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Abstract. In this work we propose a novel fully distributed approach
to endow robots in a swarm with awareness of their relative position
with respect to the rest of the swarm. Such spatial awareness can be
used to support spatially differentiated task allocation or for pattern
formation. In particular, we aim to partition the robots in the swarm in
two (or more) distinct and spatially segregated groups. The distributed
approach we propose only relies on local wireless communications and is
based on a combination of distributed consensus and load balancing.
We propose two metrics to measure the effectiveness of the obtained
partitioning and we test the performance and the scalability of our algo-
rithm in extensive simulation experiments. We also validate it in a small
set of experiments with real robots.
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1 Introduction

The aim of this work is to endow robots in a swarm with awareness of their
relative position with respect to the rest of the swarm. Such spatial awareness can
be used to support spatially differentiated task allocation (e.g., split the swarm
in different, spatially close, groups, and let each group engage in a different task,
such as exploring different regions of an environment), or for pattern formation.
The task we first focus on is to assign the robots of the swarm to two different
classes, C0 and C1, in such a way that the two classes are spatially segregated:
the robots in class C0 are found on one side of the swarm, and the robots in
class C1 on the other side of the swarm, as shown in Figure 1.

To solve this problem, we look for an algorithm that is robust, scalable,
efficient, works in a decentralized way, and has limited requirements in terms of
available sensor or actuators. A simple solution could be to indicate one or more
robots of the swarm as a seeds, and let all other robots calculate their distance
to these seeds, e.g. in terms of a communication hop count (similarly to what
happens in works on morphogenesis and morphogen gradient [26]). However, this
solution requires the explicit indication of the seeds, and is not robust, since it is
dependent on the proper functioning of the seed robots. Another solution could



Fig. 1. Example of spatially segregated classes. Robots in class C0 show blue LEDs (a
’B’ label is positioned beside each robot in class C0 to help readability also in greyscale),
robots in class C1 show red LEDs (and have no text label).

be based on global positioning information and flooding of this information.
However, that would require such a position system to be present, which is
not always straightforward, especially in indoor environments. Finally, we also
exclude approaches where robots move in order to cluster closer to robots of
the same class (e.g., using swarm clustering algorithms [10,25]). We do not want
to use mobility in the solution, in order to improve efficiency and speed of the
system, and to be able to perform the spatial segregation also in cases where
robots cannot move for some reason.

Instead, we propose an algorithm which uses only local communication. The
robots/nodes only need to be able to identify their neighbors and communicate
with them. Only a relatively low bandwidth channel is required to let the algo-
rithm work effectively. We consider the general case of robots/nodes equipped
with a wireless communication interface. The algorithm combines elements from
different sets of approaches to similar problems: algorithms for solving minimum
bisection problems [2,17]; algorithms for swarm robotics aggregation, in particular
those inspired by cockroach aggregation behavior, in which robots form clusters
by moving around and stopping randomly, (with stop probability and duration
depending on local group size), [10,25]; distributed algorithms for consensus load
balancing [8], where instead of cockroaches/robots moving in 2D space, compu-
tational loads move in a communication network; and algorithms for distributed
consensus filter, which create a field the intensity of which depends on local
group size (of loaded robots/nodes) [21].

The rest of the paper is organized as follows. In the next section we provide
a general overview of the problem we are considering and its relationship with
similar problems. In Section 4 the proposed algorithm is described. Experimental
results for studies carried out in simulation are presented in Section 5, while



implementation and results using real robots are discussed in Section 6. Finally,
in Section 7 we draw conclusions and highlight future work.

2 Problem description

The problem that we are solving can be formalized in the following way. Let
G(V,E) be a Euclidean graph where the node set V represents geometric enti-
ties, such as robots, positioned in the plane. Nodes are able to communicate with
each other over a wireless medium. Two nodes i and j are connected by a link
(i, j) ∈ E if: (i) their Euclidean distance is less than or equal to the maximum
communication range Rmax (range-constrained connectivity), and (ii) no major
occlusions are present between the two nodes (line-of-sight communication con-
straint). The length of a link (i, j) is equal to the Euclidean distance between i
and j. Each node only knows its neighbors, that is, nodes falling within its com-
munication range (local topological information). Information about the other
nodes in the system, such as their total number or their global positioning (e.g.,
GPS information) is assumed as not available. The objective is to find, adopting
a fully decentralized approach, a geometric partitioning of the graph in k classes,
where each class contains (approximately or precisely) the same number nk of
nodes, and the nodes in each partition are geometrically close to each other.
That is, the different partitions are spatially separated, as in shown in Figure 1
for a partitioning in two classes. In the rest of the paper we focus on the case
k = 2. The method can be naturally extended to handle geometric partitioning
for k > 2 classes by using k-valued tokens and load variables (see Section 4).

