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ABSTRACT

Social networks have played a crucial role of information
channels for understanding our daily lives beyond commu-
nication tools. In particular, their coupling with geographic
location has boosted the worth of social media to detect,
track, and predicate dynamic events and situations in the
real world. While the amounts of geo-tagged social media
are apparently increasing at every moment, we have few
framework to handle spatiotemporal changes and analyze
their relationships. In this paper, we propose a framework to
understand dynamic social phenomena from the mountains
of fragmented, noisy data flooding social media. First, we
design a data model to describe morphological features of the
populations of geo-location of social media and define a set
of relationships by using differential measurements in spa-
tial, temporal, and semantic dimensions. Then, we describe
our real-time framework to extract morphometric features
from streaming tweets, create the topological relationships,
and store all features into a graph-based database. In the
experiments, we show case studies related to two typhoons
(Neoguri and Halong) and a landslide disaster (Hiroshima)
with real tweet-sets in a visualization way.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and
GIS; H.3.3 [Information Search and Retrieval]: Infor-
mation filtering

General Terms

Design, Human Factors

Keywords

Social geomorphology, Morphological features, Spatiotem-
poral phenomena, Movement analysis
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With coupling with location-based services and social net-
works, social media have become a typical type of user-
generated geographic information. They have provided us
considerable information to be able to detect, track, and
predicate dynamic events and situations in the real world
locally and globally. The geography of data shadows drawn
from social media appears to be quite effective at reflecting
experiences of real-world events[21]. However, they contain
lots of noise with low precision and massive volumes com-
paring to traditional geographic information. The increasing
rate of data volume is much faster than Web documents or
blogs, and they are streaming into the server in real time.
Therefore, it has difficulties to directly use data for decision
making and crisis management and brings challenges to find
meaningful information about human behaviours and under-
stand social cognition about occurrences in the real world.

The emerging role of social media accompanying the phys-
ical space emphasizes the importance of spatiotemporal anal-
ysis over surging social messages and interactions. As shown
in [24], understanding spatio-temporal processes of real-world
phenomena and discovering pattern changes have been long-
standing issues in many application domains. Numerous
techniques have been developed including data structures,
mining algorithms, stochastic models, and so on. The spa-
tiotemporal locality, proximity, and relationships based on
metric (like distance and direction) or non-metric (like shape
and topology) criteria are central to extract knowledge about
the dynamic complexity of geographic phenomena. In case
of social sciences, the geo-spatial and temporal factors also
have been dealt with to recognise the interactions between
the environment and human activities [14]. We can roughly
imagine the differences between cities and countryside lives
of people. When we do, however, consider high volume and
velocity of social media, we need a methodology to interpret
how they are different or similar by computational models
and operations. As being quoted by [4], Durkheim deployed
the concept of social morphology to study the substratum of
society by bridging geography and demography. Social mor-
phology is based on how human population are geographi-
cally distributed and concentrated in space. Also, it usually
focuses on the structural interrelations among phenomena,
concepts, and ideas, such as structure of organisms in biol-
ogy and structure of word morphemes for linguistics.

In this paper, we propose Sophy (Socio-geomorphological
analysis) system, a framework to construct spatiotemporal
relations among morphological features of the distribution
of geo-tagged Twitter messages (for short, geo-tweets) re-
gardless of the identification of users. The geomorphological



properties (such as geometric shape, size, slope, and curva-
ture of landforms) and topological relations (such as inter-
section and disjoint) between two geo-spatial areas are foun-
dational characteristic in spatiotemporal data analysis and
prediction. Sophy extracts morphological features as units
of analysis over the geographical population of geo-tweets in
the real time. Then, it estimates basic relationships between
features by using differential measurements in spatial, tem-
poral, and semantic dimensions. Finally, the extracted fea-
tures and relations are stored into a graph-based database.
This paper exemplifies how to discover an interesting pat-
tern of topic flocks through our framework by using three
cases: two typhoons (Neoguri and Halong) and a landslide
disaster (Hiroshima) in 2014. As considering a geomorpho-
logical approach, we can easily filter noise data and explore
the spatiotemporal changes of location embedded social me-
dia data.

The remainder of the paper is organized as follows: Sec-
tion 2 addresses our motivation on the basis of related work.
Section 3 explains the data model with geometry and mor-
phological characteristics in spatiotemporal semantic dimen-
sions. In Section 4, we introduce the Sophy system of stream
processing based on Storm and Neo4j and Section 5 provides
a case study to analyze and visualize the spatiotemporal
changes in a visual browser as our exploratory experimen-
tal results. Finally, we conclude this paper with a short
description of future work in Section 6.

