
MODEL REDUCTION OF NONLINEAR
DIFFERENTIAL-ALGEBRAIC EQUATIONS

Johan Sjöberg ∗, Kenji Fujimoto ∗∗, Torkel Glad ∗

∗ Division of Automatic Control
Department of Electrical Engineering,

Linköpings universitet, SE-581 83 Linköping, Sweden
∗∗ Department of Mechanical Science and Engineering,

Nagoya University, Japan
Abstract:
In this work, a computational method to compute balanced realizations for nonlinear
differential-algebraic equation systems is derived. The work is a generalization of an
earlier work for nonlinear control-affine systems, and is based on analysis of the con-
trollability and observability functions.
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1. INTRODUCTION

During the last decades, Differential-Algebraic Equa-
tions (DAEs) have been extensively studied, see for
example (Dai, 1989; Brenan et al., 1996; Kumar and
Daoutidis, 1999; Kunkel and Mehrmann, 2006) and
references therein. One reason is the natural formu-
lation of many applications using this kind of system
models. The growing use of objected-oriented model-
ing languages such as MODELICA also increases the
interest in these models, since most often the output
from such tools is equations in this form.

The topic of this paper is model reduction of nonlinear
DAEs. The basic idea in model reduction is to ana-
lyze the system and decide which states of the system
are most important for the input-output behavior. The
analysis is based on the Hankel operator and studies
the energy in the input and output signals. States dif-
ficult to control, i.e., requiring a lot of control effort,
while not contributing so much to the output energy,
will affect the input-output behavior less than other
states and can therefore be removed. To analyze the
energy in the input and output signals, the controlla-
bility and observability functions will be used.

The controllability function is the minimum amount
of control energy required to reach a specific state in
infinite time, and hence it measures how hard a given
state is to reach. It is defined as the solution to an
optimal control problem. The observability function
measures the energy in the output signal when the
system is released from a given state and the control
input is equal to zero.

For control-affine state-space systems the background
and theory can be found in (Scherpen, 1994; Gray and
Mesko, 1999; Fujimoto and Scherpen, 2005) and ref-
erences therein. For linear time-invariant state-space
systems the controllability function is equal to the con-

trollability gramian multiplied from the left and right
by the state, while the observability function equals
the observability gramian post- and pre-multiplied by
the state. Computation of both the controllability and
the observability function in the nonlinear case in-
cludes solving a partial differential equation. For the
controllability function it is nonlinear while for the ob-
servability function it is linear. In both cases, it can be
difficult to find a solution in closed form. For control-
affine nonlinear systems some methods have been
studied. One method finds a local solution expressed
as a power series expansion, see (Scherpen, 1994),
while another is based on stochastics (Newman and
Krishnaprasad, 2000).

In (Stykel, 2004), linear time-invariant DAE systems
are considered and methods to compute the controlla-
bility and observability functions are derived. A phe-
nomenon that may occur for DAE systems is that some
combinations of the variables are not allowed due to
inherent constraints. Allowed combinations are de-
noted consistent and in (Stykel, 2004) only consistent
variables are considered.

In (Sjöberg and Glad, 2006; Sjöberg, 2006), nonlinear
DAE systems are considered. There some methods
to compute the controllability and the observability
functions are derived. One of these methods is similar
to a method derived in (Scherpen, 1994), yielding
local solutions expressed as power series. This method
will be used in this paper. All methods in (Sjöberg
and Glad, 2006; Sjöberg, 2006) follows the line of
(Stykel, 2004) and considers only consistent variables
and we will also do the same in this paper.

The research concerning nonlinear model reduction
is rather extensive. Some references are (Scherpen,
1994; Newman and Krishnaprasad, 2000; Lall et al.,
1999; Fujimoto and Scherpen, 2003b; Fujimoto and
Scherpen, 2003a; Fujimoto and Scherpen, 2005). In



the last three of these references, the Hankel operator
has been studied. Based on this operator it has been
shown that natural nonlinear extensions to results for
linear models can be derived. The computation of a
balanced realization and a reduced order model is
however rather involved to do analytically. Therefore
a method for nonlinear control-affine systems was
derived in (Fujimoto and Tsubakino, 2006) which is
based on power series expansions of the functions
involved to find a local balanced realization. In this
paper this work will be generalized to handle also
nonlinear time-invariant DAE systems.

