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Abstract—We describe the implementation of a 128×128
crossbar switch in 90nm CMOS standard-cell ASIC technology.
The crossbar operates at 750MHz and is 32-bits wide to provide
a port capacity above 20Gb/s, while fitting in a silicon area as
small as 6.6mm2 by filling it at the 90% level (control not
included). Next, we arrange 128 1mm2 “user tiles” around
the crossbar, forming a 150mm2 die, and we connect all tiles
to the crossbar via global links that run on top of SRAM
blocks that we assume to occupy three fourths of each user
tile. Including the overhead of repeaters and pipeline registers
on the global links, the area cost of the crossbar is 6% of
the total tile area. Thus, we prove that crossbars are dense
enough and can be connected “for free” for valencies exceeding
by far the few tens of ports, that were believed to be the
practical limit up to now, and reaching above one hundred
ports. Applications include Combined Input-Qutput Queued
switch chips for Internet routers and data-center interconnects
and the replacement of mesh-type NoC for many-core chips.

I. INTRODUCTION

Crossbar switches are basic building blocks for inter-

connection networks. Because their cost grows with the

square of their port count, it is commonly believed that they

become overly expensive for valencies above 32 or 64.

In particular, designers generally believe that many-core

chips need a multi-hop Network-on-Chip (NoC) to intercon-

nect a few tens of processing tiles because a crossbar would

be prohibitively expensive in terms of wires and crosspoints.

Moreover, in the domain of router systems for multiproces-

sors, clusters, or the Internet, several designers consider that

internal speedup is expensive for high-valency crossbars, and

that crosspoint queueing is an effective method to eliminate

it, thus replacing combined input-output queueing.

To our surprise, when we set out to quantitatively measure

the above costs by doing real VLSI layouts, we discovered

gross misconceptions in the above common beliefs. Using

a conservative 90nm CMOS standard-cell ASIC technology,

we layout a 128×128 crossbar switch with a port capacity of

24Gb/s in an area of just 6.6mm2 (control is not contained

in that area).

Gate count and wiring is so large that the standard EDA

tools were unable to automatically place and route the

crossbar components. However, owing to the regularity of

the circuit, we wrote a script that algorithmically places the

gates in an orderly layout. Although the standard cells are

packed together at an area utilization of 90%, regularity and

wiring resources are such that the EDA tools are then able to

successfully route all the required wires above the standard

cells. To our knowledge, this is denser than any previously

published high-valency crossbar layout.

We assume that our crossbar is surrounded by 128 IP

tiles, of size 1mm×1mm each, arranged in a 12×12 = 144

square array, where the crossbar and its control replace the

16 = 4×4 centermost tiles. Assuming that three fourths of

each tile contain SRAM blocks (e.g. cache memories next to

a processor, or queues in a switch chip), we find out that all

128 input and 128 output links of the crossbar can be easily

routed over the SRAM blocks, thus incurring virtually no

area overhead to the IP tiles for wiring –actually, the area

overhead for repeaters and pipeline registers on these wires

is 0.5% of the total tile area. Including this overhead, the

area cost of the whole crossbar network is 6% of the total

tile area.

Following the above discussion, the rest of this paper is

organized as follows. We start by discussing related work

in the next section II. In section III, we examine various

site plans of the crossbar in its context of IP tiles and we

explain why we opted for a centralized crossbar. In section

IV, we describe the crossbar circuit and its layout. Section V

presents area cost numbers of a baseline crossbar scheduler

to demonstrate the feasibility of the control circuit. Finally,

section VI is a conclusion.

II. RELATED WORK

Kim e.a. [1] have recently shown that high-valency switch

chips reduce the diameter of the interconnection network,

and with it, its latency and power consumption, thus being

a good tradeoff. Switch chips usually employ a crossbar to

interconnect their ports because the crossbar is the simplest

non-blocking topology. However, as the valency of the

switch increases, the scheduling of the crossbar becomes

harder. To simplify and improve the performance of crossbar

scheduling, Kim e.a. adopted crosspoint queueing (CQ) as an

alternative to the traditional input queueing (IQ). However,
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CQ was found expensive due to the high partitioning of the

switch memory; since there is one memory per crosspoint,

the total number of memories grows as O(N2), which

is costly for flow and congestion control algorithms –see

references [2][3] for a further discussion on this cost.

Thus, Kim e.a. proposed the hierarchically-queued cross-

bar (HQ) as an organization that lowers memory partitioning.

