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Abstract

Let A be an Artin algebra. As we know, the construction of the well-known Auslander-Reiten
sequence is based on the natural (A,A)-bimodule A and the induced transpose, where the functor
HomA(−,A AA) plays an important role. In this paper we develop a more general transpose, called
the relative transpose, by exploiting the canonical (A, End(AT ))-bimodule ATEnd(AT ) for an
arbitrary A-module T and prove some fundamental results, especially, many useful homological
exact sequences are generalized. We hope with this consideration the tilting theory and the
Auslander-Reiten theory could be unified. The feature of our discussion differs from those on
generalizing tilting theory in the literature is that we do not impose any requirement on AT .
Using our discussion we obtain among other things certain homologically finite subcategories and
results on both representation dimensions and finitistic dimensions. In particular, we show that
(1) if e is an idempotent in an Artin algebra A such that Ae⊗eAe Y ' HomeAe(eA, Y ) for Y an
eAe-module, then the representation dimension of eAe is bounded above by the representation
dimension of A; (2) if a subcategory C of App(AT ) is covariantly finite in A-mod, then the
subcategory of the relative transposes of modules in C is covariantly finite in mod-End(AT ).

1 Introduction

In the representation theory of Artin algebras the existence of almost split sequences is very
important for the understanding of the structure of the whole category of finitely generated
modules. As a key ingredient in this theory, the transpose plays a central role, here for a
given Artin algebra A the natural bimodule AAA and the induced functor HomA(−, A) were
mainly involved. In this paper we try to replace AAA by a more general bimodule, namely, we
take an A-module T and consider the induced (A,B)-bimodule ATB with B = End(AT ), and
introduce the relative transpose with respect to this bimodule ATB . In this way we have a bridge
between the category of finitely generated left A-modules and the category of finitely generated
right B-modules via the functor HomA(−, T ) applying to T -presentations. As in the usual case,
we hope that the relative transpose could help us further to understand the Auslander-Reiten
theory. There are another two reasons for considering the relative transpose. The first one is the
well-known tilting theory which deals with a bimodule ATB , but emphases strong homological
requirements on AT , so we try to weaken the conditions. The second one is motivated by the
study of the representation dimension of finite dimensional algebras, where the estimations of
global dimensions of endomorphism algebras of certain modules AT are considered. The idea in
this paper is to try to have a unified method to handle the above mentioned three aspects. Our
interest concentrates mainly on the homological topics related to the relative transpose.

It turns out that many important results on the usual transpose are still valid in our general
case. Moreover, our consideration yields also homologically finite subcategories in A-mod and in
B-mod. As an application, we show that, for a projective A-module P with certain restrictions,
the representation dimension of the endomorphism algebra of P is less than or equal to the
representation dimension of A.
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The contents of the paper are arranged as follows. In Section 2 we recall some definitions
and known homological results, and deduce some basic facts for the later use, thus many useful
homological identities are displayed. This seems to be of interest for other investigations. In
Section 3 we define the relative transpose and develop its homological properties. It is shown
that many important results on the usual transpose are generalized to the relative transpose,
especially, such as some long exact sequences and the Auslander-Reiten formula in which the
transpose are involved. Section 4 is designed to illustrate the scope of our consideration by
several examples. In Section 5 we compare the involved subcategories in A-mod with that in
B-mod, and establish their equivalences via the canonical functor HomA(T,−). In Section 6
we discuss how the homological finiteness of a subcategory in A-mod is related to that of the
corresponding subcategories in B-mod. This is based on a generalization of a result in [8]. The
special case of T being equal to Ae provides a more pleasant example. Also, in this section we
consider the finitistic dimensions of A and End(AT ). In the last section we mainly consider the
relationship of representation dimensions between the algebra A and eAe with e an idempotent
element in A, but our setup is more general, namely, we first give a statement in terms of functor
language, and then apply it to algebras A and eAe.

2 Preliminaries

In this section we give some definitions in our terminology and collect facts which are often used
in the paper.

2.1 Definitions and notation

Let A be an Artin R-algebra, that is, R is a commutative Artin ring and A is an R-algebra
which is finitely generated as an R-module. We denote by A-mod the category of all finitely
generated left A-modules. The set of homomorphisms between two modules X and Y will be
denoted by HomA(X, Y ), but for simplicity we shall write this set very often as (X, Y ). Given
two homomorphisms of modules, say f : L −→ M and g : M −→ N , the composition of f and g
is a homomorphism from L to N and will be denoted by fg in this paper. Let E be an injective
envelope of the R-module R/rad(R), where rad(R) is the Jacobson radical of R. We denote by D
the usual duality HomR(−, E) between the category A-mod and the category mod-A of finitely
generated right A-modules. The R-length of an R-module M will be denoted by lR(M).

Throughout this paper, we assume that all modules are finitely generated, and all rings are
Artin algebras.

Let X be a full subcategory of A-mod and M an A-module. A homomorphism f : X −→
M with X ∈ X is called an X -precover of M if the induced sequence HomA(Y, X) −→
HomA(Y, M) −→ 0 is exact for all Y ∈ add(X ), here add(X ) stands for the additive category
generated by X . If, in addition, the homomorphism f has the property that every endomorphism
g : X −→ X with f = gf is an automorphism, then f is called an X -cover of M . Similarly, we
can define the notion of X -preenvelopes and X -envelopes. Note that if f : X −→ M is an X -
precover (or an X -cover) of M , then f : X −→ Im(f) is an X - precover (or an X -cover) of the
image Im(f) of f . An X -resolution of M is a complex

... −→ Tm
fm−→ ...

f2−→ T1
f1−→ T0

f0−→ M −→ 0

with all Ti ∈ X , such that

... −→ (X, Tm) −→ ... −→ (X, T1) −→ (X, T0) −→ (X, M) −→ 0

is exact for all X ∈ X . Such a sequence is called a minimal X -resolution of M if Ti −→ Ker(fi−1)
is an X -cover for all i ≥ 1. Here we do not require the exactness of the complex.

We say that M has X -dimension ≤ m, denoted by X−dim(M) ≤ m, if there exists an X -
resolution of M of the form 0 −→ Tm −→ ... −→ T1 −→ T0 −→ M −→ 0. If there is no such
sequence, we say that M has no X -dimension. If such a sequence exists for M and m is the least,
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then we say that the X -dimension of M is m, denoted by X -dim(M) = m; and if there is no
such m which is the least, we define X -dim(M) = ∞.

It is clear that for any module AT ∈ A-mod and any module AM ∈ A-mod there is an
add(AT )-precover and add(AT )-cover. If f : T0 −→ M is an add(AT )-cover of M , then we decree
that the T -syzygy of M is the kernel of f , denoted by ΩT (M). This is well defined. Note that f
is not necessarily surjective.

We remark that in [9] and in [7] the X -precover and X -cover of M were called right X -
approximation and minimal right X -approximation of M , respectively. Since we prefer to a brief
expression, we adopt these traditional terminology, as was already used, for example, in the book
[15].

Let AT be a module in A-mod. We denote by B the endomorphism algebra of T , thus T
is an A-B bimodule in the natural manner. Throughout the paper, we shall fix such a triple
(A, AT,B). Now let us introduce the following full subcategories of A-mod:

Gen(AT ) = {M ∈ A-mod | there is a surjective morphism from Tm to M, m ∈ N },
Pre (AT ) = {M ∈ A-mod | there is an exact sequence T1 −→ T0 −→ M −→ 0

with Ti ∈ add(AT ) for i = 0, 1 },
App(AT ) = {M ∈ A-mod | there is an exact sequence T1

f1−→ T0
f0−→ M −→ 0

such that Ker(f0) ∈ Gen(AT ) and f0 is an add(AT )-precover of M }.
Note that the modules in App(AT ) are precisely the modules admitting a minimal addAT )-

presentation.
Dually, we can define the subcategory Cogen(AT ) whose objects are the A-modules M which

are cogenerated by AT , that is, M is a submodule of a finite direct sum of AT , and the subcategory
Copre(AT ) whose objects are those modules M which posses an exact sequence of the form
0 → M → T0 → T1 with Ti ∈ add(AT ). Similarly, we use the notion of preenvelope and envelope
to define Coapp(AT ), that is, a module M belongs to Coapp(AT ) if there is an exact sequence

0 → M
f→ T0 → T1 with Ti ∈ add(AT ) such that f is an add(AT )-preenvelope of M .

If X and Y are two full subcategories of A-mod such that Y is a full subcategory of X , we
denote by X/Y the factor category of X modulo Y, that is, the category with the same objects
as X , but the set of homomorphisms from an object X to another object Y is the quotient of
HomA(X, Y ) modulo the morphisms which factor through a module in add(Y). For simplicity,
we denote by (M,Y, N) the set of all morphisms from M to N which factor through a module
in add(Y). Clearly, there is a functor from X to X/Y which is identity on objects and sends a
homomorphism f in HomA(M, N) to its canonical image f in HomA(M, N)/(M,Y, N).

If Y is equal to the subcategory P(AA) of all projective A-modules and X = A-mod, we write
A-mod for A-mod/P(AA).

2.2 Homological facts

In this subsection we shall prepare some homological results and deduce their consequences,
which are needed in the course of our discussion.

Lemma 2.1 Let M be arbitrary A-module. Then:
(1) Let XB be a right B-module. The natural homomorphism

δ : X ⊗B HomA(T,M) −→ HomB(HomA(M, T ), X)

given by x⊗ f 7→ δx⊗f with δx⊗f (g) = (x)(fg), is an isomorphism if M ∈ add(AT ).
(2) If X ∈ add(AT ), or M ∈ add(AT ), then the composition map m : (X, T ) ⊗B (T,M) −→

(X, M) given by f ⊗B g 7→ fg is bijective.
(3) If M is in Gen(AT ), then the evaluation map eM : T ⊗B (T,M) −→ M is surjective. If

M is in App(AT ), then eM is bijective. Conversely, if eM is bijective, then M ∈ App(AT ).
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Proof. (1) we note that the statement is true for M =A T . This implies that it is true also
for direct summands of T and hence for M ∈ add(AT ).

(2) is true for X = AT or M = AT , this implies that (2) is true for X or M being a direct
summand of AT . Hence (2) holds for X ∈ add(AT ) or X ∈ add(AT ).

(3) the first statement of (3) is obvious. We prove the second one of (3). Note that eY

is bijective if Y ∈ add(AT ). Now, let M be in App(AT ). Then we have a minimal add(AT )-
presentation of M :

T1
f1−−−−→ T0

f0−−−−→ M −−−−→ 0.

This gives us an exact sequence

(T, T1)
(T,f1)−−−−→ (T, T0)

(T,f0)−−−−→ (T, M) −−−−→ 0

which induces the following exact commutative diagram:

T ⊗B (T, T1) −−−−→ T ⊗B (T, T0) −−−−→ T ⊗B (T,M) −−−−→ 0yeT1

yeT0

yeM

T1
f1−−−−→ T0

f0−−−−→ M −−−−→ 0.

Since Ti ∈ add(AT ), the first two vertical maps are isomorphisms. Thus the third one is also an
isomorphism.

Conversely, suppose that eM is an isomorphism. This implies that M is generated by AT . It
is easy to see that there is an add(AT )-cover of M by [9, proposition 4.2], say T0

f−→ M −→ 0.
We need to show that the kernel K of f is generated by AT , that is, we have to show that
the map eK is surjective. However, this follows from the following exact commutative diagram
immediately by applying the snake lemma:

T ⊗B (T,K) −−−−→ T ⊗B (T, T0) −−−−→ T ⊗B (T, M) −−−−→ 0yeK

yo
yeM

0 −−−−→ K −−−−→ T0
f−−−−→ M −−−−→ 0. ¤

The first statement of the following lemma is a generalization of [6, proposition 2.1].

