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1. Introduction

Let M be a compact smooth manifold with group action and P be
an elliptic operator on M which commutes with the action. Then the
kernal and cokernal of P are representations of the action group. For
an element g in the action group, the Lefschetz number of P at g is

F (g) = trgKerP − trgCokerP.
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We say that P is rigid with respect to this group action, if F (g) is
independent of g. In the following, we will only consider S1-action, in
which case two well-known rigid elliptic operators are the signature and
the Dirac operator. Obviously, if P is rigid with respect to S1-action,
then it is rigid with respect to any compact connected Lie group action.

Motivated by the work of Landweber-Stong, in [W] Witten derived a
series of elliptic operators from LM , the loop space of M . The indices
of these operators are the signature, Â-genus or the Euler characteristic
of LM . He also derived some elliptic operators which do not have finite
dimensional analogues. The cohomological aspects of these operators
were discussed in detail by W. Lerche, B. Nilsson, A. Schellekens, N.
Warner and many other physicists. Surprisingly the elliptic genus of
Landweber-Stong turns out to be the index of one of these elliptic
operators. Motivated by physics, Witten conjectured that these elliptic
operators should be rigid with respect to S1-action. These conjectures
generalize the rigidity of the usual signature, Euler characteristic and
Dirac operator to infinite dimensional manifolds.

After some partial work of Ochanine and Landweber-Stong, these
remarkable conjectures were first proved by Taubes, then by Bott-
Taubes. Hirzebruch and Krichever proved Witten’s conjectures for
almost complex manifold case. They used the very technical transfer
argument. Many aspects of mathematics are involved in their proofs.
Taubes used analysis of Fredholm operators; Krichever used cobor-
dism; Bott-Taubes and Hirzebruch used the Atiyah-Bott-Segal-Singer
Lefschetz fixed point formula.

In [Liu1] I observed that all of these operators have some kind of
intrinsic symmetry under the action of the modular group SL2(Z),
which actually implies their rigidity. This observation immediately
gives a very simple and unified proof of the above conjectures of Witten.
There the classical Jacobi theta-functions came into play in a very nice
and crucial way. Strictly speaking, it is the theta-function expressions
of the Lefschetz numbers of these elliptic operators that attracted me
to the modularity argument.

This paper is the continuation of [Liu1] and is naturally divided into
three parts. The main results which were circulated in my preprints
[Liu2] and [Liu3] and in my thesis [Liu4], were anounced in [Liu5].

In the first part, by using the beautiful results of Kac-Peterson-
Wakimoto about the modular invariance of the characters of affine Lie
algebras, under a very natural assumption on the first equivariant Pon-
trjagin class, I prove the rigidity of the Dirac operator on loop space
twisted by positive energy loop group representations of any level, while
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the Witten rigidity theorems are the special cases of level 1. One can
immediately construct many new rigid elliptic operators from this the-
orem. In this paper I have only considered the tensor products of level
1 representations and hope to discuss the general case in another pa-
per. In the second part, I generalize the rigidity theorems in part I and
[Liu1] to the so-called non-zero anomaly cases. As corollaries I obtain a
series of interesting holomorphic Jacobi forms and many new vanishing
theorems, especially an Â-vanishing theorem for loop spaces with spin
structures. Using our result, G. Hoehn was able to characterize this
loop space Â-vanishing theorem in terms of MO < 8 >-fibrations.

In the third part I discuss the relationships between these elliptic
operators and the geometry of elliptic modular surfaces. We show
that the Lefschetz numbers of these elliptic operators are holomorphic
sections of certain holomorphic line bundles on some elliptic modu-
lar surfaces. In studying their degenerations to the singular fibers of
the elliptic surfaces, we get some topological results for manifolds and
bundles with group actions. This idea also gives a very natural algebro-
geometric explanation of the transfer argument used in [BT], [H] and
[Kri]. Finally in Appendix B, by a simple observation I prove a rigidity
theorem for mod 2 elliptic genera which was also obtained by K. Ono
independently.

While its rigidity property is basically clarified, many aspects of el-
liptic genus remain mysterious, notably the geometric construction of
elliptic cohomology, its relationships with the monstrous moonshine,
with vertex operator algebras, with mirror symmetry and with the Vi-
rasoro algebra. The study of these topics is under progress.

It is my great pleasure to thank Prof. Raoul Bott and Prof. Shing-
Tung Yau for their guidance and encouragement, for introducing me
to the beautiful theory of elliptic genus.

I thank Prof. R. Bott, Prof. C. Taubes, Prof. E. Witten, Prof. S. T.
Yau for their deep mathematical insights from which this work started.

During the preparation of this work, I had very useful discussions
with many mathematicians. I want to thank them all, especially Pro-
fessors H. Miller, Y. Namikawa, K. Ueno, N. Warner and Doctors G.
Hoehn, W. Zhang. The main results in this paper are contained in my
preprints [Liu0], [Liu1], [Liu2] and [Liu3]. I thank Prof. P. Landweber
and Prof. J-P. Serre who corrected many English mistakes in the early
versions of those papers and taught me a lot both in mathematics and
in mathematical writing.

I have presented the results in the 877 AMS meeting, in the topology
and geometry seminars of MIT, Yale University, Columbia University,
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Cornell University, Harvard University, UC San Diego, UC Irvine and
the Johns Hopkins University. I thank all the audience, especially
Professors S. Chang, X. Dai, M. Freedman, E. Frenkel, I. Frenkel, L.
Gross, D. Kazhdan, M. Kuranishi, P. Li, W. Li, F. Luo, J. Morava,
X. Wang, S. Wu, A. Szenes, G. Zuckerman, for their interests and
patience.

2. Loop Groups and Rigidity Theorems

In this part we prove the rigidity of the Dirac operator on loop space
twisted by general positive energy loop group representations for both
spin manifolds and almost complex manifolds.

After state Theorem 1, the main result in this part, we review some
basic results in affine Lie algebra theory, especially the modular in-
variance of the characters of integrable highest weight modules. Then
we give the construction of ψ(E, V ), which, used in Theorem 1, is a
formal power series with coefficients in the K-group K(M), from a
positive energy representation E of L̃Spin(2l) of highest weight and a
rank 2l spin vector bundle V on M . This construction is motivated
by Brylinski’s work [Br]. Some examples, including several new rigid
elliptic operators are given in Section 2.4 as the corollaries of Theorem
1. From the point of view of loop group representation, our examples
have exhausted all of the rigid elliptic genera. Theorem 1 is proved in
Section 2.5. In Section 2.6, we discuss the rigidity theorems for almost
complex manifolds.

2.1. A General Rigidity Theorem. Let L̃Spin(2l) denote the cen-
tral extension of the loop group LSpin(2l) and E be a positive energy
representation of it. See Section 2.2 for the definition of positive en-
ergy. Given a rank 2l spin vector bundle V on a spin manifold M , we
can construct an element ψ(E, V ) in K(M)[[q]] associated to E and
V . Here q = e2πiτ with τ in the upper half plane H is a parameter.
See Section 2.3 for the construction. In this paper, by a vector bun-
dle we always mean a real vector bundle, except otherwise specified.
Let D denote the Dirac operator on M . Assume that there exists an
S1-action on M which lifts to V . For an equivariant vector bundle F ,
let p(F )S1 denote its first equivariant Pontrjagin class. See Appendix
A for a geometric discussion about equivariant characteristic classes.
Then we will prove the following:

Theorem 1: For every positive energy representation E of L̃Spin(2l)
of highest weight of level m, if p1(M)S1 = mp1(V )S1, then

D ⊗⊗∞n=1Sqn(TM)⊗ ψ(E, V )
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is rigid.
Here recall that, for a vector bundle F ,

St(F ) = 1 + tF + t2S2F + · · ·

is the symmetric operation in K(M)[[t]]. Theorem 1 actually holds for
any semisimple and simply connected Lie group, instead of Spin(2l).
It actually holds in much more general situations. See Section 2.4 for
the details.

If m = 1, we know that L̃Spin(2l) has four irreducible highest weight
representations of positive energy which exactly give those elliptic op-
erators considered by Witten [W], Bott-Taubes [BT] and [Liu1]. See
the examples in Section 2.4. Therefore Theorem 1 includes all of the
Witten rigidity theorems for spin manifolds.

In our proof, the actual use of the spin condition on M is the exis-
tence of the Dirac operator which we need to show that the modular
transformations of the Lefschetz number of the above elliptic operator
are still the Lefschetz numbers of some twisted Dirac operators. This
shows that the modular invariance of the characters of the representa-
tions of affine Lie algebras discussed in Section 2.2 implies the rigidity
of the elliptic operator in Theorem 1. This is surprising. We would like
to know whether there is a finite dimensional analogue of this mod-
ular property which may explain the famous Â-vanishing theorem of
Atiyah-Hirzebruch. We are also interested in giving an explanation of
our results by using the geometry of loop space and physics.

2.2. Affine Lie Algebras. In Theorem 1 we need highest weight pos-
itive energy representations of L̃Spin(2l). This kind of representations
can always be obtained by lifting the integrable highest weight repre-
sentations of the affine Lie algebra L̂so(2l) associated to so(2l), the Lie
algebra of Spin(2l). In this section we review some basic facts about
affine Lie algebras, especially the modular invariance of their charac-
ters.

Given a simple, simply connected compact Lie group G of rank l, let
g denote its Lie algebra. Let h be the Cartan subalgebra, W be the
Weyl group. Denote by Q =

∑l
i=1 Zαi, where {αi} is the root basis,

the root lattice of g. The affine Lie algebra associated to g is

L̂g = g⊗R C[t, t−1]⊕CK⊕Cd

where K, d are two operators on g. Explicitly K (resp. d) is the
infinitesimal generator of the central element (resp. the rotation of S1)
of L̃G.
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L̂g has the triangle decomposition

L̂g = n̂− ⊕ ĥ⊕ n̂+

where n̂± are the nilpotent subalgebras and

ĥ = h⊗R C ⊕CK ⊕Cd

is the Cartan subalgebra. Let ĥ∗ be the dual of ĥ with respect to the
normalized symmetric invariant bilinear form (·, ·) on L̂g which extends
the standard symmetric bilinear form on g, such that

(CK + Cd, g⊗R C[t, t−1]) = 0; (K,K) = 0,

(d, d) = 0, (K, d) = 1.

Let < ·, · > denote the pairing between ĥ and ĥ∗, then the level of
λ ∈ ĥ∗ is defined to be < λ,K >.

L̂g falls into class X
(1)
N in the classification of Kac-Moody algebras

(see [Ka]). An L̂g-module U is called a highest weight module with

highest weight Λ ∈ ĥ∗ if there exists a nonzero vector vΛ ∈ U such that

n̂+(vΛ) = 0; h(vΛ) = Λ(h)vΛ for h ∈ ĥ; and

U(L̂g)(vΛ) = U

where U(L̂g) is the universal enveloping algebra of L̂g. If an irreducible

representation L(Λ) of L̂g is of highest weight Λ and the level of Λ = k
we say that L(Λ) is of level k. It is called integrable if Λ ∈ P+ where

P+ = {λ ∈ ĥ∗|(λ, αi) ∈ Z and ≥ 0 for all i}
is the set of dominant integral weights.

An integrable highest weight representation L(Λ) of L̂g can always
be lifted to a representation of L̃G which turns out to be irreducible
and of positive energy. This lifted representation has the same level as
L(Λ). See [PS]. Recall that for each level there are only finitely many
integrable highest weight representations induced from the irreducible
representations of G.

An L̂g-module V can be splitted into the form ⊕λ∈ĥ∗Vλ, when re-

stricted to the Cartan subalgebra ĥ. The formal Kac-Weyl character
of V is defined to be

chV =
∑
λ∈ĥ∗

dimVλe
λ.

The normalized character of L(Λ) is

χΛ = qmΛchL(Λ)
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where

mΛ =
(Λ + 2ρ,Λ)

2(m+ h∨)
− mdimg

24(m+ h∨)

with h∨ =< ρ,K > the dual Coxeter number of g and ρ half the sum
of the positive roots. We call qmΛ the anomaly factor.

Let M = Z(W · θ), where θ is the long root in Q and W is the Weyl
group of g, be a lattice in h∗. For any integer m, let

Pm
+ = {λ ∈ P+| < λ,K >= m}

be the level m subset of the dominant integral weights. Let Λ0, δ ∈ ĥ∗

be the elements such that

δ|h⊕CK = 0, < δ, d >= 1;

Λ0|h⊕Cd = 0, < Λ0, K >= 1.

Then χΛ can be expressed as

χL(Λ) =
AΛ+ρ

Aρ

(+)

where

Aλ =
∑
w∈W

ε(w)Θw(λ)

with Θλ the classical theta-functions associated to the lattice M . If we
choose an orthonormal basis of h∗ ⊗R C, {vi}l

i=1, such that for v ∈ ĥ∗

one has

v = 2πi
l∑

s=1

zsvs − τΛ0 + uδ

where z =
∑l

s=1 zsvs ∈ h∗ ⊗R C, then

Θλ(z, τ) = e2πimu
∑

γ∈M+m−1λ̄

eπimτ(γ,γ)+2πim(γ,z).

Here λ̄ means the orthogonal projection of λ from ĥ∗ to h∗ ⊗R C with
respect to the bilinear form (·, ·) and γ =

∑l
i=1 γivi with

(γ, z) =
l∑

i=1

γizi.

Obviously χΛ(z, τ) is well-defined for τ in the upper half plane. Another
expression of χΛ is a finite sum

χΛ(z, τ) =
∑

λ∈P mmod(mM+Cδ)

cΛλ (τ)Θλ(z, τ)
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where Pm is the level m element in the integral weight lattice and
{cΛλ (τ)} are some weight −1

2
l modular forms. They are called string

functions in [Ka].
Recall that the modular transformation of

g =

(
a b
c d

)
∈ SL2(Z)

on (t, τ) ∈ C×H is given by

g(t, τ) = (
t

cτ + d
,
aτ + b

cτ + d
)

which defines a group action. Obviously two generators of SL2(Z),

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
act by

S(t, τ) = (
t

τ
,−1

τ
), T (t, τ) = (t, τ + 1).

