Attribute Grammars Fly First-Class

How to do Aspect Oriented Programming in Haskell

Marcos Viera

Instituto de Computacién
Universidad de la Republica
Montevideo, Uruguay

mviera®@fing.edu.uy

Abstract

Attribute Grammars (AGs), a general-purpose formalism for de-
scribing recursive computations over data types, avoid the trade-off
which arises when building software incrementally: should it be
easy to add new data types and data type alternatives or to add new
operations on existing data types? However, AGs are usually im-
plemented as a pre-processor, leaving e.g. type checking to later
processing phases and making interactive development, proper er-
ror reporting and debugging difficult. Embedding AG into Haskell
as a combinator library solves these problems.

Previous attempts at embedding AGs as a domain-specific
language were based on extensible records and thus exploiting
Haskell’s type system to check the well-formedness of the AG, but
fell short in compactness and the possibility to abstract over oft oc-
curring AG patterns. Other attempts used a very generic mapping
for which the AG well-formedness could not be statically checked.

We present a typed embedding of AG in Haskell satisfying all
these requirements. The key lies in using HList-like typed heteroge-
neous collections (extensible polymorphic records) and expressing
AG well-formedness conditions as type-level predicates (i.e., type-
class constraints). By further type-level programming we can also
express common programming patterns, corresponding to the typ-
ical use cases of monads such as Reader, Writer and State. The
paper presents a realistic example of type-class-based type-level
programming in Haskell.

Categories and Subject Descriptors D.3.3 [Programming lan-
guages]: Language Constructs and Features; D.1.1 [Programming
techniques]: Applicative (Functional) Programming

General Terms Design, Languages, Performance, Standardiza-
tion

Keywords Attribute Grammars, Class system, Lazy evaluation,
Type-level programming, Haskell, HList

1. Introduction

Functional programs can be easily extended by defining extra func-
tions. If however a data type is extended with a new alternative,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31-September 2, 2009, Edinburgh, Scotland, UK.

Copyright (© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

S. Doaitse Swierstra

Department of Computer Science
Utrecht University
Utrecht, The Netherlands

doaitse@cs.uu.nl

Wouter Swierstra

Chalmers University of Technology
Goteborg, Sweden

wouter@chalmers.se

each parameter position and each case expression where a value of
this type is matched has to be inspected and modified accordingly.
In object oriented programing the situation is reversed: if we imple-
ment the alternatives of a data type by sub-classing, it is easy to add
a new alternative by defining a new subclass in which we define a
method for each part of desired global functionality. If however we
want to define a new function for a data type, we have to inspect all
the existing subclasses and add a method describing the local con-
tribution to the global computation over this data type. This prob-
lem was first noted by Reynolds (Reynolds 1975) and later referred
to as “the expression problem” by Wadler (Wadler 1998). We start
out by showing how the use of AGs overcomes this problem.

As running example we use the classic repmin function (Bird
1984); it takes a tree argument, and returns a tree of similar shape,
in which the leaf values are replaced by the minimal value of the
leaves in the original tree (see Figure 1). The program was origi-
nally introduced to describe so-called circular programs, i.e. pro-
grams in which part of a result of a function is again used as one of
its arguments. We will use this example to show that the computa-
tion is composed of three so-called aspects: the computation of the
minimal value as the first component of the result of sem_Tree
(asp_smin), passing down the globally minimal value from the
root to the leaves as the parameter wal (asp-ival), and the con-
struction of the resulting tree as the second component of the result
(asp-sres).

Now suppose we want to change the function repmin into a
function repavg which replaces the leaves by the average value
of the leaves. Unfortunately we have to change almost every line
of the program, because instead of computing the minimal value
we have to compute both the sum of the leaf values and the total
number of leaves. At the root level we can then divide the total sum
by the total number of leaves to compute the average leaf value.
However, the traversal of the tree, the passing of the value to be
used in constructing the new leafs and the construction of the new
tree all remain unchanged. What we are now looking for is a way
to define the function repmin as:

repmin = sem_Root (asp_smin @ asp-ival @ asp-sres)
so we can easily replace the aspect asp_smin by asp_savg:
repavg = sem_Root (asp-savg ® asp-ival & asp-sres)

In Figure 2 we have expressed the solution of the repmin
problem in terms of a domain specific language, i.e., as an attribute
grammar (Swierstra et al. 1999). Attributes are values associated
with tree nodes. We will refer to a collection of (one or more)
related attributes, with their defining rules, as an aspect. After
defining the underlying data types by a few DATA definitions,
we define the different aspects: for the two “result” aspects we

data Root = Root Tree
data Tree = Node Tree Tree
| Leaf Int

repmin = sem_Root

sem_Root (Root tree)
= let (smin, sres) = (sem_Tree tree) smin
in (sres)

sem_Tree (Node I T)
= Xiwal — let (Imin, lres) = (sem_-Tree |) ival
(rmin, rres) = (sem_Tree v) wal
in (Imin ‘min‘ rmin, Node lres rres)
sem_Tree (Leaf i)
= \iwal —

(i, Leaf ival)

Figure 1. repmin replaces leaf values by their minimal value

introduce synthesized attributes (SYN smin and SYN sres),
and for the “parameter” aspect we introduce an inherited attribute
(INH ival).

Note that attributes are introduced separately, and that for each
attribute/alternative pair we have a separate piece of code describ-
ing what to compute in a SEM rule; the defining expressions at
the right hand side of the =-signs are all written in Haskell, using
minimal syntactic extensions to refer to attribute values (the identi-
fiers starting with a @). These expressions are copied directly into
the generated program: only the attribute references are replaced by
references to values defined in the generated program. The attribute
grammar system only checks whether for all attributes a definition
has been given. Type checking of the defining expressions is left to
the Haskell compiler when compiling the generated program (given
in Figure 1).

As a consequence type errors are reported in terms of the gen-
erated program. Although this works reasonably well in practice,
the question arises whether we we can define a set of combinators
which enables us to embed the AG formalism directly in Haskell,
thus making the separate generation step uncalled for and immedi-
ately profiting from Haskell’s type checker and getting error mes-
sages referring to the original source code.

A first approach to such an embedded attribute grammar nota-
tion was made by de Moor et al. (de Moor et al. 2000b). Unfortu-
nately this approach, which is based on extensible records (Gaster
and Jones 1996), necessitates the introduction of a large set of com-
binators, which encode positions of children-trees explicitly. Fur-
thermore combinators are indexed by a number which indicates the
number of children a node has where the combinator is to be ap-
plied. The first contribution of this paper is that we show how to
overcome this shortcoming by making use of the Haskell class sys-
tem.

