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In a modern machining system, tool condition monitoring systems are needed to get higher quality pro-
duction and to prevent the downtime of machine tools due to catastrophic tool failures. Also, in precision
machining processes surface quality of the manufactured part can be related to the conditions of the cut-
ting tools. This increases industrial interest for in-process tool condition monitoring (TCM) systems. TCM
supported modern unmanned manufacturing process is an integrated system composed of sensors, signal
processing interface and intelligent decision making strategies. This study includes key considerations for
development of an online TCM system for milling of Inconel 718 superalloy. An effective and efficient
strategy based on artificial neural networks (ANN) is presented to estimate tool flank wear. ANN based
decision making model was trained by using real time acquired three axis (Fx, Fy, Fz) cutting force and tor-
que (Mz) signals and also with cutting conditions and time. The presented ANN model demonstrated a
very good statistical performance with a high correlation and extremely low error ratio between the
actual and predicted values of flank wear.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Tool wear is an important factor which affects the machined
surface characteristics. During the manufacturing processes, ma-
chined part surfaces get more or less destroyed depending on the
cutting forces caused by worn tools. Larger cutting forces generate
poor surface finish as well as extensive surface damage [1]. This
destruction is decisive for the later characteristics of the manufac-
tured part such as sliding, lubricating, corrosion resistance, contact,
fatigue, fracture and straightness properties. Tool wear estimation
is therefore not only a diagnostics requirement to prevent ma-
chine-tool failure and production-material waste, but also plays
crucial role which mainly affects the dimensional integrity, better
performance and service-life of machined components.

Unfortunately, there is no direct way to measure tool wear
without interrupting the machining process. CNC operators usually
decide the tool wear level off-line via visual inspection of cutting
edges or on-line with sound level related to their experience. To-
day’s modern unmanned CNC manufacturing machines require ro-
bust on-line tool condition monitoring systems. In-process tool
condition monitoring (TCM) system is an approach to indirectly
detect the tool wear level in machining. High sensitive sensor
equipments integrated to machine tools together with an efficient
ll rights reserved.

a).
mathematical model are necessary for a robust on-line tool wear
monitoring system.

A general TCM system development stage is divided into four
main phases; (1) the planning phase (design of experiment), (2)
application phase, (3) data acquisition and signal processing phase,
and (4) analysis phase. For the planning and application phase, uti-
lization of different sensors has been reported in on-line TCM
research area such as, dynamometer, accelerometer, motor load
current, acoustics emission, temperature, optical and sensor fusion
techniques. However, most of these on-line TCM techniques have
been conducted on lathes which use non-rotating single tools
[2–16]. In milling however, tool wear progression is different as
the cutting edge enters and exits the workpiece repeatedly
throughout the process. In addition, rotating motion of milling
cutters makes it difficult to attach the sensors close to the cutter-
work-piece interface [17]. TCM systems, developed for turning
processes, are therefore not guaranteed to work satisfactorily for
a semi-intermitted process like grinding or a fully intermitted pro-
cess like milling [18]. Recently some researchers have developed
TCM systems using various sensors and different wear estimation
techniques for milling. Ghosh et al. [18] used cutting forces, spindle
vibration, spindle current, and sound pressure level for ANN based
flank wear estimation. Iqbal et al. developed an in-process fuzzy
expert flank wear monitoring system based on measured peak val-
ues of two components of force signals (Fx and Fy) using a dyna-
mometer [19]. Tseng and Chou proposed a rule based tool
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monitoring system for end milling, based on spindle motor current
[20].

The objective of this work is to develop a robust TCM system for
end milling of Inconel 718. Inconel 718, as a difficult-to-cut super-
alloy, is widely used in aerospace and gas turbine industries. It is
especially used in aircraft engine parts, high-speed airframe parts
such as wheels, valves, buckets, spacers, and high temperature
bolts and fasteners in severe operation conditions. With such a
robust on-line tool condition monitoring system, especially com-
panies that have long production runs with difficult-to-cut super-
alloys such as Inconel 718 on their machining centers, an efficient
tool maintenance (changing inserts or worn tools) can be accom-
plished. Since the sudden failure of the worn cutting tool deterio-
rates the machining surface, it is possible to obtain a certain
surface quality with an accurate prediction of tool wear.

