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Abstract

Researchers in computer vision and pattern recognition
have worked on automatic techniques for recognizing hu-
man faces for the last 20 years. While some systems,
especially template-based ones, have been quite successful
on expressionless, frontal views of faces with controlled
lighting, not much work has taken face recognizers be-
yond these narrow imaging conditions. Qur goal is to
build a face recognizer that works under varying pose,
the difficult part of which is to handle face rotations in
depth. Building on successful template-based systems,
our basic approach is to represent faces with templates
from multiple model views that cover different poses from
the viewing sphere. To recognize a novel view, the recog-
nizer locates the eyes and nose features, uses these loca-
tions to geometrically register the input with model views,
and then uses correlation on model templates to find the
best match in the data base of people. Our system has
achieved a recognition rate of 98% on a data base of 62
people containing 10 testing and 15 modeling views per
person.

1 Introduction

Researchers in computer vision and pattern recognition
have worked on automatic techniques for recognizing hu-
man faces for the last 20 years. The basic task, given as
input the visual image of a face, is to compare the input
face against models of faces stored in a library and re-
port a match if one is found. The problem of locating the
face — distinguishing it from a cluttered background — is
usually avoided by imaging faces against a uniform back-
ground. The problem of face recognition has attracted
researchers not only because faces represent a challeng-
ing class of naturally textured 3D objects, but because
of the many applications of automatic face recognition,
such as enhancing security systems or adding a recogni-
tion ability to HCI systems.

Face recognition is difficult for two major reasons.
First, faces form a class of fairly similar objects; all faces
consist of the same facial features in roughly the same
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geometrical configuration, which makes the recognition
problem a fine discrimination task. The second source
of difficulty lies in the wide variation in the appearance
of a particular face due to changes in pose, lighting, and
facial expression.

There is an abundance of existing work in face recog-
nition, and the topic has seen renewed interest in the
last few years. Most face recognition systems follow the
same basic recognition technique. The recognizer scans
through a library of known faces, comparing the input
to each model face. This comparison uses a distance
metric, such as a weighted Euclidean distance or cor-
relation, in the space used for representing faces. The
model yielding the smallest distance is reported as the
identified person. In addition, some systems reject the
input if the best match is not good enough.

As existing face recognition systems compare model
and input faces using fairly standard distance metrics,
the main factor that distinguishes different approaches
1s input representation. There are two main approaches
to input representation, a geometrical approach that uses
the spatial configuration of facial features, and a picto-
rial approach that uses an image-based representation.
Feature-based systems ([14], [9], [6], and [8]) locate a set
of facial features (e.g. corners of the eyes and mouth,
sides of the face and mnose, nostrils) and then capture
the spatial configuration in feature vector whose dimen-
sions typically include measurements like distances, an-
gles, and curvatures. Pictorial approaches, representing
faces by using filtered images of model faces, include
template-based systems ([2], [6], [13], [7], and [5]), sys-
tems using principal components analysis to derive a pic-
torial “face space” ([15], [20], [1], [9]), and connectionist
approaches ([16], [11], [10], [21], and [12]). [18] explores
an interesting hybrid representation that combines the
geometrical and pictorial approaches, representing faces
as elastic graphs of local textural features.

The wide variation in face appearance under changes
in pose, lighting, and expression makes face recognition a
difficult task. While existing systems do not allow much
flexibility in pose, lighting, and expression, most systems
do provide some flexibility by using invariant represen-
tations or performing an explicit geometrical normaliza-
tion step. As example invariant representations, filtering
the face image with a bandpass filter like the Laplacian
provides some invariance to lighting, and shift invariance



can be provided by using the Fourier transform magni-
tude [1] or autocorrelation [17]. The face can be normal-
ized for translation, scale; and image-plane rotation by
finding at least two facial features — usually the eyes in
existing systems — and using these features to register
model and input representations.

Most face recognition systems are not designed to han-
dle changes in facial expression or rotations out of the
image plane. By tackling changes in pose and light-
ing with the invariant representations and normalization
techniques described above, current systems treat face
recognition mostly as a rigid, 2D problem. There are ex-
ceptions, however, as some systems have used multiple
views ([1], [17]) and flexible matching strategies [18] to
handle some degree of expression and out-of-plane rota-
tions. What distinguishes our approach from these tech-
niques will be a wider allowed variation in viewpoint.

