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ABSTRACT
Patent prior art queries are full patent applications which
are much longer than standard web search topics. Such
queries are composed of hundreds of terms and do not rep-
resent a focused information need. One way to make the
queries more focused is to select a group of key terms as
representatives. Existing works show that such a selection
to reduce patent queries is a challenging task mainly because
of the presence of ambiguous terms. Given this setup, we
present a query modeling approach where we utilize patent-
specific characteristics to generate more precise queries. We
propose to automatically disambiguate query terms by em-
ploying noun phrases that are extracted using the global
analysis of the patent collection. We further introduce a
method for predicting whether expansion using noun phrases
would improve the retrieval effectiveness.

Our experiments show that we can obtain almost 20%
improvement by performing query expansion using the true
importance of the noun phrase queries. Based on this ob-
servation, we introduce various features that can be used
to estimate the importance of the noun phrase query. We
evaluated the effectiveness of the proposed method on the
patent prior art search collection CLEF-IP 2010. Our ex-
perimental results indicate that the proposed features make
good predictors of the noun phrase importance, and selec-
tive application of noun phrase queries using the importance
predictors outperforms existing query generation methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Query for-
mulation, Relevance Feedback

General Terms
Experimentation, Performance, Measurement
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Patent Search, Query Generation, Relevance Model
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1. INTRODUCTION
Patent prior art search is composed of a search over pre-

viously filed patents with the aim of retrieving relevant doc-
uments, which may invalidate or at least describe prior art
work in a patent application, (henceforth referred to as query
patent in this paper). The challenges of patent prior art
search are different from those of standard ad hoc text and
web search. The first difference is associated to the query
length: patent prior art queries are full patent applications
comprising of hundreds of words as opposed to ad hoc search
and web search where the queries are very short. The second
issue is related to the fact that patent prior art search is a
recall oriented task where the goal is to retrieve all relevant
documents at early rank positions as opposed to ad hoc and
web search, where the goal is to achieve high precision.

We present a solution to the patent prior art search prob-
lem allowing the user to submit a full patent document as a
query and the retrieval system identifies related patent doc-
uments from a corpus accordingly. To provide such func-
tionality, we propose two techniques to process patent doc-
uments on demand and extract terms and key phrases in or-
der to form a query to retrieve relevant documents from the
patent corpus. These two approaches can be summarized as
follows: i) one approach extracts single terms from the query
patent using the KL-divergence between the query patent
and the collection; ii) the other approach refines the origi-
nal query by expanding it with selected key concepts (i.e.,
bigrams or phrases) from the query patent using the global
analysis of the patent collection. These two approaches are
complementary to each other: the first approach extracts
generic terms, favoring recall, while the second aims to find a
clear focus for the query by providing more specific phrases,
thus increasing precision.

However, after evaluating mean average precision (MAP)
over the topic set, we observe that the expanded rank list
is not statistically different from the unexpanded rank list.
After performing failure analysis on a per query basis, we de-
tected a large variation in performance for different queries;
we found that while indeed the expanded rank list improves
the quality of results for many queries considerably, the qual-
ity of results is poor for some other queries. One of the rea-
sons explaining the hurting retrieval performance for some
queries is attributed to the topics for which the main as-
pect of the query is not considered during expansion. In
such cases, only important concepts describing the partial
aspects of the query are extracted. This observation shows
that expansion using noun phrases was not consistently ben-
eficial for all queries. This suggests that the decision about



query expansion using concepts should be taken in a query
dependent way.

In this paper, we propose a method for distinguishing be-
tween queries and deciding when to selectively use the re-
sult of a refinement technique that is likely to improve the
retrieval performance. Our goal is to find queries that have
highly positive changes in query performance using refine-
ment. To this end, we use query performance predictors (pre
and post-retrieval) [2, 9, 1, 20] and patent-specific features
in order to find highly performing queries in the expanded
retrieval rank list. To decide when to use the result of the
expanded list, we rely on a machine learning approach that
tries to predict which one of the two competing approaches
will offer the best result for a given query.

This prediction is performed in a selective query refine-
ment framework [23, 1, 3, 8, 10]. It is desirable for us to
build a robust patent retrieval system which can be used in
an operational setting. We aim at quantifying the perfor-
mance of the queries in order to build a robust system which
can invoke different retrieval strategies in a query dependent
way according to the estimated performance of a query. To
the best of our knowledge no previous work have used the
query performance predictors in the patent domain.

In this paper we explore extracting concepts which explic-
itly occur in the query patent itself. We also study extract-
ing important concepts associated with the information need
underlying the query patent through the process of query
expansion by building a relevance model: 1) via pseudo rel-
evance feedback; 2) using sample relevant documents. Our
contributions are:

• Investigating different ways of estimating the query
model from a query patent utilizing patent-specific char-
acteristics.

• Presenting a method for predicting whether query ex-
pansion using concepts would improve the retrieval ef-
fectiveness.

• Investigating the impact of different types of expansion
in our selective query expansion framework.