The second contribution is that we show how to express the pre-
vious solution in terms of heterogeneous collections, thus avoiding
the use of Hugs-style extensible records are not supported by the
main Haskell compilers.

DATA Root | Root tree
DATA Tree | Node I, 7 : Tree
| Leaf i : {Int}
SYN Tree [smin: Int]
SEM Tree
| Leaf lhs.smin = Q3
| Node lhs .smin = Ql.smin ‘min‘ Qr.smin

INH Tree [wal : Int]
SEM Root
| Root tree.ival = Qtree.smin
SEM Tree
| Node I .ival = Qlhs.ival
r .iwal = Qlhs.ival

SYN Root Tree [sres : Tree]
SEM Root
| Root lhs .sres = Qiree.sres
SEM Tree
| Leaf lhs.sres = Leaf Qlhs.ival
| Node lhs .sres = Node Q[.sres Qr.sres

Figure 2. AG specification of repmin

Attribute grammars exhibit typical design patterns; an example
of such a pattern is the inherited attribute sval, which is distributed
to all the children of a node, and so on recursively. Other exam-
ples are attributes which thread a value through the tree, or collect
information from all the children which have a specific attribute
and combine this into a synthesized attribute of the father node. In
normal Haskell programming this would be done by introducing a
collection of monads (Reader, State and Writer monad respec-
tively), and by using monad transformers to combine these in to
a single monadic computation. Unfortunately this approach breaks
down once too many attributes have to be dealt with, when the data
flows backwards, and especially if we have a non-uniform gram-
mar, i.e., a grammar which has several different non-terminals each
with a different collection of attributes. In the latter case a single
monad will no longer be sufficient.

One way of making such computational patterns first-class is by
going to a universal representation for all the attributes, and packing
and unpacking them whenever we need to perform a computation.
In this way all attributes have the same type at the attribute grammar
level, and non-terminals can now be seen as functions which map
dictionaries to dictionaries, where such dictionaries are tables map-
ping Strings representing attribute names to universal attribute val-
ues (de Moor et al. 2000a). Although this provides us with a power-
ful mechanism for describing attribute flows by Haskell functions,
this comes at a huge price; all attributes have to be unpacked before
the contents can be accesses, and to be repacked before they can be
passed on. Worse still, the check that verifies that all attributes are
completely defined, is no longer a static check, but rather some-
thing which is implicitly done at run-time by the evaluator, as a
side-effect of looking up attributes in the dictionaries. The third
contribution of this paper is that we show how patterns correspond-
ing to the mentioned monadic constructs can be described, again
using the Haskell class mechanism.

The fourth contribution of this paper is that it presents yet
another large example of how to do type-level programming in
Haskell, and what can be achieved with it. In our conclusions we
will come back to this.

Before going into the technical details we want to give an im-
pression of what our embedded Domain Specific Language (DSL)

data Root = Root{ tree :: Tree}
deriving Show

data Tree = Node{l:: Tree,r :: Tree}
| Leaf{i:: Int}
deriving Show

$ (deriveAG *° Root)
$ (attLabels ["smin", "ival", "sres"])

asp_smin = synthesize smin at { Tree}
use min 0 at { Node}
define at Leaf =1

asp-ival = inherit ival at { Tree}

copy at {Node}
define at Root.tree = tree.smin

asp_sres = synthesize sres at { Root, Tree }
use Node (Leaf 0) at { Node}

define at Root = tree.sres
Leaf = Leaf lhs.ival

asp-_repmin = asp_smin @ asp_sres O asp_ival
repmin t = select sres from compute asp_repmin t

Figure 3. repmin in our embedded DSL

looks like. In Figure 3 we give our definition of the repmin prob-
lem in a lightly sugared notation.

To completely implement the repmin function the user of our
library' needs to undertake the following steps (Figure 3):

e define the Haskell data types involved;

e optionally, generate some boiler-plate code using calls to Tem-
plate Haskell;

e define the aspects, by specifying whether the attribute is inher-
ited or synthesized, with which non-terminals it is associated,
how to compute its value if no explicit definition is given (i.e.,
which computational pattern it follows), and providing defini-
tions for the attribute at the various data type constructors (pro-
ductions in grammar terms) for which it needs to be defined,
resulting in asp_repmin;

e composing the aspects into a single large aspect asp_repmin

e define the function repmin that takes a tree, executes the se-
mantic function for the tree and the aspect asp_repmin, and
selects the synthesized attribute sres from the result.

Together these rules define for each of the productions a so-
called Data Dependency Graph (DDG). A DDG is basically a data-
flow graph (Figure 4), with as incoming values has the inherited at-
tributes of the father node and the synthesized attributes of the chil-
dren nodes (indicated by closed arrows), and as outputs the inher-
ited attributes of the children nodes and the synthesized attributes
of the father node (open arrows). The semantics of our DSL is de-
fined as the data-flow graph which results from composing all the
DDGs corresponding to the individual nodes of the abstract syntax
tree. Note that the semantics of a tree is thus represented by a func-
tion which maps the inherited attributes of the root node onto its
synthesized attributes.

The main result of this paper is a combinator based implementa-
tion of attribute grammars in Haskell; it has statically type checked

! Available as AspectAG in Hackage.

ival* Q Almm ‘min rmin
Node lres rres

ival Imin ival rmin
lres r7€es
sem_Tree sem_Tree

Figure 4. The DDG for Node

semantic functions, it is statically checked for correctness at the at-
tribute grammar level, and high-level attribute evaluation patterns
can be described.

In Section 2 we introduce the heterogeneous collections, which
are used to combine a collection of inherited or synthesised at-
tributes into a single value. In Section 3 we show how individual
attribute grammar rules are represented. In Section 4 we introduce
the aforementioned ¢ operator which combines the aspects. In
Section 5 we introduce a function knit which takes the DDG asso-
ciated with the production used at the root of a tree and the map-
pings (sem_... functions) from inherited to synthesised attributes
for its children (i.e. the data flow over the children trees) and out
of this constructs a data flow computation over the combined tree.
In Section 6 we show how the common patterns can be encoded in
our library, and in Section 7 we show how default aspects can be
defined. In Section 8 we discuss related work, and in Section 9 we
conclude.

2. HList

The library HList (Kiselyov et al. 2004) implements typeful het-
erogeneous collections (lists, records, ...), using techniques for de-
pendently typed programming in Haskell (Hallgren 2001; McBride
2002) which in turn make use of Haskell 98 extensions for multi-
parameter classes (Peyton Jones et al. 1997) and functional depen-
dencies (Jones 2000). The idea of type-level programming is based
on the use of types to represent type-level values, and classes to
represent type-level types and functions.