2. RELATED WORK
2.1 Location-based Twitter Analytics

Geo-referenced social media have significantly been ap-
plied to investigate human behaviour and understand so-
cial cognition about occurrences in the real world, espe-
cially Twitter has been a key resource of free and open
data even though it has a limitation. TwitterStand [20] cap-
tures tweets related to breaking news from noise by online
clustering method, and Sakaki et al. [19] propose the loca-
tion/trajectory estimation methods such as Kalman filter-
ing to estimate the locations of interesting events based on
tweets— for examples, entertainment events such as sports
games and concerts and natural/man-made disasters such
as accidents, typhoons, and earthquakes. In [10], a dengue
surveillance model using Twitter is proposed to perform
spatio-temporal predictions based on volume, location, time,
and population perception by the clustering algorithm. A
probabilistic model for detecting flu outbreak based on a
spatio-temporal Markov Network algorithm is shown in [17].
Lee et al. [16] present a geo-social event detection method
and analyze urban characteristics with usual patterns of
crowd behaviour. In [9], geo-tweets are used to find a hot
spot for crime by means of kernel density estimation of past
crime patterns. As considering location and time as well
as topic analysis, we can expect the high potential of geo-
tweets to detect, track, and predicate real-world events and
situations both in local and global areas.

Despite many studies have focused on the event detec-
tion as shown in [6], few literature is proposed for dealing
with spatiotemporal dynamics of topics. Pozdnoukhov et
al. present the space-time dynamics of topics by using online
topic model and kernel density estimation in [18]. They illus-
trate the changes of space-time hotspots of topics by physical
movement of users and increased intensity of local commu-
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Figure 1: Spatiotemporal patterns

nities. As developing online or offline methods of the event
detection, we also need a quantitative and qualitative model
to handle massive spatiotemporal features derived from the
Twitter stream and understand the evolution in geometri-
cal properties and topological relationships. For example,
Figure 1 shows the change of spatial pattern of geo-tweets
containing keyword ’typhoon’ over time. The visualization
is an efficient way for people to recognize their differences
using shapes, sizes, and colors as shown as CartoDB! and
TweetMap?. However, it is almost impossible to look at
evolving patterns one by one when we face high-velocity and
volume of population density generated by social media. In
[23], six types of analysis for spatio-temporal changes are
enumerated: (1) measuring time by fixing location and con-
trolling the state of attributes, (2) measuring location by
fixing time and controlling the state of attributes, (3) mea-
suring the state of attributes by fixing time and controlling
locations, (4) measuring time by fixing attributes and con-
trolling locations, (5) measuring attributes by fixing location
and controlling time, and (6) measuring locations by fixing
attributes and controlling time. Based on those measure-
ments, we propose a new method to manipulate dynamic
social phenomena in geo-social media.

2.2 Movement Patterns

The dynamics of objects and phenomena have been typi-
cal issues in geographic information systems. While earlier
models were concerned with the representation of changes
in a discrete manner, moving-object models have tried to
capture not only the discrete changes but also the continu-
ous processes of the real world over time. A moving object
is conceptually defined as a temporal function mobject :
time — spatial — object; this means that the model esti-
mates the position of an object at any time during its lifetime
[12]. We refer to this continuous representation of moving
objects for our study. For example, a moving point is rep-
resented as a curve of successive locations over time in the
three dimensional space. In [19], a typhoon trajectory is
estimated by using tweets and compared with its real move-
ment path. If we have a large amount of trajectory data of
each topic or keyword, we can try to examine their mobilities
and fine a certain pattern among a set of topic trajectories
in space and time as shown in Figure 2. For example, the
typhoon and heavy-rain trajectories of geo-tweets may stay
together in a specific location during a certain time interval
or they may show a similar movement with respect to the
real one.

In order to represent a topic trajectory over geo-tweets,
we first need to identify its spatiotemporal boundary over a
set of data. We concern the spatiotemporal changes of top-

http://cartodb. com
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Figure 2: Trajectories that have movement pat-
terns in spatiotemporal three dimensions: flock,
stay, meet, breakup, and periodic visiting [11]

ics without considering user’s identification and profiles in
this work. For that clustering methods based on statistics,
k-means, or kernel density will contribute to solve this prob-
lem. Second, the temporal mapping should be considered in
the construction of the trajectory data. The moving-object
models have provided basic data types and operations to
analyze the continuous historical changes of the geographic
phenomena with temporal function. While certain topics
like a typhoon or a traffic jam would be refer to the move-
ment information of real objects, not all topics have a good
hypothesis. Finally, the real-time processing should be taken
into account for handling the volume and velocity of geo-
tweets. A complex model and algorithm requiring overhead
costs are inappropriate for streaming geo-tweets. In this
paper, we concentrate on real-time processing of geo-tweet
streams to make spatiotemporal data structures for a pat-
tern analysis.