We evaluate our model on CLEF-IP 2010 collection and
we report significant improvement over the strong CLEF-
IP baselines. The results show that by incorporating the
predicted noun phrase importance in a selective query ex-
pansion framework, we can achieve significant improvement
over using query expansion for all queries.

The rest of this paper is organized as follows: Section 2
briefly reviews the related work; Section 3 and 4 define the
original and the expanded query models; Section 5 describes
the prediction model using query performance measures;
Section 6 reports the experimental results and Section 7 re-
ports the conclusion of the work.

2. RELATED WORK
The work performed by patent examiners involves man-

ual query formulation from the query patent in order to find
invalidating claims. They consider high term frequency in
the document to be a strong indicator of a good query term.
Methods to shorten a query patent have been studied for a
few years and this research direction has shown to be very
challenging mainly due to the presence of ambiguous terms.
In the third NTCIR workshop [12], the first patent prior art

search track was introduced and several patent test collec-
tions were released. Some early works [11, 13] using this
collection focused on extracting keywords to form a reduced
query.

A recent line of work advocates the use of the full patent
application as the query to reduce the burden on patent
examiners. This direction has been started by Xue and
Croft [21], who conducted a series of experiments in order to
examine the effect of different patent fields, and concludes
with the observation that the best Mean Average Precision
(MAP) is achieved using the text from the description sec-
tion of the query patent with raw term frequencies. Fuji [6]
showed that retrieval effectiveness can be improved by com-
bining IR methods with the result of citation extraction.

The current developments in the patent search are driven
by the Intellectual Property task within the CLEF1 initia-
tive. Several teams participated in the prior art search task
of the CLEF-IP 2010 and proposed approaches to reduce
the query patent by extracting a set of key terms from it.
Different participating teams experimented with term dis-
tribution analysis in a language modeling setting, and they
employed the document structure of the patent documents
in various ways [18].

So far, one of the most comprehensive descriptions of the
problem and possible solutions for the prior art search is
presented by Magdy and Lopez [15]. The authors show that
the best performing run of CLEF-IP 2010 uses citations ex-
tracted by training a Conditional Random Field (CRF). The
second best run uses a list of citations extracted from the
patent numbers within the description field of some patent
queries. They also show that the best run employs sophis-
ticated methods of retrieval using two complementary in-
dices, one constructed by extracting terms from the patent
collection and the other built from external resources such
as Wikipedia. They compared this two approaches and con-
clude with an interesting observation that the second best
run achieves a statistically indistinguishable performance
compared to the best run.

A recent work [7] studies the effect of using Pseudo Rele-
vance Feedback (PRF) for reducing patent queries. Authors
decompose a patent application into constituent text seg-
ments and compute the language modeling similarities by
calculating the probability of generating each segment from
the top ranked documents. They showed that although they
achieve improvement over PRF, their approach is not able
to achieve statistical significance gain over the second best
result of CLEF-IP 2010. As a baseline for this paper, we
consider an approach which produces comparable results to
the second rank participating group of CLEF-IP 2010 and
we compare different variations of our proposed method to
this baseline. We show that our proposed method signifi-
cantly outperform the baseline.

In addition to the well known MAP metric we use the
Patent Retrieval Evaluation Score (PRES) which is origi-
nally proposed by Magdy and Jones [14]. Authors showed
that MAP can be a misleading metric for evaluating the per-
formance of patent prior art search because of its inherent
characteristic of favoring precision over recall. This metric
measures the system recall and the quality of ranking in one
score. Our experiments report an improvement in terms of
MAP, recall and PRES over the baseline.

1http://www.ir-facility.org/clef-ip



3. ESTABLISHING A BASELINE: SINGLE
TERM EXTRACTION

Patent prior art queries are full patent applications which
are much longer than standard web search topics. These
queries are composed of hundreds of terms and do not rep-
resent a focused information need. Thus, the success of the
patent prior art search relies on the selection of good search
queries.

Our goal is to estimate the query model of a query patent
in a language modeling framework. This estimation enables
us to identify the importance of terms and assign weights to
them accordingly. By modeling the term distribution of the
query patent we get a detailed representation of the query
patent which allows us to expand the query, and to refine
the query model by considering relationships between terms.
This approach is used to bridge the vocabulary gap between
the underlying information need of the query patent and the
collection.

In this section, we first describe how we create a language
model ΘQ for the query patent. We use the maximum likeli-
hood estimate smoothed by the background language model,
as expressed in Equation 1 to avoid sparseness issues.

P (t|ΘQ) = (1− λ) · PML(t|D) + λ · PML(t|C) (1)

where maximum likelihood estimate PML is calculated as
follows:

PML(t|D) =
n(t,D)∑
t′ n(t′, D)

(2)

We introduce a unigram query model by estimating the im-
portance of each term according to a weighted log-likelihood
based approach as expressed below:

P (t|Qorig) = Zt P (t|ΘQ) log

(
P (t|ΘQ)

P (t|ΘC)

)
(3)

where Zt = 1/
∑

t∈V P (t|Qorig) is the normalization factor
and is defined as the Kullback-Leibler divergence between
ΘQ and ΘC . This approach favors terms that have high
similarity to the document language model ΘQ and low sim-
ilarity to the collection language model ΘC . For the rest of
the paper Qorig serves as our unigram baseline.