Lemma 2.2 (1) Let AT be an arbitrary A-module. If X ∈ App(AT ), then for any A-module Y
there is an isomorphism HomA(X, Y ) ' HomB((AT,A X), (AT,A Y )) as R-modules, and this
isomorphism is functorial in X and Y . Dually, if Y ∈ Coapp(AT ), then HomA(X, Y ) '
HomB((AY,A T ), (AX,A T )) as R-modules, which is functorial in Y and X .

(2) The natural homomorphism

αM : M −→ HomB(HomA(M, T ), T )

is an isomorphism if and only if there exists an exact sequence

0 −→ M
f−→ Tm −→ Tn,

where f is an add(AT )-preenvelope of M .

Proof. (2) is a result in [11, proposition 2.1]. We prove (1). Since AX ∈ App(AT ), we get
the isomorphism AX ' AT ⊗B (T, X) as A-modules by Lemma 2.1(3). Thus it follows from the
adjoint isomorphism that

HomB((T,X), (T, Y )) ' HomA(T ⊗B (T,X), Y ) ' HomA(X, Y ),

as desired. For the second statement, we use Lemma 2.2(2) and the following well-known identity
(see [1, proposition 20.7]):

HomR(RM, HomS(NS ,R US)) ' HomS(NS ,HomR(RM,R US)),
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where R and S are rings, M, N and U are modules as indicated. Thus we have

((Y, T ), (X, T )) ' (X, ((Y, T ), T )) ' (X, Y ),

and the lemma is proved. ¤
Concerning the natural homomorphism αM , there is the notion of a T -torsionless module.

Recall that an A-module AM is said to be T -torsionless if αM is injective, and T -reflexive if αM

is bijective. One has the following basic facts on T -torsionless modules.

Lemma 2.3 (1) Ker(αM ) =
⋂

f :M→T

Ker(f).

(2) Ker(αM ) = 0 if and only if for any 0 6= m ∈ M there is a map f ∈ HomA(M, T ) such
that (m)f 6= 0.

(3) AM is T -torsionless if and only if there is an exact sequence of the form 0 −→ M
f−→ Tm.

(4) Every submodule of a T -torsionless module is T -torsionless. ¤

The following homological identity is well-known (see, for example, [1, proposition 20.11] ).

Lemma 2.4 Let R and S be rings, P a finitely generated right projective R-module, U an (S,R)-
bimodule, and N a left S-module. Then the morphism

ν : P ⊗R HomS(SUR, N) −→ HomS(HomR(P, U), N)

defined by ν(p⊗ γ) : δ 7→ (δ(p))γ is an isomorphism. ¤

The following result is taken from [15, p.79].

Lemma 2.5 (1) Let R and S be rings, M a left R-module, U an (R, S)-module and C a left
S-flat module. Then the natural map τ : HomR(M, U)⊗S C −→ HomR(M, U ⊗S C) defined by
τ(f ⊗ c)(a) = f(a)⊗ c is an isomorphism. If R is additionally left noetherian, then

ExtiR(M, U)⊗S C ' ExtiR(M, U ⊗S C).

for all i ≥ 0.
(2) Let R and S be rings, M a left R-module, U an (R, S)-module and C an injective right

S-module. Then
TorR

i (HomS(U,C),M) ' HomS(ExtiR(M, U), C)

for all i ≥ 0.
(3) Let R and S be rings, M a right R-module, U an (R, S)-module and C an injective right

S-module. Then

ExtiR(MR,HomS(RUS , CS)) ' HomS(TorR
i (MR, RUS), CS)

for all i ≥ 0. ¤

From Lemma 2.5 we can deduce the following result which is useful when dealing with partial
tilting modules, or modules with small projective dimensions.

Proposition 2.6 Let R and S be Artin algebras, and M an R-module, T an (R, S)-bimodule
with ExtiR(M, T ) = 0 for i = 1, 2. Then for any S-module C with the projective dimension at
most one, there is an exact sequence of S-modules

0 → Ext1R(RM, TorS
1 (TS , C)) → (M, T )⊗S C → (RM, RT ⊗S C) → Ext2R(M, TorS

1 (T,C)) → 0.
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Proof. Since the projective dimension of C is at most one, there is an exact sequence 0 →
P1 → P0 → C → 0, where Pi are projective S-modules. This yields a new exact sequence

0 → TorS
1 (T, C) → T ⊗S P1 → T ⊗S P0 → T ⊗S C → 0

Since Ext1R(M, T ) = 0 = Ext2R(M, T ), we have by Lemma 2.5 that Extj
R(M, T ⊗S Pi) = 0 for

j = 1, 2. Thus we obtain the following commutative diagram with exact rows:

(M, T )⊗S P1 −−−−→ (M, T )⊗S P0 −−−−→ (M, T )⊗S C −−−−→ 0yo τ1 | |
(M, T ⊗S P1) | |y

yτ2

yτ3

0 −−−−→ (M, Q) −−−−→ (M, T ⊗S P0) −−−−→ (M, T ⊗S C) −−−−→ Ext1R(M, Q) −→ 0,

where Q is the image of the map T ⊗S P1 −→ T ⊗S P0. Note that τ1 and τ2 are isomorphisms
by Lemma 2.5. The cokernel of the first vertical map is isomorphic to Ext1R(M, TorS

1 (T, C)) by
Lemma 2.5. We also have that Ext1R(M, Q) ' Ext2R(M, TorS

1 (T, C)) again by Lemma 2.5. Now
the result follows from the snake lemma. ¤

A special case of 2.6 is the following result, here we relax the condition on the module C.

Proposition 2.7 Let R and S be Artin algebras and T an (R, S)-bimodule. Suppose that M
is an R-module such that Ext1R(M, T ) = 0 and proj.dim RM ≤ 1. Then for any S-module C of
finite projective dimension, there is an exact sequence of S-modules

0 → Ext1R(RM, TorS
1 (TS , C)) → (M, T )⊗S C → (RM, RT ⊗S C) → 0.

Proof. We prove this by induction on the projective dimension n of C. Clearly, the proposition
is true for n = 0, 1. Assume that n > 1. As in the above case, we take an exact sequence
P1

f1→ P0
f0→ C → 0 with Pi projective. Then we have an exact commutative diagram

(M, T )⊗S P1 −−−−→ (M, T )⊗S P0 −−−−→ (M, T )⊗S C −−−−→ 0

h

y
yτ2

yτ3

0 −→ (M, Q) −−−−→ (M, T ⊗S P0) −−−−→ (M, T ⊗S C) −−−−→ Ext1R(M, Q) −→ 0,

where Q is the image of the map T ⊗S P1 −→ T ⊗S P0. Let K be the kernel of f0. It follows
from the first commutative square that h is a composition of (M, T ) ⊗S P1 → (M, T ) ⊗S K

τ→
(M, T ⊗S K) → (M, Q). Thus we have another exact commutative diagram:

(M, T )⊗S P1
h−−−−→ (M, Q) −−−−→ Cok(h) −−−−→ 0y ‖

yg

(M, T ⊗S K) −−−−→ (M, Q) −−−−→ Ext1R(M, TorS
1 (T, C)) −−−−→ Ext1R(M, T ⊗S K).

Note that T ⊗S K is generated by T . Thus Ext1R(M, T ⊗S K) = 0 since proj.dim RM ≤ 1.
This implies also that Ext1R(M, Q) = 0. Since proj.dim SK ≤ n− 1, we know by induction that
τ is surjective, and therefore the first vertical map in the above diagram is surjective. Hence
Cok(h) ' Ext1R(M, TorS

1 (T,C)). Now our result follows from the first commutative diagram. ¤

Proposition 2.8 Let R and S be Artin algebras, and M an R-module, U an (R, S)-bimodule
Then
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(1) ExtiR(U⊗S P, RM) ' HomS(SP, ExtiR(RU, RM)) for all i ≥ 0 and any projective S-module
SP .

(2) If RU is a generator for R-mod, that is, add(RR) ⊆ add(RU), then for any S-module Y ,
there is an exact sequence

0 −→ Ext1S(SY, HomR(RU, RM)) −→ Ext1R(U ⊗S Y, M) −→ HomS(SY, Ext1R(RU,M)).

Proof. (1) can be proved by induction on i. To prove (2), we take an injective hull of
RM : 0 → M → I → C → 0, where I is injective. This induces two exact sequences:

0 −→ (U,M) −→ (U, I) d−→ (U,C) −→ Ext1R(U,M) −→ 0,

0 −→ (U ⊗S Y, M) −→ (U ⊗S Y, I) −→ (U ⊗S Y, C) −→ Ext1R(U ⊗S Y, M) −→ 0.

Let Q be the image of d. Then we have the following exact commutative diagram:

(U ⊗S Y, I) −−−−→ (U ⊗S Y, C) −−−−→ Ext1R(U ⊗S Y, M) −−−−→ 0y
y

y
0 −−−−→ (Y, Q) −−−−→ (Y, (U,C)) −−−−→ (Y,Ext1R(U,M)).

Note that the cokernel of the first vertical map is Ext1S(Y, (U,M)) since RU is a generator and
(U, I) is injective, and that the second vertical map is an adjoint isomorphism. Now (2) follows
from the snake lemma. ¤

Remark. The above result (2) describes the kernel of the map Ext1R(U ⊗S

Y, M) → HomS(SY,Ext1(RU,M)). This can be extended to a general case: 0 −→
Ext1S(SY,HomR(RU,Ω−i+1(M)) −→ Exti

R(U ⊗S Y, M) −→ HomS(SY,Exti
R(RU,M)), where

Ω−i(M) is the i-cosyzygy of M with i ≥ 1. It would be nice to have a description of the cokernel
of this map.

3 The relative transpose and AR-sequences

In this section we shall introduce the relative T -transpose which is defined in a way similar to the
usual one defined by Auslander in 1962. The surprise thing is that almost all of the main results
about the usual transpose hold true for T -transpose. As a by-product we also produce many
indecomposable modules over the endomorphism algebra B of AT . We hope that our discussion
will be useful for the study of representations of the algebra B.

Let M be an arbitrary A-module in Pre(AT ). Then we have an exact sequence

(∗) T1
f1−→ T0

f0−→ M −→ 0.

Now applying HomA(−, AT ) to (∗), we have an exact sequence in mod-B:

0 −→ (M, T ) −→ (T0, T ) −→ (T1, T ) −→ ΣT (M) −→ 0,

where ΣT (M) stands for the cokernel of Hom(f1, T ). From this we get the following new exact
sequence in B-mod:

0 −→ DΣT (M) −→ D(T1, T ) −→ D(T0, T ) −→ D(M, T )) −→ 0.

We call the module ΣT (M) the relative transpose of M with respect to T , or T -transpose of
M . Note that the T -transpose of a left A-module is a right B-module, and depends on the exact
sequence (∗ ). Observe that ΩB(T, Z) ' (T, ΩT (Z)) for all A-module Z, and that ΣT (M) = 0 if
and only if M ∈ add(AT ).
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Note that if we take AT = AA then we get the usual transpose Tr which was defined in [5].
The relative transpose generalizes also the case discussed in [20], where AT is demanded to have
the Ext-group vanishing property and the double centralizer property.

Suppose we are given a map f1 : T1 −→ T0 and the exact sequence (∗), the following obser-
vation describes the kernel and the cokernel of f1.