The following theorem, which is due to Kac and Peterson, is one of
the most beautiful results in affine Lie algebra theory. It is the easy
consequence of the theta-function expression (+) of the character.

Theorem: Let Λ ∈ Pm
+ , then

a)

χΛ(
z

τ
,−1

τ
) = eπim

(z,z)
τ

∑
Λ′∈P m

+ modCδ

SΛ,Λ′χΛ′(z, τ)

for some complex numbers SΛ,Λ′;
b)

χΛ(z, τ + 1) = e2πimΛχΛ(z, τ). 2

In general, this theorem implies that, up to the factor ecπim
(z,z)
cτ+d , the

complex vector space spanned by the characters of the highest weight
modules of a given level is stable under the modular transformations.
Note that we have slightly revised the statements in [Ka] to fit our pur-
pose. Especially we have omitted considering the variable u. Instead
we get the exponential factors. For α ∈M we also have

Θλ(z + α, τ) = Θλ(z, τ);

Θλ(z + ατ, τ) = e2πim(z,α)+πim(α,α)Θλ(z, τ).

This, together with its transformation formulas under SL2(Z), means
that χΛ is an l-variable Jacobi form of index m

2
and weight 0. See

Section 3.2 of the next part for the definition of Jacobi forms. We refer
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to Theorem 13.8 in [Ka] for the details of the above theorem. In the
proof of Theorem 1 we will take

(z1, · · · , zl) = (n1t, · · · , nlt)

for some integers {ni}, this makes χΛ into a one variable Jacobi form.

Example: The irreducible highest weight L̂su(2)-modules of level
l are parametrized by an integer j. We denote them by Vj,l. The
corresponding characters are given by

χj,l(z, τ) =
θj+1,l+2(z, τ)

θ1,2(z, τ)

where

θk,m(z, τ) = e2πimu
∑

k∈Z+ k
2m

e2πim(k2τ+kz) for k ∈ Z(mod 2m)

is the theta-function of degree (m, k).
One has

χj,l(
z

τ
,−1

τ
) = e

πilz2

τ

∑
k∈Z(mod2mZ)

Al
j,kχk,l(z, τ)

where

Al
j,k =

√
2√

l + 2
sin

π(j + 1)(k + 1)

l + 2

as appeared in the now famous Verlinde formulas.

2.3. The Construction of ψ(E, V ). For a simply connected simple
Lie group G, the positive energy representation E of the loop group
L̃G is characterized by the following properties:

(a) E is a direct sum of irreducible representations.
(b) Let Rθ be the rotation action of the loop by the angle θ, then

Rθ acts on E as exp(−iAθ) with A an operator of positive spectrum
and the subspace En = {v ∈ E : Rθ(v) = einθv} is a finite dimensional
representation of G.

(c) The action of L̃G o S1 on E naturally extends to a smooth
action of L̃G o Diff+(S1), where Diff+(S1) is the group of orientation
preserving diffeomorphisms of S1.

Assume that the infinitesimal generator K of the central element of
L̃G acts on E by K · v = mv, for any v ∈ E and a positive integer m,
then m is called the level of E. As discussed in last section, positive en-
ergy representations of level m can always be lifted from the integrable
representations of level m of the corresponding affine Lie algebra. See
[PS] for the details of positive energy repersentations.
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Consider G = Spin(2l). Since the representation E in Theorem 1 is
of positive energy, one then has the decomposition E = ⊕n≥0En under
the action of Rθ. Here each En is a finite dimensional representation
of Spin(2l). Let QV be the frame bundle of V , then QV is a principal
Spin(2l)-bundle. For each En we can get an element Ẽn ∈ K(M)
associated to En and QV . Let us write formally

ψ(E, V ) =
∑
n≥0

Ẽnq
n ∈ K(M)[[q]].

This ψ(E, V ) is the desired element in Theorem 1.
Now let us discuss the characteristic classes of ψ(E, V ). ForG =Spin(2l),

let {vj}l
j=1 be an orthonormal basis of ĥ∗, the dual of the Cartan sub-

algebra. The root basis {αj}l
j=1 is given by

{α1 = v1 − v2, · · · αl−1 = vl−1 − vl, αl = vl−1 + vl}.
The root lattice is

Q = {
∑

i

kivi|ki ∈ Z,
∑

i

ki ∈ 2Z}.

In this case the long root θ = v1 + v2, the Weyl group W consists of all
permutations and even number of sign changes of the vj’s. The lattice
M = Z(W · θ) = Q. The dual Coxeter number h∨ = 2(l − 1). The

affine Lie albegra L̂so(2l) is of class D
(1)
l in the notations of [Ka].

Let R(Spin(2l)) denote the ring of Spin(2l) representations and by
H∗

Spin(2l)
(Q) the ring of characteristic polynomials. We have the char-

acteristic map

ch : R(Spin(2l)) → H∗
Spin(2l)

(Q)

which sends a representation to its character. Let {vj}l
j=1 also denote

the standard character of h, then

H∗
Spin(2l)

(Q) = Q[[v1, · · · , vl]]
W ,

the W -invariant polynomials. By our choice of the coordinate in ĥ∗ in
last section, we can view χΛ(z, τ) as χΛ(v, τ), where

v = (v1, · · · , vl),

evaluated at

⊕l
j=1

(
0, 2πizj

−2πizj, 0

)
∈ h⊗R C.

Therefore for E = L(Λ) we, consider ψ(E, V ) as an element inR(Spin(2l))[[q]],
can write the character as

ch(ψ(E, V )) = chE(v, τ) = q−mΛχΛ(v, τ).
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Under transgression, {±vj}l
j=1 lift to {±2πixj}l

j=1 where {±2πixj}l
j=1

are the formal Chern roots of V and the character map lifts to the
Chern character. Therefore we only need to replace zj by xj in the
character chE(z, τ) when considering the Chern character of ψ(E, V ).

2.4. Corollaries and Examples. In this section we give several ex-
amples as the corollaries of Theorem 1. In the following, real bundles
will be automatically complexified.

Example a) Let θ3(v, τ), θ2(v, τ), θ1(v, τ) and θ(v, τ) be the clas-
sical Jacobi theta-functions. Recall that we have

θ3(v, τ) = c ·
∞∏

n=1

(1 + qn− 1
2 e2πiv)

∞∏
n=1

(1 + qn− 1
2 e−2πiv)

θ2(v, τ) = c ·
∞∏

n=1

(1− qn− 1
2 e2πiv)

∞∏
n=1

(1− qn− 1
2 e−2πiv)

θ1(v, τ) = c · q
1
8 2cosπv

∞∏
n=1

(1 + qne2πiv)
∞∏

n=1

(1 + qne−2πiv)

θ(v, τ) = c · q
1
8 2sinπv

∞∏
n=1

(1− qne2πiv)
∞∏

n=1

(1− qne−2πiv)

where c =
∏∞

n=1(1− qn). Let M and V be as in Theorem 1. Consider
the case of level m = 1 and the spin representation S = S+ + S− of
L̃Spin(2l). Here S± are the half spin representations. For a vector
bundle F, let

Λt(F ) = 1 + tF + t2Λ2F + · · ·
be the wedge operation in K(M)[[t]]. Then one gets

ψ(S, V ) = 4(V )⊗∞n=1 Λqn(V ).

where 4(V ) = 4+(V ) ⊕ 4−(V ) is the spinor bundle of V . In terms
of the coordinate of h∗⊗R C introduced in Section 2.2, the normalized
Kac-Weyl character is

χS(z, τ) =
1

η(τ)l

l∏
i=1

θ1(zi, τ)

where η(τ) = q
1
24

∏∞
n=1(1 − qn) is the Dedekind eta-function. The

elliptic operator in Theorem 1 is

D ⊗4(V )⊗∞n=1 Λqn(V )⊗∞m=1 Sqm(TM).

Example b) Similarly for T = S+ − S−, one gets

ψ(T, V ) = (4+(V )−4−(V ))⊗∞n=1 Λ−qn(V )
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and the character

χT (z, τ) =
1

η(τ)l

l∏
i=1

θ(zi, τ).

This gives another elliptic operator

D ⊗ (4+(V )−4−(V ))⊗∞n=1 Λ−qn(V )⊗∞m=1 Sqm(TM).

Note that the anomaly factor for Examples a) and b) is q
l
12 .

Let QV be the frame bundle of V . From QV we naturally get a prin-
cipal LSpin(2l) bundle LQV on LM . Actually LQV is the loop space
of QV . If p1(V ) = 0, we can further get a principal L̃Spin(2l) bundle
Q̃V by central extension. One can associate S and T to Q̃V to get two
vector bundles on LM which are the infinite dimensional analogues of
4+(V ) ⊕ 4−(V ) and 4+(V ) − 4−(V ) respectively. See [Br] for the
details. Since D ⊗ ⊗∞m=1Sqm(TM) corresponds to the Dirac operator
on LM , the constructions in Examples a) and b) give, respectively, the
signature and the Euler characteristic operator for the loop bundle LV
which is the loop space of V , on LM .

Example c) L̃Spin(2l) has exactly four irreducible highest weight
representations of level m = 1. The remaining two are denoted by S ′+
and S ′+. Let S ′ = S ′+ + S ′− and T ′ = S ′+ − S ′−. Then we have

χS′(z, τ) =
1

η(τ)l

l∏
i=1

θ2(zi, τ),

χT ′(z, τ) =
1

η(τ)l

l∏
i=1

θ3(zi, τ);

and respectively
ψ(S ′, V ) = ⊗∞n=1Λ−qn− 1

2
(V ),

ψ(T ′, V ) = ⊗∞n=1Λqn− 1
2
(V ).

Their corresponding elliptic operators are

D ⊗⊗∞n=1Λ−qn− 1
2
(V )⊗∞m=1 Sqm(TM)

and
D ⊗⊗∞n=1Λqn− 1

2
(V )⊗∞m=1 Sqm(TM)

respectively. The anomaly factor for both operators is q−
l
24 .

The above examples are exactly those elliptic operators considered
in [T], [BT], [W], [W1]. See also [Br]. By Theorem 1 all of these
elliptic operators are rigid if p1(M)S1 = p1(V )S1 . Compare with the
discussions in [Liu1].
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Example d) Take V = TM in the above examples, we get the
elliptic operators discussed in [W]:

D ⊗ 4(M)⊗∞n=1 Λqn(TM)⊗∞m=1 Sqm(TM),

D ⊗ ⊗∞n=1Λ−qn− 1
2
(TM)⊗∞m=1 Sqm(TM),

D ⊗ ⊗∞n=1Λqn− 1
2
(TM)⊗∞m=1 Sqm(TM),

where 4(M) is the spinor bundle of TM . Of course in this case, only
the level 1 representations can satisfy the assumption of Theorem 1,
except the trivial case p1(M)S1 = 0. Therefore we can say that for
V = TM in Theorem 1 the only possible rigid elliptic operators are
given by the level 1 representations of L̃Spin(2l).

Example e) The virtual version of Example d), i.e. one replaces
TM by TM − dimM to get

D ⊗ 4(M)⊗∞n=1 Λqn(TM − dimM)⊗∞m=1 Sqm(TM − dimM),

D ⊗ ⊗∞n=1Λ−qn− 1
2
(TM − dimM)⊗∞m=1 Sqm(TM − dimM),

D ⊗ ⊗∞n=1Λqn− 1
2
(TM − dimM)⊗∞m=1 Sqm(TM − dimM).

The indices of these operators are called universal elliptic genera.
We go further to consider the representation

P = S ⊕ 2lS ′ ⊕ 2lT ′

of L̃Spin(2l) and take V = TM . The corresponding character is given
by

χP (z, τ) = χS(z, τ) + 2kχS′(z, τ) + 2kχT ′(z, τ)

=
1

η(τ)k
(

k∏
i=1

θ1(zi, τ) + 2k

k∏
i=1

θ2(zi, τ) + 2k

k∏
i=1

θ3(zi, τ))

where k = 1
2
dimM . We would like to consider the virtual version of

this example. The index of

D ⊗⊗∞m=1Sqm(TM − dimM)⊗ ψ(P, TM)v

is an elliptic genus which gives modular forms of level 1. Here

ψ(P, TM)v = 4(M)⊗∞n=1 Λqn(TM − dimM)

+ 2k ⊗∞n=1 Λ
−qn− 1

2
(TM − dimM)

+ 2k ⊗∞n=1 Λ
qn− 1

2
(TM − dimM)

is the virtual version of ψ(P, TM). Its modular property under SL2(Z)
is easy to verify by using the transformation formulas of theta-functions.
By Theorem 1 this genus is rigid. Without confusing the level of mod-
ular forms with the level of loop group representations, we say that this
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elliptic genus is of level 1. This example solves a problem of Landweber
in [La1] about the construction of level 1 elliptic genus. From the point
of view of loop group representations, this genus seems to be the only
possible rigid elliptic genus of level 1 for spin manifolds.

One can get more general rigid elliptic genera by considering

Pa,b,c = a(τ)S ⊕ b(τ)S ′ ⊕ c(τ)T ′

where a(τ), b(τ), c(τ) are modular forms over a modular subgroup Γ(2K)
for some positive integer K ≥ 1. Then

D ⊗⊗∞m=1Sqm(TM − dimM)⊗ ψ(Pa,b,c, TM)v

is an elliptic genus of level 2K. Here

ψ(Pa,b,c, TM)v = a(τ)4(M)⊗∞n=1 Λqn(TM − dimM)

+ b(τ)⊗∞n=1 Λ
−qn− 1

2
(TM − dimM)

+ c(τ)⊗∞n=1 Λ
qn− 1

2
(TM − dimM)

is the virtual version of ψ(Pa,b,c, TM) and lies in K(M)[[q
1

2K ]]⊗C.
The proof of Theorem 1 works for more general loop group repre-

sentations. Especially it works for the tensor product of two positive
energy representations of highest weight and different level.