The current paper presents evaluation of cutting conditions on
tool life and proposes an effective hybrid strategy to estimate tool
flank wear while milling of Inconel 718 superalloy. In this pro-
posed strategy, three axis cutting force, torque, cutting conditions
and cutting time data are combined with measured tool flank wear
data to create an Artificial Neural Network (ANN) model. The ANN
model is then verified with measured data. Using this ANN model,
an online tool tracking system is developed for monitoring the
flank wear of the main cutting edge. The system indicates whether
tools are performing efficiently or are not.
2. Experimental setup

2.1. Taguchi based orthogonal array experimental design

Taguchi’s orthogonal array structure offers robust experimental
design with decreased experiment number. Taguchi method in-
volves analysis between the factors, their interactions and re-
sponses. The method is widely used in engineering applications.
Taguchi’s orthogonal array structure was used for experimental
design, as reduced number of experiments can be acceptable for
industry. A standard Taguchi orthogonal array L9 (33) was chosen
for the most controlled factors such as, cutting speed (Vc), Feed per
tooth (Sz) and Depth of cut (Doc). Radial depth of cut factor was kept
at a constant value of 1 mm during the experiments because mate-
rial removal rate can be controlled with depth of cut factor. Three
levels of milling process factors were selected according to tool man-
ufacturer’s recommendations as given in Table 1.

2.2. Work material and cutting tool

In this study, superalloy Inconel 718 was used for experiments.
Several studies have been done by the researchers for investigating
the effects of changing operating parameters on the tool life,
Table 1
Three level Taguchi Design, Factors and levels.

Factors and their levels
Factors Levels

1 2 3

Vc, cutting speed (m/min) 50 75 100
Sz, feed per tooth (mm/tooth) 0.06 0.09 0.12
Doc, depth of cut (mm) 0.3 0.45 0.6

Table 2
Chemical composition of Inconel 718 (wt.%).

Ni Cr Cb + Ta Mo Ti Al

53.8 18.2 5.26 2.96 0.94 0.44
productivity and tool wear patterns obtained when machining of
Inconel 718 [21–26]. Table 2 shows the chemical composition of
Inconel 718 having an average hardness of 40 Rc used in this exper-
iment. The material was initially machined for a rectangular block
shape of 70 � 62 � 70 mm. Sandvik inserts (R390-11 T3 08M-PL
1030) mounted on (R390-016A16-11L) cutter body with 16 mm
diameter was chosen for experimental cuts at dry cutting conditions.

2.3. Milling experiments and measuring instruments

The milling tests were conducted on five axis rotary table type
Deckel-Maho DMU 60P CNC machining center. Planar and
down-milling type CAM strategy was generated by using ProEngi-
neer Wildfire PLM software to automate each experiment. The rotat-
ing cutting force dynamometer (Kistler Corporation, Model
9123C1111) is used for the dynamic and quasistatic measurement
of the three force components (Fx, Fy, Fz) as well as of the drive mo-
ment Mz on a rotating tool. The rotating cutting force type dyna-
mometer (RCD) has advantages over fixed dynamometers, such as
the cutting forces can be measured on the rotating tool indepen-
dently of the size of workpiece and measurement can be performed
on any spatial position (four or five axis milling). The cutter body was
mounted with a single insert on RCD. The tool cutting edge is aligned
with RCD’s zero count groove on the principal Y axis of the RCD dyna-
mometer. The output from the cutting dynamometer is transferred
with a non-contact Radio Frequency protocol to charge amplifier
(Kistler Corporation, Model 5223B). Fig. 1 shows the machine tool,
workpiece and RCD setup for experimental study.

3. Experimental results

Nine experiments have been carried out at different cutting
conditions according to Taguchie’s orthogonal array design as
given in Table 3.

Three cutting force components (Fx, Fy , Fz) on principle axis
directions and torque data were collected differentially using NI
6229 multifunction PCI data acquisition card together with NI
BNC 2110 connection block. Required data acquisition software
was written by using MATLAB DAQ toolbox v2.9 [27] and data ac-
quired with 15 KSample/s sampling rate. The cutting process was
interrupted at different time intervals depending on the performed
cutting condition and wear propagation. There are several types of
tool wear damages observed at the tool tip during the experiments.
Crater, chipping, notching and flank wear are the observed wear
mechanisms. Generally the end of tool life is determined by the
excessive wear at the tool flank face. Maximum wear length at
the flank face of the tool was measured as wear land by using
Nikon Eclipse L150 microscope at 50� magnification and ImageJ
software [28] according to ISO 8688-2 throughout the whole of
the machining tests. The measurement of flank wear for a sample
is shown in Fig. 2. The maximum flank wear criteria for each insert
were assigned to be approximately 500 lm.