Notation: The notation in this paper is fairly standard.
The Jacobian matrix of Vh, i.e., ∂Vh

∂x is denoted Vh;x.

2. PRELIMINARIES

The work in this paper will mostly consider nonlinear
DAEs in semi-explicit form

ẋ1 = F1(x1, x2, u) (1a)
0 = F2(x1, x2, u) (1b)
y = h(x1, x2) (1c)

where x1 ∈ Rn1 , x2 ∈ Rn2 , u ∈ Rm, F1 :
Rn1+n2+m → Rn1 , F2 : Rn1+n2+m → Rn2 and
h : Rn1+n2 → Rp

. Throughout this paper it will be
assumed that the DAE system satisfies the following
assumption.

Assumption 1. The system (1) has an equilibrium at
the origin and the corresponding output is zero, i.e.,

F1(0, 0, 0) = 0, F2(0, 0, 0) = 0, h(0, 0) = 0

Furthermore, it holds thatF2;x2(0, 0, 0) is nonsingular.

From this assumption, it is known from the implicit
function theorem that it is possible to solve F2 for x2

as
x2 = ϕ(x1, u) (2)

on a small neighborhood of the origin. The challenge
lies in the fact that in most practical cases, ϕ is not
possible to express explicitly.

It may seem very restrictive to just consider this class
of systems, but in (Kunkel and Mehrmann, 2006) it is
shown how rather general nonlinear DAEs

F̄ (ẋ, x, u) = 0 (3)

can be put into semi-explicit form satisfying the as-
sumptions above, possibly after introduction of an
integrator chain and control by using the highest
derivative of the input signal. Furthermore, it should
be noted that semi-explicitness is mostly assumed to
lessen the notation. The method derived can also han-
dle systems not being semi-explicit. For details, see
(Sjöberg, 2006).

One further assumption made in order to be able to
compute the reduced model will be that the system is
analytic.

Assumption 2. The functions F1(x1, x2, u),
F2(x1, x2, u) and h(x1, x2, u) are real analytic func-
tions in some open set around the origin.

From this assumption it follows that the system can be
expressed by power series

F (x1, x2, u) = A

(
x1

x2

)
+Bu+ Fh(x1, x2, u)

(4a)

h(x1, x2, u) = C

(
x1

x2

)
+ hh(x1, x2, u) (4b)

where the matrices A, B, and C are constant matrices
partitioned as

A =
(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C = (C1 C2)

and Fh and hh are the higher order terms of each
series expansion. For convenience later, we make the
following notational definition

Â = A11 −A12A
−1
22 A21 B̂ = B1 −A12A

−1
22 B2

Ĉ = C1 −A12A
−1
22 C2

Based on this notation two more assumptions that will
be made throughout the paper can be stated.

Assumption 3. The matrix Â is Hurwitz.

Assumption 4. (Â, B̂) is controllable.

That is, we assume that the linear part of the system is
stable and controllable.

2.1 Controllability Function
The controllability function basically measures the
minimal amount of energy in the control signal u(t)
required to reach a specific state x. It is defined as the
solution to the following optimal control problem

Lc

(
x1(0)

)
= min

u(·)

1
2

∫ 0

−∞
u(t)Tu(t) dt (5)

subject to the system dynamics

ẋ1 = F1(x1, x2, u) (6a)
0 = F2(x1, x2, u) (6b)

and the boundary conditions
x1(0) = x1,0 ∈ Ωx

lim
t→−∞

x1(t) = 0

where Ωx is a neighborhood of x1 = 0.