3. MORPHOLOGY-BASED MODEL

Figure 3 shows the overview of Sophy (Social geomorpho-
logical analysis) framework that processes geo-tweet streams
and constructs a spatiotemporal relations. It consists of
three components of a distributed real-time processing en-
gine, a database server, and a visual data browser. We will
explain each of these in detain in the next section. This sec-
tion first describes a geomorphology-based data model as a
unit of processing and storing in the framework.
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Processing Engine Browser
time. Spatial & Temporal
y T ' Plugin
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Figure 3: Overview of Sophy framework

3.1 Geomorphology Features

For our data model, we assume 1) certain topics would
present a social pattern of geo-tweets’ locations by local com-
munities and have geomorphological features, such as peaks,
pits, and passes; 2) local topics can propagate to near lo-
cations with spatiotemporal proximity, so geomorphological

features may be observed at the different locations over time.
First of all, we use the term ‘observation’ to denote a geo-
tweet formed as ob = (u, s,t, msg), where the identifier u of
a user, a spatial point of latitude and longitude s = (z,y),
a timestamp ¢, and a textual message msg. Basically, there
are two spatial elements on the geo-tweets: place names of
the user profile or on contents a user explicitly inputs and
the user’s geographical point location automatically tagged
by GPS. We only perform the tweets tagged by the latitude
and longitude coordinates rather than place names because
the name of profile places rarely changes and the place name
on contents is difficult to simply accept the presence of users
at the place. After Part-of-Speech (POS) tagging of words
on the message, an observation is transformed as several
keyword occurrences to characterize patterns of spatiotem-
poral distribution of word-frequencies. Let a set of keyword
occurrences O of 0; = (si,t;,w;) : 0; € O,i € N, where
w is a word and N is the number of accumulated keyword
occurrences observed on messages in a sliding window. We
define the term ‘locality’ as a measurement to reflect a local
pattern of the keyword in geo-tweets within a pre-specified
spatial region S C R? and a bounded time-interval T C R.

Definition 1. Locality
Given is a set of keyword occurrences O within a spatiotem-
poral domain R = S x T, a locality [ of keyword w € W is
defined as a random real measure at a spatiotemporal point
st € R given by

I(st,w) = A(st, w)r(st,w) (1)

where W is a word bag appeared in O, A is the intensity
(expected number or density) of the spatiotemporal points
st observed keyword w, and x is the importance weight of
keyword w at the point st.

This can be interpreted informally as the spatio-temporal-
thematic distribution in the domain. There are many meth-
ods to estimate the intensity of a point process over an area
considering applications as shown in [7]. Generally, the in-
tensity function A at location (s,t) is expressed as

E[N(ds x dt)]

Als, 1) = \ds| - |dt]

lim (2)
|ds|—0,|dt|—0
where ds is a small spatial region around spatial point s, dt is
a small interval containing time instance ¢, N(A) is the num-
ber of points within domain A = ds x d¢, and |ds|, |dt| is the
area of the region and the length of the time interval, respec-
tively. In this paper we apply a quadrat method dividing a
study area into subregions of equal size and count the fre-
quency of points per unit area for the simplicity of stream
processing. Therefore, we can substitute the Eq.(1) into
Eq.(3) with a sequence of sub-regions R = (r;;i = 1,2, ...,n).

Nu(ri)  Nuw(ri)

l(rs,w) = A(rs, w)k(rs,w) = ira] N(r) (3)

where 7; is the i-th sub-region in spatiotemporal domain R,
|r;| is the volume of sub-region r;, N(r;) is the number of
keyword occurrences within the sub-region, and Ny (r;) is
the number of keyword occurrences whose important word
is w in the subregion.

Next, we determine morphometric features (e.g., bound-
aries or shapes) in order to define topological relationships
between topics of interests. We estimate time and location



of a social phenomenon by controlling the value of localities.
This study focuses on two geomorphology types: peak (local
maximum) and pit (local minimum) because they can evolve
as a hot spot or outlier based on deviance from the normal
situation. A peak is higher than all of its neighborhoods and
mathematically described by the negative values of the sec-
ond directional derivatives (i.e., d*f/dx? < 0, d*f/dy® < 0,
and d?f/dt*> < 0). A pit is lower than all of its neighbors
and the second directional derivatives are positive. In this
paper, we apply the concept of neighborhood and open set
in topological spaces. Let R = {ri,ra,...,7.} be a set of
n-regions in a topology space. We find a subset of R that
satisfies the following definitions:

Definition 2. Peak and Pit
Given any keyword of w and a threshold value of 0, a subset
P of set R is said to be Peak,,¢ and Pite if it respectively
satisfies as follows

Peakyp = {r: € P | U(rj,w) <I(ri,w) A

max
rj€NB(r;),rj¢P
> U(ri,w) >0 A PNNB(P) = P}

i

Pity,0 ={r: € P | min
r;€NB(r;),rj¢P

> U(ri,w) <0 A PNNB(P) = P}

l(rj,w) > l(r;,w) A

where [ is a locality value and N B(r;) is a set of neighborhood-
regions of i-th subregion r; in R, such that

NB(r;)={r € R|ri #7,0r; N0r # &},
and

NB(P)= | J NB(r)
reP

where 9 is a set of boundary points (open sets) of a region.