In this organization, an N × N crossbar is partitioned

in (N/k)2 k × k sub-crossbars and memories are placed

only at the inputs and outputs of the sub-crossbars. Hence,

the total number of memories is reduced from O(N2)
to O(N2/k). Unfortunately, this organization has a major

disadvantage: Although partitioning is lowered, it remains

unacceptably high, especially when N is large. The reason

is that each sub-crossbar has to be relatively small in order

to be efficiently scheduled, which, in turn, implies a small

k and a quick growth rate of the total number of memories.

High memory partitioning also increases the switch imple-

mentation cost. Switch memories are usually implemented

with SRAM blocks to increase memory density. Given that

technology bounds the maximum on-chip memory capacity,

the higher the partitioning, the smaller the SRAM blocks.

For small SRAM blocks, the area overhead of the peripheral

control circuitry becomes comparable to the area of the

memory-cell array [4]. Scott e.a. [5] showed an implemen-

tation of HQ for a 64×64 switch with 8×8 sub-crossbars.

Due to the high partitioning, they implemented the memories

with registers to avoid the small and costly SRAM blocks.

Thus, they lowered memory density at least by an order of

magnitude.

We are studying the combined input and output queued

(CIOQ) switch organization. CIOQ places memories only

at the inputs and outputs of the crossbar and compen-

sates for scheduling inefficiencies by over-provisioning the

throughput of both the crossbar and the memories –this over-

provisioning is usually referred to as internal speedup. Thus,

in CIOQ, memory partitioning grows as O(N), i.e. by a

factor of N/k slower than in HQ.

We focus on the cost of speeding up the crossbar. We

consider a reference 128×128×10Gb/s CIOQ switch and we

study the implementation of a 128×128×20Gb/s crossbar,

which gives a speedup of two. On the other hand, the cost

of speeding up the memories is obvious and low, as their

throughput easily expands by arranging some SRAM blocks

in parallel1.

Our work is also related to [6]. Pullini e.a. showed that

using flat EDA flows, it is impossible to place and route

a 32×32 32-bit-wide crossbar with area utilization above

50%. They considered this utilization unacceptable, thus

they suggested avoiding excessively large crossbars in NoC.

132-bit-wide, 4K-word-tall, single-port SRAM blocks have a worst-case
latency of 2.9ns and an area of 0.3mm2 and are optimal both latency and
area wise [4]. For a throughput of 30Gbps, it suffices to arrange just three
such blocks in parallel.

By contrast, in the same technology, we demonstrate an

hierarchical flow which gives an area utilization of 90% for

the same crossbar width and four times higher valency.

Last but not least, a high-valency crossbar was also used in

the many-core chips of the IBM Cyclops64 supercomputer.

The only publicly available information we could find on this

crossbar, though, is in reference [7]. According to reference

[7], this is a 96×96 96-bit-wide crossbar implemented in

a 90nm technology, running at 533MHz, and occupying

27mm2, including the circuits for queuing, arbitration, and

flow control. However, reference [7] provides insufficient

information on the structure of the crossbar circuit and lay-

out, hence a direct comparison is difficult. Judging from this

information, the crossbar organization we propose here is

radically different. In particular, the IBM Cyclops64 proces-

sor chips appear using a crossbar with an one-dimensional,

port-sliced layout, while we describe a more scalable two-

dimensional layout, studying in detail the organization of the

crossbar links over the SRAM memories, and we show that

bit slicing significantly reduces area. Furthermore, we show

why and how the metal tracks over both the standard cells

and the SRAM blocks suffice to route the whole wiring of

the crossbar.

III. CROSSBAR SITE PLANS

We describe and compare several alternative locations of

the crossbar on the chip in its context of user tiles. Typical

designs use cores consisting of some processing element,

P , and one or more memory blocks, denoted $ in the

figures below. We call these user tiles, and we do not care

whether their memory is used as cache or local memory,

and whether it is physically built as a couple of large blocks

or a collection of several smaller ones. Similarly, in CIOQ

switch chips, each user tile contains the input and output

queues associated with one of the switch ports, and thus

consists mostly of SRAM blocks, plus a small area for port

control.

We denote by N the number of user tiles; N will also be

the crossbar valency. We are interested in N = 128, but, in
this section, we will be treating N as a parameter for the

sake of presentation.

We consider dies with an aspect ratio of 1 (i.e. square),

as this is the best in terms of balancing the distances in the

two axes; however, our discussion applies equally well to

dies with any other reasonable aspect ratio. We denote by α
the die edge size, so the total die area is α2, excluding chip

I/O (pad and associated) circuitry. We consider a = 12mm.