In order to complete the formulation of the problem, a precise way to measure
the notion of geometric partitioning is needed. Figures 2(a) and 2(b) show two
equally acceptable geometric partitioning in two classes for a given placement
of a robotic system and for a given communication range (indicated by the grey
disk in Figure 2(a). Figure 2(c) shows an example of incorrect partitioning: not
all nodes in the class indicated with the black squares are geometrically close to
each other according to their communication range. In this paper, we measure
the goodness of a geometric partitioning in terms of linear separability and class
imbalance. Linear separability measures in how far the nodes of the different
classes can be separated by a straight line in the two-dimensional space in which
they are placed. Class imbalance measures the difference among the number of
nodes in each class (the values nk): we aim to have an equal number of nodes
belonging to the k classes.

While reaching a perfect balance is clearly a primary objective in the context
of the problem we are considering, linear separability might look as a requirement
which is too strong or inappropriate, even for the case k = 2 we are focusing
on. In fact, depending on the actual deployment of the nodes in the 2D space,
it might be unfeasible to reach perfect (or near perfect) linear separability and,
at the same time, also a perfect balance. However, since none of the metrics
that have been proposed in literature (see next section) seems to satisfactorily
match our goal of defining spatially segregated groups, we decided to apply
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Fig. 2. Examples of different ways to realize a geometric partitioning in two classes
(indicated by the black and white squares) given a communication range (indicated
by the grey disk in (a)). Sub-figures (a) and (b) shows two different but equally ac-
ceptable ways to realize the partitioning. Sub-figure (c) shows an example of incorrect
partitioning.

a sort of Occam’s razor: the presence of a linear separation, coupled with a
good balance, would strongly indicate that we have reached our objective. The
advantage of linear separability as a performance metric lies in its simplicity,
immediate visual verification, and clear relationship with a ’good’ partitioning
in two classes. Alternative metrics would likely require more complex calculations
(e.g., piece-wise linear separability) and/or specific definitions of measures such
as inter-node and intra-partition distance or geometrical spreading (e.g., these
type of measures are often adopted, by no means free of problems, in the context
of data clustering). It is important to remark that the algorithm that we present
in the following is not explicitly designed to obtain linear separability. Such as,
using linear separability as metric, we implicitly penalize the performance of our
approach.

3 Related work

In the context of the problem description given in the previous section, different
ways of formulating the objective, as well as the constraints and the accessible
knowledge, result in a number of related different problems that have been stud-
ied in different domains. In the following of this section, we briefly review these
related formulations and discuss proposed approaches.

The k-way graph partitioning problem (k-GPP) aims to find k disjoint par-
titions V1, V2, . . . , Vk of V such that

∣∣|Vi| − |Vj |∣∣ ≤ 1 ∀i, j ∈ {1, . . . , k}, and⋃k
i=1 Vi = V . If the two end-nodes of an edge (i, j) belong to different partitions,

the edge is called a cut edge. The objective is to find the partitioning that mini-
mizes the cut size or the cut cost, that is, the number or the cost of the cut edges.
For k = 2, the problem is called the graph bisectioning problem or bipartition-
ing problem. In the balanced version of the problem, the constraint on the unit