Figure 4 shows an example of the peaks and pits on the local
patterns in a spatiotemporal space. If we capture locality
values as shown in Figure 4 (a), then we can deduce geomor-
phology features as shown in Figure 4 (b). A peak/pit has
the highest/lowest value than its 8 neighbours except the el-
ements of the same group, e.g., any neighbour of the cell of
20 does not have a higher value. After selecting the geomor-
phology features, we put their information into instances of
type Form as

Definition 3. Form
Given a peak of P, = {r;;i = 1,2, ...,p} of arbitrary word
w (or a pit of Py, ), Form type constructs a spatiotemporal
continuum whose attributes are a word of w and a set of
pairs of (r,l(r,w)) where r is a spatiotemporal region in P,
and [ is a locality value of word w in region r.

Even though we here deal with only specific features such
as peaks or pits, we can apply form type by using different
methods like hot-spot and event detection if a spatiotempo-
ral geometry can be composed of multiple sub-divisions.

3.2 Spatiotemporal Relationships

Now, we take into account spatiotemporal relationships
based on the boundary information of form instances. For
instance, a temporal relation such as after, during, and over-
lap in [5] or a spatial relation like equal, overlap, and contain
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Figure 4: Geomorphology extraction based on
quadrat analysis

as shown in [8] can be calculated by time interval and ge-
ometry operations. In this paper, we employ only a few re-
lations to manage the spatiotemporal co-occurrences (which
keywords get together) and movements of topics (which key-
words flock together) over streaming geo-tweets. Table 1
shows two binary relations of form instances to be managed
in our framework. First, we define COINCIDENT relation
as pairs of forms that exist a spatial and temporal inter-
section and have different keywords such as ‘heavy rain’
and ‘flood’. When two form instances are connected with
each other by a COINCIDENT relationship, the relation-
ship has the following attributes to measure proportion of
co-occurrence: a type of Allen’s interval relations [5], the du-
ration of a intersected time interval, the degree and distance
between two centroids, and the ratio of the intersection of
each dimension. Through the COINCIDENT relationships,
we can find a set of high-correlated keywords regarding to
the spatiotemporal proximity of geomorphology features.

The second relation is NEXT, which represents a partial
order of form instances in time. It has derivatives to measure
the changes of spatio-temporal thematic states as well as a
duration, a degree, and a distance attribute. If two forms
given by the same word have fewer differences of the dis-
tance and the locality values within radius 64 and threshold
0, as defined in Table 1, they are connected by a NEXT rela-
tionship. However, we have a difficulty to decide the values
of radius 64 and threshold 6; with respect to all keywords
before starting the processing. Thus, we apply a nearest
neighbor search problem for creating a NEXT relation of
each keyword. Let fr, be a form instance within time inter-
val T; of the current window and Frr;, , be a set of forms that
have the same keyword in time-interval T;_; of the previous
window (T;-1<T;). The NEXT relation can be obtained by
the nearest neighbor query formulated as:

Nemt(FTi—17fTi) = argmin d(.f: me) (4)

feFr;_,

where d is a function to measure a distance or difference
from fr; to f € Fr,_,. The NEXT relation varies depending
on the definition of function. In this study, we divide rela-
tionship NEXT into NEXTBYDISTANCE and NEXTBY-
VALUE by using the average of spatial distances and the
average of locality differences of two forms, respectively. Fig-
ure 5 illustrates an example of basic relationships between
form instances we have defined. By controlling the NEXT
relationships, we can observe a phenomenon of changes of ge-
omorphology features. For example, relationship NEXTac
between A and C can be interpreted by a diffusion phe-
nomenon of keyword ’hurricane’ because the locality of form



Table 1: Basic relationships between forms (a, a’, and b are form types. S, T, L, and w denotes a set of spatial
objects, time intervals, locality values, and a word of a form, respectively. r =S x T is a spatiotemporal region

and |- | is the absolute value.)
Name | Spatial | Temporal | Thematic | Attributes
COINCIDENT (a, b) Sa NSy # ¢ T NTy # ¢ Wq 7 Wp type, duration, degree, distance,
intersect-area ratio
intersect-duration ratio
NEXT(a, a’) distance(Sa, Sq’) To < Ty Wq = Wy and duration, degree, distance,
<04 |L(rq,wa) — L(re/, war)| | change of duration, change of area,
< change of measure, velocity
t : min, maz, and avg to calculate a locality value of a form
Te=[18:30] | that may have several values of sub-regions.
Ten025] G R : Finally, we define two more relations of SIMILAR and
e NEAR of movement instances. Even though these relations
represent a fragmentary information about movement pat-

NEXT

(NextbyDistance)

A

TA[1:10 1
Area:10 1

i Tg=[1:10]
Locality:4 L —— = Locality:20
Word: ‘hurricane’ CO[NCIDENTBD Word: ‘hurricane’

Figure 5: Example of relationships between forms
(A, B, and C are derived from the geomorphol-
ogy features of word ‘hurricane’, and D and E from
‘rain’).

C' is much increased with a larger area during the less time.
Relationship NEXTpg of keyword 'rain’ shows an opposite
case.