Finally, we assume that the memory of each user tile

comprises a significant portion of the tile area –up to three

fourths thereof– and we use that area for routing wires

on top of SRAM. This assumption is in accordance with

most general purpose processing cores where the actual

processing part is rather small compared to the memories

and caches needed to support this processing. On the other
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Figure 1. Crossbar site plans: (a) column of user tiles using side crossbar, (b) matrix of user tiles using distributed crossbar, (c) matrix of user tiles using
centralized crossbar, (d) balanced link density of (c) in a “12×12 minus 4×4” matrix of user tiles.

hand, processing elements use substantial logic and complex

interconnections and benefit from the use of all metal layers.

In contrast, SRAMs are much simpler in their wiring needs;

in our reference process [4], they obstruct only the four

lower of nine metal layers, thus leaving the five upper metal

layers available for routing in both directions.

A. Column (1-D) of User Tiles using Side Crossbar

Figure 1(a) shows the first site plan considered. The user

tiles are arranged in a single column, with the crosspoints

to each of them lying on its side.

While being simple, this arrangement is non-scalable to

large N . It can be easily shown that when the area of the

crossbar is much smaller than the total area of the die, which

is the usual case for non-trivial user tiles, the aspect ratio

of each user tile converges to 1/N . User tiles with such

aspect ratios are clearly problematic for large N . One reason

is that memory is often built using a few, relatively large

SRAM blocks, in order to optimize memory density; another

disadvantage is that very long tiles incur longer wire delays.

A straightforward improvement is to place the crossbar in

the middle of the die area, and arrange half of the user tiles

on each side thereof; a similar arrangement was proposed in

[8][7]. In this way, the aspect ratio is improved by a factor

of two, and this is probably the best arrangement for small

N . However, it remains non-scalable to large N .

B. 2-D Matrix of User Tiles using Distributed Crossbar

Figure 1(b) depicts a more scalable plan. The user tiles are

Γ-shaped with the processor at the corner and the memory

occupying at least the two thirds. The user tiles are placed in

a
√

N ×
√

N matrix where each tile owns a crossbar input

line spanning its row and a crossbar output line spanning

its column. Thus, each tile also embraces the
√

N ×
√

N
crosspoints between the

√
N (horizontal) crossbar input

lines that are owned by the tiles in its row and the
√

N
(vertical) crossbar output lines that are owned by the tiles

in its column.

Providing space for the crossbar lines can be achieved in

two ways. The traditional way is to leave wiring channels

in both directions between the user tiles. This approach

has considerable overhead, and it has been used for inter-

connection topologies that do not require many wires, such

as 2-D meshes. However, in figure 1(b), we show an alter-

native approach, where the crossbar lines are routed above

the SRAM blocks

The size of the over-the-tile routing channel is 0.5 ×
α/

√
N . This channel can be utilized according to the

routing pitch on each metal layer. Using an average mid

and higher metal layer routing pitch of 500nm and assuming

a = 12mm, we find that there are on the order two thousand

available wires per direction on top of each user for an N
up to 144. Since

√
N crossbar lines are routed over each tile

in each direction, a line width up to 160 wires is feasible.

Given the availability of many wires, this topology comes

as a natural extension of the 2-D mesh used frequently in

many-core designs [9] [10] [11]. From another point of view,

it can be considered as an enriched mesh, where each tile

uses a router with more crosspoints and links.

C. 2-D Matrix of User Tiles using Centralized Crossbar

Figure 1(c) shows an alternative two-dimensional plan.

The user tiles are now square and the memory occupies

at least three fourths of their area. The crosspoints are

concentrated in the central region of the matrix replacing

some of the user tiles. Hence, the crossbar lines are shorter,

as all the crosspoint logic is kept in close proximity, while

the wires connecting the user tiles with the crossbar are

extended to reach the center. Essentially, instead of routing

over the user tiles the crossbar lines, we route the links that

connect the user tiles to the crossbar.

The over-the-tile link density can be balanced as in figure

1(d). The user tiles are divided in four isometric groups

and the tiles of each group are routed to a distinct edge

of the crossbar region2. The density varies from its lowest

2Care must be taken to avoid unwanted swastika-like configurations.
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at the corners of the die, to its highest at the periphery of

the crossbar. The highest density over a tile is N
2∗γ

uni-

directional links, where γ the ratio of the edge length of

the crossbar region to the edge length of a user tile.