The controllability function must satisfy the condi-
tion Lc(0) = 0. The reason is the interpretation of
Lc(x1,0) as the minimum amount of input energy
required to drive the system from zero at t = −∞
to x1(0) = x1,0 at t = 0. According to the as-
sumptions, the system (6) has an equilibrium at the
origin and since no control effort is needed to keep
(x1, x2) = 0, the energy then equals zero. We also
use a convention that if x0 cannot be asymptotically
reached from 0, i.e., if there exists no control input
such that x1(−∞) = 0 and x1(0) = x1,0, Lc(x1,0) is
infinite.

We will only consider variables in the set

N = {x1 ∈ Ωx, x2 ∈ Rn2 |x2 = ϕ(x1, u), u ∈ Ωu}
where Ωu is a neighborhood of u = 0 such that the im-
plicit function theorem is valid. This means that only
points not violating the constraints are considered.



The optimal control problem presented above leads to
the task of finding a solution to the equations

0 = uT − Lc;x1

(
F1;u − F1;x2F

−1
2;x2

F2;u

)
(7a)

0 = 1
2u

Tu− Lc;x1F1 (7b)
0 = F2 (7c)

Sufficient conditions for the existence of a locally
unique solution to (7), which then is the controllability
function, will be shown below.

Theorem 5. Consider a nonlinear DAE system (1) sat-
isfying Assumptions 1–4. Then the system has a local
controllability function around the origin which can be
expressed as

Lc(x1) =
1
2
xT

1 Gcx1 + Lch(x1) (8)

whereGc is a positive definite matrix and Lch(x1) is a
uniformly convergent series expansion beginning with
terms of order three.

PROOF. See (Sjöberg, 2006).
The matrix Gc is the unique positive definite solution
to the Lyapunov equation

0 = G−1
c ÂT + ÂG−1

c + B̂B̂T (9)

such that −Â− B̂B̂TGc is Hurwitz. The higher order
terms in Lch(x1) can be computed recursively to any
degree. The corresponding control signal, achieving
this controllability function, is also given as a power
series

u∗(x1) = B̂TGcx1 + uh,∗(x1) (10)

where the higher order terms can be computed recur-
sively as higher orders of Lc(x1) become available.
Please see (Sjöberg, 2006) for details about the com-
putation.

2.2 Observability Function

The observability function reflects the energy in the
output signal when the system is released from a
certain initial state. Only the energy corresponding to
the initial state is of interest and therefore the control
signal is set to zero. The observability functionLo(x1)
is then defined as

Lo

(
x1(0)

)
=

1
2

∫ ∞

0

y(t)T y(t) dt (11)

subject to

ẋ1 = F1(x1, x2, 0) (12a)
0 = F2(x1, x2, 0) (12b)
y = h(x1, x2) (12c)

and the initial conditions x1(0) = x1,0 ∈ Ωx.

The observability function is found by solving

0 =
1
2
h(x1, x2)Th(x1, x2) + Lo;x1(x1)F1(x1, x2, 0)

0 = F2(x1, x2, 0)

and a theorem giving sufficient conditions for the
existence of a local observability function is given
below.

Theorem 6. Consider a nonlinear DAE system given
in the form (12). Assume that it satisfies Assump-
tions 1–3. Then a local observability function exists,
and can be expressed as

Lo(x1) =
1
2
xT

1 Gox1 + Loh(x1) (13)

where Go is positive semi-definite and Loh(x1) is
a uniformly convergent series consisting of terms of
order three and higher. Moreover, if

(
Â, Ĉ

)
is observ-

able, Go is positive definite.

PROOF. See (Sjöberg, 2006).
The first termGo, is given as the positive semi-definite
solution to the Lyapunov equation

0 = GoÂ+ ÂTGo + ĈT Ĉ

and higher order terms in Lo(x1) can be computed
recursively as described in (Sjöberg, 2006).

2.3 Model Reduction for State-Space Systems
In this section, theory for model reduction of state
space systems, i.e., when F2 is absent, will be dis-
cussed briefly. For a more thorough discussion see
(Scherpen, 1994; Fujimoto and Scherpen, 2005; Fu-
jimoto and Scherpen, 2003b; Fujimoto and Scher-
pen, 2003a).