Example f) Consider the tensor product

Q = S ⊗ S ′ ⊗ T ′

which is a level 3 representation. For an S1-equivariant rank 2l spin
vector bundle V with 3p1(V )S1 = p1(M)S1 , by Theorem 1 we know
that

D ⊗⊗∞m=1Sqm(TM)⊗ ψ(Q, V )

is rigid. Here

ψ(Q, V ) = 4(V )⊗∞n=1 Λqn(V )⊗∞n=1 Λ
−qn− 1

2
(V )⊗∞n=1 Λ

qn− 1
2
(V ).

One can also consider level 2 representations X = S ⊗ S ′, Y = S ⊗ T ′

and Z = S ′ ⊗ T ′. As an easy corollary we know that, if the bundle V
satisfies p1(M)S1 = 2p1(V )S1 , then

D ⊗⊗∞m=1Sqm(TM)⊗ ψ(U, V ),

for U = X, Y or Z, is rigid. By taking the first two terms of the
q-expansions we get the rigidity of the following elliptic operators

D ⊗ Λ2V, D ⊗ S2V,

D ⊗4(V )⊗ (TM + V + Λ2V ),

D ⊗ (TM + S2(TM) + 2TM ⊗ Λ2V + Λ2V ⊗ Λ2V − 2V ⊗ Λ3V ),

D⊗4(V )⊗(TM+V+S2(TM)+V⊗V+V⊗TM+Λ2V+V⊗Λ2V+TM⊗Λ2V ).



ON MODULAR INVARIANCE AND RIGIDITY THEOREMS 15

One can get more examples by taking tensor product of the basic rep-
resentations, S, T, S ′ and T ′.

Example g) Take three non-negative integers a, b, c and consider
the representation

Qa,b,c, = S⊗a ⊗ S ′
⊗b ⊗ T ′

⊗c
.

Consider the corresponding elliptic operator

D ⊗⊗∞m=1Sqm(TM)⊗ ψ(Qa,b,c, V )

where

ψ(Qa,b,c, V ) = (4(V )⊗∞n=1Λqn(V ))⊗a⊗(⊗∞n=1Λ−qn− 1
2
(V ))⊗b⊗(⊗∞n=1Λqn− 1

2
(V ))⊗c.

If p1(M)S1 = (a+b+c)p1(V )S1 , then this opreator is rigid. Actually it is
easy to see that {S, S ′, T, T ′} generate a graded ring by tensor product,
each homogeneous term of degree m gives a rigid elliptic operator, if
the corresponding vector bundle V satisfies p1(M)S1 = mp1(V )S1 .

Example h) If we have another rank 2n spin vector bundle W such
that

ap1(V )S1 + bp1(W )S1 = p1(M)S1

for some non-negative integers a, b, then as a corollary of Theorem 1
we have that, for two highest weight positive energy representations E
and F of level a and b of L̃Spin(2l) and L̃Spin(2n) respectively, the
operator

D ⊗⊗∞m=1Sqm(TM)⊗ ψ(E, V )⊗ ψ(F,W )

is rigid. One can also consider the tensor product of several bundles and
several representations. This example may be used to study the equi-
variant splitting of TM . More interesting examples may be obtained by
studying the explicit constructions of the higher level irreducible rep-
resentations of L̃Spin(2l). It is also interesting to get examples from
Lie groups other than Spin(2l).

2.5. The Proof of Theorem 1. To display our idea clearly, we first
restrict our attention to the isolated fixed point case. By the discussions
in Section 2.2 and Section 2.3 we can assume that E is an integrable
highest weight module L(Λ) of L̂so(2l) of level m.

Let g = e2πit ∈ S1 be a generator of the action group and {p} ⊂ M
be the set of fixed points. Let

TM |p = E1 ⊕ · · · ⊕ Ek, k =
1

2
dimM

be the decomposition of the tangent bundle into sum of the S1-invariant
2-planes when restricted to the fixed points. Assume that g acts on Ej

by e2πimjt. Recall that {mj} ⊂ Z is called the exponents of TM at
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the fixed point p. See [BT] and [Liu1]. Choose the orientations of
the Ej’s compatibly with the orientation of M . Similarly let {nν} be
the exponent of V at the fixed point p, i.e. one has the corresponding
equivariant decomposition

V |p = L1 ⊕ · · · ⊕ Ll

and g acts on Lν by e2πinνt.
Consider the following functions

H(t, τ) = (2πi)−k

k∏
j=1

θ′(0, τ)

θ(mjt, τ)
,

cE(t, τ) = χE(T, τ)

where T = (n1t, · · · , nlt) and χE(z, τ) = qmΛchE(z, τ) is the normalized
Kac-Weyl character of the representation E = L(Λ) of L̃Spin(2l).

Then it is not difficult to see that

FE(t, τ) =
∑

p

H(t, τ)cE(t, τ)

is the Lefschetz number of

qmΛ ·D ⊗⊗∞n=1Sqn(TM − dimM)⊗ ψ(E, V ).

See Appendix A for the derivation of FE(t, τ) in general. Obviously
we can extend FE(t, τ) to a (meromorphic) function on C ×H. The
rigidity theorem is therefore equivalent to the proof that FE(t, τ) is
independent of t.

Lemma 5.1: If p1(M)S1 = mp1(V )S1, then FE(t, τ) =
∑

pH(t, τ)cE(t, τ)
is invariant under the action

t→ t+ aτ + b

for a, b ∈ 2Z.
Proof: For (a, b) ∈ (2Z)2, we have

H(t+ aτ + b, τ) = eπi
∑

j m2
j (a2τ+2at)H(t, τ);

cE(t+ aτ + b, τ) = e−mπi
∑

ν n2
ν(a2τ+2at)cE(t, τ)

which can be seen by the transformation formulas of theta-functions.
¿From Appendix A we know that, if p1(M)S1 = mp1(V )S1 , then∑
j m

2
j = m

∑
ν n

2
ν for each fixed point and the exponential factors

cancel each other. 2

So the rigidity theorem is equivalent to that FE(t, τ) is holomorphic
in t. We will prove that FE(t, τ) is actually holomorphic in two variables
t and τ on C×H.
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Now we study the modular transformation of SL2(Z) on FE(t, τ).
Recall that

g =

(
a b
c d

)
∈ SL2(Z)

acts on (t, τ) ∈ C×H by

g(t, τ) = (
t

cτ + d
,
aτ + b

cτ + d
).

One has the following

Lemma 5.2: For any g =

(
a b
c d

)
∈ SL2(Z), we have

FE(g(t, τ)) = (cτ + d)kFgE(t, τ)

where gE =
∑

µ aµEµ is a finite complex linear combination of positive

energy representations of L̃Spin(2l) of highest weight of level m.
Actually the function

FgE(t, τ) =
∑

µ

∑
p

H(t, τ)cEµ(t, τ)

is the complex linear combination of the corresponding Lefschetz num-
bers.

Proof: We use the theorem of Kac-Peterson in Section 2.2, which
tells us the actions of the two generators

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
of SL2(Z) on the characters. In general this gives

χE(g(z, τ)) = emcπi
∑

j z2
j /(cτ+d)χgE(z, τ)

where gE =
∑

µ aµEµ is a finite linear combination of positive energy

representations of L̃Spin(2l) of highest weight of level m. Here {aµ}
are some complex numbers and Eµ is a representation of L̃Spin(2l) of
highest weight Λµ and level m, i.e. Eµ = L(Λµ). Here we define

χgE(z, τ) =
∑

µ

aµχEµ(z, τ)

by complex linear extension and we also extend the elliptic operator
associated to gE and its Lefschetz number linearly to K(M)⊗Z C. We
have the corresponding elliptic operator∑

µ

aµq
mΛµD ⊗⊗∞n=1Sqn(TM − dimM)⊗ ψ(Eµ, V )
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whose Lefschetz number is

FgE(t, τ) =
∑

p

∑
µ

aµH(t, τ)cEµ(t, τ).

It is easy to see that

cE(g(t, τ)) = ecmπi
∑

ν n2
νt2/(cτ+d)

∑
µ

aµcEµ(t, τ).

Since we also have

H(g(t, τ)) = (cτ + d)ke−cπi
∑

j m2
j t2/(cτ+d)H(t, τ)

for any g ∈ SL2(Z). By the condition on equivariant Pontrjagin classes,
the exponential factors cancel each other, which gives the lemma. 2

One actually only needs to check Lemma 5.2 for the two generators
of SL2(Z), S and T . The following lemma is a generalization of Propo-
sition 6.1 in [BT] or Lemma 1.3 in [Liu1]. The proof is essentially the
same. For completeness, we give the detail.

Lemma 5.3: For any g ∈ SL2(Z), the function FgE(t, τ) is holo-
morphic in (t, τ) for t ∈ R and τ ∈ H.

Proof: Let z = e2πit and N = max{|mj|} where mj runs through
the exponents of all fixed points. The expressions

cE(t, τ) =
∑

λ∈P k(modkM+Cδ)

cΛλ (τ)Θλ(T, τ)

and

H(t, τ) = (2πi)−k

k∏
j=1

θ′(0, τ)

θ(mjt, τ)

tell us that FgE(t, τ) has a convergent Laurent series expansion of the
form ∑

µ

aµq
mΛµ

∞∑
j=0

bgjµ(z)qj

in the domain |q| 1
N < |z| < |q|− 1

N . Here {bgjµ(z)} are rational functions
of z with possible poles on the unit circle.

But considered as a formal power series of q,

⊗∞n=1Sqn(TM)⊗ (
∑

µ

aµq
mΛµψ(Eµ, V )) =

∑
µ

aµq
mΛµ

∞∑
j=0

V g
jµq

j

with V g
jµ ∈ K(M)⊗Z C. Note that the terms in the above two µ-sums

correspond to each other. Apply Lefschetz fixed point formula to each
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V g
jµ, we get that, for |z| = 1, each bgjµ(z) is the Lefschetz number of an

elliptic operator. This implies that

bgjµ(z) =

N(j)∑
m=−N(j)

agµ
mjz

m,

forN(j) some positive integer depending on j and agµ
mj complex number.

Since both sides are analytic functions of z, this equality holds for any
z ∈ C.

On the other hand, multiply FgE(t, τ) by

f(z) =
∏

p

k∏
j=1

(1− zmj)

where the product runs over all of the fixed points {p}, we get a holo-
morphic function which then has a convergent power series expansion
of the form ∑

µ

aµq
mΛµ

∞∑
j=0

cgjµ(z)qj

with {cgjµ(z)} polynomial functions, in the domain |q| 1
N < |z| < |q− 1

N .
Compare the above two expansions, one gets that for each j the equality

cgjµ(z) = f(z) · bgjµ(z)

holds. So by the Hilbert Nullstellensatz, we know that∑
µ

aµq
mΛµ

∞∑
j=0

bgjµ(z)qj =
∑

µ

aµq
mΛµ

∞∑
j=0

(
cgjµ(z)

f(z)
)qj

is holomorphic in the domain |q| 1
N < |z| < |q− 1

N . Obviously R×H lies
inside this domain. 2

Now let us prove Theorem 1. At this point the proof is almost
identical to our new proof of the Witten rigidity theorems in [Liu1].

By Lemma 5.1, we know that FE(t, τ) is a doubly periodic meromor-
phic function in t, therefore to get the rigidity theorem, we only need
to prove that FE(t, τ) is holomorphic on C×H.

First note that, as a meromorphic function on C × H, all of the
possible polar divisors of FE(t, τ) can be expressed in the form t =
n(cτ+d)

A
with A, n, c, d integers, A 6= 0 and c, d prime to each other.

Lemma 5.3 tells us that the divisor t = n
A

is not the polar divisor of
FgE(t, τ) for any g and any integers A, n.

For any polar divisor t = n(cτ+d)
A

of FE(t, τ) with (c, d) = 1, we
can find integers a, b such that ad − bc = 1 and consider the matrix
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g =

(
d −b
−c a

)
∈ SL2(Z). Since

FgE(t, τ) = (−cτ + a)−kFE(
t

−cτ + a
,
dτ − b

−cτ + a
),

it is easy to see that, if t = n(cτ+d)
A

is the polar divisor of FE(t, τ), then
a polar divisor of FgE(t, τ) is given by

t

−cτ + a
=
n(c dτ+b

−cτ+a
+ d)

A

which exactly gives t = n
A
. This is a contradiction to Lemma 5.3. So

FE(t, τ) is holomorphic on C × H. This proves Theorem 1 for the
isolated fixed point case.

Now we discuss the general fixed point case. Obviously we only need
to verify the transformation formulas used above.

Let {Mα} be the fixed submanifolds of the circle action and

TM |Mα = E1 ⊕ · · · ⊕ Eh ⊕ TMα

be the equivariant decomposition of TM with respect to the S1-action.
We denote the Chern root of Eγ by 2πixγ and the Chern roots of
TMα ⊗C by {±2πiyj}. Assume that g acts on Eγ by e2πimγt.

Similarly let
V |Mα = L1 ⊕ · · · ⊕ Ll

be the equivariant decomposition of V restricted to Mα. Assume that
g acts on Lν by e2πinνt. Here some nν may be zero. We denote the
Chern root of Lν by 2πiuν .

Let 2kα denote the dimension of Mα. Then the Lefschetz number of

qmΛ ·D ⊗⊗∞n=1Sqn(TM − dimM)⊗ ψ(E, V )

is given by

FE(t, τ) =
∑
Mα

(
kα∏
j=1

(2πiyjF (yj, τ))(
h∏

γ=1

F (xγ +mγt, τ))cE(u+ t, τ))[Mα]

where

F (x, τ) = (2πi)−1 θ
′(0, τ)

θ(x, τ)
, cE(u+ t, τ) = χE(U + T, τ)

with U+T = (u1+n1t, · · · , ul+nlt). See Appnedix A for the derivation
of FE(t, τ).