Lemma 3.1 If we are given the homomorphism f1 and the exact sequence (∗) with M the cok-
ernel of f1, then Ker(f1) ' HomB(ΣT M,A TB) and M ' T ⊗B X, where X is the cokernel of
(T, T1) → (T, T0). ¤

Also, there is another construction in which minimal projective presentation is used. Take a
minimal projective presentation

P1 −→ P0 −→ M −→ 0

of M , we define ΓT (M) as follows:

0 → (M, T ) → (P0, T ) → (P1, T ) → ΓT (M) → 0.

If T = A, then ΓT (M) = TrA(M). Furthermore, we have the following connection between ΓT

and TrA.

Lemma 3.2 For any A-module M we have ΓT (M) ' TrA(M)⊗A T.

Proof. From the construction of ΓT (M) we have the following exact commutative diagram:

(P0, A)⊗A T −−−−→ (P1, A)⊗A T −−−−→ TrA(M)⊗A T −−−−→ 0y
y

(P0, T ) −−−−→ (P1, T ) −−−−→ ΓT (M) −−−−→ 0.

By Lemma 2.1 (2), the first two vertical maps are isomorphisms. Hence we have that ΓT (M) '
TrA(M)⊗A T. ¤

Let M be in App(AT ). Then we have a minimal add(AT )-presentation of M : T1
f1−→ T0

f0−→
M → 0. Note that such a sequence for M is unique up to isomorphisms. Since for any T ′

in add(AT ) the map αT ′ : T ′ → ((T ′, T ), T ) is an isomorphism by Lemma 2.2, we see that if
M has no non-zero direct summand in add(AT ), then the right B-module ΣT (M) has no non-
zero projective direct summand, and therefore (T0, T ) → (T1, T ) → ΣT (M) → 0 is a minimal
projective presentation of the right B-module ΣT (M).

Let M and N be in App(AT ) such that both M and N have no direct summand isomorphic
to a module in add(AT ), and h : M −→ N a homomorphism. Since M and N are in App(AT ),
we can take a minimal add(AT )-presentation for M and N respectively. Then there exists the
following exact commutative diagram with Qi ∈ add(AT ):

T1
f1−−−−→ T0

f0−−−−→ M −−−−→ 0yh1

yh0

yh

Q1
g1−−−−→ Q0

g0−−−−→ N −−−−→ 0

and consequently a unique morphism Σ(T,h1,h0)(g) : ΣT (N) −→ ΣT (M) such that the diagram

(Q0, T )
(g1,T )−−−−→ (Q1, T ) −−−−→ ΣT (N) −−−−→ 0y(h0,T )

y(h1,T )

yΣ(T,h1,h0)(h)

(T0, T )
(f1,T )−−−−→ (T1, T ) −−−−→ ΣT (M) −−−−→ 0,
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is commutative. Clearly, this morphism depends upon the choice of the map (h1, h0). If (h′1, h
′
0)

is another choice, then in the category mod-B we have Σ(T,h′1,h′0)(h) = Σ(T,h1,h0)(h). Hence

we have a contravariant functor ΣT : App(AT ) −→ mod-B which sends h ∈ HomB(M, N) to
ΣT (h) = Σ(T,h1,h0)(h) ∈ HomB(ΣT (N),ΣT (M)). We can also see that ΣT (h) = 0 if and only if
h factors through a module in add(AT ). Thus we have defined in fact a contravariant functor
ΣT : App(AT )/add(AT ) −→ mod-B. This contravariant functor is faithful. In particular, we
have the following result on the endomorphism ring of ΣT (M).

Proposition 3.3 Let M be an indecomposable module in App(AT ) which is not in add(AT ).
Then ΣT (M) is indecomposable, and moreover, End(AM)/(M, add(AT ),M) is isomorphic to
End (ΣT (M)B).

Proof. The second statement follows from the faithfulness of the functor ΣT and Lemma
2.2(1). Now we show that ΣT (M) is indecomposable. In order to show this, we show that a map
h ∈ End(AM) is an isomorphism if and only if so is Σ(T,h1,h0)(h). If h is an isomorphism, then
the maps h0 and h1 are automorphisms by the definition of minimal add(AT )-presentation. Thus
Σ(T,h1,h0)(h) is an isomorphism. Conversely, if Σ(T,h1,h0)(h) is an isomorphism, then (h0, T ) and
(h1, T ) are automorphism since the sequence (T0, T ) −→ (T1, T ) −→ ΣT (M) −→ 0 is a minimal
B-projective presentation of ΣT (M). By Lemma 2.2(1), h0 and h1 are automorphisms. This
finishes the proof. ¤

The relationship between ΓT and ΣT as well as Tr is shown as follows:

Lemma 3.4 (1) For an indecomposable M in App(AT ) such that M 6∈ add(AT ), we have
ΓT (ΣT (M)) ' M. In particular, if M1 and M2 are indecomposable in App(AT ) such that Mi 6∈
add(AT ), then M1 ' M2 if and only if ΣT (M1) ' ΣT (M2).

(2) ΓT (X ⊕ Y ) ' ΓT (X)⊕ ΓT (Y ) for any A-modules X and Y .
(3) ΣT (X ⊕ Y ) ' ΣT (X)⊕ ΣT (Y ) for all A-modules X, Y in Pre(AT ).
(4) For any A-module X, there is an exact sequence

0 → Ext1A(AX, AT ) → ΓT (X) → (Ω2
A(X), AT ) → Ext2A(AX, AT ) → 0,

where Ω2
A is the second syzygy operator.

(5) For any A-module X, there is an exact sequence

0 → Ext1A(TrA(AT ), T rA(X)) → ΓT (X) → ((AT,A), T rA(X)) → Ext2A(TrA(T ), T rA(X)) → 0.

Proof. (1) Let T1 → T0 → M → 0 be a minimal add(AT )-presentation of M . Then (T0, T ) →
(T1, T ) → ΣT (M) → 0 is a minimal projective presentation of the right B-module ΣT (M). By
the definition of ΓT and Lemma 2.2, we have the following exact commutative diagram which
implies (1):

((T1, T ), T ) −−−−→ ((T0, T ), T ) −−−−→ ΓT (ΣT (M)) −−−−→ 0yo
yo

T1 −−−−→ T0 −−−−→ M −−−−→ 0.

(2) and (3) are obvious.
(4) follows from [24]. For completeness we include here a proof. We take a minimal projective

presentation P1 −→ P0 −→ X −→ 0 of the A-module with Pi projective. This gives the following
exact sequence

0 −→ Ω2
A(X) −→ P1 −→ P0 −→ X −→ 0.

Furthermore, we have the following exact commutative diagram:

0 −−−−→ (X, T ) −−−−→ (P0, T ) −−−−→ (ΩA(X), T ) −−−−→ Ext1A(X, T ) −−−−→ 0

‖ ‖
yf

yg

0 −−−−→ (X, T ) −−−−→ (P0, T ) −−−−→ (P1, T ) −−−−→ ΓT (X) −−−−→ 0.
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Note that the last vertical map is injective because f is injective, and that the cokernel of f is
isomorphic to the cokernel of g. On the other hand, we have an exact sequence

0 −→ (ΩA(X), T )
f−→ (P1, T ) −→ (Ω2

A(X), T ) −→ Ext1A(ΩA(X), T ) −→ 0.

Thus, combining the snake lemma with the above exact sequence, we have a long exact sequence

0 −→ Ext1A(X, T ) −→ ΓT (X) −→ (Ω2
A(X), T ) −→ Ext2A(X, T ) −→ 0.

(5) By [6, proposition 3.2, p.123], we have an exact sequence

0 → Ext1A(TrA(AT ), TrA(X)) → TrA(X)⊗A T → ((AT, A), T rA(X)) → Ext2A(TrA(T ), TrA(X)) → 0,

which yields the sequence in (5) by Lemma 3.2. ¤
The following result shows that there is a nice relationship between the T -transpose of M

and the B-module (T,M). For T = A we get the usual almost split sequence in A-mod.

Theorem 3.5 Let M be an indecomposable module in App(AT ). If M ∈ add(T ), then ΣT (M) =
0. If M 6∈ add(T ), then there is an Auslander-Reiten sequence in B-mod of the form

0 −→ DΣT (M) −→ X −→ (T,M) −→ 0.

Proof. The proof of this result can be done by following the idea of Auslander-Reiten for
the module category. Here we provide a proof that uses the idea from [17]: Let M be an
indecomposable A-module. Then there are two functors from A-mod to the category of abelian
groups given by (−,M) and SM := (−,M)/rad(−,M). Suppose M is non-projective. An exact
sequence

0 −→ N −→ X −→ M −→ 0

is an Auslander-Reiten sequence if the induced sequence

0 −→ (−, N) −→ (−, X) −→ (−,M) −→ SM −→ 0

is a minimal projective resolution of SM in the category of functors from A-mod to the category
of abelian groups.

Now assume that M is indecomposable and M 6∈ add(AT ). We start with a minimal add(AT )-
presentation of M :

T1
f1−→ T0

f0−→ M −→ 0.

This induces the following three exact sequences

(T, T1) −→ (T, T0) −→ (T, M) −→ 0,

0 −→ DΣT (M) −→ D(T1, T )
g−→ D(T0, T ),

D((T, T1),−) −→ D((T, T0),−) −→ D((T,M),−) −→ 0.

By Lemma 2.2 and Lemma 2.4, we have the following series of isomorphisms: D((T, Ti),−) '
D((Ti, T ), (T, T )),−) ' D((Ti, T ) ⊗B (B,−)) ' D((Ti, T ) ⊗B −) ' (−, D(Ti, T )). Since
(−, (T, M)) is a projective functor, the homomorphism (−, (T,M)) −→ S(T,M) −→ D((T,M),−)
factors through (−, D(T0, T )), where D((T, M),−) is the injective functor with the simple socle
S(T,M). Clearly, the morphism (−, (T, M)) −→ (−, D(T0, T )) is induced from a homomorphism
g′ : (T,M) −→ D(T0, T ). Hence we have the following exact commutative diagram:

D((T, T1),−) −→ D((T, T0),−) −→ D((T,M),−) −→ 0
|o |o ↑

0 −→ (−, DΣT (M)) −→ (−, D(T1, T )) −→ (−, D(T0, T )) |
‖ ↑ ↑ |

0 −→ (−, DΣT (M)) −→ (−, X) −→ (−, (T,M)) −→ S(T,M) −→ 0,

10



where X is a pullback of g and g′. Since DΣT (M) is indecomposable, we see that the lower
sequence is a minimal projective resolution of S(T,M) in the functor category. Thus we have a
desired exact sequence. ¤

Let us remark that the role of the minimal add(AT )-presentation of M is to guarantee the
existence of the exact sequence (T, T1) −→ (T, T0) −→ (T,M) −→ 0. In general, for a module
M in Pre(AT ) such a exact sequence may not exist.

The above theorem reveals a connection between ΣT and the usual transpose Tr as indicated
in the next corollary.

Corollary 3.6 If M is in App(AT ), Then ΣT (M) ' TrBHomA(T,M).

This corollary describes the transpose of the Hom-functor HomA(AT,−). The next observa-
tion gives a characterization of the relative transpose of the tensor functor T ⊗B −.

Proposition 3.7 Let BX be an arbitrary B-module and let P1 −→ P0 −→ X −→ 0 be a
projective presentation of BX. Then we have an add(AT )-presentation of AT ⊗B X

T ⊗B P1 −→ T ⊗B P0 −→ T ⊗B X −→ 0

and TrB(X) ' ΣT (T ⊗B X), where ΣT is defined by the above add(AT )-presentation of T ⊗B X.