In figure 1(d), N = 128 and γ = 4, thus at most 16

links are routed on top of a user tile. On the other hand, the

wiring resources over the user tiles remain the same as in

the example of the previous subsection, assuming the same

die edge and routing pitch. Thus, we can permit a link width

up to 120 wires.

The examples and analysis in the last two subsections

clearly demonstrate that even for a conservative technology,

there are enough wiring resources to route either the dis-

tributed or the centralized crossbar.

D. Distributed versus Centralized Crossbar Comparison

While both crossbars are feasible, each has advantages and

disadvantages. In particular, when distributing the crossbar

across the die, communication distance scales better and

over-the-tile wiring is better balanced, but, then, the cost

of the global links increases too.

First, the total length of the global links is higher. In the

distributed crossbar plan, the total length is 2×N×α. On the
other hand, in the centralized version, it can be approximated

by the sum of the distances of all tiles to and from the center

2 ×
√

N∑

i=1

√
N∑

j=1

(|i × α√
N

− α

2
| + |j × α√

N
− α

2
|), (1)

which converges to N × α. Hence, the distributed crossbar

approximately doubles the total length of the global links.

Assuming the total length of the global links is much

higher than the distance between successive repeaters or

pipeline registers, by doubling it, the distributed crossbar

also doubles the number of repeaters and pipeline registers.

As we will show in section IV, the overhead of repeaters

and pipeline registers nears 40% of the whole crossbar area

in our implementation.

A second disadvantage of the distributed crossbar has to

do with the speed of the global links. In the distributed

crossbar, half of the global links, the vertical ones, are

actually multiplexor circuits, while in the centralized ver-

sion, all global links are “logicless”, driving a single value

to the crossbar region. Because repeaters are faster than

multiplexor gates, by distributing the crossbar, we also lower

the bandwidth and increase the latency of the global links.

IV. THE CROSSBAR CIRCUIT AND LAYOUT

We implemented the centralized crossbar in a 90nm

CMOS standard-cell standard-performance ASIC process

[4]; standard-cell height is 2.8um, supply voltage ranges

from 0.9 to 1.1V, junction temperature varies from -40 to

125◦C, and there are 9 layers of interconnect (M1-M9).
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Figure 2. Four circuits for the implementation of a crossbar output line

In order to synthesize, place, and route the circuit, we

used some popular industrial tools. Initially, we were ex-

perimenting with flattened designs, but, due to the large

size of both the circuit and the die, the result we got was

long tool running times and low performance, in terms of

both area efficiency and timing closure; this is in accordance

with the results presented in reference [6]. Thus, given the

regularity of crossbars, we decided to specify the structure of

the circuit ourselves, using hierarchical prototyping. Below,

we describe the process we followed.

A. Circuits for Crosspoint Implementation

Figure 2 depicts four alternatives for crosspoint imple-

mentation; 128 crossbar input lines and a single crossbar

output line are shown, assuming each crossbar input line

fans out to 128 circuits same as the above.

In (a), each input line crosses the output line through a

tristate driver. The advantages of this circuit are that: (i)

it is simple; and (ii) it requires a single metal track to

implement the output line. The disadvantages are that: (i)

each driver is loaded with the large parasitic capacitance

of the whole output line; and (ii) EDA flows encounter

problems in designs that use tristate drivers3.

(b-d) describe approaches using multiplexor gates. In our

reference process, such gates can be compiled to either

transmission or logic gates.

In (b), the crossbar output line is implemented with

a chain of two-to-one multiplexors. As in (a), a single

metal track suffices, but a prohibitively long delay of 128

multiplexors in series is needed.

3For example, optimization through buffer insertion is impossible, unless
the bus is explicitly segmented. Furthermore, Automatic Test Pattern
Generation (ATPG) is complicated by the requirement that a single tristate
driver drives the bus at any point in time, so that bus contention is avoided.
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In (c), multiplexing is parallelized by connecting the

multiplexors in a binary tree. The levels of multiplexors

are reduced to 7 (=log
2
N ), at the cost of 7 metal tracks.

However, as we will show in section IV-C, these tracks

introduce zero area overhead, as they are already available

over the multiplexor standard cells. Thus, (c) is preferable

to (a) and (b).

Finally, in (d), a shorter and wider circuit is shown, as an

alternative to (c). The multiplexors have a valency of four

and are connected in a quad tree.