difference between the cardinalities of the partitions is relaxed. In this case, the
objective is to minimize, in addition to the cut size/cost, also the total difference
in cardinality among the partitions, which is the same as our imbalance metric.
In this case, the problem is also called the min-k-cut. All these k-way graph
partitioning problems find a number of applications in VLSI circuit placement,
parallel computing, and social networking, among others. Unfortunately, in the
large majority of the cases of interest, the k-GPP formulation is NP-hard, and
a number of approximate and heuristic approaches have been proposed, mostly
based on centralized approaches and full system knowledge, such as the coor-
dinates of the nodes and the total number of the nodes in the network (e.g.,
see [2,18,4,2,17] for surveys and references). While k-GPPs are closely related to
our problem, the minimization of cut size/cost is the not enough to guarantee
the geometric partitioning we aim to: additional, explicit geometric constraints
need to be added to the formulation, making the problem even more difficult to
be solved in practice. Figure 3 illustrates this fact with a simple example: the
the 2-partition corresponding to the central dashed line that perfectly fits our
objectives has a much higher cost than the 2-partition realized by grouping the
nodes as indicated by the diagrams in the figure.

Partition C Partition C00

Partition C1

Fig. 3. Illustration of the solution produced by a 2-GPP formulation minimizing cut
size. Solution cost is 4. The partitioning indicated by the central dashed line, splitting
the nodes in two geometrically well segregated groups has cut size 8. Therefore, this
partitioning, which is the kind of partitioning we aim to, would not be selected by a
GPP approach.

The problem we consider is also related to cluster formation in sensor and
mobile ad hoc networks. In these domains, clustering is usually functional to the
generation of a hierarchical structure in the network. Each cluster is associated
to a cluster-head that communicates with the other nodes in its cluster and acts
as a relay node for them. In practice, the cluster-heads form an overlay network
that serves to optimize data aggregation and routing. The difference with our
formulation mainly consists in the fact in these networks the identification of
the clusters and of the cluster-heads is precisely functional to the role that these
nodes have to play. The main objective is to find the optimal number of clusters



based on the optimization of metrics such as energy and interference minimiza-
tion within the cluster, and structure and bandwidth of the routing paths in the
overlay [14,9,6,27,19]. Geometric proximity among the nodes in the clusters can
result as a by-product of the optimization of these objectives, but it is neither
guaranteed nor enforced. Differently from our way of proceeding, distance is also
often taken into account, assuming that some global or local positioning system
is in place [13,28]. A general survey on clustering in ad hoc networks can be
found in [1].

A number of approaches have considered pattern formation, clustering, and
aggregation in swarm robotic systems. In the large majority of the cases, this is
realized through robot mobility and the application of simple behavioral rules
and random decisions that allow the emergence of the desired aggregation pat-
terns at the swarm level [12,20,25,10]. In [22] robot group formation is obtained
exploiting the supervision of additional robots with a different point of view. The
emergence of spatial clustering is usually directed by the presence of external
stimuli in the environment, such as light sources [25], odors [11], or objects to be
moved and packed/clustered together, like in the so-called puck clustering sys-
tems [16,15]. The external stimuli, which are modified over time in consequence of
the robot actions, act as stigmergic coordination signals for the robots. There-
fore, in many of the proposed approaches in the literature the robots do not
engage in any explicit form of communication. Compared to these existing stud-
ies, we aim to obtain spatially aware swarm partitioning without using mobility,
but relying instead on a purely local communication-based approach, which is
in principle faster, consumes less energy, and is of more general applicability.
Moreover, we do not need any external signal to direct the partitioning: it is
driven internally, by the notion of communication neighborhood. The presence
of an external signal (e.g., a human indicating robot seeds, as discussed in the
Introduction), could clearly be exploited to accelerate the whole process.

Finally, also the field of data clustering addresses problems similar to the one
we consider in this paper. However, in this case, the notion of (generalized) dis-
tance among the nodes is central to proposed solution approaches. K-means, one
of the reference algorithms used to attack data clustering problems, is precisely
based on the knowledge and use of node distances, which we ruled out in our ap-
proach. An example of the way of proceeding in this field for the implementation
and analysis of distributed k-means algorithms can be found in [7].