Proof. Note that T ⊗B Pi lies in add(AT ). We consider the following exact commutative
diagram:

(T ⊗B P0, T ) −−−−→ (T ⊗B P1, T ) −−−−→ ΣT (T ⊗B X) −→ 0y
y

(P0, (T, T )) −−−−→ (P1, (T, T )) −−−−→ TrB(X) −→ 0,

where the first two vertical maps are the adjoint isomorphisms. Now the result follows immedi-
ately from this diagram. ¤

We also have the following generalization of a result on the usual transpose.

Theorem 3.8 Let M be an A-module in App(AT ), and let XB be an arbitrary right B-module.
Then there is an exact sequence:

0 −→ Ext1B(ΣT (M), X) −→ X ⊗B (T, M)
δX,M−→ HomB((M, T ), X) −→ Ext2B(ΣT (M), X) −→ 0,

where δX,M sends x ⊗ f to a morphism in HomB((M, T ), X) which maps each α ∈ (M, T ) to
x(fα) for x ∈ X and f ∈ (T,M).

Proof. Since M lies in App(AT ), there is a minimal add(AT )-presentation of M :

T1
f1−→ T0

f0−→ M −→ 0,

and an exact sequence (T, T1) −→ (T, T0) −→ (T, M) −→ 0, which yields the following exact
sequence

X ⊗B (T, T1) −→ X ⊗B (T, T0) −→ X ⊗B (T, M) → 0.

On the other hand, we have an exact sequence

0 → (M, T ) → (T0, T ) → (T1, T ) → ΣT (M) → 0.

Let Q be the cokernel of the morphism (M, T ) → (T0, T ). Then we know that Ext1B(QB , XB) '
Ext2B(ΣT (M), XB) because Q is the first syzygy of ΣT (M). Since the sequence ((T1, T ), X) →
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(Q,X) → Ext1B(ΣT (M), X) → 0 is exact, the desired exact sequence follows now from the
following commutative diagram with the first and third row exact:

X ⊗B (T, T1) −−−−−−→ X ⊗B (T, T0) −−−−−−→ X ⊗B (T, M) −−−−−−→ 0

??y'
??y'

??yδX,M

((T1, T ), X) −−−−−−→ ((T0, T ), X) −−−−−−→ ((M, T ), X)

??y




0 −−−−−−→ (Q, X) −−−−−−→ ((T0, T ), X) −−−−−−→ ((M, T ), X) −−−−−−→ Ext2B(ΣT (M), X) −−−−−−→ 0,

where the first two isomorphisms follows from Lemma 2.1(1). ¤
We have the following exact sequence, which is an immediate consequence of Theorem 3.8 if

M belongs to App(AT ), and also a generalization of [20, 2.3].

Theorem 3.9 If M lies in Pre(AT ), then we have an exact sequence

0 −→ Ext1B(ΣT (M), TB) −→ M
αM−→ HomB((M, T ), TB) −→ Ext2B(ΣT (M), TB) −→ 0,

where αM is the natural homomorphism.

Proof. Since M lies in Pre(AT ), we have an exact sequence

T1
f1−→ T0

f0−→ M −→ 0

with Ti ∈ add(AT ). This yields a new exact sequence

0 −→ (M, T ) −→ (T0, T )
f̄1−→ (T1, T ) −→ ΣT M −→ 0,

where f̄1 stands for the induced map of f1. Let Q be the cokernel of the morphism (M, T ) →
(T0, T ). Let p2 : (T0, T ) −→ Q and q2 : Q −→ (T1, T ) be the canonical projection and inclusion
respectively. Then there is a homomorphism g which makes following diagram commutative:

0 −−−−→ Ker(f0)
q1−−−−→ T0

f0−−−−→ M −−−−→ 0yg

yαT0

yαM

0 −−−−→ (Q,T )
p̄2−−−−→ ((T0, T ), T ) −−−−→ ((M, T ), T ) −−−−→ Ext1B(Q,T ) −→ 0,

where p1 : T1 → Ker(f0) and q1 : Ker(f0) → T0 are the components of the canonical decom-
position of f1. Let p̄i denote the map (pi, T ) induced from pi. Then we have the following
commutative diagram:

T1
- T0

Ker(f0)

(Q,T )

(T1, T ), T ) - ((T0, T ), T ).
? ?

αT1 αT0

HHHj
HHj ©©©*⊂

?
g

©©©* HHHj

f1

p1 q1

q̄2 p̄2

Since αT1 and p1 are surjective, the cokernel of g is isomorphic to the cokernel of q̄2, and the latter
is clearly isomorphic to Ext1B(ΣT (M), T ). Note that Ext1B(Q,T ) ' Ext2B(ΣT (M), T ). Now, the
desired exact sequence follows from the first commutative diagrams and the snake lemma. ¤

The following result is an easy consequence of 3.9, which generalizes the usual case for T = A.

Corollary 3.10 An A-module M in Pre(AT ) is AT -reflexive if and only if ExtiB(ΣT (M), TB) = 0
for i = 1, 2.
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As a consequence of Theorem 3.9, we have the following description of the kernel and cokernel
of αM when M is the cokernel of a morphism in App(AT ). This may be useful for detecting
whether the cokernel of a homomorphism is T -reflexive.

Corollary 3.11 If f : M → N is homomorphism with M in Pre(AT ) and N in App(AT ), then
there is a module XB such that the kernel and cokernel of α : Cok(f) −→ ((Cok(f), T ), T ) are
isomorphic to Ext1B(XB , TB) and Ext2B(XB , TB), respectively.

Proof. If we can prove, under the above assumption, that the module Cok(f) lies in Pre(AT ),
then Theorem 3.9 will imply the corollary immediately.

Take a presentation T1
d1−→ T0

d0−→ M → 0 for M and an minimal add(AT )-presentation

T ′1
d′1−→ T ′0

d′0−→ N → 0 for N , where Ti and T ′i are in add(AT ). Then, by definition, there are two
homomorphisms h1 : T1 → T ′1 and h0 : T0 → T ′0 such that the following diagram is commutative:

0 −−−−→ T1
d1−−−−→ T0 −−−−→ 0

yh1

yh0

0 −−−−→ T ′1
d′1−−−−→ T ′0 −−−−→ 0.

In this way we have a map h from the complex C : 0 → T1 → T0 → 0 to the complex C ′ :
0 → T ′1 → T ′0 → 0, and thus an exact sequence of complexes: 0 → C ′ → Con(h) → C → 0,
where Con(h) is the mapping cone of h defined by Con(h)i = Ci−1⊕C ′i and the differential from
Con(h)i to Con(h)i−1 is given by (−dC , dC′ +h). Hence it follows from homological algebra that
we have an exact sequence of homology groups (see [13, chap. IV, exercise 3, p. 73]):

H1(C ′) → H1(Con(h)) → H0(C) → H0(C ′) → H0(Con(h)) → 0,

where H0(C) ' M and H0(C ′) ' N and the map H0(C) → H0(C ′) is f . Thus H0(Con(h)) '
Cok(f). Now our desired exact sequence follows from the complex Con(h): T0 ⊕ T ′1 −→ T ′0 −→
H0(Con(h)) −→ 0. ¤

As another consequence of Theorem 3.8 and Theorem 3.9, we can reobtained the second
statement of Lemma 2.1(1). The details of the proof are left to the reader.

Dually, we have also an exact sequence involving Tor and ΣT , which is a generalization of
both Lemma 2.1 (2) and a result in [2, proposition 7.1] .

Theorem 3.12 Suppose M is a module in Pre(AT ), that is, there is an exact sequence T1 →
T0 → M → 0 with Ti ∈ add(AT ), and this defines a module ΣT (M). For each A-module AX
there is an exact sequence

0 → TorB
2 (ΣT (M), (T,X)) → (M, T )⊗B (T, X) → (M, X) → TorB

1 (ΣT (M), (T, X)) → 0.

Proof. By construction, we have the following exact sequence

0 → (M, T ) → (T0, T ) → (T1, T ) → ΣT (M) → 0.

Let Q be the image of the map (T0, T ) → (T1, T ). Then TorB
1 (Q, (T,X)) ' TorB

2 (ΣT (M), (T, X))
and the kernel of the map Q⊗B (T,X) −→ (T1, T )⊗B (T,X) is TorB

1 (ΣT (M), (T,X)). From the
above exact sequence one gets the following exact commutative diagram:

0 → TorB
2 (ΣT (M), (T, X)) → (M, T )⊗B (T, X) → (T0, T )⊗B (T, X) → Q⊗B (T,X) → 0ym1

ym2

ym′
3

0 −→ (M, X) −→ (T0, X) −→ (T1, X),
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where m1 and m2 are the multiplication maps, and m′
3 is the composition of the map

Q ⊗B (T,X) −→ (T1, T ) ⊗B (T,X) with the multiplication map m3 : (T1, T ) ⊗B (T, X) −→
(T1, X). By Lemma 2.1(2), the maps m2 and m3 are isomorphisms. Thus the kernel of m′

3

is TorB
1 (ΣT (M), (T, X)) and the kernel of m1 is TorB

2 (ΣT (M), (T,X)). Now our desired exact
sequence follows immediately from the snake lemma. ¤

A similar, but different, version of Theorem 3.8 is the following result.

Proposition 3.13 Suppose M is a module in App(AT ). For each A-module AX with
Ext1A(X, T ) = 0 there is an exact sequence

0 → Ext1A(X, (ΣT (M), T )) → (X, T )⊗B (T,M) → (X, M) → Ext2A(X, (ΣT (M), T )) → 0.

Proof. There is a minimal add(AT )-presentation T1
f→ T0 → M → 0 for M and an exact

sequence (T, T1) → (T, T0) → (T, M) → 0. This defines uniquely the module ΣT (M). Let K be
the image of f . Then we obtain the following exact commutative diagram:

(X, T )⊗B (T, T1) - (X, T )⊗B (T, T0) - (X, T )⊗B (T, M) - 0

(X, T )⊗B (T,K)

HHHjHHj ©©©*

? ? ?
(X, T1) - (X, T0) - (X, M) ,

(X, K)

HHHj ©©©*
⊂

?

m1 m0

m3

where the multiplication maps m1 and m0 are isomorphisms by Lemma 2.1(2). Note that
Ker(f) ' (ΣT (M), T ) by Lemma 3.1, and that the cokernel of m3 is isomorphic to the cok-
ernel of the map (X, T1) −→ (X, K). It follows from Ext1(X, T ) = 0 that the cokernel of m3

is Ext1A(X, (ΣT (M), T )) and the cokernel of the map (X, T0) → (X, M) is Ext1A(X, K) which
is isomorphic to Ext2A(X, (ΣT (M), T )). Now the desired exact sequence follows from the snake
lemma. ¤

The following is a generalization of Theorem 3.8 in a deferent direction. Consider a long
exact sequence

Tn
fn−−−−→ Tn−1

fn−1−−−−→ ... −−−−→ T1
f1−−−−→ T0

f0−−−−→ M −−−−→ 0

such that fi : Ti → Im(fi) is an add(AT )-cover. We denote the kernel of fi−1 by Ωi
T (M) for

i = 1, 2, ..., n, and Ω0
T (M) = M .

If we assume that the module AT has no self-extension, that is, Ext1A(T, T ) = 0, then we can
describe also the kernel of a natural morphism TorB

i (−, (T,M)) → ( Exti
A(M, T ),−). This is

shown by the following result.