In order to be self-contained we start out with a small introduc-
tion. To represent Boolean values at the type level we define a new
type for each of the Boolean values. The class HBool represents the
type-level type of Booleans. We may read the instance definitions
as “the type-level values H7rue and HFalse have the type-level
type HBool”:

class HBool x

data HTrue; hTrue = L :: HTrue
data HFualse; hFalse = 1 :: HFalse

instance HBool HTrue
instance HBool HFalse

Since we are only interested in type-level computation, we de-
fined HTrue and HFalse as empty types. By defining an inhabitant
for each value we can, by writing expressions at the value level,
construct values at the type-level by referring to the types of such
expressions.

Multi-parameter classes can be used to describe type-level re-
lations, whereas functional dependencies restrict such relations to
functions. As an example we define the class HOr for type-level
disjunction:

class (HBool t, HBool t', HBool t")
= HOrt t' t" |t — t"
where hOr ::t — t' — t"

The context (HBool t, HBool t', HBool t") expresses that the
types t, t and t” have to be type-level values of the type-level

type HBool. The functional dependency ¢t t' — t" expresses
that the parameters ¢ and ¢’ uniquely determine the parameter t”.
This implies that once ¢ and ¢’ are instantiated, the instance of "/
must be uniquely inferable by the type-system, and that thus we are
defining a type-level function from ¢ and ¢’ to t”. The type-level
function itself is defined by the following non-overlapping instance
declarations:

instance HOr HFalse HFalse HFalse

where hOr _ _ = hFalse

instance HOr HTrue HFalse HTrue
where hOr _ _ = hTrue

instance HOr HFalse HTrue H7True
where hOr _ _ = hTrue

instance HOr HTrue HTrue H7True
where hOr _ _ = hTrue

If we write (hOr hTrue hFalse), we know that ¢ and t’' are
HTrue and HFalse, respectively. So, the second instance is chosen
to select hOr from and thus t” is inferred to be HTrue.

Despite the fact that is looks like a computation at the value
level, its actual purpose is to express a computation at the type-
level; no interesting value level computation is taking place at all.
If we had defined H True and HFalse in the following way:

data HTrue = HTrue; hTrue = HTrue :: Htrue
data HFalse = HFalse; hFalse = HFalse :: HFulse

then the same computation would also be performed at the value
level, resulting in the value HTrue of type HTrue.

2.1 Heterogeneous Lists

Heterogeneous lists are represented with the data types HNil and
HCons, which model the structure of a normal list both at the value
and type level:

data HNil = HNil
data HCons el = HCons el

The sequence HCons True (HCons "bla" HNil) is a correct
heterogeneous list with type HCons Bool (HCons String HNil).
Since we want to prevent that an expression HCons True False
represents a correct heterogeneous list (the second HCons argu-
ment is not a type-level list) we introduce the classes HList and its
instances,and express express this constraint by adding a context
condition to the HCons... instance:

class HList |
instance HList HNil
instance HList | = HList (HCons e)

The library includes a multi-parameter class HFExtend to model the
extension of heterogeneous collections.

class HEztend e l1' | el — 1I',1' — el
where hExtend ::e — | — I

The functional dependency e | — [’ makes that HExtend is a
type-level function, instead of a relation: once e and [are fixed I’
is uniquely determined. It fixes the type I’ of a collection, resulting
from extending a collection of type ! with an element of type e. The
member hFExtend performs the same computation at the level of
values. The instance of HFaxtend for heterogeneous lists includes
the well-formedness condition:

instance HList | = HEztend e | (HCons e)
where hEztend = HCons

The main reason for introducing the class HFExtend is to make it
possible to encode constraints on the things which can be HCons-

ed; here we have expressed that the second parameter should be a
list again. In the next subsection we will see how to make use of
this facility.

2.2 Extensible Records

In our code we will make heavy use of non-homogeneous collec-
tions: grammars are a collection of productions, and nodes have
a collection of attributes and a collection of children nodes. Such
collections, which can be extended and shrunk, map typed labels
to values and are modeled by an HList containing a heterogeneous
list of fields, marked with the data type Record. We will refer to
them as records from now on:

newtype Record r = Record r

An empty record is a Record containing an empty heterogeneous
list:

emptyRecord :: Record HNil
emptyRecord = Record HNil

A field with label [(a phantom type (Hinze 2003)) and value of
type v is represented by the type:

newtype LVPair | v = LVPair{valueLVPair :: v}

Labels are now almost first-class objects, and can be used as type-
level values. We can retrieve the label value using the function
label LV Pair, which exposes the phantom type parameter:

labelLVPair :: LVPair | v — [
labelLVPair = L

Since we need to represent many labels, we introduce a polymor-
phic type Proxy to represent them; by choosing a different phan-
tom type for each label to be represented we can distinguish them:

data Proxy e; proxy = L :: Prozy e

Thus, the following declarations define a record (myR) with two
elements, labelled by Labell and Label2:

data Labell; labell = proxy :: Proxy Labell
data Label2; label2 = prozy :: Proxy Label2

field1 = LVPair True :: LVPair (Proxzy Labell) Bool
field2 = LVPair "bla" :: LVPair (Prozy Label2) [Char]

myR = Record (HCons fieldl (HCons field2 HNil)

Since our lists will represent collections of attributes we want to ex-
press statically that we do not have more than a single definition for
each attribute occurrence, and so the labels in a record should be all
different. This constraint is represented by requiring an instance of
the class HR LabelSet to be available when defining extendability
for records:

instance HRLabelSet (HCons (LVPair | v))
= HExtend (LVPair | v) (Record r)
(Record (HCons (LVPair | v) T))
where hEztend f (Record r) = Record (HCons f)

The class HasField is used to retrieve the value part corre-
sponding to a specific label from a record:

class HasField I v v |l r — v where
hLookupByLabel :: | — r — v
At the type-level it is statically checked that the record r indeed
has a field with label [associated with a value of the type v. At

value-level the member hLookupByLabel returns the value of type
v. So, the following expression returns the string "bla":

hLookupByLabel label2 myR

The possibility to update an element in a record at a given label
position is provided by:

class HUpdateAtLabel L v r v’ |l v r — r’ where
hUpdateAtLabel :: 1 — v — r — 1’

In order to keep our programs readable we introduce infix oper-
ators for some of the previous functions:

(x) = hExtend
_.=.v = LVPair v
r # | = hLookupByLabel | r

Furthermore we will use the following syntactic sugar to denote
lists and records in the rest of the paper:

e {vl,...,vn }for (vl x ... vn x HNil)
o {{ vi1,...,un }}for (v1 # ... x vn x emptyRecord)
So, for example the definition of myR can now be written as:

myR = {{ labell =. True, label2 .=. "bla" }}

3. Rules

In this subsection we show how attributes and their defining rules
are represented. An attribution is a finite mapping from attribute
names to attribute values, represented as a Record, in which each
field represents the name and value of an attribute.

type Att att val = LVPair att val
The labels? (attribute names) for the attributes of the example are:

data Att_smin; smin = proxy :: Prozy Att_smin
data Att_ival; iwal = proxy :: Proxy Att_ival
data Att_sres; sres = proxy :: Proxy Att_sres

When inspecting what happens at a production we see that infor-
mation flows from the inherited attribute of the parent and the syn-
thesized attributes of the children (henceforth called in the input
family) to the synthesized attributes of the parent and the inherited
attributes of the children (together called the output family from
now on). Both the input and the output attribute family is repre-
sented by an instance of:

data Fam cp = Fam c p

A Fam contains a single attribution for the parent and a collection
of attributions for the children. Thus the type p will always be a
Record with fields of type Att, and the type ¢ a Record with fields
of the type:

type Chi ch atts = LVPair ch atts

where ch is a label that represents the name of that child and atts
is again a Record with the fields of type Att¢ associated with this
particular child. In our example the Root production has a single
child Ch_tree of type Tree, the Node production has two children
labelled by Ch_l and Ch_r of type Tree, and the Leaf production
has a single child called Ch_i of type Int. Thus we generate, using
template Haskell:

data Ch_tree; ch_tree = proxy :: Proxy (Ch_tree, Tree)
data Ch_r; ch-r = proxy :: Proxy (Ch_r, Tree)
data Ch_l; ch.l = prozy:: Proxzy (Ch_l, Tree)
data Ch_i; chi = proxy :: Proxy (Ch_i, Int)

Note that we encode both the name and the type of the child in the
type representing the label.

2 These and all needed labels can be generated automatically by Template
Haskell functions available in the library

smin
sres

smin

sres ival<7 "

Figure 5. Repmin’s input and output families for Node

Families are used to model the input and output attributes of at-
tribute computations. For example, Figure 5 shows the input (black
arrows) and output (white arrows) attribute families of the repmin
problem for the production Node. We now give the attributions as-
sociated with the output family of the Node production, which are
the synthesized attributes of the parent (SP) and the inherited attri-
butions for the left and right child (/L and IR):

type SP = Record (HCons (Att (Prozy Att_smin) Int)
HCons (Att (Prozy Att_sres) Tree)

HNil)

type IL = Record (HCons (Att (Prozy Att_ival) Int)
HNil)

type IR = Record (HCons (Att (Prozy Att_ival) Int)
HNil)

The next type collects the last two children attributions into a single
record:

type IC = Record (HCons (Chi (Proxy (Ch_l, Tree) IL)
HCons (Chi (Prozy (Ch_r, Tree) IR)
HNil)

We now have all the ingredients to define the output family for
Node-s.

type Output_Node = Fam IC SP

Attribute computations are defined in terms of rules. As defined by
(de Moor et al. 2000a), a rule is a mapping from an input family
to an output family. In order to make rules composable we define a
rule as a mapping from input attributes to a function which extends
a family of output attributes with the new elements defined by this
rule:

type Rule sc ip ic sp ic’ sp’
= Fam sc ip — Fam ic sp — Fam ic’ sp’

Thus, the type Rule states that a rule takes as input the synthe-
sized attributes of the children sc and the inherited attributes of the
parent ¢p and returns a function from the output constructed thus
far (inherited attributes of the children ic and synthesized attributes
of the parent sp) to the extended output.

The composition of two rules is the composition of the two
functions after applying each of them to the input family first:

ext :: Rule sc ip ic’ sp’ ic” sp” — Rule sc ip ic sp ic’ sp’
— Rule sc ip ic sp ic” sp”
(f ‘ext’ g) input = f input.g input

3.1 Rule Definition

We now introduce the functions syndef and inhdef, which are
used to define primitive rules which define a synthesized or an
inherited attribute respectively. Figure 6 lists all the rule definitions
for our running example. The naming convention is such that a
rule with name prod_att defines the attribute att for the production
prod. Without trying to completely understand the definitions we
suggest the reader to compare them with their respective SEM
specifications in Figure 2.

leaf _smin (Fam chi par)
= syndef smin (chi # ch_i)
node_smin (Fam chi par)
= syndef smin (((chi # ch_l) # smin)

‘min’

((chi # ch_r) # smin))
root_ival (Fam chi par)
= inhdef ival { nt_Tree }
{ ch_tree
.=. (chi # ch_tree) # smin }}
node_ival (Fam chi par)
= inhdef wal { nt_Tree }
{ ch-l = par # ival
, ch_r =. par # val }}
root_sres (Fam chi par)
= syndef sres ((chi # ch_tree) # sres)
leaf _sres (Fam chi par)
= syndef sres (Leaf (par # ival))
node_sres (Fam chi par)
= syndef sres (Node ((chi # ch_l) # sres)
((chi # ch_r) # sres))

Figure 6. Rule definitions for repmin

The function syndef adds the definition of a synthesized at-
tribute. It takes a label att representing the name of the new at-
tribute, a value val to be assigned to this attribute, and it builds a
function which updates the output constructed thus far.

syndef :: HEztend (Att att val) sp sp’
= att — val — (Fam ic sp — Fam ic sp’)
syndef att val (Fam ic sp) = Fam ic (att .=. val x. sp)

The record sp with the synthesized attributes of the parent is ex-
tended with a field with name att and value val, as shown in Fig-
ure 7. If we look at the type of the function, the check that we
have not already defined this attribute is done by the constraint
HEzxtend (Att att val) sp sp’, meaning that sp’ is the result
of adding the field (Att att val) to sp, which cannot have any
field with name att. Thus we are statically preventing duplicated
attribute definitions.

Figure 7. Synthesized attribute definition

Let us take a look at the rule definition node_smin of the attribute
smin for the production Node in Figure 6. The children ch_l and
ch_r are retrieved from the input family so we can subsequently
retrieve the attribute smin from these attributions, and construct
the computation of the synthesized attribute smin. This process is
demonstrated in Figure 8. The attribute smen is required (under-
lined) in the children [and r of the input, and the parent of the
output is extended with smin.