Overall, while face recognition systems have been
successful (the template-based systems in [2] and [6]
achieved 100% recognition on a data base of over 40 peo-
ple), most recognition systems work with frontal views,
no expressions, and controlled lighting. Our goal is to
build a face recognizer that works under varying pose,
the difficult part of which 1s to handle face rotations in
depth. Building on successful template-based systems,
our basic approach is to represent faces with templates
from multiple model views that cover different poses
from the viewing sphere.

Our face recognizer deals with the problem of arbi-
trary pose by applying a feature finder/pose estimation
module before recognition. As mentioned previously, one
can normalize the input image for translation, scale, and
image-plane rotation by detecting the eyes and then ap-
plying a similarity transform to place the eyes at known
locations. The remaining pose parameters, rotations in
depth, can be estimated by a pose module and then used
to select model views similar in pose to the input.

Our feature finder/pose estimation module finds the
two eyes and a nose lobe feature and estimates the pose
rotation parameters out of the image plane. The method
i1s template-based, with tens of facial feature templates
covering different poses and different people. To geo-
metrically align the input face with a model view, the
recognizer applies an affine transform to the input to
bring the three feature points into correspondence with
the same points on the model.

The template-based recognizer uses templates of the
eyes, nose, and mouth to represent faces. These tem-
plates, as well as the input image, are preprocessed with
a differential operator such as the gradient or Laplacian
to provide some invariance to lighting. After the geomet-
rical alignment step, the templates are matched against
the input using normalized correlation as a metric.

Before describing the template-based recognizer in de-
tail, we quickly review the experimental setup and the
feature finder.

2 Experimental setup

In our view-based approach for face recognition under
varying pose, faces are represented using many images
that cover the viewing sphere. Currently we use 15

views per person, sampling 5 left/right rotations and 3
up/down rotations, as shown in figure 1. When a subject
i1s added to the library of faces, the subject is asked to
point their head at each of 15 dots — one for each view
— on a piece of foam core fit around the camera. This
field of dots sample the 5 left /right rotations at approxi-
mately -30,-15, 0, 15, and 30 degrees and the 3 up/down
rotations at approximately -20, 0, and 20 degrees. The
two rotation parameters are restricted so that the two
eyes are always visible.

In addition to the 15 modeling views, 10 test views are
taken per person. For these test views, the subject is in-
structed to choose 10 points at random (not necessarily
at a model dot) within the rectangle defined by the outer
border of dots. The 10 views are divided into two groups
of 5: the first group allows variation in the left /right and
up/down rotational parameters and the second group al-
lows the subject to also include an image-plane rotation.

We currently have 62 people in the data base for a total
of 930 modeling and 620 testing views. The data base
includes 44 males and 18 females, people from different
races, and an age range from the 20s to the 40s. We plan
to expand the data base to around 100 people.

For both the modeling and testing views, the lighting
conditions are fixed and consist of a 60 watt lamp near
the camera supplemented by background lighting from
windows and overhead lights. Facial expressions are also
fixed at a neutral expression.

After taking the modeling and testing images, we man-
ually specify the locations of the two irises, nose lobes,
and corners of the mouth. In the feature finder, these
manual locations are used as ground truth data for val-
idating the locations returned by the feature finder and
as the “interest points” —irises, lobes of the nose — within
the model templates used by the feature finder. In the
template-based recognizer, the manual locations are are
used to automatically define the bounding boxes of fa-
cial feature templates in the model images and as anchor
points in the model views during the geometrical align-
ment step between input and model images.

3 Feature detection and pose
estimation

The first stage of processing in the proposed face recogni-
tion architecture is a person-independent feature finding
and pose estimation module. As mentioned in the intro-
duction, the kind of facial features sought by the feature
finder are the two eyes and at least one nose feature.
The locations of these features are used to bring input
faces into rough geometrical alignment with model faces.
Pose estimation is used as a filter on the library models,
selecting only those models whose pose is similar to the
input’s pose. By pose estimation we really mean an esti-
mate of the rotation angles out of the image plane since
feature locations have already been used to normalize
for position, scale, and image-plane rotation. Pose es-
timation 1s really an optimization step, for even in the
absence of a robust pose estimator, the system could still
test the input against all model poses of all people.
While techniques already exist for finding facial fea-
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Figure 1: The view-based face recognizer uses 15 views to model a person’s face.

tures, no current system can deal with large face rota-
tions out of the image plane, so we needed to build our
own feature finder. Because of the variety of views the
system would have to work under, we were attracted by
the simplicity of a template-based approach.