As shown in the above figure, a COINCIDENT relation-
ship implies a spatiotemporal continuum like a form and
a NEXT relationship can be considered as a trajectory seg-
ment between two successive time intervals. As time goes by,
we generate a large number of trajectory segments through
space and time by NEXT relationships, and mining spa-
tiotemporal patterns in keyword trajectories is emerged in
our framework. For the analysis of interesting spatiotempo-
ral patterns of topics, we primarily add Movement type to
draw a three-dimensional line segment in a spatiotemporal
space. It is defined as a linear function to continuously map
a time instance into a spatial point in a time interval such
as a unit point in [12]:

Definition 4. Movement
Given a NEXT relationship between two form instances f;
and f; (Ty, < Ty,), Movement type constructs a following
record of

Movement(fi,fj) = {(ti,tj,xi,xj,yi,yj,li,lj) ‘ t < tj,
(xivyhti) S Sfi X Tfi, (Ij,ijt]') € Sfj X Tfj}
where t is a time instant, 7" and S is the temporal and spatial

domain of a form, (z,y, t) is a coordinate in a spatiotemporal
domain, and ! denotes a real value of locality.

In our framework, we use the centroid of spatiotemporal
coordinates and one of the summary functions such as sum,

terns, we think they can help us to find a meaningful move-
ment and extract spatio-temporal patterns such as tracks,
flocks, and leaderships> as shown in [15]. Let M be a set of
movements and 6 € R is a threshold value to limit the num-
ber of relationships. A general definition of two relations is
defined by pairs of movements that are satisfied as

Rel(M, 0) = {(mi, m;) | YVm;,m; € M :
m; #mj = D(m;,m;) <0}(i=1,2..,n)

()

where m is a movement instance and D is a function to re-
turn a distance measure between two movements. Depend-
ing on the distance function, we assign Rel into relation
SIMILAR or NEAR.

For the SIMILAR relation, we adapt the Hausdorff dis-
tance metric into D function in Eq.(5) to measure a shape
similarity [22]. The distance between two movements is

0 ifT =T NTh, =@
D(mi,mj) =< . L !
Sim(lss,ls;) otherwise
where ls; and ls; are the line segments projected into the
spatial domain with the common time interval 7. The simi-
larity measure is calculated by a shape similarity and direc-
tion similarity using

H(ls,-, lSj)

Sim(lsi, ls;) = diagonal

- cos(angle).
where diagonal is the max length of diagonal lines of the
bounding rectangle containing ls; and Is;, angle is the angle
between Is; and lsj, H(ls;,ls;) = max(h(lss,ls;), h(lsj,1s:))
is the Hausdoroff distance and one-sided Hausdorff distance
h is given by
h(lsi,ls;) = max brgllg d(a,b)

(d is Euclidean distance between two spatial points a and
b). Then, we normalize the distance with the max length
of diagonal lines. Finally we multiply a cosine of the angle
between two segments. If two movements have opposite di-
rections to each other, they are not similar although their
shapes are almost same. The function Sim returns a normal-
ized real value from 0 (least similar) to 1 (most similar). A
pair whose similarity measurement is greater than a thresh-
old value becomes an instance of the SIMILAR relation.

In the case of NEAR relation, we use MaxDist function
that returns the distance meter between two movements as



follows:

D(mi, m;) :{

00 fT=0
MazxDist(m;(T),m;(T)) otherwise

where T' = Ty, N5y, is the common time interval between
two movements and m(7T) is the slice of a movement within
T interval. According to our definition, a continuous move-
ment can be represented by linear functions of time ¢ as
z = fz(t) =at+band y = fy(t) = ct + d. Thus, we can
evaluate the continuous distance between two slices by

MazDist(m;(T), m;(T)) = max d(m(t), m;(t))

= max{v/(fz(t) — g=())2 + (f4 (1) — g4(1))?}

teT

where f and g is the linear function of movement m; and
mj, respectively. After calculating the maximum distance
between two movements, we select pairs within a threshold
distance for the NEAR relation.

4. SOPHY FRAMEWORK

This section explains the system architecture of Sophy
framework as shown in Figure 6. For the implementation of
three components (a distributed real-time processing engine,
a database server, and a visual data browser), the framework
is based on Storm [3] system to handle real-time streaming
geo-tweets, Neodj graph database [1] to maintain geomor-
phology features and their relationships, and R Shiny [2]
to present the spatiotemporal proximity and similarity of
analysis results. The reason why we use a graph database
is to provide a flexible way for handling associative data
sets and basic operations for solving relationship-based prob-
lems, such as centrality analysis, path analysis, and isomor-
phism.