Collected signals shown in Fig. 3 have to be processed in order
to develop an online TCM system. The cutting force and torque sig-
nals acquired after each interrupting cut was processed with RMS,
which is the most common statistical feature extraction method
as:

ðFx; Fy; Fz;MzÞrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðFx; Fy; Fz;MzÞðiÞ2

r
ð1Þ
Co Si Mn C Fe

0.3 0.09 0.064 0.028 Balanced



Fig. 1. Experimental setup – machine tool, close-up view of workpiece and RCD setup.

Table 3
List of cutting conditions performed.

Experiment no. Doc (mm) Vc (m/min) Sz (mm/rev)

1 0.6 100 0.12
2 0.6 75 0.09
3 0.6 50 0.06
4 0.45 100 0.09
5 0.45 75 0.06
6 0.45 50 0.12
7 0.3 100 0.06
8 0.3 75 0.12
9 0.3 50 0.09

Fig. 2. Sample wear measurement at conditions of experiment 7.
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where n represents the total number of data in each cut as indicated
in Fig. 3. For identification of online TCM system overall 170 wear
stages were measured in nine different experiments.

Nine experiments have been carried out at different cutting
conditions according to Taguchie’s orthogonal array design, as gi-
ven in Table 1. Fig. 4 shows, tool flank wear (VB) measurements
plotted against time for each of nine experiments.

All the graphs shown in Fig. 4a–i indicate a gradual increase of
the flank wear with progressive time. In general, low (0.3 mm) and
medium level (0.45 mm) of depth of cut (Doc) values generates
strong linear trend between cutting time and gradually increased
tool flank wear. Results show that the development of the flank
tool wear was relatively rapid in the level of 0.6 mm depth of cut.

The main effects of Signal to Noise ratio (SNR) for the tool life
are shown in Fig. 5. Maximum level of cutting speeds and depth
of cut (Doc) give faster removal rates but also produce fast exces-
sive edge cratering and flank wear. The minimum tool life for the
maximum values of the cutting conditions shown in Fig. 4a is
5.76 min. Fig. 5 shows that minimum level of cutting conditions
(Vc = 50 m/min, Sz = 0.06 mm/rev, Doc = 0.3 mm) will give the
maximum tool life according to Taguchi analysis.

Analysis of variance (ANOVA) for tool life represents the evalu-
ation of the effects of cutting conditions as given in Table 3. In
Table 4, P-values test the statistical significance of each of the fac-
tors. Since none of the P-values are less than 0.1, the factors have
no statistically significant effect on tool life even at the 90.0% con-
fidence level. However, it is observed from the ANOVA table that
depth of cut and cutting speed have more influence on the tool life
than feed rate.

Figs. 6–8ac show various graphs of tool flank wear plotted against
cutting forces and torque for depth of cuts of 0.6–0.45 mm and
0.3 mm at different cutting conditions respectively.
Figs. 6–8 show that, cutting forces and torque have an upward
trend while tool wear increases. The cutting forces, particularly
the axial cutting force component Fz and the torque (Mz), decreased
gradually as shown in Fig. 6a–c, as the flank wear progressed. This
is for another wear mechanism, the crater wear, which affects the
cutting forces and torque. Growths in crater wear causes cutting
forces and torque to decrease. The reason for this is the increase
in effective rake angle 16 due to the crater wear. It was observed
however that, this decreasing trend of the cutting forces and tor-
que was not long. For a larger form of the crater and flank wear,
effective rake angle decreased 16. As a result cutting forces and tor-
que increased again to previous levels with rapid tool wear
propagation.