Since gE =
∑

µ aµEµ, the corresponding elliptic operator is∑
µ

aµq
mΛµD ⊗ (⊗∞n=1Sqn(TM − dimM)⊗ ψ(Eµ, V ))



ON MODULAR INVARIANCE AND RIGIDITY THEOREMS 21

whose Lefschetz number is

FgE(t, τ) =
∑
Mα

(
kα∏
j=1

(2πiyjF (yj, τ))(
h∏

γ=1

F (xγ+mγt, τ))cgE(u+t, τ))[Mα]

with

cgE(u+ t, τ) =
∑

µ

aµcEµ(u+ t, τ)

as in Lemma 5.2.

Let us first check the modular transformation of g =

(
a b
c d

)
∈

SL2(Z). We have

FE(
t

cτ + d
,
aτ + b

cτ + d
)

=
∑
Mα

(
kα∏
j=1

(2πiyjF (yj,
aτ + b

cτ + d
))(

h∏
γ=1

(F (xγ+
mγt

cτ + d
,
aτ + b

cτ + d
))cE(u+

t

cτ + d
,
aτ + b

cτ + d
))[Mα]

= (cτ+d)k
∑
Mα

(
kα∏
j=1

2πiyjF ((cτ+d)yj, τ))
h∏

γ=1

(F ((cτ+d)xγ+mγt, τ))cgE((cτ+d)u+t, τ))[Mα].

Here to cancel the exponential factors one needs∑
j

y2
j +

∑
γ

(xγ +mγt)
2 = m

∑
ν

(uν + nνt)
2

which is exactly the localization of the equality p1(M)S1 = mp1(V )S1

to Mα. See Appendix A.
But since we only need the kα-th homogeneous terms of the polyno-

mials in x’s, y’s and u’s, one gets

(
kα∏
j=1

yjF ((cτ+d)yj, τ))
h∏

γ=1

(F ((cτ+d)xγ+mγt, τ))cgE((cτ+d)u+t, τ))[Mα]

= (
kα∏
j=1

yjF (yj, τ))
h∏

γ=1

(F (xγ +mγt, τ))cgE(u+ t, τ))[Mα].

Therefore

FE(g(t, τ)) = (cτ + d)kFgE(t, τ)

as in the isolated fixed point case.
We leave to the reader to check the action of t → t + aτ + b for

a, b ∈ 2Z. Note that, for this, one only needs the conditions∑
j

m2
j = m

∑
ν

n2
ν ,

∑
γ

mγxγ = m
∑

ν

nνuν
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which are easy consequences of the localization of the equality of the
first equivariant Pontrjagin classes.

This finishes the proof of Theorem 1.

2.6. Almost Complex Manifolds I. Now letX be a compact almost
complex manifold of complex dimension k and W be a complex vector
bundle of rank l on X. Here by complex bundle we mean a real bundle
with a complex structure. One has the decompositions

TX ⊗C = T ′X ⊕ T ′′X, W ⊗C = W ′ ⊕W ′′.

Assume that there exists an S1-action on X which lifts to W and
preserves the complex structures of X and W .

Following Witten, consider the fiberwise multiplication action by a
complex number y = e2πiα on W ′ and by y−1 on W ′′ respectively. In
this way we get a real Gy-equivariant bundle V α such that V α ⊗C =
W ′ ⊕W ′′. Here Gy denotes the multiplicative group generated by y.
One notes that V α is actually isomorphic to W viewed as a real bundle.

If w2(W ) = 0 which is equivalent to c1(W ) ≡ 0(mod2), then V α is
a Spin(2l)-vector bundle and the method in Section 2.3 can be used
to get an element ψ(E, V α), associated to V α and a positive energy
representation E of L̃Spin(2l) of highest weight.

Let ∂̄ denote the anti-holomorphic differential on X. Assume fur-
thermore that w2(X) = 0 and denote the Dirac operator on X by D.

Recall that D = ∂̄⊗K− 1
2 with K = detTX ′. Consider the equivariant

elliptic operator

D ⊗⊗∞n=1Sqn(TX ⊗ C)⊗ ψ(E, V α)

under the action of Gy × S1. Take α = 1
N

for some positive integer N .
For a complex vector bundle F , let p1(F )S1 = c21(F )S1 − 2c2(F )S1 be
the first equivariant Pontrjagin class of the underlying real bundle. We
have

Theorem 2: For any positive energy representation E of L̃Spin(2l)
of highest weight of level m, if w2(X) = w2(W ) = 0, c1(W ) ≡ 0(modN)
and p1(X)S1 = mp1(W )S1, then the Gy × S1-equivariant elliptic oper-
ator

D ⊗⊗∞n=1Sqn(TX ⊗ C)⊗ ψ(E, V α)

is rigid with respect to the S1-action.
Proof: We only give a sketch for isolated fixed point case and leave

the general fixed point case to the reader.
Let {p} be the fixed points of the S1-action. Choose the orientation

compatible decompositions of TX ′ and W ′ at each fixed point. One
then has
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TX ′|p = ⊕k
j=1Ej, W ′|p = ⊕l

ν=1Lν .

Assume that g = e2πit acts on Ej and Lν by e2πimjt and e2πinνt respec-
tively. Write

χα
E(z, τ) = χE(z + α, τ)

where z + α = (z1 + α, · · · , zl + α). First by the same method as in
Section 2.5, we get that

Fα
E(t, τ) =

∑
p

H(t, τ)cαE(t, τ),

where

cαE(t, τ) = χα
E(T, τ),

is the Lefschetz number of

qmΛ ·D ⊗⊗∞n=1Sqn(TX ⊗ C − dimX)⊗ ψ(E, V α)

at y × e2πit ∈ Gy × S1. Here H(t, τ) , T and mΛ have the same
expressions as in Section 2.5. As in the proof of Theorem 1, one first
verifies that Fα

E(t, τ) is doubly periodic with respect to the action

T → t+ aτ + b

for a, b ∈ NZ. Then one can check that, for any g =

(
a b
c d

)
∈

SL2(Z),

Fα
E(g(t, τ)) = (cτ + d)kF

α(cτ+d)
gE (t, τ)

where F
α(cτ+d)
gE (t, τ) is the Lefschetz number of

elmπicα2(cτ+d)
∑

µ

aµq
mΛµD⊗Lmcα⊗⊗∞n=1Sqn(TX⊗C−dimX)⊗ψ(Eµ, V

α(cτ+d)).

Here L = detW ′ and {aµ} are some complex numbers. Also V α(cτ+d)

is the corresponding equivariant bundle with respect to the fiber mul-
tiplication by y = e2πiα(cτ+d) and ψ(Eµ, V

α(cτ+d)) is the element in
K(X)[[q]] associated to V α(cτ+d) and the positive energy representa-
tion Eµ = L(Λµ) of L̃Spin(2l) of highest weight Λµ of level m. Recall
gE =

∑
µ aµEµ. In terms of local data, we conveniently write

F
α(cτ+d)
gE (t, τ) =

∑
p

H(t, τ)c
α(cτ+d)
gE (t, τ)

with

c
α(cτ+d)
gE (t, τ) = elmπicα2(cτ+d)

∑
µ

aµe
2πimcα

∑
ν nνt · χα(cτ+d)

Eµ
(t, τ).
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By our discussions in Section 2.5, these two properties, together with
Lemma 5.3 of that section, are enough for Theorem 2. 2

As the applications of Theorem 2, we give some examples. We will
use the same notations S, T, S ′ and T ′ as in Section 2.4 to denote the
four highest weight representations of L̃Spin(2l) of level 1.

Example A) Take m = 1 and E = T , One easily sees that

ψ(V α, T ) = L
1
2 ⊗⊗∞n=0Λ−y−1qnW ′′ ⊗∞n=1 Λ−yqnW ′.

We get the rigidity of ∂̄⊗ (K−1⊗L)
1
2 ⊗Θα

q (TX|W ). Here L = detW ′,
K = detT ′X and

Θα
q (TX|W ) = ⊗∞n=0Λ−y−1qnW ′′⊗∞n=1Λ−yqnW ′⊗∞n=1SqnT ′X⊗∞n=1SqnT ′′X.

Actually, in [Liu1] we have proved this result by assuming the slightly
weaker condition w2(W ) = w2(X), c1(W ) ≡ 0(modN) and p1(W )S1 =
p1(X)S1 . Take W = TX, we get the rigidity theorem of Hirzebruch
[H], i.e. the rigidity of ∂̄ ⊗Θα

q (TX). Here

Θα
q (TX) = ⊗∞n=0Λ−y−1qnT ′′X⊗∞n=1Λ−yqnT ′X⊗∞n=1SqnT ′X⊗∞n=1SqnT ′′X.

These examples were also discussed by Witten in [W].
Example B) Take m = 1 and E = S, S ′ or T ′, one gets the rigidity

of ∂̄⊗(K−1⊗L)
1
2 ⊗Pα

q (TX|W ), D⊗Qα
q (TX|W ) and D⊗Rα

q (TX|W ).

Take W = TX, one gets the rigidity of ∂̄⊗Pα
q (TX), D⊗Qα

q (TX) and
D ⊗ Rα

q (TX). The rigidity of these operators were proved in [Liu1],
Proposition 2.1. Here recall that

Pα
q (TX|W ) = ⊗∞n=0Λy−1qnW ′′ ⊗∞n=1 ΛyqnW ′ ⊗∞n=1 SqnT ′X ⊗∞n=1 SqnT ′′X,

Qα
q (TX|W ) = ⊗∞n=1Λ−y−1qn− 1

2
W ′′ ⊗∞n=1 Λ

−yqn− 1
2
W ′ ⊗∞n=1 SqnT ′X ⊗∞n=1 SqnT ′′X,

Rα
q (TX|W ) = ⊗∞n=1Λy−1qn− 1

2
W ′′ ⊗∞n=1 Λ

yqn− 1
2
W ′ ⊗∞n=1 SqnT ′X ⊗∞n=1 SqnT ′′X;

and take W = TX, one gets

Pα
q (TX) = ⊗∞n=0Λy−1qnT ′′X ⊗∞n=1 ΛyqnT ′X ⊗∞n=1 SqnT ′X ⊗∞n=1 SqnT ′′X,

Qα
q (TX) = ⊗∞n=1Λ−y−1qn− 1

2
T ′′X ⊗∞n=1 Λ

−yqn− 1
2
T ′X ⊗∞n=1 SqnT ′X ⊗∞n=1 SqnT ′′X,

Rα
q (TX) = ⊗∞n=1Λy−1qn− 1

2
T ′′X ⊗∞n=1 Λ

yqn− 1
2
T ′X ⊗∞n=1 SqnT ′X ⊗∞n=1 SqnT ′′X.

Example C) Consider the tensor products of S, T, S ′ and T ′, one
can get some higher level rigidity theorems, especially the examples in
Section 4 of [Liu1]. We omit the details here. In fact {S, T, S ′, T ′}
form a ring by tensor product, each homogeneous term of degree m
gives a rigid elliptic operator, if the corresponding bundle W satisfies
c1(W ) ≡ 0(modN), w2(X) = w2(W ) = 0 and p1(X)S1 = m · p1(W )S1 .
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Take m = 1, W = TX and consider the following elliptic operator∑
g

∂̄⊗⊗∞n=1Sqn(T ′X−dimX)⊗∞n=1Sqn(T ′′X−dimX)⊗ψ(V α(cτ+d), T )v

where the sum is over

g =

(
a b
c d

)
∈ SL2(Z)/Γ1(N).

The index of this operator gives a rigid elliptic genus of level 1 for
compact almost complex manifolds with c1 ≡ 0(modN). Explicitly

ψ(V α(cτ+d), T )v = Lcα⊗⊗∞n=0Λ−y−1qn(W ′′−dimW )⊗∞n=1Λ−yqn(W ′−dimW )

with y = e2πiα(cτ+d). Also recall

Γ1(N) = {
(
a b
c d

)
|c ≡ 0(modN), a ≡ d ≡ 1(modN)}

It is not difficult to see that when c1(W ) = 0 Theorem 2 actually
holds for any complex number α, this generalizes the result of Krichever
to higher level loop group representations. See the corresponding dis-
cussions in [Liu1].

3. Jacobi Forms and Rigidity Theorems

In this part we generalize the the rigidity theorems in last part and
in [Liu1] to the non-zero anomaly case from which we derive a family
of holomorphic Jacobi forms. As corollaries we get many vanishing
theorems, especially an Â-vanishing theorem for loop space.

3.1. Non-zero Anomaly. Let M be a compact smooth spin manifold
of dimension 2k with an S1-action and V be a rank 2l equivariant spin
vector bundle on it. We consider the equivariant cohomology group
of M , H∗

S1(M,Z). Obviously H∗
S1(M,Z) is a module over H∗(BS1,Z)

induced by the projection

π : M ×S1 ES1 → BS1.

Recall that

H∗
S1(M,Z) = H∗(M ×S1 ES1,Z).

Let p1(V )S1 , p1(M)S1 ∈ H∗
S1(M,Z) be the equivariant first Pontrjagin

classes of V and TM respectively. See Appendix A for a geometric
discussion of equivariant characteristic classes. From our previous dis-
cussions, one knows that the condition p1(V )S1 = p1(M)S1 puts very
strong restriction on the characteristic numbers of M and V . Actually
this condition governs the modular invariance of the elliptic operators
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discussed in [Liu1] and last part which is one of the essential reasons
for their rigidity.

