the proposed models, some
methodological novelties are also implemented.

The data consist of monthly series from January 1984 to September 2004, at a runoff
station and nine rainfall stations irregularly located in a drainage area of 37522.48 km2.
Model assessment, spatial interpolation and temporal predictions were part of our analy-
sis. The results show that our approach is a promising tool for rainfall–runoff analysis.
ª 2008 Elsevier B.V. All rights reserved.
8 Elsevier B.V. All rights reserved
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Introduction

One of the challenges that hydrologists and operators of
water resource systems face is to predict the runoff given
the rainfall. The intrinsically uncertain nature of these
.
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hydrological processes makes Bayesian analysis natural in
this field, whenever statistical problems are considered
(Rios-Insua et al., 2002).

In this paper we present an alternative strategy for deal-
ing with the spatial and temporal features of two of the
most important hydrological variables: runoff and rainfall.
Our goals are: (i) to model both variables jointly, taking into
account their different spatial units, (ii) to use stochastic
models where all the parameters have physical interpreta-
tions, and (iii) to model these processes in their original
scale, without assuming any transformation to attain nor-
mality of these variables.

Several types of stochastic models have been proposed
for the rainfall–runoff relationship, based on deterministic
models or on classical time series analysis. Two important
classes of stochastic models applied to river flow analysis
are: transfer function and regime switching. Transfer func-
tion modeling is flexible and has been mainly used in the
form of ARMAX models (see, for example, Sales (1989) and
Capkun et al. (2001)). Markov Switching time series models,
as in Lu and Berliner (1999) have been recently introduced.
These approaches are not ideal, because data transforma-
tion is needed and the parameters do not have interpreta-
tion in physical terms. Also, in all the previous proposed
models, the measurement errors and uncertainty associated
with rainfall are not explicitly accounted for. This is be-
cause models must describe the rainfall–runoff process on
a drainage catchment area basis. However, in practice, pre-
cipitation is measured at more than one monitoring station
within a basin, thus some procedure is needed in order to
approximate the precipitation for the whole basin. There
are some widely used methods that make use of polygons
to determine the influence area of each station. The total
basin’s precipitation is computed as a weighted mean of
the precipitation measured at each station. The problem
with this kind of procedure is that the uncertainty of this
estimation is not taken into account when modeling runoff
as a function of rainfall.

Here we propose a joint model for both variables: rainfall
and runoff. For rainfall, we use spatio-temporal models, like
in Sansó and Guenni (2000). For runoff, we use non-normal
and non-linear Bayesian dynamic models. In particular, we
extend the models presented by Migon and Monteiro
(1997). Additionally, to approximate the basin’s rainfall,
we solve the implicit change of support problem (see Cres-
sie (1993) and Gelfand et al. (2001) for further details). The
models presented here allow us to represent parsimoniously
a complex system of physical processes, which fit and fore-
cast rather well, without losing the physical interpretation
of their parameters.

Inference procedure is performed under the Bayesian
paradigm. Markov Chain Monte Carlo (MCMC) methods are
used to assess posterior distributions of the unknown quan-
tities. Since the proposed models can be computationally
intensive when fitted with MCMC techniques, we sought to
use algorithms that perform thousands of iterations in a
few minutes. In particular we focused in the runoff model,
for which we used a sampling scheme recently proposed by
Ravines et al. (2007). It combines the conjugate updating of
West et al. (1985) for dynamic models in the exponential
family, with the backward sampling of Frühwirth-Schnater
(1994).
This paper is organized as follows. In Section ‘‘Rio
Grande Basin, Brazil: Runoff–Rainfall Data’’ we briefly de-
scribe the Brazilian data we used to illustrate our methodol-
ogy. Section ‘‘Individual models for rainfall and runoff’’ is
devoted to a general discussion of some particular individual
models for runoff and rainfall previously proposed. In Sec-
tion ‘‘A simultaneous model for rainfall–runoff’’ the joint
model proposed here is described and the main aspects of
the inference procedure are discussed. In Section ‘‘Model-
ing in practice: Inference procedure’’ we present the results
of the analysis of the Rio Grande basin data, and in Section
‘‘Concluding remarks’’ we offer some concluding remarks.

Rio Grande Basin, Brazil: Runoff–Rainfall Data

The Rio Grande basin is located in the northeast of Brazil, in
Bahia State, a dry sub-humid area with tropical weather.
The region under study is between the 11� and 13� South
parallels and 43� 30 0 and 46� 30 0 West meridians. This basin
has a drainage area of 37522.48 km2. The available dataset
consists of monthly recorded series from August 1984 to
September 2004 (242 months), at one runoff station (Tag-
uá), and nine rainfall stations irregularly located in the
drainage area. Fig. 1a shows the location of each station
and Fig. 1b shows the data for the four monitoring stations
marked in 1a.

From Fig. 1b we observe that there are distinct wet and
dry periods annually: the rainy season begins in November
and lasts through March, with the average accumulated
monthly rainfall over 275 mm; while the dry season is from
late April until October, when the average monthly rainfall
rarely exceeds 10 mm. Most of the basin is sparsely vege-
tated and relatively flat, meaning that altitude has no influ-
ence in the hydrological regime. Thus, it is not taken into
account in our models.
Individual models for rainfall and runoff

Two of the main features of the rainfall–runoff relationship
are: it is basically non-linear and the current runoff depends
on previous runoff plus current and past precipitation. It can
be assumed that there is no feedback between runoff and
rainfall, so a transfer function model seems to be a natural
option for fitting and forecasting this phenomenon. Besides,
runoff is a non-negative variable and its time series can be
non-stationary. Thus, we propose the use of non-linear
and non-normal dynamic models to handle this kind of data.