Theorem 3.14 Suppose that Ext1A(AT, AT ) = 0. Let M be an A-module with a long exact
sequence

Tn
fn−−−−→ Tn−1

fn−1−−−−→ ... −−−−→ T1
f1−−−−→ T0

f0−−−−→ M −−−−→ 0

such that fi : Ti → Im(fi) is an add(AT )-cover for all 0 ≤ i ≤ n. Then there is an exact
sequence:

0 −−−−→ Ext1B(ΣT Ωi
T (M), XB) −−−−→ TorB

i (XB , (T, M))

−−−−→ (Ext1A(Ωi−1
T (M), T ), XB) −−−−→ Ext2B(ΣT Ωi

T (M), XB)

for all 1 ≤ i ≤ n − 1. In particular, if ExtjA(AT,A T ) = 0 for all j ≥ 1, we can replace
Ext1A((Ωi−1

T (M), T ) in the above sequence by ExtiA(M, T ).
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Proof. By assumption, we have a projective resolution of the B-module (T,M):

(T, Tn) −→ (T, Tn−1) −→ ... −→ (T, T1) −→ (T, T0) −→ (T,M) −→ 0.

By the definition of Tori, the following sequence is exact:

0 −−−−→ TorB
i (X, (T, M)) −−−−→ X ⊗B (T, Ωi

T (M)) −−−−→ X ⊗B (T, Ti−1).

Since Ext1A(T, T ) = 0, the exact sequence 0 → Ωi
T (M) → Ti−1 → Ωi−1

T (M) → 0 induces an exact
sequence

(Ti−1, T ) −−−−→ (Ωi
T (M), T ) −−−−→ Ext1A(Ωi−1

T (M), T ) −−−−→ 0.

Thus we may form the following exact commutative diagram:

0 0??y
??y

TorB
i (X, (T, M))

f→ (Ext1(Ωi−1
T

(M), T ), XB)??y
??y

0 → Ext1B(ΣT Ωi
T (M), XB) −→ X ⊗B (T, Ωi

T (M)) → ((Ωi
T (M), T ), XB) −→ Ext2B(ΣT Ωi

T (M), XB) → 0??y
??y

X ⊗B (T, Ti−1) ' ((Ti−1, T ), XB)??y
X ⊗B (T, Ωi−1

T
(M))??y

0,

which yields our desired result by the well-known snake lemma since the kernel of f is isomorphic
to Ext1B(ΣT Ωi

T (M), XB).
Now, if Extj

A(T, T ) = 0 for all j ≥ 1, then it follows from the exact sequence 0 → Ωi−2
T (M) −→

Ti−1 −→ Ωi−1
T (M) −→ 0 that Extj

A(Ωi−1
T (M), T ) ' Extj+1

A (Ωi−2
T (M), T ) for j ≥ 1 and i ≥ 2.

This yields that Ext1A(Ωi−1
T (M), T ) ' Exti

A(M, T ) for all i ≥ 1. Thus we have

0 −−−−→ Ext1B(ΣT Ωi
T (M), XB) −−−−→ TorB

i (XB , (T, M))

−−−−→ (ExtiA(M, T ), XB) −−−−→ Ext2B(ΣT Ωi
T (M), XB),

this finishes the proof. ¤
Remark. If we take T to be the algebra A, then for any injective right A-module X and

positive integer i, we have that proj.dim (XA) < i if and only if HomA(Exti
A(M, A), XA) = 0 for

all M in A-mod. This kind of results is useful for studying k-Gorenstein algebras.

There is another exact sequence involving the T -transpose as the following shows.

Proposition 3.15 If M is in Pre(AT ), that is, there is an exact sequence T1 → T0 → M → 0
with Ti in add(AT ), then, for any A-module Z, there exists the following exact sequence

0 → (M, Z) → (T0, Z) → (T1, Z) → ΣT (M)⊗B (T, Z) → 0.

Proof. Given the exact sequence T1 → T0 → M → 0, we may get a new exact sequence
(T0, T ) → (T1, T ) → ΣT (M) → 0 of right B-modules, which yields the following exact commu-
tative diagram:

(T0, T )⊗B (T,Z) −→ (T1, T )⊗B (T, Z) −→ ΣT (M)⊗B (T,Z) −→ 0
↓ ↓

0 −→ (M, Z) −→ (T0, Z) −→ (T1, Z),

where the vertical maps are isomorphic by Lemma 2.1. ¤
As an easy consequence we have the following corollary.
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Corollary 3.16 Let A be an Artin algebra over R. Suppose M is in Pre(AT ) with an exact
sequence T1 → T0 → M → 0 such that Ti in add(AT ). Then, for any A-module Z, we have

lR(M, Z)− lR(HomB((T, Z), DΣT (M)) = lR(T0, Z)− lR(T1, Z),

where lR(X) stands for the length of an R-module X.

In the following we shall prove that there is also an Auslander-Reiten formula for computing
Ext-groups. Before we do this, we first prove a result which might be considered as an analogue
of the defect of exact sequences.

Proposition 3.17 Let δ : 0 → X → Y → Z → 0 be an exact sequence in A-mod such that
0 → (T,X) → (T, Y ) → (T,Z) → 0 is exact. For an A-module M and B-module N , define
δ∗(M) and δT (N) as follows:

0 → (M, X) → (M, Y ) → (M, Z) → δ∗(M) → 0

0 → ((T, Z), N) → ((T, Y ), N) → ((T, X), N) → δT (N) → 0.

Then the R-lengths of δT (DΣT (M)) and δ∗(M) are equal for all M in Pre(AT ).

Proof. This proposition follows directly from 3.15. ¤
Now we have the following generalization of Auslander-Reiten formula [6, VI.4, proposition

4.5].

Theorem 3.18 For any A-module Z in Gen(AT ) and M in Pre(AT ), we have

lR(Ext1B((T,Z), DΣT (M))) = lR((M, Z)/(M, add(AT ), Z)) = lR(TorB
1 (ΣT (M), (T, Z))),

where (M, add(AT ), Z) stands for the set of all homomorphisms from M to Z which factor through
a module in add(AT ).

Proof. Take an add(AT )-precover of Z, say f : T0 → Z, and denote by K the kernel of
f . Then we have an exact sequence δ : 0 → K → T0 → Z → 0 which induces another exact
sequence δ′ : 0 → (T,K) → (T, T0) → (T, Z) → 0. By 3.17, the R-length of δ∗(M) is the
same as that of δT (DΣT (M)). It is clear that the R-length of δ∗(M) is the same as that of
(M, Z)/(M, add(AT ), Z). On the other hand, by tensoring ΣT (M) to the sequence δ′ and using
the adjunction we have an exact sequence

0 → ((T, Z), DΣT (M)) → ((T, T0), DΣT (M)) → ((T, K), DΣT (M)) → DTorB
1 (ΣT (M), (T,Z)) → 0,

this shows that the length of δT (DΣT (M)) is the same as that of DTorB
1 (ΣT (M), (T, Z)). But if

we apply (−, DΣT (M)) to the sequence δ′, we get that this number is also equal to the R-length
of Ext1B((T,Z), DΣT (M)). Thus the theorem has been proved. ¤

Remark. In the above formula, the second equality holds true even for M ∈ Pre(AT ) and
arbitrary Z ∈ A-mod. This can be seen from 3.12 because the image of the map (M, T ) ⊗B

(T, Z) −→ (M, Z) is just the morphisms which factor through a module in add(AT ).

Now let us consider ΣT with Ext1A(T, T ) = 0.

Proposition 3.19 Suppose Ext1A(AT, AT ) = 0. If AM is a module such that there is an exact
sequence of the form 0 → T1 → T0 → M → 0 with Ti in add(AT ), then ΣT (M) ' Ext1A(M, T )
as right B-modules.

Proof. By the assumption, we have an exact sequence 0 → T1 → T0 → M → 0 with Ti ∈
add(AT ). This yields the following exact sequence

0 → (M, T ) −→ (T0, T ) −→ (T1, T ) −→ Ext1A(M, T ) → 0

since Ext1A(T0, T ) = 0. Thus the isomorphism follows. ¤
The next result tells us a relationship of ΣT (M) and add(AT )-dim(M).
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Proposition 3.20 Let M be an arbitrary A-module in App(AT ). Then HomB(ΣT (M), BB) = 0
if add(AT )-dim(M) ≤ 1.

Proof. It is easy to see that add(AT )-dim(M) ≤ 1 implies that proj.dimB(T,M) ≤ 1. The
latter is equivalent to HomB(D(B), DTrB(T, M)) = 0. Thus, by 3.6, we have

0 = HomB(D(B), DΣT (M)) ' HomB(ΣT (M), B).

This is what we want to prove. ¤

4 Examples

Now let us consider some special cases which show that the previous consideration covers a large
variety of important examples. We consider a triple (A, AT, B) with B = End(AT ).

(1) The case AT = Ae

Suppose that we are given the triple (A,Ae, eAe), where e is an idempotent element in the
R-algebra A. In this case we have the following description on the Auslander-Reiten translation.

Proposition 4.1 For a non-projective A-module M in App(Ae), we have ΣAe(M) = (Tr(M))e,
that is, DTreAe(eM) = D(Tr(M)e), where Tr stands for the usual transpose of A-mod.

Proof. Take an exact sequence of the form T1 → T0 → M → 0 with Ti ∈ add(Ae). Clearly,
this is also a projective presentation of M . Note that A = Ae⊕A(1− e). The statement follows
immediately from the construction of the usual transpose Tr. ¤

As a consequence of Theorem 3.8, we have the following isomorphism.

Corollary 4.2 For a module M in App(Ae), we have eM ' HomeAe(HomA(AM, Ae), eAe).

For a detailed investigation of the case of AT being projective we refer to [3].

(2) The case AT = A(A/I)A/I

If I is an ideal in A, then we have a natural (A,A/I)-bimodule structure on A/I. In fact, in
this case we have a triple (A,A/I,A/I). Note that App(AT ) = A/I-mod = {M ∈ A-mod | IM =
0}, thus for an A/I-module M , the relative transpose ΣT (M) is just the usual transpose of the
A/I-modules, that is, DΣT (M) coincides with the Auslander-Reiten translation of the algebra
A/I.

(3) AT is a tilting module

Recall that an A-module AT is called a classical tilting module if the projective dimension
of T is at most one, Ext1A(T, T ) vanishes and the number of the non-isomorphic indecomposable
direct summands of T is the number of non-isomorphic simple A-modules. In this case we know
that Gen(AT ) = {M ∈ A-mod | Ext1A(T, M) = 0}. Thus Gen(AT )=App(AT ), and the classical
tilting theory (see, for example, [25, chapt. 4]) is included in our setting.

Let us remark that the classical tilting theory was generalized in different directions by many
authors, where AT was usually assumed to have strong homological properties (see [23], [18],
[14], [12] and others).

(4) AT is a generator for A-mod

Recall that an A-module T is called a generator for A-mod if add(AA) ⊆ add(T ), and a
cogenerator for A-mod if add(D(AA)) ⊆ add(T ). If AT is a generator for A-mod, then App(AT )
coincides with A-mod, and End(TB) ' A. Note that D(ATB) ' HomA(ATB , D(AA)). Moreover,
if AT is a generator, then the functor (AT,−) preserves injective modules, that is, (AT,A I) is an
injective B-module for any injective A-module AI; and D(TB) lies in Bild(AT ) (for definition, see
the next section). Finally, if AT is a cogenerator of A-mod, then every A-module is T -reflexive
by Lemma 2.2 (2).
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If AT is both a generator and a cogenerator of A-mod, then TB is a faithful projective and
injective right B-module since D(ATB) ' HomA(AT, D(AAA)). In this case we have the following
result concerning the dominant dimension. Recall that given a B-module BX, we say that BX
has dominant dimension greater than or equal to n, denoted by dom.dim (BX) ≥ n, if there
is an exact sequence 0 → BX → I1 → I2 → ... → In such that Ii is projective-injective for all
1 ≤ i ≤ n. Since D(TB) is a faithful projective-injective module, we know that each Ii is in
add(D(TB)).