In this part we consider the situation when p1(V )S1 − p1(M)S1 ∈
H∗

S1(M,Z) is equal to the pull-back of an element in H∗(BS1,Z). Since

H∗(BS1,Z) = Z[[u]]

with u a generator of degree 2, we know that this is equivalent to

p1(V )S1 − p1(M)S1 = n · π∗u2

with n an integer. We call n the anomaly of rigidity. The reason for this
will be clear in the following. Follow [Liu1], we introduce the following

elements in K(M)[[q
1
2 ]]:

Θ′
q(TM |V )v = ⊗∞n=1Λqn(V − dimV )⊗∞m=1 Sqm(TM − dimM),

Θq(TM |V )v = ⊗∞n=1Λ−qn− 1
2
(V − dimV )⊗∞m=1 Sqm(TM − dimM),

Θ−q(TM |V )v = ⊗∞n=1Λqn− 1
2
(V − dimV )⊗∞m=1 Sqm(TM − dimM),

Θ∗
q(TM |V )v = ⊗∞n=1Λ−qn(V − dimV )⊗∞m=1 Sqm(TM − dimM).

One of our main results in this part is the following theorem which
generalizes the rigidity theorems to the non-zero anomaly case:

Theorem 3: Let M and V be as above. Assume

p1(V )S1 − p1(M)S1 = n · π∗u2,

then the Lefschetz numbers of D⊗4(V )⊗Θ′
q(TM |V )v, D⊗Θq(TM |V )v,

D⊗Θ−q(TM |V )v are holomorphic Jacobi forms of index n
2

and weight
k over (2Z)2 oΓ with Γ equal to Γ0(2), Γ0(2), Γθ respectively. The Lef-
schetz number of D⊗(4+(V )−4−(V ))⊗Θ∗

q(TM |V )v is a holomorphic

Jacobi form of index n
2

and weight k − l over Z2 o SL2(Z)
Here by Lefschetz number we actually mean its extension from unit

circle to complex plane. See the discussions in Section 3.2 for definitions
of the modular subgroups appeared in Theorem 3.

As a corollary of Theorem 3 we have the following vanishing theorems
for loop space.

Corollary 4.1: Let M , V and n be as in Theorem 3. If n = 0, the
Lefschetz numbers of the elliptic operators in Theorem 3 are indepen-
dent of the generators of S1. If n < 0, then these Lefschetz numbers
are identically zero, especially the indices of these elliptic operators are
zero.

This explains the reason that we call n the anomaly. There are some
other corollaries by applying several simple facts about Jacobi forms
in [EZ] to our situation. We believe that the applications of certain
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deeper results in Jacobi form theory may bring new light to elliptic
genus theory.

It is very interesting to discuss the operator

D ⊗⊗∞m=1Sqm(TM − dimM),

which corresponds to the Dirac operator on LM . One notes that this
operator is the same as

∞∏
n=1

(1− qn)2k ·D ⊗⊗∞m=1Sqm(TM).

We will prove the following Â-vanishing theorem for loop space.
Theorem 4: If p1(M)S1 = n · π∗u2 for some integer n, then the

Lefschetz number, especially the index, of

D ⊗⊗∞m=1Sqm(TM − dimM)

is zero.
We note that p1(M)S1 = n ·π∗u2 is the equivariant spin condition on

LM . If M is 2-connected or the S1-action is induced from an S3-action,
then this condition is equivalent to the condition p1(M) = 0 which is
the spin condition on LM . See the discussion in Section 3.4.

We remark that Witten has predicted Theorem 3 by considerations
from physics. See the discussions in [W1]. We may view the results
here as part of his famous rigidity theorems.

It is also interesting to generalize Theorem 3 to higher level cases.
In last part, we considered the Dirac operator on loop space twisted by
some element ψ(E, V ) ∈ K(M)[[q]] associated to a spin vector bundle
V of rank 2l and a positive energy representation E of L̃Spin(2l) of
highest weight of level m. Our theorem there says that, if p1(M)S1 =
mp1(V )S1 , then

D ⊗⊗∞n=1Sqn(TM)⊗ ψ(E, V )

is rigid. Using a refinement of the modular invariance of the characters
of the highest weight modules of affine Lie algebras given by Kac-
Wakimoto, we will show the following.

Theorem 5: Let M , V and E be as above. If

mp1(V )S1 − p1(M)S1 = n · π∗u2,

then

qmΛD ⊗⊗∞n=1Sqn(TM − dimM)⊗ ψ(E, V )

is a holomorphic Jacobi form of index n
2

and weight k over (2Z)2 o
Γ(N(m)). 2
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Here N(m) is an integer depending on the level m and given in [Ka],
and mΛ is as given in Section 2.2 of last part. As a corollary one has
that, if n < 0, the Lefschetz number of the above elliptic operator must
be zero, so is its index. If n = 0, Theorem 5 gives the rigidity theorem.
There are similar theorems for almost complex manifolds which will be
discussed in Section 3.3.

We organize this part in the following way. In Section 3.2 we prove
Theorem 3 and Theorem 5. In Section 3.3, we discuss the the corre-
sponding theorems for almost complex manifolds. In Section 3.4 we
prove Theorem 4 and give some vanishing theorems by combining sev-
eral simple facts in the theory of Jacobi forms with the theorems in
Sections 3.2 and 3.3.

3.2. Proofs of Theorems 3 and 5. Recall that a (meromorphic)
Jacobi form of index m and weight l over Lo Γ, where L is an integral
lattice in the complex plane C preserved by the modular subgroup
Γ ⊂ SL2(Z), is a (meromorphic) function F (t, τ) on C×H such that

1) F (
t

cτ + d
,
aτ + b

cτ + d
) = (cτ + d)le2πim ct2

cτ+dF (t, τ),

2) F (t+ λτ + µ, τ) = e−2πim(λ2τ+2λt)F (t, τ),

where (λ, µ) ∈ L, g =

(
a b
c d

)
∈ Γ. If F is holomorphic on C ×H,

we say that F is a holomorphic Jacobi form. It is important for us to
emphasize this point, since the key point of our theorems is to prove
that those Lefschetz numbers are holomorphic Jacobi forms.

Jacobi forms can be viewed as sections of holomorphic line bundles
on the elliptic modular surface

XL
Γ = C×H/Lo Γ.

See [EZ] and [Kr]. Also see Section 4.1 for more detail about elliptic
modular surface. Obviously F (t, τ) is holomorphic iff it is a holomor-
phic section.

Now let us start to prove Theorem 3. We first prove that the Lef-
schetz numbers of the elliptic operators in Theorem 3 are, possibly
meromorphic, Jacobi forms over the corresponding modular subgroups.

Let us first consider the isolated fixed point case. Let g = e2πit ∈
S1 be a generator of the action group and {p} ⊂ M be the set of
fixed points. Let {mj}, {nν} ⊂ Z be the exponents of TM and V
respectively, at the fixed point p. See Section 2.5 for the geometric
meaning of these local data.
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Denote the Lefschetz numbers of 2−l ·D⊗4(V )⊗Θ′
q(TM |V )v, D⊗

Θq(TM |V )v, D ⊗ Θ−q(TM |V )v and 2−l · D ⊗ (4+(V ) − 4−(V )) ⊗
Θ∗

q(TX|V )v by F V
ds

(t, τ), F V
D (t, τ), F V

−D(t, τ) and F V
D∗(t, τ) respectively.

Apply the Atiyah-Bott-Segal-Singer Lefschetz fixed point formula, one
has

F V
ds

(t, τ) = (2πi)−k
∑

p

θ′(0, τ)k

θ1(0, τ)l

∏l
ν=1 θ1(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
D (t, τ) = (2πi)−k

∑
p

θ′(0, τ)k

θ2(0, τ)l

∏l
ν=1 θ2(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
−D(t, τ) = (2πi)−k

∑
p

θ′(0, τ)k

θ3(0, τ)l

∏l
ν=1 θ3(nνt, τ)∏k
j=1 θ(mjt, τ)

,

F V
D∗(t, τ) = (2πi)l−k

∑
p

θ′(0, τ)k−l

∏l
ν=1 θ(nνt, τ)∏k
j=1 θ(mjt, τ)

.

Here θ(t, τ), θµ(t, τ) for µ = 1, 2, 3 are the four classical Jacobi theta-
functions and

θ′(0, τ) =
∂

∂t
θ(t, τ)|t=0, θµ(0, τ) = θµ(t, τ)|t=0.

Similarly let us denote the Lefschetz number of

D ⊗⊗∞m=1Sqm(TM − dimM)

by H(t, τ), then

H(t, τ) = (2πi)−k
∑

p

k∏
j=1

θ′(0, τ)

θ(mjt, τ)
.

As Lefschetz numbers, the F V ’s and H are only defined for t ∈ R i.e.
for z = e2πit ∈ S1. But we can obviously extend them to well-defined
meromorphic functions for (t, τ) ∈ C×H. This follows easily from the
infinite product expressions of the theta-functions. In the following,
when mention F V ’s and H, we actually mean their extensions.

Recall the three modular subgroups

Γ0(2) = {
(
a b
c d

)
∈ SL2(Z)|c ≡ 0(mod 2)},

Γ0(2) = {
(
a b
c d

)
∈ SL2(Z)|b ≡ 0(mod 2)}, and

Γθ = {
(
a b
c d

)
∈ SL2(Z)|

(
a b
c d

)
≡

(
1 0
0 1

)
or

(
0 1
1 0

)
(mod 2)}.
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First one has the following
Lemma 2.1: If p1(V )S1 − p1(M)S1 = n · π∗u2, then
F V

ds
(t, τ) is a Jacobi form over (2Z)2 o Γ0(2);

F V
D (t, τ) is a Jacobi form over (2Z)2 o Γ0(2);
F V
−D(t, τ) is a Jacobi form over (2Z)2 o Γθ;

If p1(M)S1 = −n · u2, then H(t, τ) is a Jacobi form over (2Z)2 o
SL2(Z).

All of them are of index n
2

and weight k;
F V

D∗(t, τ) is a Jacobi form of index n
2

and weight k − l over Z2 o
SL2(Z).

Proof: The condition p1(V )S1 − p1(M)S1 = n · π∗u2 implies that∑
ν

n2
ν −

∑
j

m2
j = n

for each fixed point. See Appendix A. First under the actions of a, b ∈
2Z, one has

θµ(mj(t+ aτ + b), τ) = e−πim2
j (a2τ+2at)θµ(mjt, τ)

and

θµ(nν(t+ aτ + b), τ) = e−πin2
ν(a2τ+2at)θµ(nνt, τ)

for θµ = θ, θ1, θ2 or θ3. Therefore∏l
ν=1 θµ(nν(t+ aτ + b), τ)∏k
j=1 θµ(mj(t+ aτ + b), τ)

= e−πin(a2τ+2at)

∏l
ν=1 θν(nνt, τ)∏k
j=1 θ(mjt, τ)

.

So we get that these F V ’s satisfy the condition 2) in the definition of
Jacobi forms. Similarly if p1(M)S1 = −n · π∗u2, then

∑
j m

2
j = −n for

each fixed point, one can get

H(t+ aτ + b) = e−πin(a2τ+2at)H(t, τ).

On the other hand, we have the well-known modular transformation
formulas for theta-functions under the action of the generators S, T ∈
SL2(Z). See [Ch] or [Liu1]. For S, we have

θ′(0,− 1
τ
)k

θ1(0,− 1
τ
)l

∏l
ν=1 θ1(

nνt
τ
,− 1

τ
)∏k

j=1 θ(
mjt

τ
,− 1

τ
)

= τ ke
πint2

τ
θ′(0, τ)k

θ2(0, τ)l

∏l
ν=1 θ2(nνt, τ)∏k
j=1 θ(mjt, τ)

,

θ′(0,− 1
τ
)k

θ3(0,− 1
τ
)l

∏l
ν=1 θ3(

nνt
τ
,− 1

τ
)∏k

j=1 θ(
mjt

τ
,− 1

τ
)

= τ ke
πint2

τ
θ′(0, τ)k

θ3(0, τ)l

∏l
ν=1 θ3(nνt, τ)∏k
j=1 θ(mjt, τ)

;

θ′(0,− 1
τ
)k

θ(0,− 1
τ
)l

∏l
ν=1 θ(

nνt
τ
,− 1

τ
)∏k

j=1 θ(
mjt

τ
,− 1

τ
)

= τ ke
πint2

τ
θ′(0, τ)k

θ(0, τ)l

∏l
ν=1 θ(nνt, τ)∏k
j=1 θ(mjt, τ)

.
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Therefore

F V
ds

(
t

τ
,−1

τ
) = τ ke

πint2

τ F V
D (t, τ), F V

−D(
t

τ
,−1

τ
) = τ ke

πint2

τ F V
−D(t, τ)

and

F V
D∗(

t

τ
,−1

τ
) = τ k−le

πint2

τ F V
D∗(t, τ).

For H(t, τ), we have

H(
t

τ
,−1

τ
) = τ ke

πint2

τ H(t, τ).

Similarly under the action of T , we have

F V
ds

(t, τ + 1) = F V
ds

(t, τ), F V
D (t, τ + 1) = F V

−D(t, τ)

and

F V
D∗(t, τ + 1) = F V

D∗(t, τ).

For H(t, τ), one has

H(t, τ + 1) = H(t, τ).

One knows that T and ST 2ST generate Γ0(2). Also Γ0(2) and Γθ are
conjugate to Γ0(2) by S and TS respectively. So the assertions for
F V

ds
(t, τ), F V

D (t, τ) and F V
−D(t, τ) follow easily from the above formulas.

Also easily follow the cases for F V
D∗(t, τ) and H(t, τ). 2

The above proof gives some transformation formulas of the F V ’s and
H which are crucial for the proof of Theorem 3. We single them out
as a lemma.

Lemma 2.2: If p1(V )S1 − p1(M)S1 = n · π∗u2, we have

F V
ds

( t
τ
,− 1

τ
) = τ ke

πint2

τ F V
D (t, τ), F V

ds
(t, τ + 1) = F V

ds
(t, τ);

F V
−D( t

τ
,− 1

τ
) = τ ke

πint2

τ F V
−D(t, τ), F V

D (t, τ + 1) = F V
−D(t, τ);

F V
D∗( t

τ
,− 1

τ
) = τ k−le

πint2

τ F V
D∗(t, τ), F V

D∗(τ, τ + 1) = F V
D∗(t, τ).