In order to model the query patent more precisely we
need a source of additional knowledge about the informa-
tion need. Patent documents are annotated with Interna-
tional Patent Classifications2 (IPC). Such classes are lan-
guage independent keywords assigned as metadata to the
patent documents. They are categorizing the content of a
patent document and reflecting the field of technology of a
patent. These IPC classes resemble tags assigned to doc-
uments (henceforth referred to as conceptual tags in this
paper).

Our goal is to build a relevance model by employing docu-
ments that have at least one conceptual tag in common with
the query topic. Each relevant document from this sample
is assumed to serve as evidence towards the estimation of
the relevance model. Note that this relevant samples are
not part of the relevance information.

Our approach to construct the relevance model ΘIPC is
the following. First, we estimate the level of relevance of a

2http://www.wipo.int/classifications/ipc/en/

document D with P (D|ΘIPC). Then the top-k terms with
the highest probability P (t|D) are picked and used to build
ΘIPC . The sample distribution P (t|ΘIPC) is calculated ac-
cording to Equation 4. This sampling is dependent on the
original query patent as it utilizes documents with similar
conceptual tags to the query patent.

P (t|ΘIPC) =
∑

D∈IPC

P (t|D) · P (D|ΘIPC) (4)

Now we explain how the level of relevance of a sample doc-
ument D is estimated. We can not assume documents in
the relevance set to have equal importance. The reason is
that documents in the relevance set can be multi-faceted and
therefore not entirely relevant to the information need rep-
resented by the query patent. So we need to assign impor-
tance to the documents according to their level of relevance.
We approximate the relevance of a sample document D, de-
noted by P (D|ΘIPC), based on the divergence between D
and ΘIPC . We measure this divergence by calculating the
log-likelihood ratio between D and ΘIPC , normalized by the
collection C as defined below:

P (D|ΘIPC) ∝ H(ΘD,ΘC)−H(ΘD,ΘIPC)

= ZD

∑
t∈V

P (t|ΘD) log
P (t|ΘIPC)

P (t|ΘC)

where H(ΘD,ΘC) represents the cross entropy between the
sample document D and the collection and H(ΘD,ΘIPC)
represents the cross entropy between the sample document
D and the topical model of relevance ΘIPC . We define
ZD = 1/

∑
D∈IPC P (D|ΘIPC) as a document-specific nor-

malization factor. This approach assigns higher scores to
documents which contain specific terminology and are more
similar to ΘIPC and less similar to the language model of the
collection ΘC . For estimating the term importance P (t|D)
in Equation 4, we consider the smoothed maximum likeli-
hood estimate of a term to avoid sparseness issues as shown
in Equation 1.

We then mix the estimated relevance model using the con-
ceptual tags and the original query in order to build an ex-
panded query. To do this, we use a linear combination as
expressed in the following:

P (t|Qex) = (1− µ) · P (t|θIPC) + µ · P (t|Qorig) (5)

where P (t|Qorig) and P (t|θIPC) show the probability of
term t given the original query model and the estimated
relevance model, respectively. We refer to this expanded
query model as EX-RM.

The performance of different unigram query models pre-
sented in this section are compared with each other in the
experiment section. For comparison purposes, we also show
the performance of Pseudo Relevance Feedback (PRF), as a
reference baseline, and we compare this to the query models
built in this section. In the experiment section we show that
the relevance model constructed based on the conceptual
tags (EX-RM) outperforms the result of PRF. To generate
a query we pick the top-k terms with higher weights from
each query model.



4. PHRASE EXTRACTION
In this section, we present our approach for extracting

key phrases with similar semantics to patent query. Such
phrases will be used to expand and disambiguate the initial
unigram query Qorig as estimated in Section 3. We then
use the expanded noun phrase query Qexpand to retrieve
relevant documents from the patent corpus. We use both
corpus statistics and linguistic heuristics for finding mean-
ingful phrases. The detail of our solution is as follows: First
we identify the set of all candidate key phrases Sp for the
query document d, as explained in Section 4.1. We then
evaluate the significance of each candidate phrase p ∈ Sp,
by assigning a score s(c) between 0 and 1 to each phrase as
shown in Section 4.2. Finally we select the top-k phrases to
construct an expanded query. In the evaluation section, the
quality of Qexpand is compared to the unigram query Qorig

by reporting the document retrieval results.

4.1 Extracting Candidate Key Phrases
We recognized and extracted candidate noun phrases with

length at most 5 from the query patent, with the help of
the Stanford part of speech tagger [19]. The part-of-speech
tagger assigns part-of-speech tags (e.g., noun (NN), verb
(VB), adjective (JJ), etc.) to each term w ∈ d. The part-of-
speech tagger applies a pre-trained classifier on w and it’s
surrounding terms in d. We consider all noun phrases as
candidate phrases, and compute Sp by extracting all such
phrases from d. We are interested to find ordinary phrases
rather than extracting named entities. The example noun
phrase patterns3 that we used are listed in Table 1.