Torque (Mz) and Fz components of RCD dynamometer signals
are more sensitive to tool flank wear as compared with Fx and Fy
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Fig. 3. Sample plot of acquired cutting forces (Fx, Fy, Fz) and torque (Mz) (corresponding wear case shown in Fig. 2).
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Fig. 4. Tool life versus time, according to nine experiments.
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signals as indicated in Figs. 6a–c to 8a–c. However it is difficult to
decide which signals is actually more important on estimating tool
wear. Therefore, for analyzing influence of tool flank wear propaga-
tion on cutting forces (Fx, Fy, Fz) and torque (Mz) linear regression
analysis was completed on the data plotted in Figs. 6a–c to 8a–c.

Multiple regression models were developed for each cutting
experiments. The aim of the regression models presented in
Table 5 is only for extracting the sensitivity information which
analyses effect of flank wear propagation on cutting forces and
torque.

Cutting forces and torque were used as independent (predictor)
variables and maximum flank wear as dependent variable to per-
form regression models. Table 5 includes the multiple regression
models, model correlations and P-values for the analyses of the ef-
fect of the cutting forces and torque on maximum flank wear.

The multiple regression models are determined by using the
Statgraphics [29] statistical analysis software. Results of analyses
of variance for the maximum flank wear (VBmax) regression models
supported strong linear relationship (at 95% confidence level)
between the variables in the models since model P-values less than
0.05 (Table 5). Minimum P-values belong to cutting forces (Fx, Fy, Fz)
and torque (Mz) are shown in bold In Table 4 which indicate the
highest relationship between flank wear. According to distribution
intensity of P-value results, particularly torque signal Mz but also
tangential cutting force Fy and axial force component Fz have sig-
nificant effect on determination of progressive flank wear.



Fig. 5. Main effects plot for tool life with larger is better algorithm.

Table 4
Analysis of variance for tool life.

Source Sum of squares Df Mean square F-ratio P-value

Main effects
Depth of cut 49573.0 2 24786.5 2.62 0.2763
Cutting speed 48676.8 2 24338.4 2.57 0.2800
Feed per tooth 10476.7 2 5238.37 0.55 0.6437
Residual 18925.4 2 9462.72
Total (corrected) 127652 8
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Fig. 6. Cutting forces and torque versus tool flank wear for 0.6 mm depth of cut at
different machining conditions.
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4. ANN model for developed TCM system

The actual power and advantage of neural networks lies in their
capability to represent both linear and non-linear relationships and
in their ability to learn these relationships directly from the data
being modeled. Conventional linear models can be insufficient
when it comes to modeling data that contains non-linear charac-
teristics. For this reason, an ANN model has been developed for
estimating the flank wear of the tool to take the advantage of the
neural networks in this study.

4.1. Background

ANN is a mapping method between input and output data
based on simulation of biological nervous system, such as the
brain, on a computer. It was introduced by McCulloch and co-
workers in the early 1940 [30]. Its non-linear mapping architecture
produces high flexibility for modeling a system. As a result, ANN
has become one of most popular technique used for analyzing
the problem without the need to understand its theoretical com-
plexities. This feature of the ANNs is very useful in some circum-
stance where it is hard to derive a mathematical model. Tool
wear considered in this study is very complicated process associ-
ated with several parameters. Therefore, ANN is an appropriate
technique for developing TCM systems only using experimental
samples acquired from metal cutting operations.

An ANN has multilayer architectures consist of massively inter-
connected processing nodes known as neurons. In the network,
each neuron accepts a weighted set of inputs and first forms the
sum of the weighted inputs with a bias defined by [31]

n ¼
XP

i¼1

wixi þ b ð2Þ

where P and wi are the number of elements and the weights of the
input data xi. The bias for the neuron is given by b. The knowledge is
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Fig. 7. Cutting forces and torque versus tool flank wear for 0.45 mm depth of cut
(Doc) at different machining conditions.
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Fig. 8. Cutting forces and torque versus tool flank wear for 0.3 mm depth of cut
(Doc) at different machining conditions.
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stored in the neuron as a bias and a set of weights. Then, the neuron
responds with an output. To this end, the sum of the weighted in-
puts with a bias is processed through an activation function, repre-
sented by f, and the output that it computes is

f ðnÞ ¼ f
XP

i¼1

wixi þ b

 !
ð3Þ

The neuron model emulates the biological neuron that fires when
significantly excited, i.e. the neuron’s input, n, is large enough. There
are many ways to define the activation function such as threshold
function, sigmoid function and hyperbolic tangent function.