4 Distributed algorithm for spatially aware robot
partitioning

As mentioned in the Introduction, the distributed algorithm we propose contains
elements from different approaches for network bisectioning, load balancing, and
distributed consensus filters. From the work on load balancing, we derived the
notion of load, which is moved from node to node to obtain the desired balancing.
More specifically, in our algorithm, the membership of a robot in the swarm to
one of the two different classes C0 and C1, is realized by using tokens that are



passed on between robots in the network. Tokens can be either stationary or
moving. Each robot can contain maximum one stationary token, and multiple
moving tokens. All other robots belong to class C0, even if they temporarily hold
one or more moving tokens. In this way, the distribution of the tokens across the
robot network defines the membership of each robot to one of the two classes.
By passing on tokens, or holding on to a received token (making it stationary),
robots can dynamically change their class membership. In the following, we refer
to these tokens as loads, to illustrate more effectively the idea of passing on loads
between robots. A robot holding one stationary token, that is, belonging to class
C1, is said to be loaded, while a robot with no tokens is unloaded. At robot i, the
local load variable ui indicates the number of stationary tokens. ui is a binary
variable, meaning that one robot can only hold one stationary token at a time.

The core of the algorithm lies in the rules that define when a token/load
moves, where it moves to, and when it stops. The movement and aggregation
of loads in the robot network can be considered equivalent to the movement of
robots in a 2D space, and in this way, our algorithm for load movement takes
inspiration from the mentioned robot clustering algorithms. However, making
loads moving using the wireless network, can greatly speedup the response of the
system and save energy compared to an algorithm based on robot movements.

To be able to guide the movement of loads, we use a second variable, vi ∈
[0, 1]. It is an estimate of the local density of stationary loads: the fraction of
robots in the neighborhood holding a stationary load. Considering that our goal
is to create two well separated geometric partitions, one with loaded and one
with unloaded robots, the idea of the algorithm is to let loads leave robots
positioned in areas of low values of vi (areas with mostly robots of class C0),
and find unloaded robots with high values of vi. That is, robots of class C0

that are in areas of mostly robots of class C1. Taking such a place, the token
contributes to aggregate loads together and, in turn, increases the local vi values
more. So we get a self-reinforcing process leading to growing clusters of robots.
We also make use of an exploratory component in the algorithm, in order to let
some loads on the edges of large clusters move to explore the area, such that
they can find stronger clusters (in terms of density and size) and stay there,
until a single strong cluster of loaded robots is eventually created and remains
stationary (apart some possible small fluctuations at the edges precisely due to
the exploratory behavior).

The value of the vi variables also provides an indirect indication of the relative
position of robot i with respect to the frontier of the cluster. For instance, vi
values very close to 1 indicates that a robot is well within the cluster of robots
of class C1, while the vi value of loaded robots progressively decreases towards
zero with the approaching of their position to the frontier of class C0. In this
way, a sort of gradient field is formed on top of the load distribution, and can
be conveniently exploited for control purposes since it provides to the robots
additional information in terms of spatial awareness.



4.1 Algorithm description

The algorithm is structured in multiple steps and operational phases that are
described in the rest of this subsection.

Initialization. At the start, each robot decides with a probability of 0.5 whether
it is loaded or not. Each loaded robot has exactly one token. As discussed above,
all loaded robots are of class C1, and unloaded robots are of class C0. The internal
load variable ui of each robot i is set accordingly (1 or 0, respectively). The local
density variable vi is initialized to 0.

After the initialization, the robots start to communicate, with two goals: to
update the estimate vi, and to let tokens/loads travel through the swarm, until
they stop at different robots.

Updating of load density variables vi. To update the local vi variables,
the robots use an average consensus algorithm. This is based on the distributed
consensus filter proposed in [21]. At each step, each robot i combines the raw
values (uj) and the estimates (vj) of itself and its neighbors, to calculate a new
estimate ui according to the following formula:

v+i = vi + δ(
∑
j∈Ni

(vj − vi) +
∑
j∈Ji

(uj − vi)), (1)

where v+i is the value of vi in the next time step, Ni is the set of neighbors
of robot i, Ji is Ni

⋃
i, and δ is a constant, for which 0 < δ < 1/m, where

m is the maximum node degree in the swarm communication network (in the
experiments we used δ = 1/n, where n is the number of robots in the swarm).