Table 1: Example of noun phrase patterns and in-
stances

Pattern Instance
NN leukocyte
JJ NN miniature column
NN NN blood filtration
JJ JJ NN hydrophobic polymerizable monomer
NN NN NN leukocyte removal performance
JJ NN NN nonwoven polyester fabric
JJ JJ JJ NN protonic neutral hydrophilic part
NN NN NN NN blood transfusion side effect
... ...
NN NN NN NN NN coating leukocyte removal filter material

4.2 Scoring Key Phrases
We used the two methods proposed in [22] for scoring

phrases. We briefly revisit the two scoring approaches. The
first approach employs the TF/IDF information for evaluat-
ing the importance of each phrase, while the second calcu-
lates a weight for each phrase using mutual information.

4.2.1 Scoring Phrases based on TF/IDF
The first scoring technique assigns a score st(p) to a phrase

p which is based on a linear combination of the total TF/IDF
score of all terms in p and the degree of coherence of p.
Coherence quantifies the likelihood of the constituting terms
in forming a single concept and is a measure of stability of

3Presented instances belong to query 433 in the topic set.

a phrase in the corpus. Formally, let |p| denote the number
of terms in phrase p; we use w1, w2, ..., w|p| to refer to the
actual terms. st(p) is formally defined as:

st(p) =

|p|∑
i=1

tf.idf(wi) + α · coherence(p) (6)

where idf(wi) is the inverse document frequency of wi and
α is a tunable parameter. The first component in st(p) cap-
tures the importance of each term in p by using the TF/IDF
value. A rare term that occurs frequently in d is more impor-
tant than a common term frequently appearing in d (with
low idf ). This component will reward rare phrases. The sec-
ond component in st(p) represents how coherent the phrase
p is. The coherence of p is defined as:

coherence(p) =
tf(p) · (1 + log tf(p))

1
|p| ·

∑|p|
i=1 tf(wi)

(7)

where tf(p) is the number of times the phrase p appears in
the document d. Equation 7 compares the frequency of p
with the average tf of its terms. The additional logarithmic
component give importance to phrases appearing frequently
in the input document.

4.2.2 Scoring Phrases based on Mutual Information
The second scoring technique assigns sm(p) to a phrase p

which is based on the mutual information (MI) between the
terms of phrase p and the idf values from the background
corpus. sm(p) is a linear combination of idf values of terms
in p, frequency of p, and the point-wise mutual information
among them. sm(p) is formally defined as:

sm(p) =

|p|∑
i=1

idf(wi) + log
tf(p)

tf(POSp)
+ PMI(p) (8)

where tf(p) and tf(POSp) are the number of times p and
its part-of-speech tag sequence POSp appear in d and its
part-of-speech tag sequence POSd, respectively. The first
part represents how descriptive each term in phrase p is.
The second part identifies how frequent the phrase p is at
the corresponding POS tag sequence in the document. The
third part captures how likely are the terms to from a phrase
together. Mutual information compares the probability of
observing the constituting terms in phrase p together (the
joint probability) with the probabilities of observing those
terms independently. The PMI(p) for a phrase p is defined
as:

PMI(p) = log(
P (p)∏|p|

i=1 P (wi)
) (9)

where P (wi) and P (p) denote the probability of occurrence
of wi and phrase p respectively at the appropriate part-of-
speech tag sequence. They are formally defined as:

P (p) =
tf(p)

tf(POSp)
, P (wi) =

tf(wi)

tf(POSwi)
(10)

In order to emphasize on the importance of how frequent
the phrase p occurs in the document d we weight Equation 8

by tf(p)
tf(POSp)

as shown below:



s′m(p) =
tf(p)

tf(POSp)

×

( |p|∑
i=1

idf(wi) + log
tf(p)

tf(POSp)
+ PMI(p)

)
We only keep the top few highest scoring phrases to elim-

inate redundancy. We will do a deeper analysis on the num-
ber of selected phrases in the experimental section.

5. PREDICTING NOUN PHRASE EFFEC-
TIVENESS

Our goal is to predict whether an expanded query using
noun phrases will be more effective for retrieval than an
unexpanded query. We evaluate the effectiveness of the ex-
panded query by estimating the change in the average preci-
sion (AP) for each query. Let AP (Qorig) and AP (Qexpand)
be the AP of original unigram query and of the expanded
query using noun phrases, respectively. We measure the
performance change due to the Qexpand as expressed below,

chg(AP,Q) =
AP (Qexpand)−AP (Qorig)

AP (Qorig)
(11)

We set a threshold at 10% for this change in AP to dis-
tinguish a good expanded query from a bad one and this
indicates an effective noun phrase expansion. After identi-
fying a good expanded query according to Equation 11, we
use this estimate to decide whether the original query should
be expanded or not. We then perform a selective query ex-
pansion (SQE) where we only expand effective noun phrase
queries.