Proposition 4.3 Let AT be a generator-cogenerator for A-mod and BX a B-module. Then the
following are equivalent:

(1) dom.dim(BX) ≥ 2;
(2) BX ' HomA(ATB , T ⊗B X).

Proof. (1) ⇒ (2): There is a natural morphism βX : X −→ (ATB , T ⊗B X) given by
(t)[(x)β)] = t⊗ x for all t ∈ T and x ∈ X. For X = BB the natural map βX is an isomorphism,
in particular, for X = D(TB), a projective B-module, the map βX is an isomorphism. Hence
βX is an isomorphism for X ∈ add(D(TB)). Since dom.dim BX ≥ 2, we have an exact sequence
0 → X → I0 → I1 with Ii projective-injective. Now (2) follows from the following commutative
diagram:

0 −−−−→ X −−−−→ I0 −−−−→ I1yβX

yβI0

yβI1

0 −−−−→ (T, T ⊗B X) −−−−→ (T, T ⊗B I0) −−−−→ (T, T ⊗B I1).

(2) ⇒ (1): Let 0 → X → I0(X) → I1(X) → ... be a minimal injective resolution of BX. Note
that for each injective A-module AQ, the left B-module HomA(AT,A Q) is a direct summand of
(ATB , D(AA))n for some n and (ATB , D(AA)) ' D(TB). Let 0 → T ⊗B X → Q0 → Q1 → ...
be a minimal injective resolution of the A-module T ⊗B X. Then, since BX ' (ATB , T ⊗B X),
we know that Ii(X) is a direct summand of (AT, Qi) which belongs to add(D(TB)). This implies
that dom.dim(BX) ≥ 2. ¤

5 The functor HomA(AT,−)

In this section we investigate subcategories of App(AT ) and the action of the functor HomA(T,−).
First let us describe the image of the functor HomA(T,−). For each B-module BX we have
denoted by βX : X −→ (ATB , T ⊗B X) the natural map given by (t)[(x)β)] = t⊗ x for all t ∈ T
and x ∈ X. We define

Bild(AT ) := {X ∈ B-mod | βX is an isomorphism}.
Note that if T is a generator-cogenerator for A-mod, then Bild(AT ) is precisely the B-modules

of dominant dimension at least 2 by Proposition 4.3.

Proposition 5.1 For an arbitrary AT , the functor HomA(ATB ,−) : App(AT ) −→ Bild(TB) is
an equivalence, its inverse is T ⊗B −.

Proof. First, notice that the image of HomA(ATB ,−) on App(AT ) lies in Bild(TB) since
β(T,M)(T, eM ) = id(T,M) for M ∈ App(AT ). Second, we show that if βX is an isomorphism, then
X belongs to the image of HomA(T,−). In fact, since T ⊗B X is always generated by AT , we have
a surjective add(AT )-cover f : T0 −→ T ⊗B X. Put K = Ker(f), we claim that K is generated
by AT . Clearly, we have an exact sequence 0 → (T,K) → (T, T0) → (T, T ⊗B X) → 0. Consider
the following exact commutative diagram:

T ⊗B (T,K) −−−−→ T ⊗B (T, T0) −−−−→ T ⊗B (T, T ⊗B X) −−−−→ 0yeK

yeT0

yeT⊗X

0 −−−−→ K −−−−→ T0 −−−−→ T ⊗B X −−−−→ 0.
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Since 1⊗ βX is an isomorphism and (1⊗ β)eT⊗X = idT⊗X , we see that eT⊗X is injective. Now
the snake lemma shows that eK is surjective. The module T ⊗B (T,K) is generated by AT , and
therefore K is generated by AT . This implies that T ⊗B X is in App(AT ) and that X, which is
isomorphic to (T, T ⊗B X), lies in the image of HomA(T,−). By Lemma 2.1, the equivalence of
the two categories follows. ¤

Remark. In [16] many ring theoretic aspects are discussed and there is also a version of
Proposition 5.1 (see [16, chapt. 6]).

Now let us deduce some consequences of 5.1. As an easy consequence we re-obtain a result
of Auslander in [3, proposition 8.3].

Corollary 5.2 If AT is a generator for A-mod, then (1) A-mod can be regarded as a full sub-
category of B-mod. In particular, if B is representation-finite, then A is representation-finite.
(2) End(AV ) ' End(BHomA(T, V )) for any A-module V . In particular, the global dimensions
of End(AV ) and End(BHomA(T, V )) are equal.

Proof. Since T is a generator, we know that App(AT ) = A-mod. Thus, by Lemma 2.1(2), the
evaluation map eM is bijective for all A-module M . Thus (T ⊗B −) ◦HomA(T,−) is an identity
functor on A-mod. This implies the corollary. ¤

Corollary 5.3 If AT is a projective A-module, then the functor in 5.1 is an equivalence from
Pre(AT ) = App(AT ) to B-mod.

Proof. In fact, it suffices to show that under the assumption each βX is an isomorphism for
all B-module X. Now we take a projective presentation of BX:

(AT, T1) −→ (AT, T0) −→ BX −→ 0

with Ti ∈ add(AT ). From this we obtain another exact sequence

T ⊗B (AT, T1) −→ T ⊗B (AT, T0) −→ T ⊗B X −→ 0.

Since AT is projective, we have the following exact commutative diagram:

(T, T1) −−−−→ (T, T0) −−−−→ BX −−−−→ 0y
y

y
(T, T ⊗B (T, T1)) −−−−→ (T, T ⊗B (T, T0)) −−−−→ (T, T ⊗B X) −−−−→ 0,

where Ti is isomorphic to T ⊗B (T, Ti) by the evaluation map in Lemma 2.1. Hence the first two
vertical maps are isomorphisms. This means that βX is an isomorphism. ¤

The following result is a consequence of 4.3 and 5.1.

Theorem 5.4 If AT is a generator-cogenerator for A-mod, then A-mod is equivalent to the full
subcategory of B-mod whose objects are B-modules with dominant dimension at least 2.

To understand the behavior of the functor (T,−) in 5.1, we need to know information on the
map βX . In [16] there is a description of βX in terms of submodules of BX. However, it would
be interesting to have a characterization of the kernel and cokernel of βX in terms of long exact
sequence similar to 3.9. As a consequence of 2.6 we have the following description of the kernel
and cokernel of βX in a special case.

Lemma 5.5 Suppose Ext1A(T, T ) = 0 = Ext2A(T, T ). If BX is a B-module with proj.dim BX ≤ 1,
then we have the following exact sequence:

0 → Ext1A(AT, TorB
1 (TB ,B X)) → X −→ (T, T ⊗B X) → Ext2A(AT, TorB

1 (TB ,B X)) −→ 0. ¤
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As we have seen, the category App(AT ) could be very large, this depends on the module AT .
Now let us consider certain subcategories of App(AT ) which may lead to an understanding of
the whole category App(AT ).

We say that an A-module M has a strong add(AT )-resolution if there is an exact sequence

(∗) · · · → Tn
fn−→ Tn−1 → · · · → T1

f1−→ T0
f0−→ M → 0

with Ti ∈ add(AT ), such that the canonical map Ti → Im(fi) is an add(AT )-cover for all i. If
Tj = 0 for all j > n and Tn 6= 0, we call n the length of the strong add(AT )-resolution.

We define

App(AT )n := {M ∈ A-mod | M has a strong add(AT )-resolution of length at most n},

Bild(AT )n := {BX ∈ Bild(AT ) | proj.dim(BX) ≤ n and TorB
i (T,X) = 0 for all i ≥ 1}.

Note that in the definition of add(AT )-dimension we do not require that the sequence (∗) is
exact. So, in general, the class of all modules with add(AT )-dimension at most n is not equal to
App(AT )n, but contains App(AT )n.

Clearly, App(AT )0 = add(AT ), and App(AT )n ⊆ App(AT )n+1. Note that if M ∈ App(AT )n,
then proj.dimB(AT, AM) ≤ n. The following is a partial converse of this statement which gives
another description of modules in App(AT )n.

Proposition 5.6 The following are equivalent for a module AM :
(1) M ∈ App(AT )n,
(2) M ' T ⊗B (T,M), TorB

i (TB , (T,M)) = 0 for all 1 ≤ i ≤ n and proj.dimB(T, M) ≤ n.

Proof. Suppose we have (1). Then M ' T ⊗B (T, M) by 2.1. Since M has a strong add(AT )-

resolution of length at most n, say 0 → Tn
fn−→ Tn−1 → · · · → T1

f1−→ T0
f0−→ M → 0 with

Ti in add(AT ), this gives us a projective resolution 0 → (T, Tn) → ... → (T, T1) → (T, T0) →
(T, M) → 0 of the B-module (T, M). Furthermore, Ωi

B(T,M) = (T, Ωi
T (M)), where Ωi

T (M) is
the image of fi. We have the following exact commutative diagram:

0 −−−−→ Ωi
T (M) −−−−→ Ti−1y
y

y
0 −−−−→ TorB

1 (T, (T, Ωi
T (M))) −−−−→ T ⊗B (T, Ωi

T (M)) −−−−→ T ⊗B (T, Ti−1).

Note that the last two vertical maps are isomorphisms by Lemma 2.1. Hence
TorB

1 (T, (T, Ωi
T (M))) = 0 and TorB

i (TB , (T,M)) = TorB
1 (T, Ωi−1

B (T, M)) =
TorB

1 (T, (T, Ωi−1
T (M))) = 0 for all 1 ≤ i ≤ n. Thus (2) holds.

Now assume (2). As in the proof of 2.1(3), there is an exact sequence 0 → K → T0 → M →
0 which provides a projective cover of the B-module (T,M) with ΩB(T, M) = (T, K). Since
TorB

i (T, (T, M)) = 0 for 1 ≤ i ≤ n, we can prove that K ∈ App(AT ). If n > 1, we can proceed
the above argument and show that there is an exact sequence

Tn −→ Tn−1 → · · · → T1 −→ T0 −→ M → 0

with Ti ∈ add(AT ), such that Ti is an add(AT )-cover of the image Ki of the map Ti −→ Ti−1.
Note that Ki ∈ App(AT ) for 0 ≤ i ≤ n. Now let N be the kernel of Tn −→ Tn−1. Then we have
an exact sequence of B-modules:

0 → (T, N) → (T, Tn) → ... → (T, T1) → (T, T0) → (T, M) → 0.

But proj.dimB(T,M) ≤ n implies that (T,N) = 0. Since Kn lies in App(AT ), we know that N
is generated by T . Thus N = 0, and therefore M belongs to App(AT )n. ¤

As a consequence of 5.6 and 5.1, we have the following corollary.
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Corollary 5.7 Under the functor (T,−) the category App(AT )n and Bild(AT )n are equivalent
for all n ≥ 0.

Proof. It suffices to demonstrate that any BX in Bild(AT )n has a pre-image in App(AT )n.
Since proj.dimBX ≤ n, we have a complex of the form Tn −→ Tn−1 → · · · → T1 −→ T0 with
Ti ∈ add(AT ) such that 0 → (T, Tn) → ... → (T, T1) → (T, T0) → BX → 0 is a minimal
projective resolution of X. If we tensor this sequence by T , then we get a new exact sequence
0 → T⊗B (T, Tn) → ... → T⊗B (T, T1) → T⊗B (T, T0) → T⊗B X → 0, here the exactness follows
from the condition TorB

i (T,X) = 0 for all 1 ≤ i ≤ n. By Lemma 2.1(3), this exact sequence is
isomorphic to

0 → Tn → Tn−1 → · · · → T1 → T0 → T ⊗B X → 0.