Let Yt be the runoff and Xt be the precipitation at time t.
The rainfall–runoff relationship can be represented by

Yt � pðYtjlt;/tÞ; t ¼ 1; 2; . . . ð1aÞ
gðltÞ ¼ f1ðat; EtÞ ð1bÞ
Et ¼ f2ðEt�1; . . . ; E0; XtÞ; ð1cÞ

where pðYtjlt;/tÞ is a density function for a non-negative
random variable; lt is the expected value of Yt; /t repre-
sents other parameters of pðYtjlt;/tÞ; at is a basic level
and Et is the total effect of rainfall at time t; and gð�Þ,
f1ð�Þ and f2ð�Þ are known functions describing the dynamics
of the hydrological process. Time varying parameters and
stochastic variations affecting Et are particular cases of (1).
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Figure 1 Rio Grande Basin: (a) Locations of the monitoring stations; (b) Time series of monthly runoff at Taguá, and rainfall at
sites 1, 2, and 3 (marked in (a)).
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A dynamic transfer function model

Following the assumptions made in Migon and Monteiro
(1997), the relationship between runoff and rainfall can
be expressed as a transfer function model. The model in
(1) assumes that the expected value of the total runoff gen-
erated (streamflow), lt, or a function of it, say gðltÞ, can be
written as a baseflow at; which depends on the water table
level, plus an effect of current and past precipitation Et,
which is lt ¼ at þ Et. The effect of precipitation is expected
to decay between time t� 1 and t by a rate qt 2 ð0; 1Þ. This
parameter plays the role of a recharge or rainfall effect
memory rate and depends on the geomorphology and
land-use/land-cover of the basin. Therefore, it should be
(almost) constant over time. Temporal changes in this
parameter can be explained by drastic changes in, e.g., soil
and/or vegetation characteristics. Since Et�1 represents the
effect of precipitation before time t, a fraction of current
rainfall, say ctXt; can be added to compute the rainfall ef-
fect at time t. The parameter ct measures the instantaneous
effect of rainfall and is mainly associated with overland flow
speed. This parameter has a particular temporal dynamic: it
is strongly related to the soil infiltration capacity and the
rainfall interception by the vegetation. After a rainy period,
the soil is saturated and the overland flow will be high. How-
ever, after a dry period, the soil absorbs a great part of
water and the overland flow will decrease. Also, when veg-
etation grows, the leaf density becomes high, increasing the
rainfall interception and consequently decreasing its instan-
taneous effect on the discharge. Alternatively, if #t is the
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Figure 2 Examples of the shapes of the transfer functions in (2a)
panel (a) Xt ¼ 1 if t ¼ 5 and Xt ¼ 0 otherwise. In Panel (c) it was f
maximum expected precipitation effect, then #t > lt and
the remaining possible runoff is #t � ðat þ qEt�1Þ. Therefore
Et, in (1c), can be expressed as one of the following
expressions:

Et ¼ qtEt�1 þ ctXt ð2aÞ
Et ¼ qtEt�1 þ ½1� expð�jtXtÞ�½#t � ðat þ qtEt�1Þ�: ð2bÞ

Eqs. (2a) and (2b) support the hypothesis that the precipita-
tion effect decays exponentially with time. See Panel (a) of
Fig. 2, where for illustrative purposes, we assume Xt ¼ 0 for
all t, except at t ¼ 5, when Xt ¼ 1. We notice that the ef-
fect of Xt on Et dies off after t ¼ 10. In Eq. (2a), the greater
the amount of rainfall, the greater is its returns to runoff.
Panel (b) of Fig. 2 gives an example of such situation when
q ¼ 0:70 and c ¼ 0:30. This hypothesis is known as propor-
tional returns. On the other hand, in Eq. (2b), the greater
the amount of rainfall, the smaller is its effect and, more-
over, this effect has an upper limit. This function is pictured
in Panel (c) of Fig. 2), where we assumed
q ¼ 0:70; c ¼ 0:30; j ¼ 0:10; # ¼ 10:00 and a ¼ 5:00. The lat-
ter is known as the diminishing returns hypothesis (Migon
and Harrison, 1985).

Modeling rainfall

Note that the input Xt in model (1) corresponds to the pre-
cipitation of a whole basin, that is, a unique measure of
rainfall is needed at each time t. However, in many situa-
tions, precipitation is observed in more than one station
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and (2b). In all cases, it was assumed q ¼ 0:70 and c ¼ 0:30. In
urther assumed: j ¼ 0:10; # ¼ 10:00 and a ¼ 5:00.
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within a basin. So, the total rainfall for time t, Xt, should be
obtained from the solution of the spatial change of support
problem. The change of support problem is concerned with
inference about the values of the variable over areal units
(block data) different from those at which it has been ob-
served (Gelfand et al., 2001). Areal rainfall can be viewed
as a sum over point rainfall data, because it is a continuous
univariate spatial process.