Before trying to estimate the effectiveness of the noun
phrase query, it is interesting to know how good the SQE
will perform if the true effectiveness value is used. To this
end, we use the average precision of Qorig and Qexpand to
decide whether to expand a query or not. We refer to this
approach as oraclenp showing the potential upper bound
of what can be achieved by combining the two rank lists
based on true effectiveness. Table 2 shows the MAP for the
top 1000 results with oraclenp in comparison to the original
unigram query model (baseline) and the expanded query
model using noun phrases (QM-NP2). The † and ‡ symbols
indicate that the improvement over the unigram baseline
and QM-NP2 is statistically significant at p<0.01.

Table 2: Performance results using the true noun
phrase effectiveness

model MAP
baseline 0.1366
QM-NP2 0.1380
oraclenp 0.1649 † ‡

As the result of Table 2 suggests, we can achieve a 20%
improvement over both unigram baseline and QM-NP2, by
employing the true effectiveness of the noun phrases. We
seek to reach this upper bound by a reasonable estimation
of the correct AP values and the change of AP for each query
according to Equation 11.

5.1 Features
In order to predict the effectiveness of an expanded query

we use a set of features related to the query to estimate AP
of both rank lists of Qorig and Qexpand. These features will
be explained in this Section.

The Query Clarity (QC) measure [2] quantifies the level
of effectiveness of a query at retrieving a specific topic. The
clarity measure is the Kullback-Leibler (KL) divergence be-
tween the query language model P (w|Q) and the collection
language model P (w|C). Formally, the clarity score is de-
fined as:

DKL(Q||C) =
∑
w∈V

P (w|Q)log
P (w|Q)

P (w|C)
(12)

A higher clarity score indicates a clearer query with special-
ized vocabulary and a lower clarity score indicates a more
ambiguous query with a very generic language. To calcu-
late a clarity score in a given collection, a relevance model is
constructed. This model captures the language usage of doc-
uments related to the query and therefore it is a collection-
dependent query model.

We propose two measures inspired by the clarity measure
using patent-specific characteristics. Let IPCQ be the set
of documents with similar topics to Q represented by con-
ceptual tags. The first measure, called Topical Clarity, is
defined as the KL-divergence between the language model
of Q and the language model of IPCQ. Formally, the Topi-
cal Clarity (TC) measure is defined as:

DKL(Q||IPCQ) =
∑
w∈V

P (w|Q)log
P (w|Q)

P (w|IPCQ)
(13)

where P (w|IPCQ) is the relative frequency of term w in doc-
uments with similar conceptual tags to Q. We refer to this as
the topical clarity. In this case, a larger KL-divergence indi-
cates a query with fewer topics and therefore a more focused
query, while a smaller KL-divergence indicates a query with
a broader language use.

The second measure called IPC-based Clarity captures the
similarity between the language usage of IPCQ and the col-
lection language model. This measure is defined as:

DKL(IPCQ||C) =
∑
w∈V

P (w|IPCQ)log
P (w|IPCQ)

P (w|C)
(14)

An alternative indication of the specificity of a query is to
consider the distribution of the informative amount in the
query terms [9]. This measure is defined by:

γ1 = σidf (15)

where σ represents the standard deviation of the idf of the
terms in Q. Each query term can be associated with an
inverse document frequency (idf(w)) describing the infor-
mative amount that a query term q carries. The idf(w) is
defined by:

idf(w) = log
N −Nw + 0.5

Nw + 0.5
(16)

where Nw is the number of documents in which the query
term w appears and N is the number of documents in the
whole collection.

Another measure to predict query performance is called
Query Scope (QS) [9]. This measure uses the size of the
document set containing at least one of the query terms to



Table 3: Features used in the regression model for
query Q

Features

QC Query Clarity
TC Topical Clarity
tag-clarity IPC-based Clarity
γ1 Informative Amount in the Query
QS Query Scope

infer the query performance. Formally, the query scope is
defined as:

QS = − log(nQ/N) (17)

where nQ is the number of documents containing at least
one of the query terms, and N is the number of documents
in the whole collection.

These features are summarized in Table 3. Note that the
length of generated queries are similar so there is no gain in
considering this as a feature.

To learn a performance prediction model using these fea-
tures we define the following regression problem.

argmin
Φ

∑
Q∈T

||Φ(F (Q))−AP (Q)||2 (18)

where T is a set of training topics and F is a mapping from
query to the feature space. F also defines a mapping from
the respective rank list of the query to the feature space.

5.2 Evaluating the dependence between the pre-
dictors and AP

In this section, we will examine the correlations of the
predictors with the query performance. We use AP as the
focus measure indicating the query performance in our ex-
periments. To investigate the effectiveness of the predictors,
we check the Spearman rank correlation and linear regres-
sion because of their power in showing correlation between
predictors and AP as suggested by previous studies [4, 9].

The linear regression assumes a linear distribution of the
involved variables, which is not necessarily valid in our case.
As the distribution of the involved variables is unknown, a
non-parametric measure such as Spearman rank correlation
which does not assume any particular structure for the re-
lationship can find stronger relationships. However, Spear-
man rank correlation can not find relationships between the
combinations of predictors and AP.