The real-time processing engine is composed of three mod-
ules: FormExtrator, FormRealtionConnector, and Derive-
dRelationHandler as follows:

FormExtrator The process starts by collecting from geo-
tagged tweets via Twitter stream API in TweetSpout. In
the TweetSpout, a geo-tweet is transformed into an observa-
tion instance with four properties: user, timestamp, geolo-
cation, and content text except URL and user names. The
observations are inserted into the database by Observation-
Bolt and passed to LanguageMorphologyBolt that generates
keyword occurrences from one text message by assigning a
category (e.g., noun, verb, adjective, etc.) to each word in
the content of an observation. The emitted keyword occur-
rences from LanguageMorphologyBolt become input streams
of two bolts that carry out a stream-to-relation operation
with a sliding window: GridIntensityBolt and SlidingSum-
maryBolt. A window size can be set by the time duration
or tuple capacity. In this study, we use a count-based slid-
ing window that contains the last N items per each keyword
in the GridIntensityBolt. By fixing the number of keyword
occurrences, we can capture the burst with the information
diffusion with shorter time duration. The GridIntensityBolt
handles keyword occurrences with individual grid buffer per
each keyword. The SlidingSummaryBolt is adapted to a
time-based window that retains the last items observed dur-
ing the last period of time T. Every time unit T the Slid-
ingSummaryBolt refreshes term frequency in whole study
area and inserts the summary of keyword frequencies per
each cell into a database. The stored summaries are used
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Twitter ormExtrator Connector Handler
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Figure 6: Sophy system architecture

for controlling different time windows of grid buffers. These
two bolts aggregate keyword occurrences with sliding win-
dows and measure each component of Eq.(4), i.e., a point
intensity and an importance weight of each keyword with
respect to the quadrats (grid cells) of the domain. After
estimating each measure, they emit the values of cells into
FeatureEztractBolt. The FeatureFExtractBolt combines them
into a locality value and extracts morphometric features as
critical areas such as peaks and pits. The extracted features
are transformed as instances of Form type with a pre-defined
threshold and stored into the database in FormBolt. Finally,
the features are going to FormRelationConnector.
FormRelationConnector It creates spatiotemporal rela-
tionships between Form instances. First, CoincidentRela-
tionBolt selects candidates from the database by the spa-
tial and temporal bounding box of an inserted instance and
checks whether there is any intersection in both space and
time. If there exists an intersection between two Form in-
stances, they are connected by a COINCIDENT relation-
ship with derived attributes such as a temporal relation pat-
tern and the ratio of intersection as specified in Table 1.
Then, the form instance is passed to NextRelationBolt that
retrieves the nearest forms among the candidates inserted
at the previous sliding window for the NEXT relation. If a
NEXT relationship is defined, NeztRelationBolt generates a
movement instance and emits it to DerivedRelationHandler.
All created relationships and movements are also stored in
a database by each bolt.

DerivedRelationHandler There are two bolts to handle
movement relations: SimilarRelationBolt and NearRelation-
Bolt. According to our definition in Section 3, each bolt first
searches a set of candidate movements that have a tempo-
ral intersection with respect to the new movement. Then
they compute a measure between two movements by using
their distance function. The SimilarRelationBolt has a pre-
defined threshold when it is deployed in the Storm Cluster,
and NearRelationBolt has an arbitrary number of k-nearest
neighbors. Also the relationships have attributes about their
measurements such as similarity measure and distance. We
can use these attributes to make a ranked list of result sets
without the recalculation. Two bolts also insert the rela-
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tionships they found into the database through internal in-
terfaces.

Figure 7 shows a diagram of the data model of the Sophy
framework. As we above mentioned, we build a database on
the basis of a graph database management system. Hence we
represent data types by using nodes, edges, and their prop-
erties for graph data structures. Basically, type STFeature
is mapped into a node and type STRelation is represented
as an edge (relationship). Figure 8 shows an example of
the database schema that contain meta-data nodes. The
database system requires index structures to efficiently re-
trieve features and relationships without loading the whole
data. The Sophy framework provides an interval tree to
index time intervals for the query processing of temporal
predicates as well as adapting a spatial plugin to handle ge-
ometry data. However, we found too many and complex
indexes bring lots of overhead in the insertion operation
against streaming data. The performance improvement of
the database server will be one of our future challenges.

The last component is a three-dimensional (2D for space
and 1D for time) visual data browser to review the process-
ing results of the real-time engine. In order to display the
changes of spatiotemporal information, we use the space-
time cube presentation from time geography, which was de-
veloped as a model of society considering constraints on hu-
man behaviour by Hdgerstand[13] and used for analysing
and simulating human movements and individual activities
in space and time. In this study, we are also interested in

the movements of social phenomena that are implied from
a large amount of geo-tweets. Thus, the spatiotemporal 3D
visualization helps us to watch how they change and develop
before starting deep analysis. The visual browser translates
a user command into a Cypher® query, the graph query lan-
guage of Neodj database, and draws 3D geometries or tag
clouds as the query results. For example, a query to retrieve
topic movements of ‘typhoon’ within a time interval can be
expressed by the following statement.

start n=node:ti_movements(‘between: [2014-08-05 TO
2014-08-09]’) where n.word=‘typhoon’ return n

The browser only supports a few types of queries for our ex-
periments, but another application can access our database
server by using Cypher language and RestAPI.