If p1(M)S1 = −n · π∗u2,

H(
t

τ
,−1

τ
) = τ ke

πint2

τ H(t, τ), H(t, τ + 1) = H(t, τ). 2

For g =

(
a b
c d

)
∈ SL2(Z), let us use the notation

F (g(t, τ))|m,k = (cτ + d)−ke−2πimct2/(cτ+d)F (
t

cτ + d
,
aτ + b

cτ + d
)

to denote the action of g on a Jacobi form F of index m and weight k.
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Lemma 2.2 tells us that, for F ∈ {F V ′s,H}, its modular transfor-
mation F (g(t, τ))|n

2
,k is still one of the F V ’s or H. Similar to Lemma

5.3 of Section 2.5, we have the following
Lemma 2.3: For any g ∈ SL2(Z), let F (t, τ) be one of the F V ’s or

H, then F (g(t, τ))|n
2

,k is holomorphic in (t, τ) for t ∈ R and τ ∈ H.
2

For this lemma, it is crucial that the F V ’s and H are the Lefschetz
numbers of elliptic operators. This is also the place where the spin
conditions on M and V come in. The following lemma can be viewed
as a summary of our key techniques.

Lemma 2.4: For a (meromorphic) Jacobi form F (t, τ) of index m
and weight k over Lo Γ, assume that F may only have polar divisors
of the form t = cτ+d

l
in C × H for some integers c, d and l 6= 0. If

F (g(t, τ))|m,k is holomorphic for t ∈ R, τ ∈ H for every g ∈ SL2(Z),
then F (t, τ) is holomorphic for any t ∈ C and τ ∈ H.

Proof: Since the possible polar divisors of F (t, τ) can be written in

the form t = n(cτ+d)
l

with (c, d) = 1. We can always find integers a, b

such that ad− bc = 1. Take g =

(
d −b
−c a

)
∈ SL2(Z). Since

F (g(t, τ)) = F (
t

−cτ + a
,
dτ + b

−cτ + a
),

it is easy to see that, if t = n(cτ+d)
l

is the polar divisor of F (t, τ), a
polar divisor of F (g(t, τ)) is given by solving the equation

t

−cτ + a
=
n(c dτ−b

−cτ+a
+ d)

l

which exactly gives t = n
l
. This is a contradiction to the assumption.

2

Now it is easy to prove Theorem 3. By Lemmas 2.1, 2.2 and 2.3
we know that the F V ’s and H satisfy the assumptions of Lemma 2.4.
In fact all of their possible polar divisors are of the form t = cτ+d

m
where

c, d are integers and m is one of the exponents {mj}. This easily follows
from their theta-function expressions. So Lemma 2.4 gives Theorem 3
for the isolated fixed point case.

For the general fixed point case, one only needs to verify the transfor-
mation formulas of the F V ’s and H under the action of (2Z)2oSL2(Z).
We only check the operatorD⊗4(V )⊗Θ′

q(TM |V )v and leave the other
cases to the reader. Let us keep the notations as in Section 2.5 of last
part. In terms of those data the Lefschetz number F V

ds
(t, τ) is then
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given by

F V
ds

(t, τ) =
∑
Mα

(
kα∏
j=1

(2πiyjF (yj, τ))(
h∏

γ=1

F (xγ+mγt, τ))(
l∏

ν=1

F1(uν+nνt, τ))[Mα]

where

F (x, τ) = (2πi)−1 θ
′(0, τ)

θ(x, τ)
, F1(x, τ) =

θ1(x, τ)

θ1(0, τ)
and 2kα is the dimension of Mα.

First recall that the condition on the first equivariant Pontrjagin
classes implies the equality∑

ν

(uν + nνt)
2 − (

∑
j

y2
j +

∑
γ

(xγ +mγt)
2) = n · t2

for each fixed point. See Appendix A. This means∑
ν

n2
ν−

∑
γ

m2
γ = n,

∑
ν

nνuν =
∑

γ

mγxγ, and
∑

ν

u2
ν =

∑
j

y2
j +

∑
γ

x2
γ.

Apply the transformation formulas of the theta-functions, we easily
get

(1) Under the action t→ t+ aτ + b with a, b ∈ 2Z:

θµ(xγ +mγ(t+ aτ + b), τ) = e−πi(m2
γ(a2τ+2at)+2amγxγ)θµ(xγ +mγt, τ)

and

θµ(uν + nν(t+ aτ + b), τ) = e−πi(n2
ν(a2τ+2at)+2anνuν)θµ(uν + nνt, τ)

for θµ one of the four Jacobi theta-functions. Combine these with the
equalities derived from the condition p1(V )S1 − p1(M)S1 = n ·π∗u2, we
get

F V
ds

(t+ aτ + b, τ) = e−πin(a2τ+2at)F V
ds

(t, τ).

(2) Under the action of SL2(Z). We only check the action of S =(
0 −1
1 0

)
and leave to the reader to check the action of T . We have

θ(xγ +
mγt

τ
,−1

τ
) =

1

i

√
τ

i
eπi

(τxγ+mγt)2

τ θ(τxγ +mγt, τ),

θ(yj,−
1

τ
) =

1

i

√
τ

i
eπi

(τyj)2

τ θ(τyj, τ), θ
′(0,−1

τ
) =

τ

i

√
τ

i
θ′(0, τ),

θ1(uν +
nνt

τ
,−1

τ
) =

√
τ

i
eπi

(τuν+nνt)2

τ θ2(τuν + nνt, τ).

Write

F2(x, τ) = (2πi)−1 θ2(x, τ)

θ2(0, τ)
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and put the above equalities together, we get

F V
ds

(
t

τ
,−1

τ
)

=
∑
Mα

(
kα∏
j=1

(2πiyjF (yj,−
1

τ
))(

h∏
γ=1

F (xγ+
mγt

τ
,−1

τ
))(

l∏
ν=1

F1(uν+
nνt

τ
,− 1

τ)
)[Mα]

= τ keπi nt2

τ

∑
Mα

(
kα∏
j=1

(2πiyjF (τyj, τ))(
h∏

γ=1

F (τxγ+mγt, τ))(
l∏

ν=1

F2(τuν+nνt, τ))[Mα]

= τ keπi nt2

τ

∑
Mα

(
kα∏
j=1

(2πiyjF (yj, τ))(
h∏

γ=1

F (xγ+mγt, τ))(
l∏

ν=1

F2(uν+nνt, τ))[Mα]

= τ keπi nt2

τ F V
D (t, τ).

For the second equality one needs∑
ν

(uν + nνt)
2 − (

∑
j

y2
j +

∑
γ

(xγ +mγt)
2) = n · t2

which is exactly the localization of p1(V )S1−p1(M)S1 = n·π∗u2; for the
third equality one notes that we only need the kα-th homogeneous term
in the expansion in {yj, xγ, uν}. This finishes the proof of Theorem 3.

Proof of Theorem 5. We only discuss isolated fixed point case.
The general fixed point case is the same as above. Take E = L(Λ) to
be a level m highest weight representation of L̃Spin(2l). Recall that
the Lefschetz number of

qmΛD ⊗⊗∞n=1Sqn(TM − dimM)⊗ ψ(E, V )

is given by

FE(t, τ) =
∑

p

H(t, τ)cE(t, τ)

where the sum is over the fixed points of g = e2πit with

H(t, τ) = (2πi)−k

k∏
j=1

θ′(0, τ)

θ(mjt, τ)

and
cE(t, τ) = χE(T, τ).

Here T = (n1t, · · · , nlt) and χE(z, τ) = qmΛchE(z, τ) is the normalized
Kac-Weyl character of the representation E = L(Λ) of L̃Spin(2l). See
Sections 2.2 and 2.5 for the notations.

First we extend FE(t, τ) to a (meromorphic) function on C×H and
then verify the following properties:
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(a) Under the action of (a, b) ∈ (2Z)2, we have

H(t+ aτ + b, τ) = eπi
∑

j m2
j (a2τ+2at)H(t, τ);

cE(t+ aτ + b, τ) = e−mπi
∑

ν n2
ν(a2τ+2at)cE(t, τ).

These follow from the transformation formulas of theta-functions. Since

mp1(V )S1 − p1(M)S1 = n · π∗u2

implies m
∑

ν n
2
ν−

∑
j m

2
j = n for each fixed point, we immediately get

FE(t+ aτ + b, τ) = eπin(a2τ+2at)FE(t, τ).

(b) Under the action of g =

(
a b
c d

)
∈ SL2(Z), we have

H(g(t, τ)) = H(
t

cτ + d
,
aτ + b

cτ + d
)

= (cτ + d)ke−cπi
∑

j m2
j t2/(cτ+d)H(t, τ)

which can be shown by using the transformation formulas of θ(t, τ) and
θ′(0, τ).

On the other hand, by a theorem of Kac-Peterson-Wakimoto ([Ka],
Ch. 13), there exists an integer N(m) such that, for any g ∈ Γ(N(m))
where

Γ(N(m)) = {g =

(
a b
c d

)
∈ SL2(Z)|g ≡

(
1 0
0 1

)
(modN(m))},

one has

cE(g(t, τ)) = emcπi
∑

ν n2
νt2/(cτ+d)cE(t, τ).

Therefore, if mp1(V )S1 − p1(M)S1 = n · π∗u2, we have

FE(g(t, τ)) = (cτ + d)keπinct2/(cτ+d)FE(t, τ).

Obviously, (a) and (b) together with Lemma 2.4 imply Theorem 5.
We leave the consideration of the general fixed point case to the reader.

3.3. Almost Complex Manifolds II. Now we consider the case of
almost complex manifolds. For simplicity we restrict ourselves to the
isolated fixed point case and leave the general fixed point case to the
reader.

Let W be a complex vector bundle, i.e. a real vector bundle with
a comlex structure, of rank l on a compact almost complex manifold
M of dimension k. Assume that there exists an S1-action on M with
respect to which W is equivariant. Assume the action preserves the
complex structures of M and W .
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Recall

Γ1(N) = {
(
a b
c d

)
∈ SL2(Z)|c ≡ 0(modN), a ≡ d ≡ 1(modN)}

and the decompositions

TM ⊗C = TM ′ ⊕ TM ′′, W ⊗C = W ′ ⊕W ′′.

Let L =detW ′, K =detTM ′ and

Θα
q (TM |W )v = ⊗∞n=0 Λ−y−1qn(W ′′ − dimW )⊗∞n=1 Λ−yqn(W ′ − dimW )

⊗∞n=1 Sqn(T ′M − dimM)⊗∞n=1 Sqn(T ′′M − dimM)

with y = e2πiα an N -th root of unity. Then we have
Proposition 3.1: If w2(W ) = w2(M), c1(W ) ≡ 0(modN) for some

positive integer N and

p1(W )S1 − p1(M)S1 = n · π∗u2,

then the Lefschetz number of ∂̄⊗ (K−1⊗L)
1
2 ⊗Θα

q (TM |W )v is a holo-

morphic Jacobi form of index n
2

and weight k over (NZ)2 o Γ1(N).
2

Here recall p1(·)S1 means the equivariant first Pontrjagin class of the
intrinsic real bundle and ∂̄ is the anti-holomorphic derivative.

We actually have more results. In fact all of the virtual versions
of the elliptic operators in Proposition 2.1 of [Liu1] give holomorphic
Jacobi forms. We summarize this in the following

Proposition 3.2: Let M and W be as above. If w2(M) = w2(W ) =
0, c1(W ) ≡ 0(modN) and

p1(W )S1 − p1(M)S1 = n · π∗u2,

then ∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗ Pα

q (TM |W )v, D ⊗ Qα
q (TM |W )v and D ⊗

Rα
q (TM |W )v are holomorphic Jacobi forms of index n

2
and weight k

over (2NZ)2 o Γ1(2N). 2

Here recall D = ∂̄ ⊗ K− 1
2 is the Dirac operator on M which exists

by the assumption and

Pα
q (TM |W )v = ⊗∞n=0Λy−1qn(W ′′ − dimW )⊗∞n=1 Λyqn(W ′ − dimW )

⊗∞n=1 Sqn(T ′M − dimM)⊗∞n=1 Sqn(T ′′M − dimM),

Qα
q (TM |W )v = ⊗∞n=1Λ−y−1qn− 1

2
(W ′′ − dimW )⊗∞n=1 Λ

−yqn− 1
2
(W ′ − dimW )

⊗∞n=1 Sqn(T ′M − dimM)⊗∞n=1 Sqn(T ′′M − dimM),

Rα
q (TM |W )v = ⊗∞n=1Λy−1qn− 1

2
(W ′′ − dimW )⊗∞n=1 Λ

yqn− 1
2
(W ′ − dimW )

⊗∞n=1 Sqn(T ′M − dimM)⊗∞n=1 Sqn(T ′′M − dimM).
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For the proofs of Propositions 3.1 and 3.2 we have to introduce the
following elliptic operators:

∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗ Lcα ⊗Θα(cτ+d)

q (TM |W )v

for Proposition 3.1; and

∂̄ ⊗(K−1 ⊗ L)
1
2 ⊗ Lcα ⊗ Pα(cτ+d)

q (TM |W )v,

D ⊗Lcα ⊗Qα(cτ+d)
q (TM |W )v,

D ⊗Lcα ⊗Rα(cτ+d)
q (TM |W )v

for Proposition 3.2. Here the bundles Θ
α(cτ+d)
q , P

α(cτ+d)
q , Q

α(cτ+d)
q and

R
α(cτ+d)
q are the same as the Θα

q , Pα
q , Qα

q and Rα
q respectively, but

replacing α by α(cτ + d). We denote their Lefschetz numbers by
Fα(cτ+d)(t, τ), Pα(cτ+d)(t, τ), Qα(cτ+d)(t, τ) andRα(cτ+d)(t, τ) respectively.
Let {mj}, {nν} be the exponents of T ′M,W ′ respectively. See Section
2.6. Then in terms of the theta-functions we have

Fα(cτ+d)(t, τ) = (2πi)−k
∑

p

e2πicα
∑

nνt θ′(0, τ)k

θ(α(cτ + d), τ)l

∏l
ν=1 θ(nνt+ α(cτ + d), τ)∏k

j=1 θ(mjt, τ)
;

Pα(cτ+d)(t, τ) = (2πi)−k
∑

p

e2πicα
∑

nνt θ′(0, τ)k

θ1(α(cτ + d), τ)l

∏l
ν=1 θ1(nνt+ α(cτ + d), τ)∏k

j=1 θ(mjt, τ)
,

Qα(cτ+d)(t, τ) = (2πi)−k
∑

p

e2πicα
∑

nνt θ′(0, τ)k

θ2(α(cτ + d), τ)l

∏l
ν=1 θ2(nνt+ α(cτ + d), τ)∏k

j=1 θ(mjt, τ)
,

Rα(cτ+d)(t, τ) = (2πi)−k
∑

p

e2πicα
∑

nνt θ′(0, τ)k

θ3(α(cτ + d), τ)l

∏l
ν=1 θ3(nνt+ α(cτ + d), τ)∏k

j=1 θ(mjt, τ)
.