B. Bit Slicing versus Port Slicing Comparison

The bit width, W , of the multiplexors is derived from the

ratio of the desired port throughput to the achieved clock

frequency. Two groupings of gates are then possible. One

grouping, called port slicing [12], places all bits of each

multiplexor close to each other; for example, they can be

arranged as a
√

W ×
√

W matrix. This grouping minimizes

the span of each control wire, since all gates that it controls

are placed in close proximity. The other grouping, called bit

slicing [12], places together all multiplexor gates for a given

bit position, and replicates this structure W times, for all bit

positions. This grouping minimizes the distance among gates

that contribute to the generation of each crossbar output

signal. Intermediate solutions are also possible (see e.g.

reference [13] for byte slicing), but they are not studied here.

In order to compare bit and port slicing, we have to

contrast: (i) the wiring for the connection of the data and

control ports of the crossbar with the slices; and (ii) the

sizing of the multiplexor gates.

As we described in section III, the data ports of the

crossbar have to be uniformly distributed at its periphery

in order to balance the over-the-tile link density. Hence, no

matter how the crossbar is sliced, analogous wiring is needed

for the connection of the crossbar data ports with the slices.

Besides, for the control ports, the critical problem is their

fan-out capacitance, which is the same in both port and bit

slicing, rather than the length of their path to the slices.

Thus, we focused on gate sizing.

We first emulated one bit-sliced crossbar output line by

implementing the binary-tree circuit of figure 2(c); we con-

sidered each row corresponds to a standard-cell row and we

empirically set its width to 80um to provide sufficient space

for in-place optimization. We placed the circuit, performed

trial routing to extract its parasitic capacitances, in-place

optimized it under a range of timing constraints, and finally

routed it. For each timing constraint that was satisfied after

final routing, we measured the actual delay and the total

standard-cell area of the circuit. The resulting delay-area

curve is plotted in figure 3(a), labeled “bit width = 1”.

Notice that the inverse plot is infeasible, as EDA algorithms

prioritize speed over area.

By increasing the distance between the rows of multi-

plexor gates, we emulated port-sliced crossbar output lines
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Figure 3. Delay-area curves of a port-sliced (a) binary- and (b) quad-tree
crossbar output line as a function of its bit width. Bit-slicing coincides with
port slicing when bit width = 1, and stays unaffected by bit width.

of various bit widths. A bit width W corresponds to
√

W−1
empty standard-cell rows between successive rows of multi-

plexor gates, or a distance of (
√

W -1)×2.8um. Figure 3(a)

plots curves for W = 1, 36, and 64. We observed that

for distances up to 200um (W<5000) the EDA algorithms

optimize the circuit by increasing the size of the multiplexor

gates, while they switch to repeater insertion for longer

distances.

We repeated the same experiment for the quad tree. Figure

3(b) shows the resulting performance curves.

We conclude that, for both trees, the closer the multiplexor

gates are clustered together, the faster and the more area

efficient the circuit that results. Then, the output load of

the gates is reduced, thus their performance increases, and

smaller-size gates suffice, thus reducing area; reduced area

further improves performance. Moreover, we observe that

the quad tree is more area efficient being three times

shorter4. Last, for a circuit delay of 0.8ns, a 36-bit wide

port-sliced implementation would increase the standard-cell

area of a crossbar output line by at least 40% compared to a

bit-sliced one. Hence, bit slicing is preferable to port slicing.

C. Organization of the Bit Slice

We implemented a crossbar bit slice by: (i) structuring

a crossbar output line as one of the circuit instances that

generate the curve “bit width = 1” of figure 3(b); (ii)

replicating the line for each crossbar output; (ii) placing

the standard cells of all lines with a custom script5; (iii)

defining IO circuits and similarly placing them; and finally

(iv) routing the whole circuit using the standard EDA tools.

4An additional, but minor, factor increasing the area efficiency of the
quad over the binary tree, is the better area efficiency of the four- over the
two-to-one multiplexor gates.

5The script generates the coordinates of standard cells and writes a
placement definition file in a standard format
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Figure 4. Floor plan of the crossbar bit slice

Our approach was to implement an as-fast-as-possible bit

slice, while pipelining its IO links. The floor plan and the

elements of the bit slice are shown in figures 4 and 5

respectively.

We implemented a crossbar output line with the instance

(bit-width=1, delay=0.8ns) of figure 3(b). This instance uses

identical four-to-one multiplexors for all levels of the multi-

plexor tree except for the root. The non-root multiplexors

are built with And-Or-Invert standard cells as in figure 5(a).

We placed them in a wide area, as in (b), to provide for the

quad tree wiring. The root multiplexor is bigger, built with

NAND gates, and takes up four standard-cell rows; however,

it is not further described here for brevity. We stacked the

multiplexors as in figure 5(c), forming a crossbar output

line. By replication, we placed all crossbar output lines in

a 967.68um×128.8um area, which is labeled “multiplexor

matrix” in figure 4.