Let fXtðsÞ; s 2 B � R2; t ¼ 1; 2; . . .g be a spatial random
field at discrete time t: Here, XtðsÞP 0 is a random variable
that represents the amount of rainfall at time t and location
s. So, the rainfall for a given basin or region B, Xt, is given by

Xt ¼
Z
B

XtðsÞds; ð3Þ

where B is the basin’s domain. In particular, we assume
XtðsÞ follows a truncated normal distribution and, as sug-
gested by Sansó and Guenni (2000), is represented by the
following spatio-temporal model:

XtðsÞ ¼
wtðsÞb if wtðsÞ > 0;

0 if wtðsÞ 6 0

(
s 2 B; ð4aÞ

wt ¼ Zt þ mt mt � GPð0; s2IÞ; ð4bÞ
Zt ¼ F 0ht þ �t �t � GPð0; r2VÞ; ð4cÞ
ht ¼ Ght�1 þ xt xt � GPð0;WtÞ; ð4dÞ

where GP denotes a Gaussian process and s2I and r2V are
the covariance matrices of wt and Zt; respectively. Here I
denotes the identity matrix. The term mt is a random error
whose variance, s2, is known as the nugget effect (Cressie,
1993). The variance of each Ztð:Þ is denoted by r2; and its
correlation function is represented by .ðksi � sjk; kÞ ¼ Vij,
which depends on k, and on the Euclidean distance,
jjsi � sjjj, between the locations si and sj. In this case, F0ht

represents a polynomial trend and G is the evolution matrix
of the parameters ht: An alternative way of modeling rain-
fall is to use a model derived from a mixture taking into ac-
count the excess of zeros (dry season), as in Velarde et al.
(2004) and Fernandes et al. (in press).

Fitting Equations (1) and (3) jointly is our proposed ap-
proach. Our formulation covers a wide class of relation-
ships. It is very flexible and all of its parameters have a
clear interpretation. Moreover, all the uncertainty involved
in the physical process is clearly taken into account, as rain-
fall is not considered as a known quantity.

A simultaneous model for rainfall–runoff

Assume that we have runoff data from T time periods and
rainfall data from S locations over a basin B, observed dur-
ing the same time period. Let Yt and Xt be the basin’s runoff
and rainfall at time t, respectively. Then, Y denotes the ba-
sin’s runoff time series, that is, Y ¼ ðY1; . . . ;YTÞ0, and X de-
notes the basin’s rainfall time series, that is,
X ¼ ðX1; . . . ; XTÞ0. Let XtðsiÞ denotes rainfall at time t and
gauged location si. Then, XtðsÞ ¼ ðXtðs1Þ; . . . ; XtðsSÞÞ0 is the
rainfall observed at time t over the S gauged locations
(for each time t ), and XðsiÞ ¼ ðX1ðsiÞ; . . . ; XTðsiÞÞ0 is the rain-
fall time series observed at gauged site si (for each loca-
tion). And, XðsÞ ¼ ðXðs1Þ; . . . ;XðsSÞÞ0, with s denoting the
vector of gauged locations ðs1; . . . ; sSÞ, is the matrix of rain-
fall observed at the S locations over T time periods. The
joint distribution (see Appendix A for details) of Y; X and
XðsÞ is given by

pðY;X;XðsÞjHÞ ¼ pðYjX;XðsÞ;HYÞpðX;XðsÞjHXÞ; ð5Þ

where H ¼ ðHY ;HXÞ; HY denotes the parameters in (1) and
HX denotes the parameters in (4). Note that in (5) the joint
distribution of runoff and rainfall is modeled through the
conditional distribution of runoff given rainfall, times the
marginal distribution of rainfall (Schmidt and Gelfand,
2003). Also,

pðY;X;XðsÞjHÞ ¼
YT
t¼1

pðYtjXt;XtðsÞ;HYÞpðXt;XtðsÞjHXÞ

¼
YT
t¼1

pðYtjXt;XtðsÞ;HYÞpðXtjXtðsÞ;HXÞ

�
YS
i¼1

pðXtðsiÞjHXÞ: ð6Þ

Gelfand et al. (2001) proposed to approximate pðXt;
XtðsÞjHXÞ by using Monte Carlo integration. They proposed
to sample a set of observations in SB locations, independent
and uniformly distributed over B, and compute

bX t ¼
XSB
i¼1

bXtðsiÞ i ¼ 1; . . . ; SB; ð7Þ

where bXtðsiÞ is the predicted value for rainfall at the ith
location from a regular interpolation grid (with locations
s�1; s

�
2; � � � ; s�SB ) of SB points constructed inside the bounds of

B. Consequently, (7) is a Monte Carlo approximation of (3).
The predictive distribution needed for the spatial inter-

polation of XtðsiÞ, at a new set of locations, for instance,
ðXtðs�1Þ; . . . ; Xtðs�SBÞÞ

0, is given by

pðXðs0ÞjXðsÞÞ ¼
Z

pðXðs0ÞjXðsÞ;HXÞpðHX jXðsÞÞpðHXÞdHX ;

ð8Þ

where HX denotes all the parameters in (4).
Following the Bayesian paradigm, model specification is

complete after assigning the prior distribution of all the un-
knowns. From Bayes’ theorem we obtain the kernel of the
posterior distribution, which does not have an analytical
closed form. Samples from the posterior distribution can
be obtained via Markov chain Monte Carlo (MCMC) methods
(Gamerman and Lopes, 2006). Based on the expressions
above, the inference procedure via MCMC can be done in
the following steps:

(1) Fit a spatio-temporal model for rainfall, XðsÞ,
observed at S gauged locations over B;

(2) Build a regular grid over the domain and obtain a sam-
ple of the rainfall over the basin, X, following Eqs. (7)
and (8). That is, first obtain a sample from the predic-
tive distribution of XðsÞ (for each point of the interpo-
lation grid), then use these values to approximate the
rainfall over the basin using Eq. (7);

(3) For each sampled value of rainfall over the basin, Xt,
obtained in the previous step, fit the runoff model as
in Eq. (1).
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In particular, we assume that runoff follows either a log-
normal or a gamma distribution. In the case of the log-nor-
mal distribution, we applied a log transformation and the
algorithm forward filtering backward sampling (FFBS) of
Frühwirth-Schnater (1994) was used to obtain samples of
the posterior distribution of interest. In the case of the gam-
ma distribution, we propose the use of a sampling scheme
which combines the conjugate updating of West et al.
(1985) for dynamic models in the exponential family, with
the backward sampling of Frühwirth-Schnater (1994). This
algorithm is called conjugate updating backward sampling
(CUBS); details are found in Ravines et al. (2007). We note
that in non-normal transfer function models CUBS signifi-
cantly reduces the computing time needed to attain conver-
gence of the chains, and is also very simple to implement.

Modeling in practice: inference procedure

We applied the approach described in Section ‘‘Individual
models for rainfall and runoff’’ to the rainfall data from
the nine stations and the runoff series observed at Taguá
station in the Rio Grande basin. Specifically, we used the
function in (2a) for Et in (1c) and a multivariate dynamic lin-
ear model (see West and Harrison, 1997, Chapter 16) for the
temporal evolution of the parameters in (4). For a better
explanation, we reproduce our whole, general, model in (9)

YtjXt � pðlt;/Þ t ¼ 1; . . . ;T ð9aÞ
logðltÞ ¼ at þ Et ð9bÞ
Et ¼ qEt�1 þ ctXt þ wt wt � Nð0; r2

EÞ ð9cÞ
at ¼ Gaat�1 þ wa;t wa;t � Nð0; r2

aÞ ð9dÞ
ct ¼ Gcct�1 þ wc;t wc;t � Nð0; r2

cÞ ð9eÞ

Xt ¼
XSB
j¼1

bX tðsjÞ j ¼ 1; . . . ; SB ð9fÞ

XtðsiÞ ¼
wtðsiÞb se wtðsiÞ > 0

0 se wtðsiÞ 6 0

(
i ¼ 1; . . . ; S ð9gÞ

wt ¼ zt þ mt mt � GPð0; s2IÞ ð9hÞ
zt ¼ F 0ht þ �t �t � GPð0; r2VtÞ ð9iÞ
ht ¼ Ght�1 þ et et � GPð0;WtÞ ð9jÞ
h0 � Nð0;100IÞ; ð9kÞ

where pðlt;/Þ is the log-normal or gamma distribution and
/ corresponds to the precision parameter of the former
and the shape parameter of the latter. In (9g)–(9k), S is
the number of monitoring sites and SB is the number of
points in the interpolation grid. XtðsiÞ denotes the rainfall
at time t ¼ 1; . . . ;T and site si ¼ s1; . . . ; sS, wtðsiÞ is a latent
Gaussian variable, b is an unknown power, wt is a vector of
dimension S that stacks the S observations made at time t,
s2 is a nugget effect, r2 > 0 and Vt is a spatial correlation
matrix of dimension S. Here we assume that
Vsi ;si0

¼ expð�kdsi ;si0
Þ, that is, an exponential decay correla-

tion where k controls the decay rate, k > 0 and dsi ;si0
is the

Euclidean distance between sites si and si0 , i; i0 ¼ 1; . . . ; S.
In (9i)–(9k), F0 is an S� k matrix, G is a k� k matrix and
h is a vector of dimension k. The elements of h are such that
ht ¼ ðht1; ht2Þ0, where ht1 is a sub-vector that describes the
spatial trend and ht2 describes the seasonal effects. Eqs.
(9d) and (9e) represent possible time evolutions of a and
c, respectively. In practice, just one of these equations is
considered and depends on the features of the basin under
study.

Prior distributions and full conditional distributions

In general, we used fairly vague prior distributions. How-
ever, since all the involved parameters have physical inter-
pretations, an elicitation procedure could be done. For the
parameters of the spatio-temporal model in (9g)–(9k), we
set pðh0; r2; 12; k; bÞ ¼ pðh0Þpðr2Þpð12ÞpðkÞpðbÞ, where
12 ¼ s2=r2; pðh0Þ is an S� variate normal distribution with
mean 0 and an identity covariance matrix, NSð0; IÞ and
pðr2Þ is an improper distribution, 1=r2. On the other hand,
pð12Þ; pðkÞ and pðbÞ are gamma densities with parameters
(0.001,0.001), (2.00,6/1.86) and (12,4), respectively. The
hyper-parameters for k were selected according to the pre-
mise that at half of the maximum distance between the ob-
served points, the spatial correlation is almost zero. The
hyper-parameters for the prior of b were chosen such that
its expected value was 3, representing the cubic root trans-
formation recommended in the hydrological literature (San-
só and Guenni, 2000).