The considered systems can be written as

ẋ1 = F1(x1, u) (14a)
y = h(x1) (14b)

where x1 ∈ Rn, u ∈ Rm, F1 : Rn+m → Rn and
h : Rn → Rp

.

Before a theorem presenting conditions under which
a system can be formulated as an input-normalized/
output-diagonalized realization, an assumption needs
to be made.

Assumption 7. The eigenvalues of G−1
c Go are dis-

tinct.
Having this assumption and the assumptions made
earlier, a theorem can be stated as follows.

Theorem 8. Suppose that Assumptions 3, 4, and 7 are
satisfied. Then there exists a neighborhood X0 ⊂ Ωx

of the origin and a coordinate transformation

x1 = Φ(z), Φ(0) = 0 (15)

onX0, converting the system into input-normal/output-
diagonal form, i.e., there exist n smooth functions
ρi : S0 → R+, i = {1, 2, . . . , n}, such that

Lc

(
Φ(z)

)
=

1
2
zT z (16a)

Lo

(
Φ(z)

)
=

1
2

n∑
i=1

z2
i ρi(zi)2 (16b)

for i = {1, 2, . . . , n}.

PROOF. Follows by combining the proofs in
(Fujimoto and Scherpen, 2003b) and (Fujimoto and
Scherpen, 2003a).

Note that we will normally assume that Ωx is chosen
small enough so that X0 = Ωx.



From (16) it is then possible, using one further coordi-
nate transformation, to obtain the balanced realization
given as

Lc

(
Ψ(q)

)
=

1
2

n∑
i=1

q2i
σi(qi)

(17a)

Lo

(
Ψ(q)

)
=

1
2

n∑
i=1

q2i σi(qi) (17b)

The coordinate transformation is defined to give

σi(qi) = ρi

(
ψi(zi)

)
(18)

and is described by

z = Ψ(q) =
(
ψ(q1), ψ2(q2), . . . , ψn(qn)

)
, Ψ(0) = 0

(19)
where ψi, i ∈ {1, 2, . . . , n} is given as the solution to

qi = ψi(qi)
√
ρi

(
ψi(qi)

)
, ∀qi ∈ Ω (20)

Having the coordinate transformations we want to
pick out the parts of the system that affect the input-
output behavior most. For this end, consider the trans-
formed version of system (14)

q̇ = F̄ (q, u), y = h̄(q) (21a)

i.e., where the coordinate transformation x1 = Φ ◦
Ψ(q) has been applied. Assume that the Hankel singu-
lar value functions are in order, i.e.,

min
qi∈[−c,c]

σi(qi) > max
qi∈[−c,c]

σi+1(qi), i = 1, 2, . . . , n

where c is a small number determining the interesting
interval for the norm of u. Assume that σj is much
larger than σj+1. It then implies that the first j states
of (21) affect the input-output behavior much more
than the last n − j states. Hence, divide the system
into two subparts q = (qa, qb) with qa = (q1, . . . , qj)
and qb = (qj+1, . . . , qn). The system

q̇a = F̄ (qa, 0, u), y = h̄(qa, 0) (22a)

is then a j:th order reduced model of (14) in the sense
that (22) preserves several important properties of the
original system, such as controllability, observability
and stability. For a more thorough discussion, see
(Fujimoto and Scherpen, 2003b; Fujimoto and Tsub-
akino, 2006).

3. MODEL REDUCTION FOR DAES
In this section, model reduction for nonlinear DAEs
will be discussed. For nonlinear DAEs satisfying As-
sumption 1, it is known that at least in some small
neighborhood of the origin it is possible to rewrite the
system (1) as

ẋ1 = F̂ (x1, u) = F1

(
x1, ϕ(x1, u), u

)
(23a)

y = ĥ(x1, u) = h
(
x1, ϕ(x1, u), u

)
(23b)

Since this is a state-space system, it is from a the-
oretical point of view possible to use the results in
Section 2.3. However, the challenge comes from the
fact that ϕ normally is not explicitly given. This means
that F̂ and ĥ cannot be written in closed form and
therefore the results in Section 2.3 can only be used in
very special cases to compute the balanced realization
for nonlinear DAEs in practice.