Using an appropriate learning method, ANNs are trained to per-
form a particular function by adjusting the values of the connec-
tions, i.e. weighting coefficients, between the processing nodes.
The training process continues until the network outputs converge
to the target. The difference between the network output and the
desired output is minimized by modifying the weights and biases.
When the difference is below a pre-determined value or the max-
imum number of approximations is exceeded, the training process
is ended. This trained network model can be used to simulate the
system outputs for the inputs that have not been introduced
before.

The structure of an ANN is usually composed of three parts: an
input layer, hidden layers and an output layer. The data contained
in the input layer is transformed to the output layer using the hid-
den layers. Each neuron can receive its input only from the neurons
of the lower layer and send its output only to the neurons on the
higher layer.
4.2. Implementation of ANN model for tool wear prediction

For development of a TCM system, the total number of 170 wear
stages was measured in nine experiments. In order to implement
an ANN model, data was divided into two sets namely the training
and test sets. For training phase of ANN model, randomly selected
85% of data set was assigned as the training set (145 observations),
and the remaining 15% (25 observations) was employed for testing
the performance of the network.

The architecture of the ANN for the TCM system, along with its in-
put and output parameters, is illustrated in Fig. 9. The inputs for the



Table 5
Regression models and effects (P) of cutting forces and torque on flank wear (VBmax).

Experiment no. P(Fx) P(Fy) P(Fz) P(Mz) Regression model for flank wear (VB) P(model) RSquared(%)

1 0.5749 0.094 0.08 0.0743 VB = �1292.45–15.1179 � Fx + 105.757 � Fy � 28.6968 � Fz + 9580.53 �Mz 0.0063 91.847
2 0.7462 0.029 0.0335 0.0418 VB = �373.157 + 0.943379 � Fx � 27.7651 � Fy + 7.21062 � Fz + 1719.16 �Mz 0 99.3067
3 0.0035 0.005 0.0307 0.0008 VB = �1150.79–70.8646 � Fx � 64.1144 � Fy + 12.725 � Fz + 19027.1 �Mz 0.0003 90.7813
4 0.2788 0.042 0.0914 0.2456 VB = �125.193–7.91111 � Fx + 41.0096 � Fy � 8.82789 � Fz + 1852.34 �Mz 0 97.6616
5 0.9154 0.907 0.922 0.7526 VB = �346.037 + 4.90275 � Fx � 3.22894 � Fy � 0.73974 � Fz + 2827.04 �Mz 0 88.3572
6 0.0022 0.0006 0.0157 0.0075 VB = �156.781–8.12565 � Fx + 25.2045 � Fy � 4.11581 � Fz + 1632.16 �Mz 0 99.2416
7 0.3069 0.274 0.5322 0.0906 VB = 27.6786–12.4752 � Fx + 19.983 � Fy � 2.85648 � Fz + 1615.35 �Mz 0 98.2046
8 0.0456 0.0002 0.0001 0.0462 VB = �19.8345 + 13.6579 � Fx � 207.341 � Fy + 55.767 � Fz � 3269.95 �Mz 0 98.0291
9 0.3578 0.012 0.0041 0.0291 VB = 107.942 + 14.0236 � Fx � 241.665 � Fy + 67.7145 � Fz � 4661.52 �Mz 0 94.0995
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ANN model are the cutting conditions, cutting time, RMS values of
cutting forces and torque. The output from the ANN is the flank wear.
Cutting conditions in the input vector of the ANN model were ob-
tained from the Cutter Location Data (CLDATA) file which was gener-
ated by using ProEngineer Wildfire PLM software. The cutting time
information was extracted from the difference between the data
acquisition start and stop trigger for each cutting pass.

The performance of an ANN is influenced by the characteristics
of the network such as the number of hidden layers and the number
of nodes in each hidden layer. Since there are no definite methods to
determine the optimal number of hidden layers and the neurons on
each layer, a significant amount of time during the design of the
ANN model is spent on the selection of appropriate variables for
network architecture by heuristic search.