Equation (1) leads to a low-pass filter, if the observations ui are all unbiased
estimates of a same phenomenon observed by the different nodes/robots. How-
ever, here this is not the case, so instead the formula leads to a local averaging
of the values of ui: since each robot i puts into the formula at each time step
the difference between his observation ui and the estimates vi of himself and
of his neighbor robots, the local estimate vi of each robot is directly influenced
by its current local observation ui. Through the average calculation with the
neighbors, this influence spreads, but its influence is less strong farther aways.
Therefore, Equation (1) leads to local averaging. The formula is also robust to
packet losses and adaptive to changes in ui, since it always mixes in the new
local observations.

The goal of the consensus filtering is to calculate in vi an estimate of how
loaded the robots in the local neighborhood are: how many stationary loads are
held by nearby robots. This will then be used by travelling loads to decide when
to leave, where to go, and where to stop.

Moving loads between the robots A load can leave a robot and start trav-
eling through the network. The traveling goes in a number of phases.



Phase 0 (Start). It is the initial phase following the first creation or the reception
of a load, with the load being stationary in the current robot. A load can leave
this phase to start moving. The choice to do so depends on three elements:

– First, a load in a robot i is linked to a waiting counter ci. This counter is
initialized to a constant when the load first arrives at the robot (in simulation
we used 40, in the real robots 120). ci is reduced by 1 each time step that
vi < 0.5 (1 time step = 0.1 s), meaning that the local neighborhood of the
robot is rather unloaded than loaded. Then, it is better to further unload
the neighborhood. Once ci reaches 0, it is no more reduced, and the load can
now leave.

– Once ci is 0, at each time step the load can leave robot i with a probability
of 0.01.

– A last condition is that the robot should have neighboring robots to com-
municate with; if this is not the case, the load cannot move.

When a load starts moving and leaves the robot, this is considered as unloaded,
so ui is set to 0.

Phase 1 (Steepest ascent). This is the first moving phase, which is a steepest
ascent phase. The load is sent to the neighbor j with the highest value vj . This
way, if there is a local cluster of loaded robots, the load will move to the center
of it. When the load reaches a local maximum, it stores its value vj , and makes
a random step: it is forwarded to a random neighbor. After that it advances to
the next moving phase.

Phase 2 (Steepest descent). This is a steepest descent phase: the load moves
to a local minimum of vj , meaning that it looks for an area which is unloaded.
When it reaches a local minimum, it takes again a random step, before moving
to the next phase.

Phase 3 (Steepest ascent). It is again a steepest ascent: the load greedily looks
for a new loaded area. When it reaches the maximum of vj , it compares it with
the previously obtained maximum (stored at the end of phase 1). If the new
maximum is better, the load is assumed to have reached a more loaded area,
and moves on to the next phase. If the new maximum is not better, the load
can still move to the next phase with a low constant probability (set to 0.1).
Otherwise, the load makes a random step and goes to phase 2 again (steepest
descent, in search of a new loaded area).

Phase 4 (Slowest descent). This is a slowest descent for the load: it moves from
robot to robot to decreasing values of ui, until it reaches an unloaded robot
(uj = 0), where it moves back to phase 0 (we allow maximum 1 load of phase 0
in each robot, where a load in phase 0 means: this robot is of class 1). The idea
is that the slow descent will make the loads rather go towards areas where there
are only a few unloaded nodes, so that the load goes to fill small empty pockets.
If no unloaded robot is found before reaching a local minimum, the load takes a
random step, and returns to phase 1: start all over again.



Once the load has reached phase 0 at a robot i, it sets the local value ui to
1. Note that while a load is traveling, it never sets the value uj of the nodes j
where it passes to 1, meaning that the presence of a moving load at a node does
not make this node loaded. The load entering phase 0 also sets the local waiting
counter ci again to the initial constant value. This means that the load will stay
at this node i for a while, allowing the system as a whole to adapt, and the
local cluster of loaded robots to grow possibly, before the load can travel again.
If more loads cluster around the current load’s robot, the local value vi will get
above 0.5, and ci will not be decrease, keeping the load stationary at its current
robot, and letting the cluster grow further.

We point out that in robots with less neighbors, it is easier to get an extreme
(high or low, depending on ui) value for vi, because there are less neighbors
to disturb the local robot average. That is why the algorithm prefers to form
clusters of loaded/unloaded nodes on the edges of the swarm, rather than in the
center, such that the cluster formation leads easily to two approximately linearly
separable groups.