Obviously when c = 0, d = 1 we recover the Lefschetz numbers of the
operators in Propositions 3.1 and 3.2.

Follow the same method as before, one can check the modularity
of Fα(t, τ), Pα(t, τ), Qα(t, τ) and Rα(t, τ) under the actions of the

corresponding groups. Also for any g =

(
a b
c d

)
∈ SL2(Z) one has

the following transformation formulas:

Fα(g(t, τ))|n
2

,k = Fα(cτ+d)(t, τ),

and
Pα(g(t, τ))|n

2
,k = Uα(cτ+d)(t, τ)

where Uα(cτ+d)(t, τ) is one of the Pα(cτ+d)(t, τ), Qα(cτ+d)(t, τ) andRα(cτ+d)(t, τ).
It is quite easy to show that they are preserved by the corresponding
modular subgroups. Consult [Liu1].
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Together with Lemma 1.4 in [Liu1], we can prove Propositions 3.1
and 3.2 in the same way as that of proving Theorem 3.

Some higher level elliptic operators for almost complex manifolds
were discussed in last part. Under the assumption

mp1(W )S1 − p1(M)S1 = n · π∗u2,

one can get holomorphic Jacobi forms of index n
2

and weight k over
(2NZ)2 o Γ(2N(m)) for the elliptic operator in Theorem 2 in Section
2.6. We omit the details.

3.4. Vanishing Theorems for Loop Space. In this section we ap-
ply some simple facts in the theory of Jacobi forms to our situation
and get certain topological results for manifolds with S1-actions. It
is conceivable that the applications of some deeper theory of Jacobi
forms might give much deeper topological results. This should be an
interesting topic for further studies.

The following lemma which is Theorem 1.2 in [EZ] can be easily
proved by using the property 2) of Jacobi forms in Section 3.2 and by

considering the integral of
∂Ft
∂t

F
around the boundary of the fundamental

domain of the lattice L.
Lemma 4.1: Let F be a holomorphic Jacobi form of index m and

weight k. Then for fixed τ , F (t, τ), if not identically zero, has exactly
2m zeroes in any fundamental domain for the action of the lattice on
C. 2

This tells us that there are no holomorphic Jacobi form of negative
index, therefore, if m < 0, F must be identically zero. If m = 0, it is
easy to see that F must be independent of t.

The following lemma is Theorem 2.2 in [EZ] and can be proved by
using the property 2) of Jocobi forms as given in Section 3.2.

Lemma 4.2: Let F be a holomorphic Jacobi form of index m and
weight k. Assume that F has Fourier development

∑
l,r c(l, r)q

lzr.

Then c(l, r) depends only on 4lm− r2 and on r(mod 2m). If m = 1 or
m is prime, then c(l, r) depends only on 4lm − r2. If m = 1 and k is
odd, then F is identically zero.

Combining Lemmas 4.1 and 4.2 with Theorem 3, we have the fol-
lowing result:

Corollary 4.1: Let M , V and n be as in Theorem 3. If n = 0, the
Lefschetz numbers of the elliptic operators in Theorem 3 are indepen-
dent of the generators of S1. If n < 0 or n = 2 and k=1

2
dimM is odd,

then these Lefschetz numbers are identically zero, especially the indices
of these elliptic operators are zero. 2
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We know that, when k = 1
2
dimM is odd, the indices of these elliptic

operators should be zero by Atiyah-Singer index formula, since the
degree of characteristic classes of a compact real manifold are of 4l.
But it is not so obvious that their Lefschetz numbers should be zero.

One can also get the following results from the above lemmas and
Theorem 5,

Corollary 4.2: Let M , V , E and n be as in Theorem 5. If n = 0,
the Lefschetz number of

qmΛD ⊗⊗∞n=1Sqn(TM − dimM)⊗ ψ(E, V )

is independent of the generator of S1. If n < 0, this Lefschetz number
is identically zero, especially its index is zero.

For almost complex manifolds, we have
Corollary 4.3: a) Let M , W and n be as in Proposition 3.1. If

n = 0, the Lefschetz number of ∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗ Θα

q (TM |W )v is

independent of the generator of S1. If n < 0 or n = 2 and k is odd,
this Lefschetz number is identically zero, especially the index of this
operator is zero.

b) Under the assumptions of Proposition 3.2, the same conclusions

hold for ∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗ Pα

q (TM |W )v, D ⊗ Qα
q (TM |W )v and D ⊗

Rα
q (TM |W )v. 2

Another quite interesting consequence of the above discussions is the
following

Theorem 4: Let M be a compact spin manifold with an S1-action,
if p1(M)S1 = −n · π∗u2 for some integer n, then the Lefschetz number,
especially the index, of

D ⊗⊗∞m=1Sqm(TM − dimM)

is zero. 2

Proof: In fact, from the proof of Lemma 2.1 we find that the case
n > 0 can never happen, since the condition on the first equivariant
Pontrjagin class tells us that

∑
m2

j = −n for each fixed point. The
case n = 0 implies that all the exponents {mj} are zero which means
that the S1-action can not have fixed point. This in turn implies the
vanishing of any characteristic number. For n < 0, one can apply
Lemmas 2.1, 2.4 and 4.1 to get the result. 2

Theorem 4 may be viewed as a loop space analogue of the Â-vanishing
theorem of Atiyah-Hirzebruch [AH] for compact spin manifolds with
S1-actions. It is easy to show that, if M is 2-connected, the condition
p1(M)S1 = −n · π∗u2 is actually equivalent to p1(M) = 0 which is the
spin condition on LM . Because of the special role played by Dirac op-
erator on spin manifold, Theorem 4 suggests that there should be much
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more interesting theory lying behind this vanishing theorem. When the
S1-action is induced from an S3-action, A. Dessai informed me that the
condition p1(M)S1 = −n · π∗u2 is also equivalent to p1(M) = 0.

One can draw more corollaries from our theorems. Here we only give
several examples.

(1) If p1(M)S1 −mp1(V )S1 = n · π∗u2 with the integer n ≤ 0, then
D ⊗ V and D ⊗4(V )⊗ V are rigid.

(2) If p1(V )S1 = n · π∗u2 with n ≤ 0, then ds ⊗ V is rigid.
(3) If n < 0, then the indices of the above operators vanish.
These results can be derived from the tensor products of the four

level 1 irreducible representations of L̃Spin(2l). See Section 2.4.

3.5. Appendix A: The Derivation of FE(t, τ). In this section we
describe a simple way to derive FE(t, τ) which is the local expression in
the Lefschetz fixed point formula for the elliptic operator in Theorem
1. We also discuss equivariant characteristic classes from the point of
view of differential geometry.

Still let M be a 2k-dimensional compact smooth spin manifold with
S1-action, and V be an equivariant spin vector bundle of rank 2l on
M . All elliptic operators on M are twisted Dirac operators. Consider
elliptic operator D⊗ V and denote its Lefschetz number at g = e2πit ∈
S1 with respect to the S1-action by L(t, V ).

It is very interesting to understand the Lefschetz fixed point formula
in the category of equivariant cohomology. First every equivariant vec-
tor bundle V on M has an equivariant extension which is the bundle

p : V ×S1 ES1 →M ×S1 ES1.

The characteristic classes of this bundle are the equivariant character-
istic classes of V . We denote the equivariant Â-class by ÂS1 and the
equivariant Chern character by chS1 .

Using differential geometry, we can give explicit formulas for these
equivariant classes. Let DV be a covariant derivative on V , ωV be the
S1-invariant connection form and ΩV = DV ωV be the curvature matrix.
Let JV = iXωV where X is the Killing vector field generated by the
S1-action and iX is the contraction operator. Since ωV is S1-invariant,
it is easy to see that

iXΩV = −DV JV .

Similarly we have the corresponding JM and ΩM for the tangent bundle
TM of M . Replace the generator u of H∗(BS1, Z) = Z[[u]] by t, we
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then can use

ÂS1(M) = det
1
2

(ΩM + tJM)/2

sinh(ΩM + tJM)/2
,

chS1V = tr eΩV +tJV

in practical computations. Here, modulo torsion, we have used the
identification of equivariant cohomology with the cohomology of the
complex (Ω∗

S1(M), d + tiX), where Ω∗
S1(M) is the S1-invariant C∞-

differential forms on M . See [AB1] and [BV] for further details about
this identification.

When restricted to the fixed point set, using the notations of Section
2.5, we can formally write

JV = ⊕l
ν=1

(
0 2πinν

−2πinν 0

)
ΩV = ⊕l

ν=1

(
0 2πiuν

−2πiuν 0

)
.

One has similar expressions for JM and ΩM in terms of the {yj,mγ, xγ}
in Section 2.5. Denote by

π∗ : H∗
S1(M,Z) → H∗(BS1, Z)

where

π : M ×S1 ES1 → BS1

is the canonical projection, the push-forward map. We then have the
following identities

L(t, V ) = π∗(ÂS1(M)chS1V )

=
∑
Mα

i∗α(ÂE(M)chEV )

E(να)
[Mα]

where E(να) is the equivariant Euler class of the normal bundle of Mα

in M . The second equality is called Bott localization.
Let iα : Mα → M be the inclusion and i∗α denote the induced

homomorphism in equivariant cohomology. In terms of the local data
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on Mα, we have

i∗αchS1V =
l∑

ν=1

e2πi(uν+nνt),

E(να) =
h∏

γ=1

(xγ +mγt), and

i∗αÂ(M) = Â(Mα)
h∏

γ=1

xγ +mγt

eπi(xγ+mγt) − e−πi(xγ+mγt)
.

One then notes that i∗αchS1 ⊗∞n=1 Sqn(TM) is the inverse of

∞∏
n=1

kα∏
j=1

(1−e2πiyjqn)(1−e−2πiyjqn)
h∏

γ=1

(1−e2πi(xγ+mγt)qn)(1−e−2πi(xγ+mγt)qn),

and

qmΛi∗αchS1ψ(E, V ) = cE(u+ t, τ) = χE(U + T, τ)

with U + T = (u1 + n1t, · · · , ul + nlt). Also recall that the Jacobi
theta-function

θ(v, τ) = q
1
8 2sinπv

∞∏
n=1

(1− qn)(1− e2πivqn)(1− e−2πivqn).

Put these formulas together, we get the expression of FE(t, τ).
One also has explicit expressions for the equivariant Pontrjagin classes

i∗αp(V )S1 =
l∏

ν=1

(1 + (uν + nνt)
2),

i∗αp(M)S1 =
kα∏
j=1

(1 + y2
j )

h∏
γ=1

(1 + (xγ +mγt)
2).

Therefore

i∗αp1(V )S1 =
l∑

ν=1

(uν + nνt)
2,

i∗αp1(M)S1 =
kα∑
j=1

y2
j +

h∑
γ=1

(xγ +mγt)
2.

These are the formulas of the first equivariant Pontrjagin classes which
we used in our proofs of the rigidity and vanishing theorems.
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4. Elliptic Genera and Elliptic Surfaces

In this part we use the geometry of elliptic modular surface to study
the topology of manifolds with S1-actions. We also use this idea to
explain the algebraic geometry behind the transfer argument in [BT],
[H] and [Kri]. From now on we only consider level 1 case and assume
that the anomalies vanish. So we are in the situation that the Witten
rigidity theorems hold. For explicity we only consider the isolated fixed
point case.

4.1. Localization and Elliptic Surfaces. For a positive integer K,
consider the open elliptic surface

XΓ(K) = C×H/Z2 o Γ(K)

where the action of (a, b) ∈ Z2 is given by

(t, τ) → (t+ aτ + b, τ)

and g ∈ Γ acts by modular transformation. Let X̄Γ(K) be the toric
compactification of XΓ(K) by adding singular fibers and consider the
natural projection

π : X̄Γ(K) → ȲΓ(K)

where ȲΓ(K) is the the compactification of H/Γ(K) by adding cusps.
The fiber over τ ∈ YΓ(K) is

π−1(τ) = C/Z + Zτ.

For K > 2 the singular fibers of π, lying only above the cusps of
ȲΓ(K), are equivalent to each other and are K-gons of rational curves.
Explicitly a singular fiber is given by

∪K−1
ν=0 Θν , with Θν ·Θν+1 = 1

where Θν ' CP 1. We know that Θν has self-intersection −2 and is
covered by two affine charts W 0

ν and W 1
ν , where the coordinates (uν , vν)

of W 0
ν can be chosen such that Θν |W 0 is given by vν = 0, then the

coordinates of W 1
ν are (u−1

ν , u2
νvν). From this the following relations

can be deduced easily

uν+1 = v−1
ν , vν+1 = uνv

2
ν ;

uνvν = qK , u
ν+1
ν vν

ν = z

where qK = e
2πiτ

K , z = e2πit.
We keep the conventions of last two parts, i.e. M is a dimension 2k

spin manifold with an S1-action and V is a rank 2l equivariant spin
vector bundle on it. First let us consider the behaviors of F V

ds
(t, τ)

and F V
D∗(t, τ) around Θν by using the above local coordinates. Let
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F V
ds

(uν+1
ν vν

ν , (uνvν)
K) denote F V

ds
(t, τ), but replacing (z, q) by the local

coordinates uν , vν on Θν . We use the same notations for F V
D∗(t, τ) as

well as for the theta-functions in the fixed point formula expressions.
Let us first take V = TM and simply write the corresponding

F V
ds

(t, τ) as Fds(t, τ). Denote by ds = D ⊗ 4(M) the signature op-
erator on M .