Following Bayes’ Theorem, the posterior distribution is
proportional to the likelihood times the prior distribution.
For the spatio-temporal model in (9g)–(9k), the posterior
distribution is given by

pðr2; 12; k; b; z; hjXÞ / 1

r2

� �ST 1

12

� �ST=2

jVðkÞj�T=2

� exp � 1

2r2

XT
t¼1

1

12
kwt � ztk2

 
þ ðzt � F 0htÞ0VðkÞ�1ðzt � F 0htÞ

� 1

2

XT
t¼1
ðht � Ght�1Þ0W�1

t ðht � Ght�1Þ
!

�
Y
xit>0

x1=b�1it

b

 !
pðh0; r

2; 12; k; bÞ: ð10Þ

From (10), we have the following full conditional distri-
butions (f.c.d.): r2 and 12 are inverse gamma, z is multivar-
iate normal, and wij < 0 is a univariate truncated normal.
The f.c.d. of k and b do not have a known closed form. Since
ht are the state parameters of a normal dynamic model,
their f.c.d. are multivariate normals.

For the dynamic models in (9a)–(9c) we also set indepen-
dent priors to all the parameters. In particular, we consid-
ered normal prior distributions with zero mean and
variance 103 for E0, a and c and a uniform distribution over
[0,1] for q. For all the variance terms, ðr2

Y ; r
2
E ; r

2
WÞ, we as-

signed inverse gamma distributions with both hyper-param-
eters equal to 0.01. When the gamma distribution is used to
model the runoff, a gamma distribution with both parame-
ters equal to 0.01 was used as a prior for /; the shape
parameter in (9a). In this case, the f.c.d. of the unknowns
in (9a)–(9c) depend on the distribution assumed for Yt

and the hypothesis for r2
E ; r

2
a and r2

c . In particular, if
pðlt;/Þ is a gamma distribution and r2

a ¼ r2
c ¼ 0, the f.c.d.

of c and r2
E are normal and inverse gamma, respectively,
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and the f.c.d. of a, q and / do not have a known closed
form.

Some computational details

In order to sample from the posterior distribution, we used a
hybrid Gibbs sampling algorithm (Gelfand and Smith, 1990).
Samples from the f.c.d. of k; b; a and q were obtained
through the slice sampling algorithm (Neal, 2003). We made
use of a Metropolis–Hastings step to sample /. Samples
from ht were obtained with the forward filtering backward
sampling (FFBS) procedure (Frühwirth-Schnater, 1994). Fol-
lowing Sansó and Guenni (2000), we used discount factors
for Wt: dT ¼ 0:90 for the spatial trend and dS ¼ 0:95 for
the seasonal effects. Finally for r2

a and r2
c we used a discount

factor of 0:95, whenever these parameters were considered
in the model.

The MCMC algorithm for the spatio-temporal model was
iterated 70000 times after a burn-in of 10000 steps, for
two parallel chains. We stored every 10th iteration. For
the runoff models we ran two chains for 60000 iterations,
after a burn-in period of size 10000. The samples were ta-
ken at every 5th step. All the algorithms were written in
Ox version 3.20 (see Doornik (2002)). The convergence of
our chains was checked with the tests available in the CODA
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Figure 3 Estimated path of the state parameters for the rainfall
dashed lines to the 95% posterior credible intervals.

Table 1 Posterior summaries associated with the parameters in

Parameter Mean sd 2.5% 25

b 1.732 0.016 1.701 1.
k 0.045 0.007 0.033 0.
12 0.719 0.040 0.644 0.
r2 1.100 0.044 1.015 1.
package, developed by Plummer et al. (2005), for the soft-
ware R version 2.40.

Results

Taking advantage of the factorization of the likelihood in
pðYtjXtÞpðXtÞ, we used the computational routines for fit-
ting the model in (3) with some different cases of polyno-
mial trend, and then fitting several particular cases of the
model in (1).

Our final model for rainfall has an intercept and a linear
effect of longitude. Alternative models had shown that lat-
itude has no significant effect in this region. The seasonal
pattern was represented via two Fourier harmonics, which
were chosen through an exploratory analysis of the period-
ogram of the series. Therefore matrix Ft in (9i) has row
components: ð1; longitudeðsiÞ; 1; 0; 1; 0Þ0 and G ¼ diagðG1;
G2Þ, where G1 is an identity matrix of order 2; and G2 has
diagonal blocks

G2r ¼
cosð2pr=12Þ sinð2pr=12Þ
� sinð2pr=12Þ cosð2pr=12Þ

� �
; r ¼ 1; 2:

Fig. 3 shows the estimated paths of ht. We observe that
the intercept clearly varies over time and seems to have
an inter-annual cycle. The effect of longitude is negative
1985 1990 1995 2000

1985 1990 1995 2000

0.
5

1.
5

model in (9k). Solid lines correspond to the posterior mean and

equations (9g)–(9k)

% 50% 75% 97.5% bR
722 1.732 1.743 1.764 1.001
040 0.044 0.050 0.061 1.001
691 0.718 0.746 0.798 1.001
070 1.098 1.128 1.191 1.003
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and varies smoothly over time. The first harmonic has a very
regular pattern, however the effect of the second harmonic
exhibits two periods of different behaviors: before and after
1992. Table 1 presents the main summaries of the posterior
samples obtained for the static parameters in equations
(9g)–(9k). Note that we made inference about 12 ¼ s2=r2.
The posterior mean of b is 1.73, suggesting that the data
is smoothly skewed, probably because we are working with
monthly data. In Table 1 we also observe that the bR statis-
tics (Gelman and Rubin, 1992) take values close to 1, sug-
gesting that the convergence of our chains was reached.