Each crossbar input drives the flip flop of figure 5(d). In

turn, the flip flop drives a 1-mm-long wire, which spans the

width of the multiplexor matrix and fans out to each crossbar

output line, plus one multiplexor at each crossbar output line.

We halved this load by duplicating the crossbar inputs –half

on the left and half on the right sides of the multiplexor

matrix. By approximating the resulting capacitance, we

synthesized the driver of figure 5(e) and by replication,

we generated drivers for all crossbar inputs. We placed the

drivers as in figure 4.

Except for data, inputs to the bit slice are control signals

that configure the crossbar output lines, i.e. control their

multiplexors. We assigned the control signals at the top of

the multiplexor matrix, as in figure 4. We used two bits

for each level of each multiplexor tree, for a total of 1024

signals; each bit fans out to each multiplexor at that level.

The signals to leaf multiplexors have the largest loading

capacitance; they fan out to 32 multiplexors each, while
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Figure 5. Elements of the crossbar bit slice

spanning the height of the multiplexor matrix. For these

signals, we specified and placed drivers, similarly to the

crossbar inputs; figure 5(f) shows their circuit and floor plan.

For the rest of the control signals, we placed just flip flops.

We also placed a row of flip flops at the bottom of the

multiplexor matrix to register the outputs of the bit slice.

Finally, we routed the circuit using the standard EDA

routers. We budgeted M2 and M4 for the wiring of the

multiplexor trees and their control signals; the crossbar

inputs were routed in M3. Thus, the bit slice obstructs

M2-M4 from the higher levels of our hierarchy. Simple

calculations suffice for one to verify the routability of the

layout6.

The whole bit slice takes up a 1114um×154um area,

while running at up to 750 MHz under worst-case operating

conditions of 0.9 Volts and 125◦C. At this clock frequency,

the maximum length of a repeated and pipelined link is –

nota bene– 6mm at the M5-M8 layers.

D. Organization of the Crossbar Tile

To give a port throughput of 20Gbps, a crossbar clocked

at 750MHz suffices to be 27-bits wide; we made it 32-bits

6The layout should have remained routable with a single metal layer in
the vertical direction, but due to artifacts of the routing tool –few DRC
violations and slower critical paths were reported, we provided both M2
and M4.
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Figure 6. Floor plan of the crossbar tile

wide for orthodox data alignment, thus also increasing the

port capacity to 24Gbps.

To compose the crossbar, we placed 32 bit slices in two

stacks as in figure 6. We also uniformly distributed the data

ports of the crossbar at its periphery and the control ports

at the center of the eastern side.

Each bit of each data port needs to be connected with

the corresponding pin of the homonym bit slice, while each

control bit to all bit slices. Thus, the longest route equals the

half perimeter of the crossbar, which is 15% shorter than the

maximum length of a pipelined and repeated link. Hence,

we surrounded the bit-slice stacks with a ring of flip flops

to register their IO.

We left an empty space of 28um between the slices

for repeater and buffer insertion; we came up with it by

empirically specifying a value to get timing closure and

then repeatedly lowering it. Thus, the whole crossbar area

is 2.3mm×2.9mm.

A simple solution that verifies the routability of the layout

is the following. Each bit is routed in M7 and M8 to the

proximity of its bit slice, and from there, in M5 and M6, to

the corresponding pin of the slice. Using an average routing

pitch of 500nm, there are above 4500 metal tracks in each

dimension of the crossbar, thus each bit can be allocated

its own metal track in M7 and M8; routing in M5 and

M6 is trivial. The wires are routed on top of the bit slices,

which obstruct the M1-M4 layers. Thus, the whole crossbar

obstructs all metal layers from M1 to M8.

The control signals can be routed similarly and are also

buffered to lower their fan-out.

E. Organization of the Global Links

We emulated a user tile with a small circuit which serves

as a traffic source and sink, while obstructing area and

metal layers in accordance with the user-tile configura-

tion of figure 1(c). Nevertheless, the obstructed area is

985.6um×985.6um, leaving 14.4um in each direction for

repeaters and flip flops on global links. The global links

are routed in M5 and M6, over the user tiles, as in figure

1(d).

1 cycle

1.5  mm 

2 
cy

cl
es

6mm 

8.
5m

m

Figure 7. Division of the die into three conceivable circles: (inner) crossbar
tile, (median) user tiles that reach the periphery of the inner circle in at
most one clock cycle, (outer) user tiles that reach the periphery of the inner
circle in at most two cycles.