Also for state-space models, the methods in Sec-
tion 2.3 are not always easy to use computationally.
Therefore, a method based on power series expan-
sion is derived in (Fujimoto and Tsubakino, 2006). In
this paper this method is generalized to also handle
nonlinear DAEs given in the form (1). However, as
mentioned earlier there is no problem to also handle
systems not in semi-explicit form, except for a more
involved notation.

The basic idea in the power series method is to assume
that the transformations Φ(z), Ψ(q) and the singular
value functions ρi(zi), σi(zi) can be expressed as
convergent power series

x1 = Φ(z) = TΦz + Φh(z) (24a)
z = Ψ(q) = TΨq + Ψh(q) (24b)

ρi(zi) = ρ0i + ρhi(zi), i = 1, . . . , nx1 (24c)
σi(zi) = σ0i + σhi(zi), i = 1, . . . , nx1 (24d)

where TΨ will be diagonal as can be seen from (19).

If the DAE system satisfies the required assumptions,
we know from Theorem 5 and 6 that we can compute
the controllability and observability functions, respec-
tively. This can be done locally in the vincinity of the
origin and the functions will be expressed as power
series. The key point will therefore be that even though
closed expressions for F̂ and ĥ are not known, their
series expansions are still possible to compute, see
(Sjöberg, 2006) for details.

If Φ and ρ in (24) are substituted into the controllabil-
ity and observability functions we want the result to be
in the form (16). The equations formed then become

0 =
1
2
zT (TT

ΦGcTΦ − I)z +
1
2
zTTT

ΦGcΦh(z)

+
1
2
ΦT

h (z)GcΦ(z) + Lc

(
Φ(z)

)
0 =

1
2
zT

(
TT

ΦGoTΦ − ρ(z)2
)
z +

1
2
zTTT

ΦGoΦh(z)

+
1
2
ΦT

h (z)GoΦ(z) + Lo

(
Φ(z)

)
where

ρ(z) = diag
(
ρ1(z1), ρ2(z2), . . . , ρnx1

(znx1
)
)

Since these equations are supposed to be valid for all
z in a neighborhood, the coefficients corresponding
to different degrees in z must equal zero. The second
order terms yield the eigenvalue problem

G−1
c GoTΦ = TΦ diag(ρ2

01, ρ
2
02, . . . , ρ

2
0nx1

) (25)

and solving this equation then gives the first order
terms of Φ and the zeroth order terms of ρi. The
higher order terms of Φ are obtained by solving the
coefficients in the equations

0 = ΦT
h (z)GcTΦ +

1
2
ΦT

h (z)GcΦh(z) + Lch

(
Φ(z)

)
(26a)

0 =
1
2
zT ρh(z)z +

1
2
zTTT

ΦGoΦh(z)

+
1
2
ΦT

h (z)GoΦ(z) + Loh

(
Φ(z)

)
(26b)

where



ρh(z) = diag
(
2ρo1ρh1(z1) + 2ρonx1

ρhnx1
(znx1

)

+ ρh1(z1)2, . . . , ρhnx1
(znx1

)2
)

A problem is that ρi(zi) are unknown, but it is shown
in (Fujimoto and Tsubakino, 2006) that it is always
possible to just solve the equations corresponding to
coefficients not including parameters in ρi(zi). The
system of equations will be linear in the unknown
parameters and for cases with one or two states it will
also be well-determined. However, in cases with more
than two states, the system of equations will be under-
determined. This means that there will be several dif-
ferent coordinate changes, achieving different input-
normal/output-diagonalized realizations, and which to
choose is a design choice.