The activation (transfer) function in the hidden layer is another
important factor influencing the network performance. There are
several ways to define the activation function, such as a tangent
hyperbolic, logarithmic or a threshold function. For the developed
network, a hyperbolic tangent sigmoid function was chosen as
activation function in this study as below:

f ðnÞ ¼ en � e�n

en þ e�n
ð4Þ

The input and output data were initially transformed to be in
the interval of [�1, 1] using the following equation:

pn ¼
p�minðpÞ

maxðpÞ �minðpÞ � 1 ð5Þ
Fig. 9. The structure of ANN for modelin
where pn is the transformed form of the data p.
Consequently, by trial and error with different ANN configura-

tions, an optimal, custom designed ANN architecture was found with
using MATLAB Neural Network Toolbox. The training data set that is
selected randomly, was used to train the network until it gives an
approximate function between the input and output parameters.
The predictions of the output parameter (VBpre) were performed
using a three layer feed forward ANN with using a back propagation
(BP) which is the most popular technique for supervised training of
neural networks. BP minimizes an error function, i.e., a mean
squared error that is the difference between the actual network out-
put vector and the desired output. An iterative gradient descent
technique is used to adjust the weights. The ANN model was trained
with four training variations of back propagation methods: Broyden,
Fletcher, Goldfarb and Shanno (BFGS) quasi-Newton training meth-
od, gradient descent back propagation, and resilient back propaga-
tion and Levenberg–Marquardt. Among them, the Levenberg–
Marquardt training method provided the best performance; and
therefore, was used to adjust the weighting coefficients for ANN
model.

As illustrated in Fig. 9 developed ANN model consist of an input
layer, a hidden layer and an output layer. The number of neurons in
the input and output layers are equal to the number of the input
and output parameters, respectively. The hidden layer has 12 neu-
rons for ANN architecture.

Table 6 shows the test data set, which consists of, input param-
eters of ANN and the actual and predicted output parameter
(VBpre).
g tool condition monitoring system.
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4.3. ANN model performance evaluation for TCM system

The performance of the ANN based prediction was assessed by a
regression analysis between the network output, i.e. predicted
parameters, and the corresponding targets, i.e. experimental val-
ues. The criteria used for measuring the network performance
are the correlation coefficient, mean relative error and absolute
fraction of variance, R2.

The correlation coefficient assesses the robustness of the rela-
tionship between the predicted and experimental results. The
coefficient between the actual and predicted outputs is calculated
by [32]

rða; pÞ ¼ Covða;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Covða; aÞCovðp; pÞ

p ð6Þ

where Cov(a, p) is the covariance between the a and p sets that refer
to the actual (experimental) output and predicted output sets,
respectively, and is defined by [32]

Covða;pÞ ¼ E½ða� laÞ � ðp� lpÞ� ð7Þ

where E is the expected value, la is the mean value of the set a and
lp is the mean value of the set p. If the Cov(a, p) = 0, then a and p are
expected to be uncorrelated. Similarly, Cov(a, a) and Cov(p, p) are
the auto covariances of the a and p sets, and are given by

Covða; aÞ ¼ E½ða� laÞ
2� ð8Þ

Covðp;pÞ ¼ E½ða� lpÞ
2� ð9Þ

The correlation coefficient ranges between �1 and +1. r Values
near to +1 indicate a stronger positive linear relationship, while r
values near to �1 indicate a stronger negative relationship. The
mean relative error, which is the mean ratio between the errors
and the experimental values, can be calculated from

MREð%Þ ¼ 1
N

XN

i¼1

100
ðai � piÞ

ai

����
���� ð10Þ

For the multiple regression analysis a statistical indicator
namely the absolute fraction of variance, R2, can be used
Table 6
The experimental and predicted data obtained under various cutting conditions.

Doc Vc Sz Fx (N) Fy (N) Fz (N)

0.6 100 0.12 68.97 78.645 315.72
0.6 100 0.12 75.924 90.929 361.87
0.6 75 0.09 50.063 52.436 207.88
0.6 75 0.09 66.561 59.671 244
0.6 50 0.06 33.617 46.934 133.13
0.45 100 0.09 54.042 59.996 235.97
0.45 100 0.09 54.934 62.457 245.61
0.45 100 0.09 61.477 76.146 306.13
0.45 100 0.09 66.029 85.092 342
0.45 100 0.09 72.445 96.93 388.34
0.45 75 0.06 30.849 19.548 77.149
0.45 75 0.06 64.232 81.766 311.37
0.3 100 0.06 41.76 44.756 175.84
0.3 100 0.06 49.719 59.921 235.88
0.3 100 0.06 63.695 80.791 314.67
0.3 75 0.12 35.232 16.323 64.439
0.3 75 0.12 32.917 16.027 63.486
0.3 75 0.12 38.667 23.389 90.874
0.3 75 0.12 53.585 46.906 185.79
0.3 75 0.12 55.645 50.542 200.47
0.3 50 0.09 27.153 11.39 45.048
0.3 50 0.09 27.203 11.201 44.292
0.3 50 0.09 33.629 16.748 66.252
0.3 50 0.09 39.634 22.297 88.274
0.3 50 0.09 43.338 24.979 99.028
R2 ¼ 1
PN