Table 4 summarizes the results of the linear correlations
of the predictors (in isolation) with AP on the training data.
We know that the relationship between predictors and AP
may be nonlinear, but this allows us to compare the impor-
tance of the features by examining their coefficients. We
also examine the importance of the features by examining
the significance of their correlation with AP. Bold values
denote statistically significant correlations with AP at the
reported level of p-value using paired t-test.

In order to model the complex nonlinear relationships be-
tween combinations of predictor variables, we use Stochastic
Gradient Boosting Tree (SGBT) [5]. This model produces
an ensemble of weak prediction learners, i.e., decision trees.
It builds additive regression models in a stage-wise manner

Table 4: Linear Regression and Spearman rank cor-
relation coefficient of the query performance predic-
tors with Average Precision

LR Spearman
Features r p-value rs p-value

QC 0.2180 0.05 0.3645 0.01
TC 0.2466 0.05 0.3170 0.01
tag-clarity 0.0943 0.28 0.1812 0.05
γ1 0.0491 0.61 0.1100 0.05
QS 0.1956 0.05 0.2278 0.01

and it generalizes them by allowing optimization of an ar-
bitrary differentiable loss function. For the SGBT, we used
the gbm2 package implemented in R4. SGBT can find a sub-
combination of features that may aid with the prediction of
AP. With this model we can get a prediction of AP for any
input. Notice that Φ in Equation 18 represents an additive
model of multiple decision trees which is learnt by SGBT.

6. EXPERIMENTS
In this section, we present the results for an experimental

evaluation of our proposed method of refining patent queries
using concept importance predictors.

First, we describe our experimental setup and the three
experimental settings used in our study. In the first set-
ting, we compare different unigram query models built from
the query patent and we show their retrieval effectiveness
on CLEF-IP 2010 dataset. In the second setting, in order
to find out whether we can find a clearer focus of the query
patent, we expand the unigram query with extracted impor-
tant key concepts (e.g., bigrams or phrases). We determine
the optimal parameter settings for each query model using
training data and we compare the effectiveness of expansion
using noun phrases with the baseline unigram queries. In
the third setting, in order to find out whether query per-
formance predictors can indicate a successful application of
phrases, we conduct an experiment where we estimate the
effectiveness of using noun phrases based on the set of fea-
tures proposed in Section 5. We then combine the result
of the unigram query and the expanded query using the
outcome of the prediction model. We show that the best
performance is achieved by expansion using noun phrases in
a query dependent manner.

6.1 Experimental Setup
The retrieval experiments described in this paper are im-

plemented using Terrier5. We used CLEF-IP 2010 collec-
tion which consists of 2.6 million patent documents. The
relevance assessment is provided for the topic set which are
patent applications and have title, abstract, description, and
claims. As mentioned earlier, using description text for
query generation has been shown to achieve the best MAP
in contrast to other patent fields [16]. Therefore, we use the
description text for building the query model. Patent ap-
plications in the topic set are annotated with the metadata
tags such as IPC classes. We worked with the english topic
set which corresponds to 1348 topics. We note that we did

4http://cran.r-project.org/web/packages/gbm/
5http://terrier.org/



not use the citation information of the patent applications
in our experiments.

During indexing and retrieval, both documents and queries
are stemmed using the Porter stemmer. Stop-word removal
is performed on both documents and queries using the stan-
dard Terrier stop-word list. In addition to that, we also
removed all the formulas and numeric references. We used
BM25 for retrieving and scoring the documents. This is
because we observed that BM25 scores are slightly more ef-
fective in practice.

6.2 Experimental Evaluation

6.2.1 Unigram Query Models
In this section the performance comparison of different

unigram query models explained in Section 3 is presented.
The result of our baseline method, Qorig, is comparable
to the second best result of the CLEF-IP 2010 [15]. The
second best participating group of CLEF-IP 2010 showed
that their approach achieves a statistically indistinguishable
performance compared to the best result in CLEF-IP 2010.
This ensures our choice for a competitive baseline method.
Therefore, Qorig serves as our baseline. In our experiments,
we set the smoothing parameter λ in Equation 1 to be 0.5.
Table 5 reports a comparison of two query expansion mod-
els EX-RM and PRF against our baseline. The expanded
query model EX-RM is constructed by building a relevance
model from the sample documents with at least one concep-
tual tag in common with the query. The expanded query
model PRF is formed based on Pseudo Relevance Feedback.
We combined the original query with the expanded query,
where the parameter µ controls the weight of the unigram
query as shown in Equation 5. We used the training data for
tuning this parameter and the optimal value for µ is set to
0.6. The result of Table 5 are obtained using 10 expansion
terms extracted from the top 10 documents and the number
of terms used for building the original query is set to 30.
Results marked with † achieved statistically significant im-
provement over the baseline at p-value of 0.01 using t-test.