Hence the complex 0 → Tn −→ Tn−1 → · · · → T1 −→ T0 is exact. Since X ' (T, T ⊗B X), the
module T ⊗B X is in App(AT )n. ¤

From the proofs of the above results, we can easily get the following slightly general result.

Theorem 5.8 The subcategory of A-mod consisting of modules with strong add(AT )-resolutions
is equivalent to the subcategory of B-mod consisting of those B-modules X in Bild(AT ) with
TorB

i (T, X) = 0 for all i ≥ 1.

6 Homological finiteness

In this section we shall compare the homologically finite subcategories in A-mod with that in
B-mod. The natural bridge between the two categories is the adjoint pair of functors T ⊗B −
and (AT,−). First we generalizes a result of Auslander-Reiten on adjoint functors, and then we
turn to a discussion of our subcategories in A-mod and in B-mod.

Recall that a full subcategory C′ in a category C is called contravariantly finite in C if each
object C ∈ C has a C′-precover. Dually, a full subcategory C′ in a category C is called covariantly
finite in C if each object C ∈ C has a C′-preenvelope. A full subcategory C′ of C is called
functorially finite in C if it is both contravariantly finite and covariantly finite in C.

Let us start with the following lemma which generalizes a result in [8, proposition 1.2]. For
completeness we include here a short proof which is essentially the same as that in [8].

Lemma 6.1 Suppose C and D are categories and F : C −→ D and G : D −→ C an adjoint pair
of functors with F a left adjoint and G a right adjoint. Then:

(1) If a full subcategory C′ of C is contravariantly finite in C, then the image F (C′) of C′ under
F is contravariantly finite in D.

(2) If a full subcategory D′ of D is covariantly finite in D, then the image G(D′) of D′ under
G is covariantly finite in C.

Proof. (1) Since (F, G) is an adjoint pair of functors, we have that HomD(F (C), D)
η'

HomC(C, G(D)) for all C ∈ C and D ∈ D. It is well-known (for example, see [22, proposition 1.1,
p.119] that given a morphism g : F (C) −→ D, if h : C −→ G(D) is the morphism corresponding
to g under the map η, and if ηD is the map corresponding to idG(D), then g = (Fh)ηD. Let D be in
D. Then G(D) ∈ C. Since C′ is contravariantly finite in C, we have a morphism h : C ′ −→ G(D)
with C ′ ∈ C′ such that the induced map (−, h) is surjective on C′. Let g : F (C ′) −→ D be
the morphism which corresponds to h under η. We claim that g has the property that for any
f : F (X) −→ D with X ∈ C′ there is a morphism f ′ : F (X) −→ F (C ′) such that f = f ′g. In
fact, given such an f , we have a corresponding morphism f̄ : X −→ G(D) with f = (F f̄)ηD.
Since X is in C′, there exists a morphism j : X −→ C ′ such that f̄ = jh. This implies that
F f̄ = (Fj)(Fh) and f = (F f̄)(Fh)ηD = (Fj)g.

(2) is proved dually. ¤
Note that if we take C′ to be the category C and D′ to be the category D, then we get [8,

proposition 1.2]. As a direct consequence of 6.1 we have the following proposition.
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Proposition 6.2 (1) If T is a generator for A-mod, then Bild(AT ) is covariantly finite in B-
mod.

(2) Let e be an idempotent in A. If C is a contravariantly (respectively, covariantly) finite
subcategory in A-mod, then eC := {eX | X ∈ C} is contravariantly (respectively, covariantly)
finite in eAe-mod. In particular, if a full subcategory C of A-mod is functorially finite in A-mod,
then so is eC in eAe-mod.

Proof. Since F := T ⊗B − : B-mod −→ A-mod and G := (T,−) : A-mod −→ B-mod form an
adjoint pair (F, G) of functors, (1) follows immediately from 6.1. To get (2), we note that eA⊗A−
and HomeAe(eA,−) are an adjoint pair. This implies that eC is contravariantly finite in eAe-mod
if so is C in A-mod. Note also that we have another adjoint pair (Ae⊗eAe−,HomA(Ae,−)), this
means that eC is covariantly finite in eAe-mod if C is covariantly finite in A-mod. ¤

The above result can be applied to standardly stratified algebras. For the unexplained defin-
itions on standardly stratified algebras we refer the reader to [30] or the references therein. If A
is a standardly stratified algebra over a field k with standard modules ∆(i) , 1 ≤ i ≤ n, then it
is well-known that the subcategory F(∆) of all ∆-good modules is functorially finite in A-mod,
thus for arbitrary idempotent e ∈ A the category eF(∆) is functorially finite in eAe-mod, and
therefore has almost split sequences. Note that in general we cannot have eF(∆) = F(e∆).

The following is another application of 6.1.

Proposition 6.3 (1) If App(AT )n is covariantly finite in A-mod, then Bild(AT )n is covariantly
finite in A-mod.

(2) If Bild(AT ) is contravariantly finite in B-mod, then App(AT ) is contravariantly finite in
A-mod.

Combining 5.8 with 6.1, we have the following corollary.

Corollary 6.4 If the subcategory of A-mod consisting of A-modules which have strong add(AT )-
resolutions is covariantly finite in A-mod, then the subcategory {BX ∈ Bild(AT ) | TorB

i (T,X) =
0 for i ≥ 1} is covariantly finite in B-mod.

Note that Bild(AT ) contains projective B-modules, and is closed under direct sums and direct
summands. In the following we point out that sometimes it is closed under extensions. Note
that if AT is a generator for A-mod, then TB is a projective right B-module.

Lemma 6.5 Let 0 → X → Y → Z → 0 be an exact sequence in B-mod. If X and Z are
in Bild(AT ) and if TorB

i (TB , BZ) = 0 for all i ≥ 1, then Y ∈ Bild(AT ). In particular, if AT
is a generator in A-mod, then Bild(AT ) contains all projective B-modules, and is closed under
extensions and kernels of surjective homomorphisms between modules in Bild(AT ).

By exploiting ΓT and ΣT , we can also get homologically finite subcategories.

Proposition 6.6 Let C be an additive full subcategory in A-mod. If C is covariantly finite in A-
mod, then add(ΓT (C)∪ TB) is contravriantly finite in mod-B, where add(ΓT (C)) := add{ΓT (C) |
C ∈ C}.

Proof. If C is covariantly finite in A-mod, then TrA(C)∪AA is contravariantly finite in mod-A
by [10, proposition 7.2, p.453]. Since ΓT (C) = TrA(C)⊗A T, we have that add((ΓT (C) ∪ TB) is
contravariantly finite in mod-B by 6.1. ¤

Similarly, we get the following result.

Proposition 6.7 Let C be an additive full subcategory in App(AT ). If C is covariantly finite
in A-mod, then add(ΣT (C)) is contravriantly finite in mod-B, where add(ΣT (C)):= add{ΣT (C) |
C ∈ C}.
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Proof. If C is covariantly finite in A-mod, then (T, C) is covariantly finite in B-mod by 6.1. It
follows from [10] that TrB(T, C) is contravariantly finite in mod-B. This implies that add(ΣT (C))
is contravariantly finite in mod-B by 3.6. ¤

In the following we shall discuss the projective dimensions of modules in A-mod and their
related modules in B-mod. This will be related to finitistic dimensions of A and B.

Recall that the finitistic dimension of an Artin algebra A, denoted by fin.dim(A), is by
definition the supremum of the projective dimensions of those modules in A-mod which have finite
projective dimension. Let us denote by P<∞(A) the full subcategory of A-mod whose objects are
modules of finite projective dimension. Then fin.dim(A) = sup{proj.dim(AM) | M ∈ P<∞(A)}.
The next result may be viewed as a similar formulation of estimation of the global dimensions
in tilting theory.

Proposition 6.8 If AT is a generator for A-mod such that proj.dim(AT ) = m < ∞ and
gl.dim(B) = n < ∞, then gl.dim(A) ≤ n + m < ∞.

Proof. Suppose that AT is a generator for A-mod such that gl.dim(B) = n and
proj.dim(AT ) = m. Put P = (T,A). Then P is a projective B-module and Λ := End(BP ) ' A.
Suppose that M is a Λ-module. Let (BP, BP1) → (BP, BP0) → M → 0 be a minimal projective
presentation of the Λ-module M , which is induced from a homomorphism f : BP1 → BP0 with
Pi ∈ add(BP ). Since n = gl.dim(B) is finite, there is a projective resolution of the B-module
Cok(f):

0 → Qn → Qn−1 → · · · → Q2 → P1 → P0 → Cok(f) → 0,

where all Qj are projective B-modules, but not necessarily in add(BP ). This induces the following
exact sequence:

0 → (BP, Qn) → (BP, Qn−1) → · · · → (BP, Q2) → (BP, P1) → (BP, P0) → ΛM → 0

because BP is projective. We claim that proj.dimΛ(BP, BB) ≤ m. In fact, we have

HomB(P, BB) ' HomB((T, A), (T, T ))
2.2(1)' HomA(A, T ) ' AT.

This yields the promised claim. Since each indecomposable direct summand of (P, Qj) is
isomorphic to a direct summand of (P, B), we know that proj.dimA(P, Qj) ≤ m. Hence
proj.dim(AM) ≤ 2+ proj.dim(Ω2

A(M)) ≤ 2 + (n− 2 + m) = n + m. Thus gl.dim(A) ≤ n + m. ¤

Proposition 6.9 Let ⊥T be the subcategory of A-mod whose objects are the X such that
ExtiA(X, T ) = 0 for all i ≥ 1. If m := sup{proj.dim(AX) | X ∈ P<∞(A) ∩ ⊥T} is finite,
then fin.dim(A) ≤ m + inj.dimAT.

Proof. Suppose inj.dimAT = n. Let AX be an A-module of finite projective dimension n, and
let Ωi(X) be the i-th syzygy of X. Then Exti

A(Ωn(X), T ) = Extn+i
A (X, T ) = 0 for all i ≥ 1. This

implies that Ωn(X) lies in P<∞(A)∩⊥T . Thus proj.dim(Ωn(X)) ≤ m and proj.dim(X) ≤ n+m.
Thus fin.dim(A) ≤ n + m. ¤

Corollary 6.10 If P<∞(A) ∩ ⊥T is contravariantly finite in A-mod, then fin.dim(A) ≤ m +
inj.dimAT , where m := sup{proj.dim(AX) | X ∈ P<∞(A) ∩ ⊥T}.

Proof. Note that the category P<∞(A) ∩ ⊥T is a resolving subcategory of A-mod (for the
definition, see [7], for example). Thus under our assumption the above m is a finite number (see
[7, corollary 3.9] ), and therefore our corollary follows from Proposition 6.9. ¤
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7 Representation dimensions

In this section we shall present an application of our consideration in the previous sections to
the representation dimension. As a main result of this section we show that given a projective
module P with certain restrictions, the representation dimension of End(AP ) can not exceed that
of A. Thus we solve partially a problem proposed by Auslander thirty years ago in [4]: given an
Artin algebra A and a projective A-module P , is rep.dim End(AP ) ≤ rep.dim(A)?