4.2 Scalability of communications

Scalability of communications was one of the constraints that we set to guide
the design of the algorithm. In the distributed protocol implementing the above
algorithm, communications only happen in the form of local broadcast messages
that are periodically transmitted to update vi values and/or to move tokens. This
purely local and asynchronous form of transmission, coupled with the small size
of each broadcast message, can guarantee the scalability of the protocol in terms
of communications. The structure of a communication packet is as follow:

– 1 byte for message type,
– 1 bit for the value of ui (more bits are needed if more than two classes are

considered),
– 1 bit saying whether the packet contains a load or not,
– 1 byte encoding vi,
– 3 bits to indicate the moving phase (1-4),
– 5 bits to indicate the id of the load (only used in case there are lossy links,

to be able to send acknowledgements, as discussed in Section 6 where the
real robot implementation is presented),

– 3 bytes to store the quality of the last cluster (stored at the end of phase 4),
– 1 byte to indicate the recipient neighbor of the packet.

Overall, a communication packet amounts to only 44 bits, that can be con-
veniently packed in 6 bytes. This allows the protocol to scale well and work
effectively also when the wireless channel has very limited bandwidth.

5 Experimental results

We run extensive experiments in simulation using the ARGoS simulator [23], a
physics-based simulator for heterogeneous multi-robot systems developed during



the Swarmanoid project [5] (http://www.swarmanoid.org). As reference robot
we consider the foot-bot, developed during the same project (as such, ARGoS
contains reliable physics models of this robot). The foot-bot has a diameter
of about 15 cm and it is about 20 cm high. It moves on the ground using a
combination of tracks and wheels, for increased stability. It is quite a powerful
robot, carrying various sensors and actuators, including two cameras, a rotating
distance scanner, a gripper, etc. For the work presented here, the relevant device
is the infrared-based range-and-bearing module (IrRB) [24,3], that provides local
line-of-sight communication. It sends messages of 10 bytes, and has a capacity
of 10 messages per second (so robots can broadcast an update every 0.1 s). Its
maximum range can be of more than 5 m, but in the following experiments it
was limited to smaller values in order to be able to do tests in relatively small
environments and to test the effect of the range on the algorithm. The IrRB,
also provides a measure of the distance and relative bearing between two robots,
which was not used in this work. In addition to the simulation results presented
in this section, a validation is also provided using a small swarm of real foot-bots
(discussed in Section 6).

Each simulation test (50 trials per test) runs for a fixed amount of time
(1200 time steps = 2 minutes). We evaluate the solution found by the swarm
after this time. We measure two things: linear separability and imbalance. Linear
separability is evaluated by solving an integer linear program (ILP) that fits a
line to the space in which the robots are placed, in such a way that the loaded
robots are found on one side of the line and the unloaded ones on the other side.
The result of the evaluation is the total number of robots placed on the wrong
side of the line divided by the total number of robots in the swarm. If linear
separability is optimal, the result is 0, while the worst possible score is 0.5.

The ILP for the evaluation of linear separability is:

min
∑n

i=1 ri

s.t. Mri + wixia+ wiyib+ wic ≥ 0, i = 1, . . . , n

a+ b+ 2k = 1

ri ∈ {0, 1} i = 1, . . . , n

k ∈ {0, 1}

(2)

where n is the number of robots, wi is a weight for each robot i, which is 1 if the
robot is loaded, and 0 if the robot is unloaded, and xi and yi are the location
coordinates of each robot i. The variables ri are binary variables, one per robot,
which are forced to 1 by the “big M”, M � 0, if the robot lies on the wrong side
of the line. a, b, and c are the coefficients of the line we are trying to fit, where
we add the constraint a + b = 1 − 2k, with k a binary variable: a + b can only
be 1 or -1, to exclude rescaling of solutions, and especially to avoid the solution
where a = b = c.

This ILP tries to fit a line such that the two classes are as much as possible
split by the line, and the objective value of the ILP gives the number of robots
that are found on the wrong side of the line. In the reported results, we divide

http://www.swarmanoid.org


this number of misplaced robots by the total number of robots in the swarm, in
order to have the relative fraction value.