Table 5: Performance comparison of the unigram
query models, the baseline run, relevance models
using pseudo feedback documents and sample rele-
vant documents

model MAP Recall PRES
baseline 0.136 0.619 0.535
PRF 0.103 0.590 0.481
EX-RM 0.150 † 0.643 0.553

As follows from Table 5, the PRF method is not able to
select the best terms for query generation and all three re-
ported performance measurements decrease compared to the
baseline. This is due to the poor quality of search results.
However, the relevance model using the sample documents,
EX-RM, significantly outperforms the baseline run. This
suggests that using the sample documents was beneficial for
building the expanded query model and EX-RM on aver-
age achieved 13% improvement over the baseline in terms of
MAP.

We explore the sensitivity of each of the unigram query
models, baseline run, EX-RM and PRF, to the number of
query terms that need to be taken into account. We also
look into the number of feedback documents that need to
be taken into account for both of the expanded unigram
query models EX-RM and PRF. Figure 1 presents the MAP
of our techniques, for varying values of number of feedback
terms, and number of feedback documents. We can see that
the number of terms is not highly influential and any value
higher than 30 produces the same results. However, the sys-
tem is more sensitive to the number of feedback documents.
It can be seen that values higher than 10 hurts the perfor-
mance.

6.2.2 Combining Unigram and Phrase Query
We wish to examine the quality of the phrases obtained

by the two different techniques explained in Section 4 in the
task of prior art search. Our goal is to utilize such phrases
to identify relevant documents to the query patent. We first
combine the unigram query model from the query patent
with the top-k concepts selected by the two scoring meth-
ods: a) TF/IDF scoring method, denoted by QM-NP1; b)
mutual information-based scoring method, denoted by QM-
NP2. We further examine expanded queries in which we
select the top-k concepts from the pseudo feedback docu-
ments using the two scoring methods, denoted by PRF-NP1
and PRF-NP2. Finally, in order to use the evidence from
the relevance set (documents with similar conceptual tags),
we selected the top-k scoring noun phrases from the rele-
vance set using the two scoring methods and we refer to this
as EX-RM-NP1 and EX-RM-NP2.

The retrieval results of various combinations of unigram
queries with phrases are reported in Table 6. Results marked
with † are significantly better than the baseline and ‡ repre-
sents the significant improvement achieved by EX-RM-NP2
against EX-RM-NP1.

Table 6: Performance of the expanded query models
using phrases

model MAP Recall PRES
baseline 0.136 0.619 0.535
QM-NP1 0.131 0.600 0.521
QM-NP2 0.138 0.621 0.539
PRF-NP1 0.115 0.592 0.494
PRF-NP2 0.112 0.603 0.493
EX-RM-NP1 0.149 † 0.646 † 0.552
EX-RM-NP2 0.156 †‡ 0.650 † 0.567

Our experiments indicate that expansion based on phrases
extracted by the mutual information-based scoring technique
most of the time outperforms TF/IDF based scoring. This
suggests that using co-occurrence information is more help-
ful in identifying key concepts of a query patent compared
to using frequency information alone.

As follows from Table 6, extracting concepts from the
query patent, as done for QM-NP1 and QM-NP2, does not
improve the results over the unigram baseline. As we ex-
pected, the PRF based expansion decreases the result in
terms of MAP, recall, and PRES. It is clear that both rel-
evance models built using similar conceptual tags, EX-RM-
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Figure 1: Sensitivity of unigram query models against (a) the number of terms and (b) the number of feedback
documents used for query model construction

NP1 and EX-RM-NP2, outperform our unigram baseline
significantly. This result demonstrates a positive effect of
expansion using both scoring methods. In both cases these
improvements hold for MAP, recall and PRES.

A very interesting conclusion which can be made by com-
paring the results of Table 5 and Table 6 is that despite the
significant improvement of EX-RM-NP1 and EX-RM-NP2
over the baseline, the improvement over EX-RM is not sig-
nificant. We performed an analysis on the query set and we
found that almost 600 queries out of 1348 queries were hurt
by the expansion using phrases compared to using unigrams.
We therefore decided to estimate an upper bound of perfor-
mance by combining these two approaches in a query depen-
dent manner. As we already saw in Section 5, we found that
by using the true effectiveness of the noun phrase queries we
can achieve an increase in performance of 20% in terms of
MAP. In the next section, we show how we can estimate
the importance of a noun phrase query in order to decide
whether to expand a given query using noun phrases or not.

In our experiments we considered proximity matches rather
than exact phrases. This is due to the fact that using prox-
imity matches gave us consistent gain in retrieval effective-
ness in comparison to using exact phrases. We use a window
of size 8, as suggested by previous work on proximity match-
ing [17]. We perform a sweep (grid search) on µ to determine
the optimal mixture of the original query and the expanded
query according to Equation 7. The optimal value is set to
0.6 for all expansion methods.

We selected top-10 phrases and we added them to our
unigram queries. We studied the sensitivity of each approach
against the number of feedback documents and the number
of feedback phrases that need to be taken into account. The
results are shown in Figure 2. An important observation to
be made from Figure 1 and Figure 2 is that using 10 pseudo
relevant documents and around 40 feedback terms resulted
in the best performance for all expansion methods.