To serve as the front end of a pose independent face
recognizer, the feature finder must handle varying pose
and be person independent. Our system addresses these
requirements by using a large number of templates taken
from multiple poses and from different people. To handle
rotations out of the image plane, templates from differ-
ent views on the viewing sphere are used. Templates
from different scales and image-plane rotations can be
generated by using standard 2D rotation and scaling op-
erations. To make the feature finder person independent,
the templates must cover identity-related variability in
feature appearance (e.g. tip of nose slanted up versus
down, feature types specific to certain races). We use
templates from a variety of exemplar faces that sample
these basic feature appearances. The choice of exem-
plars was guided by a simple clustering algorithm that
measures face similarity though correlation.

Our feature finder, then, entails correlation with a
large number of templates sampling different poses and
exemplars. To keep this search under control, we use a
hierarchical coarse-to-fine strategy on a multi-level pyra-
mid representation of the image. The search begins by
generating face location hypotheses at the coarsest level,
where the pose parameters are very coarsely sampled
and only one exemplar is used. Exploring an hypothesis
is organized as a tree search through the finer pyramid
levels. As processing proceeds to finer levels, the pose
parameters are sampled at a higher resolution and the
different exemplars are used. A branch at any level in
the search tree is pruned if the template correlation val-
ues are not above a level-dependent threshold. Space
limitations in these proceedings prevent a more detailed
presentation; for details, see [4].

To evaluate the feature finder, the system was run on
all 1550 images in the data base, the 15 modeling and 10
testing images of each of the 62 people. Using the manual
locations as ground truth, in 99.6% of the images all of

Figure 2: Iris and nose lobe features located by the feature
finder in some example test images.

the features were located to within an average distance
of .021d and a maximum distance of .2d, where d is the
interocular distance of a frontal view. Figure 2 shows
some of the features returned by the system.

Because of the large number of templates, the compu-
tation takes around 10-15 minutes on a Sun Sparc 2. Us-
ing fewer exemplars decreases the running time but also
reduces system flexibility and recognition performance.

4 Face recognition using multiple views

As mentioned in the introduction, template-based face
recognizers have been quite successful on frontal views of
the face ([2], [6]). Our goal is to extend template-based
systems to handle varying pose, notably facial rotations
in depth. Our approach is view-based, representing faces
with templates from many images that cover the view-
ing sphere. In this section we describe the view-based
recognizer and experimental results on our data base of
face images.

4.1 Input representation: templates

In order to build face models for the recognizer, tem-
plates from the eyes, nose, and mouth are extracted from



Figure 3: Templates of the eyes, nose, and mouth are used
to represent faces.

the modeling images, as shown in figure 3. Before ex-
tracting the templates, scale and image-plane rotation
are normalized in the model images to fix the interocu-
lar distance and eliminate any head tilt. This is done by
placing the eyes,; as located manually, at fixed locations
in the image. Next, the bounding boxes of the templates
are automatically computed using the manually specified
feature locations.

We have done experiments to explore two aspects of
template design, model image preprocessing and tem-
plate scale. As discussed previously, it is common in
face recognition to preprocess the templates to intro-
duce some invariance to lighting conditions. So far we
have tested preprocessing with the gradient magnitude,
Laplacian, and z and y components of the gradient. The
overall scale of the templates, as measured by the inte-
rocular distance, is another design parameter we exam-
ined. These experiments on preprocessing and scale will
be described in the experimental results section.

4.2 Recognition algorithm

Our template-based recognizer takes as input a view of
an unidentified person, compares 1t against all the peo-
ple in the library, and returns the best match. Pseu-
docode sketching the steps of our recognizer is given in
figure 4. TFirst, in step (1), the pose calculated by the
feature finder/pose estimation module acts as a filter on
the model poses: only those model poses that are similar
to the input pose will be selected. Since our current im-
plementation of the pose estimator can only distinguish
between looking left and looking right (see [4]), the poses
selected by the recognizer for comparison are either the
left three columns or right three columns of figure 1. In
the future a more refined pose estimate will allow the
recognizer to further winnow down the number of model
poses it needs to test for each person.

Next, in steps (2) and (3) the recognizer loops over the
selected poses of all model people, recording template
correlation scores from each model view in the cor ar-
ray. The main part of the recognizer, steps (4)-(6), com-
pares the input image against a particular model view.
This comparison consists of a geometrical alignment step
(step (4)) followed by correlation (steps (5)-(6)). The

geometrical alignment step brings the input and model
images into close spatial correspondence in preparation
for the correlation step. To geometrically align the input
image against the model image, first an affine transform
is applied to the input to align three feature points, cur-
rently the two eyes and a nose lobe feature. In the input
image these features are automatically located using the
feature finder described in the previous section. For the
models, manual feature locations are used.