If we take a look at the type which is inferred for node_sres we find
back all the constraints which are normally checked by an off-line
attribute grammar system, i.e., an attribute smin is made available

Figure 8. Rule node_sres

by each child and an attribute smin can be safely added to the
current synthesized attribution of the parent: >

(HasField (Prozy (Ch_l, Tree)) sc scl

, HasField (Prozy Att_smin) scl Int

, HasField (Prozy (Ch_r, Tree)) sc scr

, HasField (Proxy Att_smin) scr Int

, HExtend (Att (Proxy Att_smin) Int)
s

= Rule sc ip ic sp ic sp’

node_sres ::

The function inhdef introduces a new inherited attribute for a
collection of non-terminals. It takes the following parameters:

att the attribute which is being defined;
nts the non-terminals with which this attribute is being associated;

vals a record labelled with child names and containing values,
describing how to compute the attribute being defined at each
of the applicable child positions.

The parameter nts takes over the role of the INH declaration
in Figure 2. Here this extra parameter seems to be superfluous,
since its value can be inferred, but adds an additional restriction
to be checked (yielding to better errors) and it will be used in the
introduction of default rules later. The names for the non-terminals
of our example are:

nt_Root = proxy :: Proxy Root
nt_Tree = proxy :: Proxy Tree

The result of inhdef again is a function which updates the
output constructed thus far.

inhdef :: Defs att nts vals ic ic’

= att — nts — vals — (Fam ic sp — Fam ic’ sp)
inhdef att nts vals (Fam ic sp) =

Fam (defs att nts vals ic) sp

The class Def is defined by induction over the record vals contain-
ing the new definitions. The function defs inserts each definition
into the attribution of the corresponding child.

class Defs att nts vals ic ic’ | vals ic — ic’ where
defs :: att — nts — vals — ic — ic’

‘We start out with the base case, where we have no more definitions
to add. In this case the inherited attributes of the children are
returned unchanged.

instance Defs att nts (Record HNil) ic ic where
defs — _ _ic = 1ic

The instance for HCons given below first recursively processes the
rest of the definitions by updating the collection of collections of
inherited attributes of the children ic into ic’. A helper type level

3 In order to keep the explanation simple we will suppose that min is not
overloaded, and takes Int’s as parameter.

function SingleDef (and its corresponding value level function
singledef) is used to incorporate the single definition (pch) into
ic’, resulting in a new set ic”’. The type level functions HasLabel
and HMember are used to statically check whether the child be-
ing defined (lch) exists in ic’ and if its type (t) belongs to the
non-terminals nts, respectively. The result of both functions are
HBools (either HTrue or HFalse) which are passed as parame-
ters to SingleDef. We are now ready to give the definition for the
non-empty case:

instance (Defs att nts (Record vs) ic ic’
, HasLabel (Proxy (Ich,t)) ic’" mch
, HMember (Prozy t) nts mnts
, SingleDef mch mnts att
(Chi (Proxy (lch,t)) vch)
ic’ ic")
= Defs att nts
(Record (HCons (Chi (Prozy (lch,t)) vch) vs))
ic ic”
where
defs att nts ~(Record (HCons pch vs)) ic =
singledef mch mnts att pch ic’
where ic’ = defs att nts (Record vs) ic
lch = labelLVPair pch
mch = hasLabel lch ic’
mnts = hMember (sndProzy lch) nts

The class Haslabel can be encoded straightforwardly, together
with a function which retrieves part of a phantom type:

class HBool b = HasLabel T b |lrT — b
instance HasLabel | v b = HasLabel | (Record r) b
instance (HEq ! Ip b, HasLabel 1 v ', HOr b b b"")

= HasLabel | (HCons (LVPair lp vp) r) b”
instance HasLabel | HNil HFalse

hasLabel :: HasLabel l 7 b =1 —r — b
hasLabel = L

sndProxy :: Proxy (a,b) — Proxy b
sndProxy — = 1

We only show the instance with both mch and mnts equal to
HTrue, which is the case we expect to apply in a correct attribute
grammar definition: we do not refer to children which do not exist,
and this child has the type we expect.*

class SingleDef mch mnts att pv ic ic’
| mch mnts pv ic — ic’
where singledef :: mch — mnts — att — pv — ic — ic’

instance (HasField Ich ic och
, HExtend (Att att vch) och och’
, HUpdateAtLabel Ich och’ ic ic’)
= SingleDef HTrue HTrue att (Chi lch vch) ic ic’
where singledef _ _ att pch ic =
hUpdateAtLabel lch (att .=. vch *. och) ic
where Ich = labelLVPair pch
vch = valueLVPair pch
och = hLookupByLabel lch ic

We will guarantee that the collection of attributions ic (inherited
attributes of the children) contains an attribution och for the child
Ich, and so we can use hUpdateAtlabel to extend the attribution

4The instances for error cases could just be left undefined, yielding to
“undefined instance” type errors. In our library we use a class Fail (as
defined in (Kiselyov et al. 2004), section 6) in order to get more instructive
type error messages.

for this child with a field (A¢t att vch), thus binding attribute att
to value vch. The type system checks, thanks to the presence of
HEztend, that the attribute att was not defined before in och.

4. Aspects

We represent aspects as records which contain for each production
arule field.
type Prd prd rule = LV Pair prd rule

For our example we thus introduce fresh labels to refer to repmin’s
productions:

data P_Root; p_-Root = proxy :: Prozy P_Root
data P_Node; p_Node = proxy :: Prory P_Node
data P_Leaf; p_Leaf = proxy :: Prozy P_Leaf

‘We now can define the aspects of repmin as records with the rules
of Figure 6.

asp_smin = {{ p_Leaf .=. leaf _smin
, p-Node .=. node_smin }}

asp-wal = {{ p_-Root .=. root_ival
, p-Node .=. node_ival }}

asp_sres = {{ p-Root .=. root_sres
, p_Node .=. node_sres
, p-Leaf .= leaf_sres }}

4.1 Aspects Combination

We define the class Com which will provide the instances we need
for combining aspects:

class Com r v’ v | rr' — ¢
where (®)::r — 1 — 7"

With this operator we can now combine the three aspects which
together make up the repmin problem:

asp_repmin = asp_smin @ asp_ival O asp_sres

Combination of aspects is a sort of union of records where, in case
of fields with the same label (i.e., for rules for the same production),
the rule combination (ext) is applied to the values. To perform the
union we iterate over the second record, inserting the next element
into the first one if it is new and combining it with an existing entry
if it exists:

instance Com r (Record HNil) r
where r& _=1r

instance (HasLabel Iprd r b
, ComSingle b (Prd Iprd rprd) v v’
, Com """ (Record ') r'")
= Com r (Record (HCons (Prd lprd rprd) r')) r"
where
r @ (Record (HCons prd r')) = r"
where b = hasLabel (labelLVPair prd) r
r'""" = comsingle b prd r
" =7r"" & (Record ')