5. EXPERIMENTS

In the experiments, we try to verify functionalities of the
framework with small data sets filtered by keyword of inter-
est, even if it was designed to handle real-time streams via
Twitter APIs. We prepared test files for the simulation in
order to use a filespout that emits a record one by one from
a file. Table 2 describes the data sets related to three disas-
ter events: two typhoons (‘Neoguri4’ and ‘Halong5’) and a
landslide (‘Hiroshima®’). We can easily infer they are corre-
lated with a heavy rain and bring small or big damages in
physical and social infrastructures. For our experiments, we
chose a few keywords such as ‘heavy rain’, ‘flood’, ‘damage’,
and ‘worry’ to observe the following issues:

e Spatiotemporal proximity: The proposed measurement
of locality represents the contribution of local com-
munities against an event. Thus, we expect a certain
geomorphology feature may reflect a local situation.
For example, we can find more numbers or the high-
est/lowest of features near to physical events. We first
look at how social communities act against disaster
events that affect different geo-locations at different
times and how they are connected to each other.

e Comparison of topic movements: We think that people
publish their observations or opinions about their sur-
rounding situation and these social phenomena follow
the spatiotemporal changes of physical events. Con-
sequently, movements of a topic in social media may
have similar patterns to physical movements or other
associated topics. We try to discover a movement pat-
tern like flocks and breakups among the movements we
generate.

For starting up the real-time processing, Sophy frame-
work needs to be configured by parameter values such as
the size/interval of sliding windows, a size of grid buffers,
filtering thresholds, and so on. Depending on the parameter
values, the relation structures and the system performance
are influenced. However, this study remains an optimization
problem of parameters for the future work and exemplifies
processing results with arbitrary values as shown in Table
3. The following graphs grab snapshots of the processing
results via our data browser.

3http ://neo4j.com/guides/basic-cypher/
“http://en.wikipedia.org/wiki/Typhoon_Neoguri_(2014)
5http ://en.wikipedia.org/wiki/Typhoon_Halong_(2014)
6http ://en.wikipedia.org/wiki/2014_Hiroshima_landslides



Table 2: Data sets (Japanese tweets in Japan area)

| Description | NEOGURI | HALONG | HIROSIMA |

disaster typhoon typhoon landslide
physical | 2014/07/07- | 2014/08/07- | 2014/08/20
peaks 2014/07/09 | 2014/08/09 | (4am-6am)
data time | 2014/07/05- | 2014/08/05- | 2014/08/16-
interval 2014/07/13 | 2014/08/13 | 2014/08/30
common +# 5% (1andslide), L4 A 11 (landslide)
words Kifi(heavy rain), #t/K(flood),

#E (damage), /DL (worry), K% (tough)
specific H @\ (typhoon) R B (Hi-
words roshima)

# of tweets | 45890 | 43945 41917

Table 3: Parameter setting of Sophy Framework

| Description | Value |
A size of grid buffer (km?) 39.1x19.5
A size of count-based sliding window 300
A duration of time-based sliding window 3 hours
A threshold of similarity 0.4
A bounding distance (km) 100
POS tags of language morphology noun
Types of geomorphology features peak

Figure 9 shows the spatiotemporal proximity between phys-
ical typhoons and peak features of two datasets of geo-tweets.
While typhoon ’Neoguri’ whipped Okinawa with heavy wind
and torrential rain, typhoon 'Halong’ crossed the Japanese
mainland and brought drenching rainfall and destructive
wind to the country. In the figure, we found that social me-
dia react not only physical events but also the forecast infor-
mation from the Japan Meteorological Agency (JMA). For
example the development of peak clusters appears around
Okinawa, Osaka and Hyogo areas before typhoon strikes.
Even though not all keywords showed the physical proximity,
some words to represent physical phenomena like "typhoon’
proved a strong spatiotemporal proximity with respect to
real-world events. Table 4 lists the keyword occurrences
of peak features derived from three data sets. We can see
those terms sketch the spatiotemporal and thematic infor-
mation, e.g., typhoon ‘Halong’ brought more wind damages
(‘¥% and ‘ZJA’) comparing to typhoon ‘Neoguri’. Land-
slides (‘L fi11’) happened and injured people (‘4%ZE4")
in the Japanese city of Hiroshima without reading all mes-
sages.