In order to illustrate the fitted values produced by our
spatio-temporal model, Fig. 4 displays the mean of the pre-
dictive posterior distribution of rainfall for two selected
months. Note that different patterns are obtained for a
rainy month (like December) and a dry month (like June).

The basin’s rainfall was obtained by means of the spatial
interpolations of rainfall over a grid of 63 points selected
from a regular grid constructed over the whole basin under
study. This grid is exhibited in Fig. 1a. Different grid’s sizes
were used and the results were not sensitive to this choi-
ce.The integral in (9f) was approximated by summing the
63 predicted values at each iteration of our MCMC algo-
rithm. The resulting areal rainfall series, posterior mean
and 95% credible intervals are displayed in Fig. 5. This figure
also shows the mean areal precipitation estimated by the
Thiessen method, a widely used deterministic method. It
consists of assigning an area, or weight, called a Thiessen
polygon, to each site. Then the individual weights are mul-
time
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Figure 5 Panel (a): Areal rainfall (solid line corresponds to the p
corresponds to the Thiessen method estimation). Panel (b): Q–Q plo
Thiessen’s method and the posterior mean of the predictive distrib
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Figure 4 Posterior mean for rainfall for two different months. Do
values indicate higher rainfall values.
tiplied by the observed station and the values are summed
up to obtain the areal average precipitation. Fig. 5 warrants
attention because under the Bayesian framework we take
into account the uncertainty involved and have a credible
interval for each time. Therefore, this uncertainty will nat-
urally be taken into account during the fitting of the runoff
part of the model. Notice also that the estimated rainfall
under the Thiessen method seems to be close to the upper
limit of the posterior predictive interval. This suggests an
overestimation of rainfall for some instants in time. This
is also clear from the Q–Q plot presented on panel (b) of
Fig. 5.

We used our posterior sample of the basin’s rainfall to fit
several particular cases of equations (9a)–(9c). Specifically,
for pðYtjXtÞ, we considered the two distribution mentioned
above: log-normal and gamma. We also considered the fol-
lowing five specifications:

(a) The basic level, the transfer function and the instant
rainfall effect are static; that is: r2

a ¼ r2
c ¼ r2

E ¼ 0; 8t.
(b) The basic level and the instant rainfall effect are sta-

tic. The transfer function is stochastic: r2
a ¼ r2

c ¼ 0
and r2

E > 0; 8t.
(c) The basic level follows a random walk. The transfer

function and the instantaneous rainfall effect are sta-
tic: at ¼ at�1 þ wa;t, r2

a > 0 and r2
c ¼ r2

E ¼ 0; 8t.
(d) The basic level is static, the transfer function is sto-

chastic and the instantaneous rainfall effect follows
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a random walk: ct ¼ ct�1 þ wc;t, r2
c > 0, r2

a ¼ 0 and
r2
E > 0; 8t.

(e) The basic level is static, the transfer function is sto-
chastic and the instantaneous rainfall effect varies
over time following a constant trend and a seasonal
pattern: ct ¼ Gcct�1 þ wc;t, r2

c > 0; r2
a ¼ 0 and

r2
E > 0; 8t. Gc ¼ diagð1;G2;cÞ, where
Tabl

expe

Mode

Log-
(a)
(b)
(c)
(d)
(e)

Gam
(a)
(b)
(c)
(d)
(e)
a W
b W
G2;c ¼
cosð2pr=12Þ sinð2pr=12Þ
� sinð2pr=12Þ cosð2pr=12Þ

� �
; r ¼ 1; 2:
It is worth pointing out that we also fitted the function in
(2b), however the results were less satisfactory than those
under (2a) in terms of goodness of fit (to this particular
dataset). Model comparison was performed using the fol-
lowing criteria: (i) Deviance Information Criterion (DIC),
proposed by Spiegelhalter et al. (2001); (ii) Expected Pre-
dictive Deviation (EPD), proposed by Gelfand and Ghosh
(1998); (iii) Mean Square Errors (MSE); and (iv) Mean Abso-
lute Errors (MAE). In all cases, smaller values indicate the
best model among those under study.

Table 2 (columns 4, 7, 8 and 9) shows the values of DIC,
EPD (both considering a quadratic loss), MSE and MAE, com-
puted for each of the five specifications described above.
Two conclusions can be drawn from this table: first, all
the criteria suggest that the gamma distribution should be
chosen (this is no longer valid for columns 10 and 11); and
second, in this case, specification (e) provides better results
in terms of goodness of fit. It is worth mentioning that when
using the rainfall time series obtained through the Thies-
sen’s method as input ðXtÞ in the selected model, the values
of DIC and EPD are 1817.6 and 90343, respectively. More
specifically, as expected, the penalty term of both criteria
is smaller, however the goodness of fit term is poorer. In
other words, our joint model produces better results (fitted
values) than the individual model that assumes rainfall as
known. A similar conclusion is obtained when using just
the posterior mean of the areal rainfall obtained from the
spatio-temporal model.
e 2 Model comparison criteria for three alternative spec
cted predictive deviance (EPD), mean square error (MSE) and