The imbalance evaluates whether the two classes are of the same size. We
calculate imbalance are the ratio between the number of robots in the smallest of
the two classes and the total number of robots in the swarm. Therefore, the op-
timal value for imbalance is 0.5, the worst possible is 0. Imbalance is important
together with the linear separability. In difficult situations, loads often keep on
travelling, and do not choose a place to settle, which leads to imbalanced solu-
tions (more unloaded robots than loaded ones). In such cases, linear separability
may be good (because there are few loaded nodes, so it is easy to split the two
classes linearly), without the actual solution being good. Therefore, good linear
separability needs to go together with good balance before we can decide there
is a good solution.

In a first series of tests, we vary the number of robots in the swarm, from 10
up to 60. We keep the deployment area fixed to 3× 3 m2, and place the robots
uniformly randomly. The communication range of the robots is limited to 1 m.
The results are shown in Figure 4. They show that the algorithm works quite well,
and is robust with respect to the number of robots, although for the smallest
swarms, results become a bit less good. This is mainly because the network
connectivity becomes worse, and also because there are too few loads around to
be able to speak of proper clustering. The imbalance is less good, because with
lower numbers of robots, the relative error when each robot randomly (with 50%
probability) picks a class is higher. An example of a solution found by the robots,
and the matching evaluation by the ILP is shown in Figure 5: for 10 robots, the
solution is not so good, while for 50 it is of very good quality.
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Fig. 5. Example scenarios with 10 (left) and with 50 (right) robots, after running the
algorithm for 120 s. Black nodes indicate loaded robots, while white ones indicate un-
loaded robots. In each case, we draw the line that is found by the ILP in the evaluation
of linear separability.

In a second series of tests, we vary the communication range of the robots,
from 0.25 up to 4.5 m. The size of the arena is the same as before, and the
number of robots is 50. The results are shown in Figure 6, the algorithm works
badly at short communication ranges, due to the fact that the communication
network gets disconnected. For medium and high communication ranges, the
results are very good.
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Fig. 6. Experiments with varying communication range maintaining fixed to 50 the
number of robots in the swarm. The values for both linear separability and imbalance
are reported.

The good performance at very high ranges (e.g., 4.5 m) surprised us a lit-
tle, because in those situations, all robots are in range of each other, and the



algorithm has no way to identify local neighborhoods: all robots are each other’s
neighbor, and it is impossible to make local clustering. The results should there-
fore become very bad at very high ranges. Deeper investigation showed that the
reason why behavior is good anyway was the fact that the communication chan-
nel used by the robots is based on infrared communication, which works only
line of sight. As a consequence, robots that are further away from each other,
have more probability of seeing their communication blocked, and so meaningful
local neighborhoods are formed anyway. To test this, we also ran experiments
in simulation where the communication was allowed even if the line of sight was
blocked, with the results shown in Figure 7: here the performance indeed gets
worse again for very high communication ranges.
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Fig. 7. Experiments with varying communication range. The line-of-sight constraint
was removed: the communication between two robots is allowed if they are within their
respective communication range. The values for both linear separability and imbalance
are reported.

The graph in Figure 8 shows, for a typical example with 50 robots and range
1 m, how the solution quality, in terms of linear separability and imbalance
evolves over time. Imbalance first goes down, as all loads start travelling. At the
same time, linear separability also goes down. Then, loads start to settle down,
and form clusters, where they stay more stably. As a consequence, imbalance
goes up again (which means, the system gets more balanced), while the result
from linear separation goes down (fewer misclassifications).

6 Implementation on real robots

We implemented the algorithm on real foot-bots, and carried out a few exper-
iments with a small swarm of 15 foot-bots deployed in an open space of about
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Fig. 8. Evolution over time of imbalance and linear separability for a test run with 50
robots and line-of-sight communication range of 1 m.

7× 4 m2. To allow meaningful testing in such a relatively small space, the line-
of-sight communication range was set to 1.5 m. Moreover, to reduce the risk of
packet losses, the maximum distance for a robot to be considered as a neighbor
was set to 0.9 m. Some further adaptations were needed to make the system
tested in simulation work on the real robots. First of all, we implemented an
acknowledgement mechanism for loads, such that they can be transferred be-
tween robots over lossy links. A second change was to increase the default wait
time from 40 to 120 seconds. Due to the fact that loads travel over lossy links,
they go a bit slower, and hence we need to increase the wait time to keep the
algorithm stable (otherwise, all loads would be travelling all the time). We also
added an initial phase phase to identify the reliable neighbors, that is, to identify
neighbors connected through reliable bidirectional links.