The second part of the geometrical alignment step at-
tempts to compensate for any small remaining geomet-
rical differences due to rotation, scale, or expression. A
dense set of pixelwise correspondence between the affine
transformed input and the model is computed using opti-
cal flow [3]. Given this dense set of correspondences, the
affine transformed input can be brought into pixel-level
correspondence with the model by applying a 2D warp
operation driven by the optical flow. Basically, pixels in
the affine transformed input are “pushed” along the flow
vectors to their corresponding pixels in the model.

Now that the input and model image have been geo-
metrically registered, in steps (5) and (6) the eye, nose,
and mouth model templates are correlated against the
input. Each model template is correlated over a small
region (e.g. 5xb) centered around its expected location in
the input. We use normalized correlation as the match-
ing metric, primarily because 1t factors out differences in
template mean and standard deviation, which might be
caused by differences in lighting.

When scoring a person in step (7), the system takes
the sum of correlations from the best matching eye, nose,
and mouth templates. Note that we maximize over the
poses separately for each template, so the best match-
ing left eye could be from pose 1 and the best matching
nose from pose 2, and so on. We found that switching
the order of the sum and max operations — first sum-
ming template scores and then maximizing over poses —
gives slightly worse performance, probably because the
original sum/max ordering is more flexible.

After comparing the input against all people in the li-
brary, the recognizer returns the person with the highest
correlation score — we have not yet developed a criterion
on how good a match has to be to be believable. Con-
sidering a task like face verification, however, having the
ability to reject inputs is important and is something we
plan under future work.

4.3 Experimental results

We have tested our face recognizer under different tem-
plate resolutions and methods of preprocessing. For each
recognition experiment, we ran the recognizer on our
data base of 620 test images, 10 images each of 62 peo-
ple. The recognition experiments use the eyes and nose
features found by our feature finder to drive the geomet-
rical alignment stage. The feature finder fails to return
any features for two images — these are listed in the right-
most column of tables 1 and 2.

Table 1 summarizes our recognition results for the pre-
processing experiments. The types of preprocessing we
tested include the gradient magnitude (mag), Laplacian
(lap), sum of separate correlations on x and y compo-



for person «+ 1 to NUM_PEOPLE
forall pose € selected poses
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for template + 1 to NUM_TEMPLATES

(1)
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(3) ose .

(4) align input to model pose: affine transform & optical flow
(5)

(6) cor[person][pose|[template] « correlation value
(7)

poseeselected poses

/* for all people in data base */
/* for all poses to search */

/* loop over eyes, nose, mouth */

max (cor[person][pose][template]))

Figure 4: Pseudocode for our template-based recognizer.

nents of the gradient (dx+dy), and the original grey lev-
els (grey). For these preprocessing experiments we used
an intermediate template scale, an interocular distance
of 30. In table 1, we list the number of correct recogni-
tions and the number of times the correct person came
in second, third, or past third place. Best performance
was had from dx+dy, mag, and lap, with dx+dy yield-
ing the best recognition rate at 98.7%. Preprocessing
with the gradient magnitude performs nearly as well, a
result in agreement with the preprocessing experiments
of [6]. Given that the original grey levels lead to the
lower rate of 94.5%, our results indicate that prepro-
cessing the image with a differential operator gives the
system a performance advantage. We think the perfor-
mance differences between dx+dy, mag, and lap are too
small to say that one preprocessing type stands out over
the others.

Table 2 summarizes our recognition results for the
template scale experiments, where scale is measured by
the interocular distance of a frontal view. The prepro-
cessing was fixed at dx+dy. The intermediate and fine
scales perform the best, indicating that at least for our
input representation, the coarsest scale may be losing
detail needed to distinguish between people. Since the
intermediate scale has a computational advantage over
the finer scale, we would recommend operating a face
recognizer at the intermediate scale.