We use the class ComSingle to insert a single element into the first
record. The type-level Boolean parameter b is used to distinguish
those cases where the left hand operand already contains a field for
the rule to be added and the case where it is new. ®

5 We assume that the monomorphism restriction has been switched off.

6 This parameter can be avoided by allowing overlapping instances, but we
prefer to minimize the number of Haskell extensions we use.

class ComSingle b f ror’ | bfr— 1
where comsingle :: b — f — r — 1’

If the first record has a field with the same label lprd, we update its
value by composing the rules.
instance (HasField lprd 1 (Rule sc ip ic’ sp’ ic” sp”)
, HUpdateAtLabel lprd (Rule sc ip

i Sp
/Z;C// Sp//)
rr')
= ComSingle HTrue (Prd lprd (Rule sc ip ic sp ic’ sp’))

ror
where
comsingle _ f r = hUpdateAtLabel n ((r # n) ‘ext‘ v) r
where n = labelLVPair f
v = valueLVPair f

In case the first record does not have a field with the label, we just
insert the element in the record.

instance ComSingle HFalse f (Record)
(Record (HCons f r))
where comsingle _ f (Record r) = Record (HCons f 1)

5. Semantic Functions

Our overall goal is to construct a Tree-algebra and a Root-algebra.
For the domain associated with each non-terminal we take the
function mapping its inherited to its synthesized attributes. The
hard work is done by the function knit, the purpose of which is to
combine the data flow defined by the DDG —which was constructed
by combining all the rules for this production— with the semantic
functions of the children (describing the flow of data from their
inherited to their synthesized attributes) into the semantic function
for the parent.

With the attribute computations as first-class entities, we can
now pass them as an argument to functions of the form sem_<nt>.
The following code follows the definitions of the data types at hand:
it contains recursive calls for all children of an alternative, each of
which results in a mapping from inherited to synthesized attributes
for that child followed by a call to knit, which stitches everything
together:

sem_Root asp (Root t)
= knit (asp # p-Root) {{ ch_tree .=. sem_Tree asp t }}
sem_Tree asp (Node [r)
= knit (asp # p-Node) {{ ch_l =. sem_Tree asp |
, ch_r =.sem_Tree asp v }}
sem_Tree asp (Leaf 1)
= knit (asp # p-Leaf) {{ ch_i .=. sem_Lit i }}

sem_Lit e (Record HNil) = e

Since this code is completely generic we provide a Template
Haskell function deriveAG which automatically generates the
functions such as sem_Root and sem_Tree, together with the
labels for the non-terminals and labels for referring to children.
Thus, to completely implement the repmin function we need to
undertake the following steps:

e Generate the semantic functions and the corresponding labels
by using:
$ (deriveAG “Root)

e Define and compose the aspects as shown in the previous sec-
tions, resulting in asp_-repman.

e Define the function repmin that takes a tree, executes the
semantic function for the tree and the aspect asp_repmin, and
selects the synthesized attribute sres from the result.

repmin tree
= sem_Root asp_repmin (Root tree) () # sres

5.1 The Knit Function

As said before the function knit takes the combined rules for
a node and the semantic functions of the children, and builds a
function from the inherited attributes of the parent to its synthesized
attributes. We start out by constructing an empty output family,
containing an empty attribution for each child and one for the
parent. To each of these attributions we apply the corresponding
part of the rules, which will construct the inherited attributes of
the children and the synthesized attributes of the parent (together
forming the output family). Rules however contain references to
the input family, which is composed of the inherited attributes of
the parent ip and the synthesized attributes of the children sc.

knit :: (Empties fc ec, Kn fc ic sc)
= Rule sc ip ec (Record HNil) ic sp
— fc—ip — sp
knit rule fc ip =
let ec = empties fc
(Fam ic sp) = rule (Fam sc ip)
(Fam ec emptyRecord)
sc = kn fc ic
in sp
The function kn, which takes the semantic functions of the
children (fc) and their inputs (ic), computes the results for the
children (sc). The functional dependency fc — ic sc indicates
that fc determines ic and sc, so the shape of the record with the
semantic functions determines the shape of the other records:

class Kn fc ic sc | fc — ic sc where
kn :: fc — ic — sc

We declare a helper instance of Kn to remove the Record tags of
the parameters, in order to be able to iterate over their lists without
having to tag and untag at each step:

instance Kn fc ic sc
= Kn (Record fc) (Record ic) (Record sc) where
kn (Record fc) (Record ic) = Record $ kn fc ic

When the list of children is empty, we just return an empty list of
results.

instance Kn HNil HNil HNil where
kn _ _ = hNil

The function kn is a type level zip With ($), which applies the
functions contained in the first argument list to the corresponding
element in the second argument list.

instance Kn fer icr scr
= Kn (HCons (Chi lch (ich — sch)) fer)
(HCons (Chi lch ich) icr)
(HCons (Chi lch sch) ser)
where
kn ~(HCons pfch fer) ~(HCons pich icr) =
let scr = kn fer icr
lch = labelLVPair pfch
fch = valueLVPair pfch
ich = valueLVPair pich
in HCons (newLVPair lch (fch ich)) scr

The class Empties is used to construct the record, with an
empty attribution for each child, which we have used to initialize
the computation of the input attributes with.

class Empties fc ec | fc — ec where
empties :: fc — ec

In the same way that fc determines the shape of ic and sc in Kn,
it also tells us how many empty attributions ec to produce and in
which order:

instance Empties fc ec
= Empties (Record fc) (Record ec) where
empties (Record fc) = Record $ empties fc

instance Empties fer ecr
= Empties (HCons (Chi Ilch fch) fer)
(HCons (Chi lch (Record HNil)) ecr)
where
empties ~(HCons pch fer) =
let ecr = empties fer
lch = label LV Pair pch
in HCons (newLVPair lch emptyRecord) ecr

instance Empties HNil HNil where
empties _ = hNil

6. Common Patterns

At this point all the basic functionality of attribute grammars has
been implemented. In practice however we want more. If we look at
the code in Figure 2 we see that the rules for ival at the production
Node are “free of semantics”, since the value is copied unmodified
to its children. If we were dealing with a tree with three children
instead of two the extra line would look quite similar. When pro-
gramming attribute grammars such patterns are quite common and
most attribute grammar systems contain implicit rules which au-
tomatically insert such “trivial” rules. As a result descriptions can
decrease in size dramatically. The question now arises whether we
can extend our embedded language to incorporate such more high
level data flow patterns.