l DIC EPD MS

normal distribution for runoff ðYtÞ
1 945.3 198 423 429
1 833.0 91 674 149
1 849.9 130 231 292
1 843.9 102 939 186
2 007.3 186 433 274

ma distribution for runoff ðYtÞ
1 934.6 197 570 427
1 829.1 84 514 134
1 838.1 135 407 280
1 831.6 86 602 139
1 817.9 70 457 88

ith fitted values: in the sample, (221 months).
ith predicted values: out-of-sample. (21 months).
Our final runoff model, therefore, assumes a gamma dis-
tribution with a static basic level, a stochastic transfer func-
tion and an instant rainfall effect varying across time
following a constant trend and a seasonal pattern. In Figs.
6a and b we show the histograms of the samples from the
posterior distributions of a and q, respectively. Fig. 6a
shows the posterior mean of a is 4.84, indicating that the
mean basic level in that region, during the observed time
period, was 126.46 m3/s. Fig. 6b shows that the mean of
the regional recharge is 0.64 and varies between 0.57 and
0.71, which corresponds to the 95% posterior credible inter-
val. Fig. 6c shows the evolution of the rainfall’s instant ef-
fect, ctXt. Remember that in the selected model, ct is a
vector with five components where the first one corresponds
to the constant trend and the last four correspond to the
two harmonics used. Panel 6c shows the trajectory of the
first component of ct. In this panel we observe that the rain-
fall’s instant effect (without the seasonal effects) is always
greater than zero and its value varies between 0.03 and
0.05. We also observe a decreasing trend for the last
months.

One of the advantages of the Bayesian approach is that at
the end of the inference procedure we have a sample from
the posterior distributions of all the unknowns in the mod-
els. Therefore, it is straightforward to make inferences
about functions of these quantities. The impulse-response
function is probably one of the most important results of
the class of models we proposed for runoff. This function
indicates the intensity of the runoff response and how many
periods the effect of a impulse of rainfall persists. For illus-
tration purposes, and using the posterior sample of c and q
let us assume a window of 20 periods of time for which rain-
fall is zero for all times except when t ¼ 5, i.e. X5 ¼ 1. Pa-
nel (a) of Fig. 7 shows the persistence of rainfall over runoff
for this setting. The estimated decay rate is clearly shown,
the effect of rainfall dies off after t ¼ 10. Also, the advan-
tage of using the Bayesian paradigm is clear, the dotted
lines describe the 95% posterior credible intervals of the im-
pulse-response function for each time t, and the grey verti-
cal lines represent the posterior sample of the function for
ifications of (9a)–(9c): deviance information criteria (DIC),
mean absolute error (MAE)

Ea MAEa MSEb MAEb

.1 14.9 1 366.9 27.5

.9 7.4 1 359.3 26.8

.1 10.3 2 058.4 27.5

.5 8.4 1 588.6 25.7

.2 9.7 1 596.4 26.2

.5 14.8 1 398.6 26.5

.3 7.0 1 119.6 26.0

.2 10.0 2 078.2 28.0

.0 7.2 1 434.8 26.8

.8 5.6 1 583.0 26.5
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Figure 7 Runoff impulse–response functions. For both panels, solid lines represents the mean and dotted lines represent the 95%
posterior credible interval of the response function for each time t. Panel (a) corresponds to a hypothetical situation with 20 periods
of time, where rainfall equals zero for all times, except for t ¼ 5, that is X5 ¼ 1. Panel (b) shows the summary of the impulse-
response function for the initial 20 periods of time for our dataset. Vertical lines represent the values of rainfall multiplied by 0.40.
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each time t. Similarly, Panel (b) shows the summary of the
impulse-response function for the 20 initial periods of time
for our rainfall–runoff dataset. In this figure, vertical lines
represent the amount of rainfall for each period of time.
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Fig. 8a shows the fitted values obtained for the 221
months in the runoff series. Note that the observed runoff
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values are within the limits of the 95% interval of the poster-
ior predictive distribution, indicating an acceptable overall
fit. However, it can be observed that the higher observed
values (over 300 m3/s) are near the upper limit, suggesting
the use of an extreme value distribution to model them.
This lack of fit at the upper tail is also revealed by the Q–
Q plot among observed values and posterior predictive
means displayed in Fig. 8a.

Temporal predictions and spatial interpolations

An important issue to be considered here is that fitted and
forecast values obtained from Bayesian rainfall–runoff
models can be used in synthetic hydrology. As pointed out
by Rios-Insua et al. (2002), the sample of the predictive dis-
tributions can be used to simulate sequences of observa-
tions that mimic some behavior phenomenon for
engineering design or analysis. Therefore, good interpolated
and forecast values are important to support other areas of
hydrological research.

In order to evaluate the interpolations and predictions
obtained with our models, we left the last 21 observations
out of the sample. The predictive distribution of rainfall
was used to forecast the precipitation at each monitoring
station. Also, as we stated in Section ‘‘A simultaneous mod-
el for rainfall–runoff’’, at each iteration of the MCMC algo-
rithm, we used the predictive distribution of rainfall to
compute the areal one and then we forecast the runoff.

From columns 10 and 11 of Table 2, we conclude that the
selected model (gamma distribution and specification (e))
does not exhibit the smallest out-of-sample MSE and MAE.
However, we used that model to make our temporal predic-
tions because the MAE values are very similar among the
considered models. Fig. 9a shows the temporal predictions
obtained for three of the nine rainfall stations, the temporal
areal prediction for the areal rainfall is presented in Fig. 9b,
and the predicted series for runoff is displayed in Fig. 9c.
Note that almost all of the true values are within the limits
of the 95% posterior credible interval provided by our
approach.