Having examined the error cases, we have noticed that
in the system’s false positive matches, using optical flow
to warp the input to the model may be contributing to
the problem. If two people are similar enough, the op-
tical flow can effectively “morph” one person into the
other, making the matcher a bit foo flexible at times.
This problem with optical flow suggests some extensions
to the recognizer. Since we only want to compensate
for rotational, scale, or expression changes and not al-
low “identity-changing” transforms, perhaps the optical
flow can be interpreted and the match discarded if the
optical flow is not from the allowed class of transforma-
tions. Another approach would be to penalize a match
using some smoothness measure of optical flow. The new
matching metric would have a regularized flavor, being
the sum of correlation and smoothness terms

IT(x + Az) = T|)* + Ap(Ax),

where I(x 4+ Ax) is the input warped by the flow Az, T
is the template, ¢ is a smoothness functional including

derivatives, and A is a parameter controlling the trade
off between correlation and smoothness. This functional
has an interpretation as the combination of a noise model
on the intensity image and priors on the flow.

In terms of execution time, our current system takes
about 1 second to do each input/model comparison on a
Sun Sparc 1. The computation time is dominated by re-
sampling the image during the affine transform, optical
flow, and correlation. In our unoptimized CM-5 imple-
mentation, it takes about 10 seconds for the recognizer
to run since we can distribute the data base so that each
processor compares the input against one person. Spe-
cialized hardware, for example correlation chips[13], can
be used to further speed up the computation.

5 Conclusion

In this paper we presented a view-based approach for
recognizing faces under varying pose. Motivated by the
success of recent template-based approaches for frontal
views, our approach models faces with templates from
15 views that sample different poses from the viewing
sphere. The recognizer consists of two main stages, a ge-
ometrical alignment stage where the input is registered
with the model views and a correlation stage for match-
ing. Our recognizer has achieved a recognition rate of
98% on a data base 62 people. The data base consists of
930 modeling views and 620 testing views covering a va-
riety of poses, including rotations in depth and rotations
in the image plane.

We have also developed a facial feature finder to pro-
vide feature locations for the geometrical alignment stage
in the recognizer. Like the recognizer, our feature finder
is template-based, employing a bank of templates of the
eyes and nose regions to locate the two irises and one
nose lobe feature. While the features are currently used
to register input and model views, the feature finder has
other applications. For instance, it could be used to ini-
tialize a facial feature tracker, finding the feature loca-
tions in the first frame. This would be useful for virtual
reality, HCI, and low bandwidth teleconferencing.

In the future, we plan on adding more people to the
data base and adding a rejection criterion to the recog-
nizer. We would also like to improve the estimate of pose
returned by the feature finder. A better pose estimate
will enable the recognizer to search over a smaller set of
model poses.



Table 1: Face recognition performance versus preprocessing. Best performance is from using the gradient magnitude (mag),
Laplacian (lap), or the sum of separate correlations on the x and y gradient components (dx+dy). An intermediate scale was

performance — 620 test images
preprocessing correct 2nd place 3rd place >3rd place | bad features
dx+dy 98.71% (612) | 0.32% (2) | 048% (3) | 0.16% (1) | 0.32% (2)
mag 98.23% (609) | 0.81% (5) | 0.32% (2) [ 0.32% (2) | 0.32% (2)
lap 98.07% (608) | 0.81% (5) | 0.32% (2) | 0.48% (3) | 0.32% (2)
grey 94.52% (586) | 1.94% (12) | 0.48% (3) | 2.714% (17) | 0.32% (2)

used, with an interocular distance of 30.

performance — 620 test images
interocular distance correct 2nd place 3rd place >3rd place | bad features
15 96.13% (596) | 2.26% (14) | 0.32% (2) | 0.97% (6) | 0.32% (2)
30 98.71% (612) | 0.32%  (2) | 0.48% (3) | 0.16% (1) | 0.32% (2)
60 98.39% (610) | 0.81% (5) | 0.16% (1) | 0.32% (2) | 0.32% (2)

Table 2: Face recognition performance versus scale, as measured by interocular distance (in pixels). The intermediate scale
performs the best, a result in agreement with Brunelli and Poggio[6]. For preprocessing, separate correlations on the x and y
components of the gradient were computed and then summed (dx+dy).

In a related line of research, we plan to address the
problem of recognizing a person’s face under varying
pose when only one view of the person is available. The
key new component will be an example-based learning
system that uses many 1mages of prototype faces under-
going changes in pose to “learn” what it means to rotate
a face (see [19]). The system will apply this knowledge
to synthesize new “virtual” views of the person’s face.

Overall, we have demonstrated in this paper that
template-based face recognition systems can be extended
in a straightforward way to handle the problem of vary-
ing pose. However, to make a truly general face recogni-
tion system, more work needs to be done, especially to
handle variability in expression and lighting conditions.
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