i¼1ðai � piÞ
2PN

i¼1p2
i

 !
ð11Þ

R2 ranges between 0 and 1. R2 value of near 1 shows a very good
fit, however near to 0 gives a poor fit.

The predictions of the trained ANN for the performance param-
eters are given in Fig. 10. The predicted versus target values for the
selected 25 flank wear (VBmax) measurements are shown. Fig. 10 is
provided with a straight line indicates a perfect prediction also
within an error band of ±10%. This is related to the accuracy of
the ANN predictions. As shown in Fig. 10, the ANN predictions
for the flank wear yielded a correlation coefficient (r) of 0.992, a
mean relative error (MRE) of 5.42% and an absolute fraction of var-
iance (R2) of 0.996 with the experimental data. These values show
that the ANN predicts the flank wear (VBmax) reliably.

Fig. 10 also shows that, only one predicted flank wear out of
randomly selected 25 wear cases remain outside the ±10% error
band. As a result, the figure demonstrates a quite satisfactory
agreement between the predicted and target values of tool flank
wear for developed TCM strategy. The predicted versus observed
flank wear values in different experiments for evaluating the
ANN performance illustrated in Fig. 11, as well.
5. Conclusion

A neural network based flank wear monitoring system was
developed and presented under changing cutting conditions for
milling of Inconel 718. ANN model uses cutting conditions, cutting
time, buffered real time cutting force and torque data. The network
was developed using the data acquired for 170 operations from
nine experiments.

According to experimental results, it was observed that torque
is an important signal which is not used in most of the TCM system
development literature for milling operations. It has been shown
from regression equations, Mz signals are most indicative for the
flank wear progression than tangential cutting forces (Fx, Fy). The
relationship between tool wear propagation and cutting forces-tor-
que variation can also be used for the development of effective tool
condition monitoring strategies.
Mz (N m) Cut. time (min) VB (lm) VBpre (lm)

0.35404 2.19 343 331
0.39128 5.76 543 514
0.28319 30.24 209 210
0.36491 37.55 439 419
0.26242 88 113 123
0.25984 9.11 328 307
0.26599 9.84 346 326
0.31028 13.12 407 388
0.33727 14.21 411 389
0.36541 20.77 476 498
0.15856 92.4 103 108
0.33941 137.13 409 450
0.19281 99.34 238 189
0.23384 109.17 300 307
0.31566 128.82 489 464
0.1798 31.33 77 84
0.16854 45.54 95 97
0.1912 66.67 118 128
0.28573 118.77 380 412
0.29096 130.8 495 490
0.15852 47.67 38 36
0.16572 68.93 45 44
0.1929 261.8 125 128
0.22734 340.27 164 169
0.2503 368.87 184 186



Fig. 10. Experimental (actual) versus predicted wear with correlation factor and
mean relative error (MRE). The straight line presents the perfect prediction.

Fig. 11. Experimental (observed) versus predicted values for flank wear.
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It was observed that cutting forces and torque signals are both
sensitive to cutting conditions. However, during the experiments
for some cases the cutting forces and torque reduced with the ef-
fect of crater wear development. To model this complicated event
and enhance the prediction accuracy for robust tool condition
monitoring system a hybrid approach was used by employing cut-
ting conditions and cutting time.

The trained ANN model was tested at 25 different cutting con-
ditions and cutting time intervals. The presented ANN model dem-
onstrated a very good statistical performance with a high
correlation of 0.992 between the actual and predicted values for
flank wear. The proposed TCM strategy using a rotating cutting
force type dynamometer (RCD), can be implemented to complex
five axis machining operations e.g. impeller machining.
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