Remark 9. Note that it might seem like Φh is uniquely
determined by (26a), sinceGcTΦ is nonsingular (com-
pare with the discussion in for example (Lukes,
1969)). However, this is not the case since it will be the
m:th order terms of (26a) that determine the m− 1:th
order terms in Φ. This leads to a system of equations
not uniquely determined.

Since the parameters in ρi(zi) are not solved for in the
first step, they are computed from the definition as

ρi(zi) =

√
Lo;x(z)
Lc;x(z)

∣∣∣∣∣
z=(0,...,0,

i:th︷︸︸︷
zi ,0,...,0)

for i = 1, . . . , nx1 . To obtain the coordinate change
Ψ, the same method as above is used. The equation
(20) is solved by substituting Ψ with its series expan-
sion (24b), power series expand the right hand side
and solve for the unknown coefficients. The singular
values σi(qi) can then be calculated from (18).

Having the coordinate transformations, it is now pos-
sible to express the reduced nonlinear DAE system.
Assume that the first j Hankel singular values are
significantly larger than the n − j other. Then divide
the states q into two subspaces qa and qb where the
former corresponds to the larger singular values and
divide system in a corresponding way,

q̇a = F̄1a(qa, 0, x2, u) (27a)
0 = F̄2(qa, 0, x2, u) (27b)
ya = h̄(qa, 0, x2) (27c)

and

q̇b = F̄1b(0, qb, x2, u) (28a)
0 = F̄2(0, qb, x2, u) (28b)
yb = h̄(0, qb, x2) (28c)

where

F̄1(q1a, q1b, x2, u) =
(

∂Φ◦Ψ(q)
∂q

)−1
F1

(
Φ ◦ Ψ(q), x2, u

)
F̄2(q1a, q1b, x2, u) = F2

(
Φ ◦ Ψ(q), x2, u

)
h̄(q1a, q1b, x2) = h

(
Φ ◦ Ψ(q), x2

)
Then a j:th order reduced model for the DAE sys-

tem (1) is given by (27). This system still satisfies
Assumption 1.

Let the controllability and observability functions
computed for the reduced DAE model be denoted

Lca(qa) and Loa(qa), and let the corresponding sin-
gular values be σai(qai), i = (1, . . . , j). Then these
will be the same as if q = (qa, 0) is substituted into
Lc

(
Φ◦Ψ(q)

)
and Lo

(
Φ◦Ψ(q)

)
. The same holds sym-

metrically for the qb. This results basically comes from
(Fujimoto and Tsubakino, 2006), and is formulated as
a theorem.

Theorem 10. Consider a DAE system (1), satisfying
Assumptions 1 – 7. Then it holds that

Lca(qa) = Lc

(
Φ ◦ Ψ(qa, 0)

)
, Loa(qa) = Lo

(
Φ ◦ Ψ(qa, 0)

)
Lcb(qb) = Lc

(
Φ ◦ Ψ(0, qb)

)
, Lob(qb) = Lo

(
Φ ◦ Ψ(0, qb)

)
and

σai(qai) = σi(qai), i = 1, 2, . . . , j
σbi(qbi) = σi(qbi), i = j + 1, j + 2, . . . , nx1

where σai and σbi are the singular values to (27) and
(28), respectively.

PROOF. Implicitly the systems (27) and (28) is de-
fined from

q̇ = ˆ̄F1(q, u) = F̄1

(
q, ϕ̄(q, u), u

)
y = ¯̄h(q, u) = h̄

(
q, ϕ̄(q, u), u

)
where ϕ̄(q, u) = ϕ

(
Φ ◦ Ψ(q), u

)
. Since this is a

state-space system it is possible to use the proof in
(Fujimoto and Tsubakino, 2006).