The die can be conceivably divided by three homocentric

circles as in figure 7. The inner circle is the circumcircle

of the crossbar tile; the median and outer circle contain all

user tiles that reach the periphery of the inner circle in at

most one and two clock cycles respectively.

The corner-to-corner latency is 8 clock cycles, composed

by: (i) a two-cycle trip from the corner of the die to the

crossbar tile; (ii) a single-cycle trip from the edge of the

crossbar tile to the corresponding bit slice; (iii) a single-

cycle trip inside the bit slice; and (v) the symmetrical trip

from the output of the bit slice to the destination corner.

The careful reader should have observed that the control

signals are also pipelined; they propagate in a flip-flop tree.

In the first cycle, a control signal arrives at the crossbar tile

from the crossbar control circuit; in the second cycle, the

value of the signal is loaded to all 32 slices; and in the third

cycle, it is loaded to the multiplexors inside the bit slice.

F. Quantitative Data

We profiled the crossbar circuit with respect to: (i) gate,

buffer/repeater, and flip-flop count and standard-cell area –

see table I; (ii) power consumption –see table II; and (iii)

metal-track utilization –see table III.

Area Cost: The area numbers for the bit slice come up

directly from the description of its floor plan in subsection

IV-C. We observe that the 75% of the total standard-cell

area within a bit slice is allocated to multiplexors, while

the remaining is equally shared by IO circuits, i.e. buffers

and flip flops; not shown in the table is that the data wires

account for 65% of the buffer area and 15% of the flip-flop

area, while the control wires account for the rest. The total

standard-cell area of the bit slice is 0.16mm2. Thus, given

that the bit slice is floor-planned in a 1.1mm×0.154mm box,

its area utilization is above 95%.

Moving one level higher in the hierarchy, the crossbar

tile utilizes the standard cells of 32 bit slices plus the flip

flops, buffers, and repeaters on the wires that connect the
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Count (×10
3)

Logic Gates Buffer/Repeater Standard Cells Flip Flops

Bit Slice 63.0 1.0 1.4
Bit Slice X 32 2000 33 45
Crossbar Tile 2000 60 54
Whole 2000 92 56

Standard-Cell Area (mm
2)

Logic Gates Buffers/Repeaters Flip Flops Total

0.121 0.020 0.020 0.161
3.872 0.640 0.640 5.152
3.872 1.196 0.824 5.892
3.872 1.855 0.862 6.589

Table I
CUMULATIVE AREA COST

ports of the bit slices with the ports of the crossbar tile. The

repeaters and buffers take up 0.56mm2 and the flip flops

another 0.18mm2; not shown in the table is that the data and

the control ports account for 65% and 35% of this overhead

area respectively. Hence, the total standard-cell area of the

crossbar tile is 5.9mm2. Given that the crossbar tile is floor-

planned in a 2.3mm×2.9mm box, its area utilization nears

90%.

In the top level of the hierarchy, the actual area cost of

the global links is 3% of the total tile area, corresponding

to the empty space that we leave between the user tiles

for insertion of flip flops and repeaters. However, this cost

could be lowered to the actual standard-cell area by pushing

the repeaters and flip flops inside the user tiles. Hence,

we consider that their actual overhead coincides with their

standard-cell area, which is 0.66mm2 for repeaters and

0.04mm2 for flip flops. Thus, the global links add a 10%

overhead to the area of the crossbar tile.

Overall, the whole crossbar circuit utilizes a standard-cell

area of 6.6mm2 and a silicon area of 7.5mm2, or 6% of the

total tile area. Furthermore, 60% of the total standard-cell

area is occupied by multiplexor gates, while the remaining

40% by repeaters, buffers, and flip flops on multiplexor wires

–15% control and 25% data.

Finally, we observe from table I that the number of

repeaters needed to route the IO of the bit slices is approxi-

mately 60000; around 35000 of them are on the data wires.

On the other hand, the total length of the global data links

can be calculated by multiplying equation 1 (section III-D)

by the width of the crossbar, which gives a total length

of 50cm. Thus, the distance between successive repeaters

on the same link is approximately 1.5mm, which is in

accordance with reference [14].

Power Cost: Table II shows power consumption; we

break it down into power consumption due to wires, standard

cells, and leakage; leakage was always negligible. For our

measurements, we simulated a permutation communication

pattern, circularly updated in every clock cycle; we also

assumed a toggle rate of one and a power supply of 0.9

Volts.