(1) On Θ0, z = u0, q = (u0v0)
2m. It is easy to see that, when v0 = 0,

one has q = 0 and Θ′
q(TM)v = 1, therefore

Fds(t, τ) = the Lefschetz number of ds on M .

(2) On Θν for ν > 0. We assume that mjν = 2mlj + kj with kj ≥ 0.
Here recall that the mj’s are the exponents of TM at the fixed points.
See Section 2.5. When vν goes to zero, one has

θ′(0, (uνvν)
2m)

θ1(0, (uνvν)2m)
→ 1

and

θ1((uνvν)
mjνu

mj
ν , (uνvν)

2m)

θ((uνvν)mjνu
mj
ν , (uνvν)2m)

= (−1)lj
θ1((uνvν)

kju
mj
ν , (uνvν)

2m)

θ((uνvν)kju
mj
ν , (uνvν)2m)

→

{
(−1)lj if kj 6= 0;

(−1)lj 1+u
mj
ν

1−u
mj
ν

if kj = 0.

Since M is spin, {(−1)
∑

j lj} have the same parity for different points
in one connected component of M2m which is the fixed submanifold of
the cyclic group Z2m ⊂ S1 (see Lemma 8.1 in [BT]). Then the limiting
terms sum up to the Lefschetz number of the signature operator on
M2m = ∪iM

i
2m where {M i

2m} denote the connected components ofM2m.
By rigidity theorems we know that Fds(t, τ) is independent of t, so

we have
Theorem 6: ∑

M i
2m

(−1)
∑

j ljsign(M i
2m) = sign(M),

where sign(·) denotes the signature, i.e. the index of ds. 2

The constancy of F V
ds

(t, τ) and F V
D∗(t, τ) can also give some inter-

esting topological results which we would like to leave to the reader to
verify. For example assume M and V are spin with p1(V )S1 = p1(M)S1 .
Let njν = 2mpj + qj with qj ≥ 0, where the nj’s are the exponents of
V at the fixed points. we then have

Ind(D ⊗4(V )) =
∑
M i

2m

(−1)
∑

j lj Ind(Di
m ⊗4(V i

m)),
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e(V ) =
∑
M i

2m

(−1)
∑

j lj−
∑

j pje(V i
m),

where Di
m denotes the Dirac operator on M i

2m, V i
m is the Z2m invariant

part of V restricted to M i
2m and e(·) denotes the Euler number.

We leave the discussions of the case of almost complex manifolds to
the reader. For example let M and W be as in Section 3.3. Let {mj}
be the exponents of TM ′ and

Tdy(M) = the index of ∂̄ ⊗ Λ−y−1T ′′M,

then one can easily get

Tdy(M) =
∑
M i

2m

y−
∑

j ljTdy(M
i
2m)

where {lj} are integers such that mjν = 2mlj + kj with kj ≥ 0 as in
the spin case and ∪iM

i
2m are the fixed point submanifolds of Z2m.

The following corollary also corresponds to the singular fibers of the
elliptic surface X̄Γ(2m). We use the same notations as above.

Corollary 1.1: a) For spin case, if w2(V ) = 0 and p1(V )S1 =
p1(M)S1, then D⊗4(V ), D⊗ (4+(V )−4−(V )) and D⊗V are rigid.

b) For almost complex case, if p1(W )S1 = p1(M)S1, w2(M) = w2(W )

and c1(W ) ≡ 0(modN), then ∂̄ ⊗ (K−1 ⊗ L)
1
2 ⊗ L

s
N for −N < s < 1

and ∂̄⊗ (K−1⊗L)
1
2 ⊗Λ−y−1W ′′ are rigid for y an N-th root of unity.

Recall that L = detW ′ and K = detTM ′.
Proof: At q = 0,

Θ′
q(TM |V )v = 1; Θ∗

q(TM |V )v = 1; and Θα
q (TM |W )v = Λ−y−1W ′′.

Also V is the second term in the q-expansion of Θq(TM |V )v. 2

As observed by Bott, we even do not know a direct proof of the rigid-
ity of D ⊗ TM without using the Witten rigidity theorems. Therefore
it will be interesting to find a simple direct proof of the above corollary.
Our proof of the Witten rigidity theorems is, in some sense, representa-
tion theoretic, since the modular invariance is essentially related to the
characters of the representations of affine Lie algebras. It will be in-
teresting to find a representation theoretic proof of the Â-vanishing
theorem of Atiyah-Hirzebruch, which may bring some new light to
rigidity theorems. The geometric relationship between the rigidity of
the elliptic operators on loop space and their modular invariance is still
mysterious at present.

4.2. Transfer and Elliptic Surfaces. In this section we study in
more detail the behavior of Fds(t, τ) around the singular fibers of the
elliptic modular surface X̄Γ(2m), for any positive integer m > 1. It may
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be interesting to see that the expression of Fds(t, τ) on Θν discussed in
last section naturally invites us to the transfer argument which is the
crucial technique in [BT], [H] and [Kri]. We leave the considerations
of the other elliptic operators to the reader. For simplicity we consider
the non-virtual version of Fds(t, τ), that is we consider elliptic operator

D ⊗4(M)⊗⊗∞n=1SqnTM ⊗∞m=1 ΛqmTM

and still denote its Lefschetz number by Fds(t, τ). In terms of the
theta-functions, we have

Fds(t, τ) = i−k
∑

p

k∏
j=1

θ1(mjt, τ)

θ(mjt, τ)
.

See [Liu1].
Let M and M2m = ∪iM

i
2m be as in last section. Let p ∈ M i

2m be
a fixed point of the S1-action and still let {Ej} be the line bundles in
the equivariant decomposition of TM restricted at p. Then according
to the action of the Z2m ⊂ S1 we have

TM |M i
2m

= TM i
2m ⊕ E1 ⊕ · · · ⊕ Eh.

and the S1 acts on Ej by e2πimjt with kj 6= 0 where mjν = 2mlj +kj as
in last section. Note that those Ej’s which have kj = 0 are absorbed
into TM i

2m. It is easy to see that

θ1((uνvν)
mjνu

mj
ν , (uνvν)

2m)

θ((uνvν)mjνu
mj
ν , (uνvν)2m)

= (−1)ljchS1Θwν (Ej)

where wν = uνvν = q
1

2m and

Θwν (Ej) =
Λ

w
kj
ν
Ej

Λ
−w

kj
ν
Ej

⊗∞n=1 (
Λ

w
2mn+kj
ν

Ej

Λ
−w

2mn+kj
ν

Ej

⊗
Λ

w
2mn+kj
ν

E∗
j

Λ
−w

2mn+kj
ν

E∗
j

).

Here chS1 is the equivariant Chern character restricted to M i
2m and E∗

j

denotes the complex dual of Ej .
For a vector bundle F , write

Θ′
q(F ) = ⊗∞m=1SqmF ⊗∞n=1 ΛqnF.

Then one gets

Fds(u
ν+1
ν vν

ν , (uνvν)
2m) =

∑
M i

2m

(−1)
∑

lj(the Lefschetz number of

di
s⊗ Θq(TM

i
2m)⊗m

j=1 Θwν (Ej) on M i
2m)

where di
s is the signature operator on M i

2m. By Proposition 6.1 of [BT]
or Lemma 2.3 of [Liu1], see also Lemma 5.3 in Section 2.5, one knows
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that {1 − zmjq−2mlj = 0}, which is the same as {1 − u
mj
ν = 0} in

the (uν , vν) coordinate, is not the polar divisor of Fds(t, τ). Note that
only the kj = 0 terms in the fixed point formula may contribute polar
divisors of the form {1−umj

ν = 0} in the neiborhood of Θν , and they are
eliminated by the above expression. In this way one can consider other
components of the singular fibers and prove that all of the possible polar
divisors can not happen. In fact all of the polar divisors of Fds(t, τ)
can be transformed into the form {1− u

mj
ν = 0} around some singular

component Θν . Here we have omitted the consideration of the action
of −1 ∈ S1 and would like to refer the readers to [BT], [H] and [Kri]
for the details of this transfer argument. Note that we come up to
this argument from a different point of view from that of [BT], [H] and
[Kri]. It is quite interesting to relate this technique to the geometry of
elliptic modular surfaces. For example we find that the ‘transfer’ to the
Z2m fixed point submanifold in [BT] corresponds to the ‘transfer’ from
Θ0 to Θν for ν 6= 0 on the singular fibers of X̄Γ(2m). Our proof of the
Witten rigidity theorems is, in some sense, a global transfer, because we
have used the whole elliptic surface. Modular group action interchanges
different singular fibers and transforms the Θν of one singular fiber to
the Θ0 of another singular fiber. The proofs of [BT], [H] and [Kri]
are, in a sense, local transfer, because they worked around one singular
fiber.

4.3. Appendix B: A Mod 2 Rigidity Theorem. Let M be an
8k + 1 or 8k + 2 dimensional compact smooth spin manifold. Let
4(M) = 4+(M)⊕4−(M) be the Z2-graded spinor bundle on M , and
let

D: 4+(M) →4−(M)

be the Dirac operator. Given a real vector bundle E on M we can form
the twisted Dirac operator D ⊗ E and obtain a skew adjoint or skew
Hermitian elliptic operator, which gives well-defined index

a) dimR Ker D ⊗ E mod 2, if dimM = 8k + 1
b) dimC Ker D ⊗ E mod 2, if dimM = 8k + 2

as topological invariant. We write it as Ind2D ⊗E. This index can be
naturally extended to a homomorphism from the real K-group KO(M)
to Z2.

Recall that a modular form f(τ) over a modular subgroup Γ is a
holomorphic function on the upper half plane H, with the following
transformation law

f(
aτ + b

cτ + d
) = χ(g)(cτ + d)kf(τ)
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where g =

(
a b
c d

)
∈ Γ and χ : Γ → C∗ is a character of Γ. The

integer k is called the weight of f . We also assume that f is holomorphic
at τ = i∞.

The power series expansion of f(τ) in qN = e
2πiτ

N for some positive
integer N is called the Fourier expansion of f . We denote the ring
of modular forms over a modular subgroup Γ with integral Fourier
coefficients by MZ(Γ). For f(τ) =

∑∞
j=0 ajq

j
N ∈ MZ(Γ) and a prime

number p, we consider the modulo p reduction of f which is given by
f̄(τ) =

∑∞
j=0 ājq

j
N where āj is ajmodp. We call f̄(τ) a mod p modular

form.
From number theory, we know that MZ(Γ0(2)) has an integral basis

consisting of two elements. We also know that Γ0(2) and Γθ are conju-
gate to Γ0(2). Let Θq(TM |V )v and Θ−q(TM |V )v be as in Section 3.1.
Take V = TM and denote the corresponding elements by Θq(TM)v

and Θ−q(TM)v respectively. In [Liu] we proved the following
Theorem B1: Let M be a dimension 8k + 1 or 8k + 2 compact

smooth spin manifold . Then the following mod 2 indices are mod 2
modular forms over the corresponding modular groups

1): Ind2(D ⊗Θq(TM)v over Γ0(2);
2): Ind2(D ⊗Θ−q(TM)v over Γθ. 2

The proof is essentially an index formula interpretation of an idea of
Ochanine. See [Liu] for the detail. The mod 2 modular forms in this
theorem are called mod 2 elliptic genera.

Now we prove a kind of mod 2 rigidity theorem which was also ob-
tained by K. Ono independently. First recall that an odd type invo-
lution on a spin manifold can not be lifted to an action on the spin
structure. See [AB] II for a detailed discussion about odd involutions.
The proof is very simple. Our purpose is to motivate the study of mod
p rigidity in topology.

Theorem B2: The existence of an odd type involution on an 8k+1
dimensional compact smooth spin manifold implies the vanishing of the
mod 2 elliptic genera.

Proof: We only consider D⊗Θq(M)v. Let T be the odd involution
on M . Naturally T induces an action on TM which we still denote by
T . Since T is of odd type, only its double cover can be lifted to the
spin bundle. See [AH]. We denote the lifting by T̂ . Then T̂ 2 = −1 on
the spinor bundle.

By choosing a T invariant metric on M , we can assume that both
T and T̂ commute with the action of the skew-adjoint operator P =
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D ⊗Θq(TM)v. Consider the action

S = T̂ ⊗ T

on

4+(M)⊗Θq(TM)v;

then

S2 = T̂ 2 ⊗ T 2 = −1.

This is because T acts on the virtual bundle TM − dimM by invo-
lution and T̂ 2 acts on 4+(M) by −1.
S2 induces identity action on M and Θq(TM)v, while S induces a

non-trivial action on

Γ(4+(M)⊗Θq(TM)v.

Since S commutes with P , naturally it induces an action on

Ker(P ⊗Θq(TM)v

which satisfies S2 = −1.
As a family of (virtual) real vector spaces, each term in the q-

expansion of Ker(P ⊗ Θq(TM)v has a complex structure S, so the
dimension is even and

dimRKer(P ⊗Θq(TM)v ≡ 0(mod 2). 2

It is easy to see that this argument can be used to prove that Ind2D⊗
E = 0 for any T -equivariant vector bundle E.

Especially the Â-invariant and the Brown-Kervaire invariant vanish.
For this see [Liu0].
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