6.2.3 Selective Query Expansion Using Key Concepts
So far we built the unigram and expanded query mod-

els using three different sources. 1) the query patent; 2)

the pseudo relevant documents retrieved from PRF; 3) the
relevance set which is composed of documents with similar
conceptual tags to the query.

In this section, our goal is to predict whether query ex-
pansion using phrases is effective. We first predict the AP
of each query in both ranked list of the expanded and unex-
panded query using the features described in Section 5. We
then calculate the change in AP after expansion based on
the predicted values. A positive change in AP after expan-
sion indicates an effective expansion. In the experiments,
we considered a change bigger than 10% to be an effective
expansion. We use this prediction value to decide which of
the two competing methods will offer the best result for a
given query.

We used a five-fold cross validation for our experiments.
We divided the query topics into five equal parts. We trained
the estimator using four out of five parts, and we applied the
training model to estimate the AP of the remaining queries.
We repeated the same test process on each of the five parts
and we report the results on average over all five parts. The
same procedure was performed for the expanded and unex-
panded lists.

Table 7: Retrieval results on CLEF-IP 2010 using
selective query expansion

model MAP Recall PRES
baseline 0.136 0.619 0.535
QM-NP2 0.138 0.621 0.539
SQEQ 0.152 ∗ ? 0.617 0.543
PRF 0.103 0.590 0.481
PRF-NP2 0.112 0.603 0.493
SQEPRF 0.122 ↑ ⇑ 0.609 0.509
EX-RM 0.150 0.643 0.553
EX-RM-NP2 0.156 0.650 0.567
SQEEX−RM 0.168 † ‡ 0.668 0.580

Table 7 shows the result of our method for selective query
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Figure 2: Sensitivity of the expanded query models using noun phrases against (a) the number of terms and
(b) the number of feedback documents used for expanded query model construction

expansion (SQE). The ∗ and ? symbols indicate that the
achieved improvement of SQEQ over the expanded and un-
expanded lists, QM-NP2 and baseline, is statistically sig-
nificant at p<0.01. The ↑ and ⇑ symbols indicate that the
achieved improvement of SQEPRF over the expanded and
unexpanded lists, PRF-NP2 and PRF, is statistically sig-
nificant at p<0.01. The † and ‡ symbols indicate that the
achieved improvement of SQEEX−RM over the expanded
and unexpanded lists, EX-RM-NP2 and EX-RM, is statisti-
cally significant at p<0.01.

As follows from Table 7, for all the three settings of our
experiments, selective query expansion achieved statistically
significant improvement in terms of MAP over automatic
query expansion (using expansion on all queries). This indi-
cates that the chosen features were able to accurately pre-
dict the AP for the expanded and unexpanded lists of each
query. This also suggests that the predicted change in AP
was a good indicator of an effective expansion. A per query
analysis showed that the result of SQE method was able to
detect more than half of the queries which performed well
using the expansion and therefore SQE was able to effec-
tively improve the retrieval effectiveness of those queries.
The SQE method did not achieve the upper bound perfor-
mance shown in Table 2, which is due to the error made by
the prediction model. Despite the achieved increase in terms
of MAP, there is still room for improvement which requires
the choice of better features for almost all methods.

We calculated the influential features from the learnt SGBT
model [5]. Query clarity, Topical clarity and IPC-based clar-
ity are the most influential features.

7. CONCLUSION AND FUTURE WORK
In this work, we presented several versions of the uni-

gram and the noun phrase queries for prior art search. By
evaluating these query models we found that more advance
IR techniques will increase performance of specific queries
but the aggregated result may degrade against the baseline.
To achieve consistent improvement in all queries we worked

in a selective query expansion framework. The main con-
tribution of this paper is devising a method for predicting
whether expansion using noun phrases will improve the re-
trieval effectiveness of a query.

We experimentally determined the upper bound of what
can be achieved by looking into the true effectiveness us-
ing a noun phrase query. We used a few often used fea-
tures for predicting AP and we proposed some features us-
ing patent-specific characteristics. Our selective query ex-
pansion method using noun phrases obtained a statistically
significant improvement over the expanded and unexpanded
queries. Better features still need to be extracted which can
capture the quality of the results better.

We experimented with two different scoring methods for
selecting noun phrases. The scoring based on mutual infor-
mation achieved better results over TF/IDF scoring. An-
other interesting conclusion can be made by comparing the
two relevance models which were used in this study. The first
relevance model was built based on PRF and the second was
built by employing documents with similar conceptual tags
to the query. The result of PRF method failed over initial
retrieval because of the poor results, but the relevance model
built based on conceptual tags outperformed the baseline.

Our work can be extended in future in several ways. First,
we can improve the noun phrase extraction by using external
resources related to the patent genre. Second, we can define
better features so that average precision can be more accu-
rately predicted. Third, instead of relying on the original
score of the relevant documents to determine which docu-
ments should contribute in building a relevance model in a
PRF scenario, we can estimate the true effectiveness of each
document using a set of features employing patent-specific
characteristics.
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