Given an Artin algebra A, Auslander defined the representation dimension of A, denoted by
rep.dim(A), as follows:

rep.dim(A) = inf {gl.dim(Λ) | Λ is an Artin algebra with dom.dim(Λ) ≥ 2 and End(ΛT ) is
Morita equivalent to A,where T is the maximal injective summand of Λ}.

As was pointed in [4], this is equivalent to

rep.dim(A) = inf{ gl.dim End(AM) | M is a generator-cogenerator for A-mod}.
As is known, the representation dimension is closely related to coherent functors. The simple

coherent functor is described by the almost split sequences. In [19] Hartshorne used coherent
functors to solve problems in algebraic space curves. Recently, there are some advances on
representation dimension (see [27], [28], [29] and [21]). Now let us consider the following type of
question:

Suppose two algebras are in good relationship, how are their representation dimensions related
to each other ?

In this direction let us first prove the following result.

Proposition 7.1 Let A and B be two Artin algebras. Suppose F : A-mod −→ B-mod is a
fully exact functor and preserves direct sums. Moreover, suppose that each indecomposable B-
module is a direct summand of a module FX for some X ∈ A-mod. If there is a generator-
cogenerator M for A-mod such that FM is a generator-cogenerator for B-mod and rep.dim(A) =
gl.dim(End(M)), then rep.dim(B) ≤ rep.dim(A).

Proof. Let M be a generator-cogenerator for A-mod such that n = rep.dim(A) =
gl.dim(End(AM)) < ∞. Then

(1) If f : M0 −→ X is an add(M)-cover of an A-module X with M0 ∈ add(M), then
Ff : FM −→ FX is an add(FM)-cover of the B-module FX with FM0 ∈ add(FM).

In fact, given an indecomposable B-module Y in add(FM) and a homomorphism g : Y −→
FX, we have to find a homomorphism h : Y −→ FM0 such that g = h(Ff). We may assume
that FM = Y ⊕ Y ′. Let p and q be the canonical projection from FM to Y and the canonical
inclusion of Y into FM , respectively. Since the functor F is full, there is a homomorphism
g′ : M −→ X such that Fg′ = pg. Since f is a cover, we have a homomorphism h′ : M −→ M0

such that g′ = h′f. This implies that g = qpg = q(Fg′) = q(Fh′)(Ff). Thus we have (1).
(2) If Y is an arbitrary B-module, then proj.dimEnd(BFM)(FM, Y ) ≤ n− 2.

To see this, let X be an A-module such that Y is a direct summand of FX. Since
gl.dim(End(AM)) = n, there is an exact sequence

0 → Mn−2
dn−2−→ · · · −→ M0

d0−→ X −→ 0

with Mi ∈ add(M) such that the induced sequence 0 −→ (M, Mn−2) −→ · · · −→ (M, M0) −→
(M, X) −→ 0 is exact, this means that each map Mj −→Ker(di−1) is an add(M)-cover of
Ker(di−1). Since the functor F is exact, we have another exact sequence

0 → FMn−2 −→ · · · −→ FM0 −→ FX −→ 0

with FMi ∈ add(FM). By (1), each map FMi −→ FKer(di−1)=Ker(Fdi−1) is an add(FM)-
cover of FKer(di−1). Thus we have an exact sequence

0 −→ (FM,FMn−2) −→ · · · −→ (FM, FM0) −→ (FM, FX) −→ 0.
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This implies that the projective dimension of the End(BFM)-module (FM, FX) is at most n−2,
and hence the direct summand (FM, Y ) of (FM, FX) has projective dimension at most n − 2.
So we have proved (2).

Now let S be a simple End(BFM)-module. Then there is a B-homomorphism g : Y1 −→ Y0

with Yi ∈ add(FM) such that (FM,Y1) −→ (FM,Y0) −→ S −→ 0 is a minimal projective
presentation of S. Since proj.dimEnd(BFM)(FM, Ker(g)) ≤ n − 2 by (2), it follows from the
exact sequence

0 −→ (FM, Ker(g)) −→ (FM, Y1) −→ (FM,Y0) −→ S −→ 0

that gl.dim(End(BFM)) ≤ n. This finishes the proof. ¤
As an application of 7.1, we have the following result.

Theorem 7.2 Let A be an Artin algebra and e an idempotent in A such that Ae ⊗eAe Y '
HomeAe(eA, Y ) as A-modules for all Y ∈ eAe-mod. Then rep.dim(eAe) ≤ rep.dim(A).

Proof. For Y ∈ eAe-mod, we denote by aY the natural map Ae⊗eAe Y −→ HomeAe(eA, Y ),
which sends b ⊗ y with b ∈ Ae and y ∈ Y to the eAe-homomorphism from eA to Y defined by
mapping c in eA to (cb)y. Consider the following statements:

(1) aY is bijective for any Y ∈ eAe-mod.
(2) eA is a projective eAe-module, and aeAe is bijective.
(3) eA⊗A : A-mod −→ eAe-mod is a full functor.
We prove that (1)⇔(2), and (2)⇒(3).
(1)⇒(2): Since (eA ⊗A −,HomeAe(eA,−)) is an adjoint pair, there is an unit from

IdA-mod −→ HomeAe(eA, eA ⊗A −). This gives a homomorphism Ae −→ HomeAe(Ae, eAe).
We can see that aY is the composition of bY : Ae ⊗eAe Y −→ HomeAe(eA, eAe) ⊗eAe Y with
mY : HomeAe(eA, eAe)⊗eAe Y −→ HomeAe(eA, Y ), where mY is the multiplication map. Since
mY is surjective for any Y , we get that eA is a projective eAe-module by Theorem 3.12.

(2)⇒(1): since eA is a projective eAe-module, the natural A-homomorphism (eA, eAe)⊗eAe

Y −→ (eA, Y ) , which is the multiplication map, is bijective by Theorem 3.12. Hence

(eA, Y ) ' (eA, eAe)⊗eAe Y ' Ae⊗eAe Y.

(1) and (2)⇒(3): For any V ∈ A-mod, consider the A-homomorphisms sV : Ae ⊗eAe eA ⊗A

V −→ V , which sends x⊗y⊗z to xyz, and tV : V −→ HomeAe(eA, eA⊗A V ), (tV (z))(y) = y⊗z,
where x ∈ Ae, y ∈ eA and z ∈ V . Then sV tV = a(eA⊗AV ) holds. Thus tV is a split epimorphism.

Hence HomA(U, V )
(−,tV )−→ HomA(U,HomeAe(eA, eA ⊗A V )) = HomeAe(eA ⊗A U, eA ⊗A V ) is

surjective for any U, V ∈ A-mod.
Note that the functor eA⊗A − is dense. Thus the theorem follows from Theorem 7.1. ¤
The above result suggests the following

Conjecture: For any Artin algebra A and any idempotent element e ∈ A, rep.dim(eAe) ≤
rep.dim(A).

Acknowledgements. The research work is supported by CFKSTIP (No.704004), Ministry
of Education of China; NFS of China (No.103331030); and the project “Representation Theory
and Related Topics” of the “985 Program” of Beijing Normal University.

I would like to thank O.Iyama for helpful suggestions and B.Zhu for comments on the first
version of the paper. Also, the referee’s comments and suggestions are gratefully acknowledged.

References

[1] F.W.Anderson and K.R.Fuller, Rings and categories of modules. GTM 13, Springer-Verlag,
New York-Heidelberg-Berlin, 1973.

25



[2] M.Auslander, Coherent functors. Proceedings of the Conference on Categorial Algebra, La Jolla,
Springer-Verlag, Berlin-Heidelberg-New York, 189-231 (1966).

[3] M.Auslander, Representation theory of Artin algebras I. Commun. Algebra 1(3), 177-268 (1974).

[4] M.Auslander, Representation dimension of Artin algebras . Queen Mary College Mathematics
Notes, Queen Mary College, London, 1971.

[5] M.Auslander and M.Bridger, Stable module category. Memoirs Amer. Math. Soc. No. 94,
(1969).

[6] M.Auslander, I.Reiten and S.Smalø, Representation theory of Artin algebras. Cambridge Stud-
ies in Advanced Mathematics 36, Cambridge University Press, 1995.

[7] M.Auslander and I.Reiten, Applications of contravariantly finite subcategories. Adv. Math. 85,
111-152 (1990).

[8] M.Auslander and I.Reiten, Homologically finite subcategories. In: London Math. Soc. Lecture
Note Series 168, (Eds.: H.Tachikawa and S.Brenner), 1-42 (1992).

[9] M.Auslander and S.O.Smalø, Preprojective modules over Artin algebras. J. Algebra 66, 61-122
(1980).

[10] M.Auslander and S.O.Smalø, Almost split sequences in subcategories. J. Algebra 69, 426-454
(1981).

[11] M.Auslander and O.Solberg, Gorenstein algebras and algebras with dominant dimension at
least 2. Commun. Algebra 21, No.11, 3897-3934 (1993).

[12] M.Auslander and O.Solberg, Relative homology and representation theory III. Commun. Alge-
bra 21, No.3, 3081-3097 (1993).

[13] H.Cartan and S.Eilenberg, Homological algebra. Princeton Landmarks in Mathematics, 1973.
Originally published in 1956.

[14] R.Colpi and K.R.Fuller, Cotilting modules and bimodules. Pacific J. Math. 192, 275-292 (2000).

[15] E.E.Enochs and O.M.G.Jenda, Relative homological algebra. De Gruyter Expositions in Math.
30, Walter de Gruyter-Berlin-New York, 2000.

[16] T.G.Faticoni, Categories of modules over endomorphism rings. Memoirs Amer. Math. Soc. 103,
No. 492 (1993).

[17] P.Gabriel, Auslander-Reiten sequences and representation-finite algebras. Lecture Notes in Math.
831, Springer-Verlag, Berlin-Heidelberg-New York, 1-71 (1980).

[18] D.Happel, Triangulated categories in the representation theory of finite dimensional algebras. Lon-
don Math. Soc. Lecture Note Series 119. Cambridge University Press, Cambridge, 1988.

[19] R.Hartshorne, Coherent functors. Adv. Math. 140, 44-94 (1998).

[20] Z.Huang, On a generalization of Auslander-Bridge transpose. Commun. Algbera 27, 5791-5812
(1999).

[21] O.Iyama, Finiteness of representation dimension. Proc. Amer. Math. Soc. 131, No.4, 1011-1014
(2003).

[22] B.Mitchel, Theory of categories. New York and London, Academic Press, 1965.

[23] Y. Miyashita, Tilting modules of finite projective dimension. Math. Z. 193, 113-146 (1986).

[24] I.Reiten, Homological theory of noetherian rings. Canad. Math. Soc. Conf. Proceedings 19, 247-259
(1996).

[25] C.M.Ringel, Tame algebras and integral quadratic forms. Lecture Notes in Math. 1099, Springer-
Verlag, Berlin-Heidelberg-New York, 1984.

[26] A. N. Wiseman, Projective modules over pullback rings. Proc. Camb. Phil. Soc. 97, 399-406 (1985).

[27] C.C.Xi, On the representation dimension of finite dimensional algebras. J. Algebra 226, 332-346
(2000).

[28] C.C.Xi, Representation dimension and quasi-hereditary algebras. Adv. Math.168, No. 2, 193-212
(2002).

[29] C.C.Xi, On the finitistic dimension conjecture II: related to finite global dimension. Adv. Math. (to
appear). Preprint is available at http://math.bnu.edu.cn/∼ccxi/Papers/Articles/finchain.pdf/.

[30] C.C.Xi, Standardly stratified algebras and cellular algebras. Math. Proc. Camb. Phil. Soc. 133,
No.1, 37-53 (2002).

26