First, we observe that power consumption within a bit

slice is almost equally due to the capacitance of the intercon-

nect and the standard cells. Second, the wires connecting the

Wires Standard Cells Total

Bit Slice 0.073 0.085 0.158
Bit Slice X 32 2.336 2.720 5.056
Crossbar Tile 3.842 3.100 6.942
Whole 5.462 3.590 9.052

Table II
CUMULATIVE POWER COST (WATTS)

Bit Slice Crossbar Tile Global Links

M2 23 < 5 < 5

M3 60 < 5 < 5

M4 20 < 5 < 5

M5 0 38 < 5

M6 0 47 < 5

M7 0 46 0
M8 0 30 0
M9 0 0 0

Table III
METAL TRACK UTILIZATION (%)

bit slices with the ports of the crossbar tile add an overhead

of 40% to the power consumption of all slices; this is mostly

due to the capacitance of the wires. Likewise, the global

links add a further 30% to the power consumption of the

crossbar tile.

Overall, the whole crossbar power is 9 Watts; 30% is con-

sumed on the multiplexor gates and 70% on the multiplexor

wires and their repeaters, buffers, and flip flops.

Metal Track Utilization: We define the metal track

utilization on a metal layer as ((L×R)/A)× 100%, where

L and R the total wire length and routing pitch on that

layer, and A the area of the reference region. Table III

shows numbers for each level of the crossbar hierarchy.

We observe that the lower two levels utilize approximately

half of the available wiring resources, while the top level

utilizes a negligible amount. As a consequence, the area of

the crossbar is a linear, rather than quadratic [15], function

of its width.

V. FEASIBILITY OF CONTROL

The control of the crossbar datapath mainly comprises a

scheduler circuit, which updates the crossbar configuration

based on the traffic at the crossbar network interfaces. A
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thorough study of the queueing stradegy at the network

interfaces and the scheduler circuit will appear in a follow-up

paper. Here, we give brief area cost estimates of a baseline

configuration.
We placed and routed a centralized iSLIP scheduler. The

implementation is similar to [16], with the difference that,

instead of pipelining successive iterations, we pipeline the

phases of a single iteration. Our implementation consists

of 256 identical round-robin arbiters, implementing the 128

grant and the 128 accept arbiters of iSLIP. Each arbiter is

placed in an 154um×154um area and routed in M2-M4.

The area of each arbiter is dominated by the parallel prefix

trees needed to implement priority encoding. The arbiters are

placed in a 3mm×4mm grid and interconnected with point

to point links in M5-M9. The whole scheduler circuit is wire

limited, featuring an area utilization as low as 50%. Thus,

the whole scheduler is by 30% larger than what could fit in

the central 4mm×4mm region. Despite that, we conclude

that a baseline configuration is very close to fit in our

configuration. Wiring, and thus area, could be lowered e.g.

by compromising some scheduling performance.

VI. CONCLUSION

Though designers generally believe that high-valency

crossbars are expensive due to their quadratic area cost,

we demonstrated that they are implementable with a min-

imal area budget even in a conservative 90nm technology.

We showed a crossbar implementation interconnecting 128

1mm2 tiles in a single hop, while providing a bidirectional

channel capacity of 48Gbps and occupying 6% of the total

tile area. Our implementation featured the following points:

• The centralized organization allows area-efficient cross-

points and global links;

• the custom placement of the crosspoints guides the

EDA tools to regular and compact routing solutions;

• the plentiful of wiring resources allows all crossbar

lines to be routed over the crosspoint standard cells;

• the plentiful of wiring resources on top of SRAM

blocks allows all global links to be routed over the user

tiles.

Hence, we also proved that the area of the crossbar scales

linearly with its width. Applications of our implementation

include CIOQ switch and many-core chips.

ACKNOWLEDGMENTS

This work was supported by the European Commission

in the context of the SARC Integrated Project (FP6 #27648)

and the HiPEAC Network of Excellence (FP7 #217068). We

also thank Christos Sotiriou for useful discussions on EDA

flows and algorithms.

REFERENCES

[1] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Mi-
croarchitecture of a high-radix router,” SIGARCH Computer
Architecture News, vol. 33, no. 2, pp. 420–431, 2005.

[2] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and
T. Nachiondo, “A new scalable and cost-effective congestion
management strategy for lossless multistage interconnection
networks,” in Proceedings of the Int’l Symp. on High-
Performance Computer Architecture (HPCA-11), 2005.

[3] G. Mora, J. Flich, J. Duato, P. López, E. Baydal, and
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