The acknowledgment mechanism works as follows. Each load gets an identifier
from the sending robot (in the form of counter). Upon reception, the receiving
robot sends an acknowledgment back to the sender, with the packet id. As long
as the sender does not receive an acknowledgment with this id, he does not
send more loads to this same neighbor. If it has not received an acknowledgment
after a fixed number of time steps (set to 3), the robot resends this same load
to the same neighbor. Each node also keeps for each neighbor the last received
load id, to be able to check whether a load is new, or a duplicate (due to a
lost acknowledgment message). This solution avoids that loads get lost in the
network, or duplicated. However, the mechanism would require some further
adaptation to work with unidirectional links, or in case of changes in the network
connectivity (e.g., due to mobility). The structure of an acknowledgment message
is packed in a 4-bytes packet, and contains:

– 1 byte for the message type,



– 1 bit containing ui,

– 1 bit indicating whether the message contains a load or rather an acknowl-
edgment,

– 1 byte encoding vi,

– 3 bits indicating the number of acknowledgments included in the message,

– for each acknowledgment in the message: 1 byte indicating the target robot
(sender of the original load) and 1 byte indicating the load id.

Figure 9, shows an example of the experimental setting and the evolution of
the spreading of the load

t = 1s t = 75s t = 125s

Fig. 9. Example of the evolution over time of the load/class distribution using a swarm
of 15 real foot-bots. The line-of-sight communication range is set to 1.5 m. Starting
from the random load configuration at time t = 1 (left sub-figure), the swarm reaches
an optimal load distribution after 120 s (right sub-figure). Robots of class C0 show blue
LEDs, robots of class C1 show red LEDs (to make the figure readable in greyscale a
label ’B’ is positioned beside each foot-bot in class C0 to highlight its class membership,
robots in class C1 have no label). The obtained load distribution is optimal both in
terms of linear separability and imbalance.

We ran a limited set of 10 experiments, testing different initial configurations
of the swarm in terms of placement of the robots and using different random
seeds for the initial definition of the load on each robot. We do not report here
quantitative data since a larger set of experiments would be needed to get statis-
tical significance, which is left as future work. However, by visual investigation,
we could observe that in the large majority of the cases, the algorithm was
able to determine an optimal, or near optimal spreading of the load, with the
swarm reaching the wished spatial segregation in two classes. The time needed
for convergence ranged from about 40 to 125 seconds. This relatively long time
was mainly due to the large packet losses generated by the IrRB communication
system, that determined the generation of a large number of acknowledgment
packets and the multiple retransmissions of load messages.

A few sample videos, both for real robots and simulation can be accessed
online at the following address:
http://www.idsia.ch/~gianni/SwarmRobotics/GeometricSplitting.html

http://www.idsia.ch/~gianni/SwarmRobotics/GeometricSplitting.html


7 Conclusions and future work

In this paper we presented a novel algorithm to let the robots in a swarm to
reach spatial awareness for the purpose of clustering in two spatially segregated
classes and being aware of the relative position in the cluster. The approach we
proposed is fully distributed and only relies on local broadcast communications
among the robots. The algorithm does not make use of any global positioning
system and does not involve the use of mobility, for sake of speed of execution
and saving of on-board energy. In a number of simulation tests we studied the
performance of the algorithm considering linear separability and class imbalance
as complementary metrics. The algorithm has shown good scalability versus the
number of robots and robustness versus different communication ranges. We also
provided a validation based on a small set of experiments with real robots.

As future work, we plan to make more extensive tests with real robots and
modify the protocol to be more efficient in terms of robustness to packet losses
and to increase convergence speed, which will be needed to be deal effectively
with robot mobility. We plan to use the system in an application context in
which spatial awareness and class aggregation will be functional to let the swarm
cooperatively solve tasks such as the coordinated parallel exploration of multiple
regions.
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