Above it has been shown that for quite a large class
of DAE’s it is possible to find a reduced model com-
putationally. However, it comes with a price. Two of
the main drawbacks are that the model is only valid in
the vincinity of the origin and the region in which it is
valid is not easy to derive analytically. A third draw-
back is that only an approximate reduced model is
obtained, since computationally the power series have
to be truncated. In practice, these obstacles can often
be handled. The reduced model given by a truncated
power series is in many cases a quite good approxi-
mation in a reasonably sized region. Furthermore, is
often possible to get a quite a good estimate of the
region from simulations. A small example of this will
be shown in the next section.

4. EXAMPLE

u(t) L

R C1

C2

i(t)

uC(t)

uL(t)

uR(t)

Fig. 1. An electrical circuit.

In this section a small example is shown mostly to
demonstrate the method. It describes an electrical cir-
cuit, which can be seen in Figure 1. The circuit con-
sists of a voltage source, a resistor, two capacitors
and an inductor. The voltage source is assumed to be
ideal, i.e., having no internal resistance and giving the
voltage u. The inductor is assumed to have a ferro-
magnetic core resulting in a saturated magnetic flux
Φ for large currents i. The capacitors are assumed to



have voltage dependent capacitances C1 and C2, and
finally, it is assumed that resistor depends both lin-
early and cubically of the current. Modeling the circuit
in an object-oriented fashion, where all components
are modeled separately and then connected using Kir-
choff’s voltage law, gives a model that does not satisfy
the assumptions. However, usage of the method in
(Kunkel and Mehrmann, 2006) yields a model in the
form

u̇C1 = 1
2

i1
1+10−1uC1

+ 1
2

i2
1+10−2uC1

(29a)

Φ̇ = uL (29b)
0 = Φ− arctan(i) (29c)
0 = uR − 5i− 10i3 (29d)
0 = i− i1 − i2 (29e)
0 = i1

1+10−1uC1
− i2

1+10−2uC1
(29f)

0 = u− uR − uC1 − uL (29g)

and
h(uC1 ,Φ, i, uL, uR) = uC1 (29h)

which satisfies all assumptions in Theorems 5 and 6
for x1 = (uC1 ,Φ) and x2 = (i, i1, i2, uL, uR). Then,
it is known that there locally exist a controllability
function (8) and an observability function (11).

Having the controllability and observability functions,
the coordinate transformations Φ and Ψ can be com-
puted using the derived methods. The corresponding
second order approximation of the composite trans-
formation becomes

Φ ◦Ψ =
(

0.43q1−3.1q2−0.084q2
2−0.0033q2

1+0.073q1q2

0.085q1+32q2−1.8q2
2−6.0·10−4q2

1+0.0066q1q2

)
Note that here only the second order approximation of
the transformation is given to save space, but in the
simulations the fourth order approximation has been
used. The Hankel singular values σi(qi) approximated
to second order are

σ1(q1) = 0.51− 0.00015q1 − 0.00024q21
σ2(q2) = 0.0098 + 0.00054q2 − 15q22

Hence, as can be seen the first state in the balanced re-
alization affects the input-output behavior much more
than the other state. Therefore, a one state reduced
model can used.

Two comparisons between the output for the reduced
model and for the original model can be found in
Figure 2 and 3. In both figures, the initial conditions
have been x1(0) = (0.01, 0.01) In Figure 2, the
input signal is zero, while in Figure 3 it is chosen as
u(t) = 0.01 sin(t). As can be seen, the reduced order
model seems to reflect the original system rather well.

5. CONCLUSIONS
In this paper, model reduction of nonlinear DAE sys-
tems has been considered. An algorithm for comput-
ing the reduced order model has been presented. The
challenge computationally was that the implicit func-
tion is known to exist, but can seldom be written in
closed form. It was shown that rather general nonlin-
ear DAE system can be handled using methods by
Kunkel and Mehrmann. The main drawback of the
method is that the reduced model is valid only in the
vincinity of the origin and the region in which it is
valid can often not be estimated analytically. That is,
one has to rely on simulations.
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Fig. 2. Comparison between the full and the reduced
system, with no input.
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Fig. 3. Comparison between the full and the reduced
system, using a sinusoidal as input.
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