Concluding remarks

In this paper we proposed a joint model for rainfall and run-
off, by taking into account all the uncertainty associated
with both stochastic processes and considering their differ-
ent spatial units. We used some previously established indi-
vidual models whose parameters have natural physical
interpretations. We also fitted the data in their original
scale. Under a Bayesian framework we proposed to fit
non-normal (gamma) transfer function models using the
CUBS sampling scheme that significatively reduces the com-
putational time and is easy to implement. We were also
careful with the implementation of the MCMC algorithm.
Although it is not shown here, missing data are naturally
handled as parameters of the models. We believe our ap-
proach is a promising tool for runoff–rainfall analysis.

As pointed out by the referees, we need alternative ap-
proaches to tackle the problem of poor fitting at the runoff
peaks. One way to do this is to consider extreme values dis-
tributions which will be able to capture extreme events. Or
even consider mixture of distributions as suggested by Beh-
rens et al. (2004). Or as suggested by one of the referees,
one might consider a more adequate transfer function,
one for the rainy season and another one for the dry season.
This is part of our current investigation.

A natural extension of the model proposed here is the
inclusion of a variable that represents the region’s vegeta-
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tion. Vegetation controls the evapotranspiration and inter-
ceptation processes, two components of the water balance.

Natural alternatives to the models used here are to con-
sider other transfer functions for the runoff and to consider
other spatial correlation functions in the spatio-temporal
model for rainfall. An interesting extension is the use of
hierarchical dynamic models (like Gamerman and Migon
(1993)), to model a set of runoff series from different basins
but with similar geological and climate characteristics.
Also, linear models can be considered for both parameters
of the biparametric gamma distribution used for runoff, as
in Capkun et al. (2001).

Finally, the results obtained with our approach provide
an important input to the decision problem of reservoir
operations (see Rios-Insua et al. (1997)), which is just one
of the topics of our current research.
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Appendix A. Likelihood and Spatial Change of
Support

Here we present in more detail the computations for the
change of support problem. Let Y ¼ ðY1; . . . ;YTÞ0,
X ¼ ðX1; . . . ; XTÞ0; and XðsiÞ ¼ ðX1ðsiÞ; . . . ; XTðsiÞÞ0. Also, con-
sider XtðsÞ ¼ ðXtðs1Þ; . . . ; XtðsSÞÞ0 and XðsÞ ¼ ðX1ðsÞ; . . .
;XTðsÞÞ an S� T matrix, where s ¼ ðs1; . . . ; sSÞ. The joint dis-
tribution of Y and XðsÞ is given by

pðY;XðsÞjHÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
observed data

¼
Z

pðY;XjXðsÞ;HÞpðXðsÞjHÞ dX|{z}
latent process

¼
Z

pðYjX;XðsÞ;HYÞ

� pðX;XðsÞjHXÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Monte Carlo approximation

dX; ðA1Þ

where H ¼ ðHY ;HXÞ: Actually, the joint distribution of the
observed data is given by pðY;XðsÞjHÞ, then X plays the role
of a latent variable. Since one of the advantages of the use
of MCMC methods is that we can sample pðY;X;XðsÞjHÞ and
consider that samples from pðY;XðsÞÞ belong to the mar-
ginal joint distribution of both variables, we are concerned
with pðY;X;XðsÞjHÞ, which for a fixed t is given by

pðYt; Xt;XtðsÞjHÞ ¼ pðYtjXt;XtðsÞ;HYÞpðXt;XtðsÞjHXÞ: ðA2Þ

Now, we focus on pðXt;XtðsÞjHXÞ. Recall that

Xt ¼
Z
B

XtðsÞds; ðA3Þ
that is, Xt is a ‘‘function’’ of XtðsÞ and the predictive distri-
bution of Xt is

pðXtjXtðsÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
predictive

¼
Z

pðXtjXtðsÞ;HXÞ pðHX jXtðsÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
posterior

dHX : ðA4Þ

The moments of pðXtjXtðsÞÞ in (A4) involve integrals with re-
spect to s. For instance, assuming that the joint distribution
of Xt and XtðsÞ is normal, we have

EðXtjHXÞ ¼
Z
B

EðXtðsÞjHXÞds: ðA5Þ

Gelfand et al. (2001) proposed to approximate those mo-
ments by means of Monte Carlo integration. They showed
that

p̂ððXt;XtðsÞÞ0jHXÞ ¼ pððbXt;XtðsÞÞ0jHX

�
; ðA6Þ

where ^ denotes a Monte Carlo integration and

bXt ¼
XSB
i¼1

bX tðsiÞ i ¼ 1; . . . ; SB: ðA7Þ

According to Gelfand et al. (2001), (A6) implies that the
approximated joint density of Xt and XtðsÞ is equal to the
joint density of bX t and XtðsÞ, so, in practice, bX t is the one
to be sampled. The authors stated that bX t!P Xt if XtðsÞ is
almost surely a continuous process.
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e multivariadas. Ph.D. thesis, Engenharia de Produção, COPPE -
UFRJ, Rio de Janeiro, Brazil. (in Portuguese).
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