Figure 10 shows COINCIDENT relationships among peaks

of keyword ‘damage(#'%)’, ‘landslide( £ E)’, and ‘flood (#E

7K)’. The three-dimensional (3D) heat maps present the
spatiotemporal intersections between two features and the
strength of color indicates the ratio of the interaction por-
tions. In our browser, a COINCIDENT relationship that has
a larger spatial area and a smaller temporal interval of the
intersection is presented by a stronger color. In addition, the
browser helps us to explore which keywords are associated
with each other in space and time. According to our re-
sults, the keywords of ‘heavy rain(KF)’, ‘landslide( £ 5
)’ ‘flood(#L7K)’, ‘strong wind (5/&)’ and ‘thunder ()’ are
usually accompanied by the watch(J£&E#R) and warning(%
#R) information from JMA. As a result, they appear in close
proximity. If an unfamiliar keyword is found in the word
cloud, it may be considered as a special situation among
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Figure 9: Spatiotemporal proximity between physi-
cal events and peak features (locality > 0.02) of key-
word ‘typhoon(& /&)’ and ‘heavy rain(XfM)’

local communities. For example, keyword ‘SORATOMO’
shows up in Hiroshima data (Figure 10 (c)). This tag has
been used for reporting weather and tourist information with
geo-locations. After Hiroshima landslide, many communi-
ties use this tag to send a message of compassion for lo-
cal people. Further, we found the spatiotemporal closeness
among features of keyword ‘damage(#%)’, ‘worry(‘LMEL)’,
‘tough(K%Z)’ and ‘safe(RK3LK)’ during the disaster. It may
testify the social media play an important role to check in
with family and friends, seek emotional support and healing,
and report situation about disaster areas by citizen.

Next, we compare the movements of topics and attempt to
discover a flock pattern among them. Figure 11 illustrates
the trajectories of keyword ‘typhoon(& &)’ and ‘worry (/s

Table 4: Comparison of keyword occurrences of peak
features

Description | Spatial Temporal | Thematic terms
terms terms
New KB, _at, | ¥, & HE, R, BRKE,
common to | A&, K B, R, R, &
appear i, K, M, TEER,
H
NEOGURI | M, Julil, | B, h& Hom, HifE BRIk,
(only) BEER, A H, ©E% K
NEOGURI
HALONG TR, 10H, W, | ®U A, & 6IER,
(only) N VA R R,
R, WA R W,
# &, HALONG,
FE, ik
HIROSIMA | t H i i, etk L | o, I E, R,
(only) S, A, W, O, BV,
fa i, HI- SORATOMO, L
ROSHIMA i
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Figure 10: Coincident keywords based on spatiotem-
poral intersections (ratiointerarea > 0.5) among peak
features (locality > 0) of keyword ‘damage(#5)’,
‘landslide(T#¥E)’, and ‘flood (G#7K)’

fid)’ generated by the NEXTBYDISTANCE and NEXTBY-
VALUE relationships. As shown in the figure we obtained
different trends of trajectories regarding its measure func-
tion and some features have both relationships. Although a
sophisticated method will be required to combine two mea-
sures for defining a NEXT relationship in future, we think
the distance-based connection is more appropriate to guar-
antee the spatiotemporal proximity of movements. An in-
teresting thing in Figure 11 (c) is to show a similar pattern
between ‘Hiroshima’ and ‘worry’ movements at a certain
times. In order to find a similar pattern, we finally look
at the SIMILAR and NEAR relationship between generated
movements. Figure 12 (a) shows the fragment information of
movements that concurrently have both relationship SIMI-
LAR and NEAR in Halong and Hiroshima datasets. We sup-
pose these information can contribute to discover complex
spatiotemporal patterns of movements such as flock pat-
terns. In addition, the movement relationship helps us to
track a continuous proximity in a spatiotemporal domain.
In our result, the relationships between ‘worry(\LMAC)’ and

‘landslide( L0 5¢ %)’ movements are closer than ‘worry’ and
‘tough’ as shown by Figure 12 (b).
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Figure 11: Movements by NEXT relationships of
peak features (lengthsegment < 400km): NEXTBY-
DISTANCE(left) and NEXTBY VALUE((right)

6. CONCLUSIONS

Location-based social media have provided us consider-
able information to be able to detect, track, and predicate
dynamic events and situations in the real world; however, we
have been struggled to understand the spatiotemporal dy-
namics from the mountains of fragmented, noisy data flood-
ing today’s social media. The main goal of this study is
to construct spatiotemporal relations from geo-social me-
dia by using latent relationships in the real time. For that,
we have proposed a geomorphology-based data model with
the locality measurement and new spatiotemporal relation-
ships. Moreover we have implemented Sophy framework to
support our data model on the top of Storm platform and
Neo4j graph database. In the experiments, we showed the
functionalities of the framework with real tweet-sets related
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Figure 12: Comparison of keyword ranks with re-
spect to keyword ‘worry('D\EE)’ based on spatiotem-
poral relationships: tough(XZ%), typhoon(& &),
heavy rain(Xf), wind(/&), stop(# L), landslide(t
WK E), Hiroshima(/58), damage(#ZE), safe(KLXK)

to three disaster events in 2014. In particular, we investi-
gated the spatiotemporal proximity of geomorphology fea-
tures and the similarity of topic movements in social media.
This work is just the first step to analyze complex spatiotem-
poral patterns such as flocks and breakups in social media.
Through our experiments, we found the performance over-
heads of the database server and visualization of a large
amount of data comparing to the processing engine. More-
over, there are many challenges to improve our framework
such as parameter optimization, relationship computation,
and pattern discovery for our future study.
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