6.1 Copy Rule

The most common pattern is the copying of an inherited attribute
from the parent to all its children. We capture this pattern with the
an operator copy, which takes the name of an attribute att and an
heterogeneous list of non-terminals nts for which the attribute has
to be defined, and generates a copy rule for this. This corresponds
closely to the introduction of a Reader monad.

copy = (Copy att nts vp ic ic’, HasField att ip vp)
= att — nts — Rule sc ip ic sp ic’ sp

Thus, for example, the rule node_ival of Figure 6 can now be
written as:

node_ival input = copy ival { nt_Tree } input

The function copy uses a function defcp to define the attribute att
as an inherited attribute of its children. This function is similar in
some sense to inhdef, but instead of taking a record containing the
new definitions it gets the value vp of the attribute which is to be
copied to the children:

copy att nts (Fam _ ip) = defcp att nts (ip # att)
defep :: Copy att nts vp ic ic
= att — nts — vp — (Fam ic sp — Fam ic’ sp)
defcp att nts vp (Fam ic sp) =
Fam (cpychi att nts vp ic) sp

The class Copy iterates over the record ic containing the output
attribution of the children, and inserts the attribute att with value
vp if the type of the child is included in the list nts of non-terminals
and the attribute is not already defined for this child.

class Copy att nts vp ic ic’ | ic — ic’ where
cpychi :: att — nts — vp — ic — ic

instance Copy att nts vp (Record HNil) (Record HNil)
where cpychi — _ _ _ = emptyRecord

instance (Copy att nts vp (Record ics) ics’
, HMember (Prozy t) nts mnts
, HasLabel att vch much
, Copy’ mnts much att vp
(Chi (Proxy (lch,t)) vch)
pch
, HExtend pch ics’ ic)
= Copy att nts vp
(Record (HCons (Chi (Proxy (lch,t)) vch) ics))
ic
where
cpychi att nts vp (Record (HCons pch ics)) =
cpychi’ mnts much att vp pch x. ics’
where ics’ = cpychi att nts vp (Record ics)
lch sndProzxy (labelLVPair pch)
veh = valueLVPair pch
mnts = hMember lch nts
much = hasLabel att vch

The function cpychi’ updates the field pch by adding the new
attribute:

class Copy’ mnts much att vp pch pch’
| mnts much pch — pch’
where
cpychi’ :: mnts — much — att — vp — pch — pch’

When the type of the child doesn’t belong to the non-terminals for
which the attribute is defined we define an instance which leaves
the field pch unchanged.

instance Copy’ HFalse much att vp pch pch where
epychi’ _ _ _ _ pch = pch

We also leave pch unchanged if the attribute is already defined for
this child.

instance Copy’ HTrue HTrue att vp pch pch where
epychi’ _ _ _ _ pch = pch

In other case the attribution vch is extended with the attribute
(Att att vp).

instance HExtend (Att att vp) veh vch’
= Copy’ HTrue HFalse att vp (Chi Ich vch)
(Chi lch veh') where
cpychi’ _ _ att vp pch = lch .=. (att .=. vp . vch)
where lch = labelLVPair pch
vch = valueLVPair pch

6.2 Other Rules

In this section we introduce two more constructs of our DSL, with-
out giving their implementation. Besides the Reader monad, there
is also the Writer monad. Often we want to collect information
provided by some of the children into an attribute of the parent.
This can be used to e.g. collect all identifiers contained in an ex-
pression. Such a synthesized attribute can be declared using the

use rule, which combines the attribute values of the children in
similar way as Haskell’s foldr1. The use rule takes the following
arguments: the attribute to be defined, the list of non-terminals for
which the attribute is defined, a monoidal operator which combines
the attribute values, and a unit value to be used in those cases where
none of the children has such an attribute.

use :: (Use att nts a sc, HExtend (Att att a) sp sp’)
= att — nts — (a > a—a) — a
— Rule sc ip ic sp ic sp’

Using this new combinator the rule node_smin of Figure 6 be-
comes:

node_smin = use smin { nt_Tree } min 0

A third common pattern corresponds to the use of the State
monad. A value is threaded in a depth-first way through the tree,
being updated every now and then. For this we have chained at-
tributes (both inherited and synthesized). If a definition for a syn-
thesized attribute of the parent with this name is missing we look
for the right-most child with a synthesized attribute of this name. If
we are missing a definition for one of the children, we look for the
right-most of its left siblings which can provide such a value, and
if we cannot find it there, we look at the inherited attributes of the
father.

chain :: (Chain att nts val sc ic sp ic’ sp’
, HasField att ip val)
= att — nts — Rule sc ip ic sp ic’ sp’

7. Defining Aspects

Now we have both implicit rules to define attributes, and explicit
rules which contain explicit definitions, we may want to combine
these into a single attribute aspect which contains all the definitions
for single attribute. We now refer to Figure 9 which is a desugared
version of the notation presented in the introduction.

An inherited attribute aspect, like asp_ival in Figure 9, can be
defined using the function inhAspect. It takes as arguments: the
name of the attribute att, the list nts of non-terminals where the
attribute is defined, the list cpys of productions where the copy
rule has to be applied, and a record defs containing the explicit
definitions for some productions:

inhAspect att nts cpys defs
= (defAspect (FnCpy att nts) cpys)
@ (attAspect (Fnlnh att nts) defs)

The function attAspect generates an attribute aspect given the ex-
plicit definitions, whereas defA spect constructs an attribute aspect
based in a common pattern’s rule. Thus, an inherited attribute as-
pect is defined as a composition of two attribute aspects: one with
the explicit definitions and other with the application of the copy
rule. In the following sections we will see how attAspect and
defAspect are implemented.

A synthesized attribute aspect, like asp_smin and asp_sres in
Figure 9, can be defined using synAspect. Here the rule applied is
the use rule, which takes op as the monoidal operator and unit as
the unit value.

synAspect att nts op unit uses defs
= (defAspect (FnUse att nts op unit) uses)
@ (attAspect (FnSyn att) defs)

A chained attribute definition introduces both an inherited and
a synthesized attribute. In this case the pattern to be applied is the
chain rule.

chnAspect att nts chns inhdefs syndefs
= (defAspect (FnChn att nts) chns)
@ (attAspect (Fnlnh att nts) inhdefs)
@ (attAspect (FnSyn att) syndefs)

7.1 Attribute Aspects

Consider the explicit definitions of the aspect asp_sres. The idea is
that, when declaring the explicit definitions, instead of completely
writing the rules, like:

{ p-Root =. (Ninput —

syndef sres ((chi input # ch_tree) # sres))
, p-Leaf =. (Ninput —

syndef sres (Leaf (par input # ival))) }}

we just define a record with the functions from the input to the
attribute value:

{ p-Root .=. (Ninput — (chi input # ch_tree) # sres)
, p-Leaf =. (Ninput — Leaf (par input # ival)) }}

By mapping the function ((.) (syndef sres)) over such records,
we get back our previous record containing rules. The function
attAspect updates all the values of a record by applying a function
to them:

class AttAspect rdef defs rules | rdef defs — rules
where attAspect :: rdef — defs — rules

instance (AttAspect rdef (Record defs) rules
, Apply rdef def rule
, HExtend (Prd lprd rule) rules rules’)
= AttAspect rdef
(Record (HCons (Prd lprd def)
defs))
rules’
where
attAspect rdef (Record (HCons def defs)) =
let Iprd = (labelLVPair def)
in Iprd =. apply rdef (valueLVPair def)
#. attAspect rdef (Record defs)

instance AttAspect rdef (Record HNil) (Record HNil)
where attAspect _ _ = emptyRecord

The class Apply (from the HList library) models the function
application, and it is used to add specific constraints on the types:

class Apply f a v | f a — r where
apply - f - a —r

In the case of synthesized attributes we apply ((.) (syndef att))
to values of type (Fam sc ip — wal) in order to construct
a rule of type (Rule sc ip ic sp ic sp'). The constraint
HExtend (LVPair att val) sp sp’ is introduced by the use of
syndef . The data type FnSyn is used to determine which instance
of Apply has to be chosen.

data FnSyn att = FnSyn att

instance HExtend (LVPair att val) sp sp’
= Apply (FnSyn att) (Fam sc ip — val)
(Rule sc ip ic sp ic sp’) where
apply (FnSyn att) f = syndef att.f
In the case of inherited attributes the function applied to define the
rule is ((.) (inhdef att nts)).

data Fninh att nt = FniInh att nt

instance Defs att nts vals ic ic’
= Apply (FnlInh att nts) (Fam sc ip — vals)

asp-smin = synAspect smin { nt_Tree }
min 0 { p_Node }

{ p-Leaf .=. (\(Fam chi _) — chi # ch_i) }}

asp-ival = inhAspect ival { nt_Tree }
{ p-Node }

-- synthesize at
-- use at

-- define at

-- inherit

-- copy at

{ p-Root .=. (A\(Fam chi _) — {{ ch_tree .=. (chi # ch_tree) # smin }}) }} -- define at

asp_sres = synAspect sres { nt_Root,nt_Tree } -- synthesize at
Node (Leaf 0) { p-Node } -- use at
{ p-Root .=. (\(Fam chi _) — (chi # ch_tree) # sres) -- define at

(A
, p-Leaf .= (AN(Fam _ par) — Leaf (par # ival)) }}

Figure 9. Aspects definition for repmin

(Rule sc ip ic sp ic’ sp) where
apply (Fnlnh att nts) f = inhdef att nts.f

7.2 Default Aspects

The function defAspect is used to construct an aspect given a rule
and a list of production labels.

class DefAspect deff prds rules | deff prds — rules
where defAspect :: deff — prds — rules

It iterates over the list of labels prds, constructing a record with
these labels and a rule determined by the parameter deff as value.
For inherited attributes we apply the copy rule copy att nts,
for synthesized attributes use att nt op wnit and for chained
attributes chain att nts. The following types are used, in a similar
way than in attAspect, to determine the rule to be applied:

data FnCpy att nts = FnCpy att nts
data FnUse att nt op unit = FnUse att nt op unit
data FnChn att nt = FnChn att nt

Thus, for example in the case of the aspect asp_ival, the applica-
tion:

defAspect (FnCpy wal { nt_Tree }) { p-Node }
generates the default aspect:
{ p-Node .=. copy wal { nt_Tree } }}

8. Related Work

There have been several previous attempts at incorporating first-
class attribute grammars in lazy functional languages. To the best
of our knowledge all these attempts exploit some form of extensible
records to collect attribute definitions. They however do not exploit
the Haskell class system as we do. de Moor et al. (2000b) introduce
a whole collection of functions, and a result it is no longer possible
to define copy, use and chain rules. Other approaches fail to provide
some of the static guarantees that we have enforced (de Moor et al.
2000a).

The exploration of the limitations of type-level programming
in Haskell is still a topic of active research. For example, there
has been recent work on modelling relational data bases using
techniques similar to those applied in this paper (Silva and Visser
2006).

As to be expected the type-level programming performed here
in Haskell can also be done in dependently typed languages such as
Agda (Norell 2008; Oury and Swierstra 2008). By doing so, we use
Boolean values in type level-functions, thereby avoiding the need
for a separate definition of the type-level Booleans. This would
certainly simplify certain parts of our development. On the other

hand, because Agda only permits the definition of total functions,
we would need to maintain even more information in our types to
make it evident that all our functions are indeed total.

An open question is how easy it will be to extend the approach
taken to more global strategies of accessing attributes definitions;
some attribute grammars systems allow references to more remote
attributes (Reps et al. 1986; Boyland 2005). Although we are con-
vinced that we can in principle encode such systems too, the ques-
tion remains how much work this turns out to be.

Another thing we could have done is to make use of associated
types (Chakravarty et al. 2005) in those cases where our relations
are actually functions; since this feature is still experimental and
has only recently become available we have refrained from doing
so for the moment.

9. Conclusions

In the first place we remark that we have achieved all four goals
stated in the introduction:

1. removing the need for a whole collection of indexed combina-
tors as used in (de Moor et al. 2000b)

2. replacing extensible records completely by heterogeneous col-
lections

3. the description of common attribute grammar patterns in order
to reduce code size, and making them almost first class objects

4. give a nice demonstration of type level programming

We have extensive experience with attribute grammars in the
construction of the Utrecht Haskell compiler (Dijkstra et al. 2009).
The code of this compiler is completely factored out along the two
axes mentioned in the introduction (Dijkstra and Swierstra 2004;
Fokker and Swierstra 2008; Dijkstra et al. 2007), using the notation
used in Figure 2. In doing so we have found the possibility to factor
the code into separate pieces of text indispensable.

We also have come to the conclusion that the so-called monadic
approach, although it may seem attractive at first sight, in the end
brings considerable complications when programs start to grow
(Jones 1999). Since monad transformers are usually type based we
already run into problems if we extend a state twice with a value of
the same type without taking explicit measures to avoid confusion.
Another complication is that the interfaces of non-terminals are in
general not uniform, thus necessitating all kind of tricks to change
the monad at the right places, keeping information to be reused
later, etc. In our generated Haskell compiler (Dijkstra et al. 2009)
we have non-terminals with more than 10 different attributes, and
glueing all these together or selectively leaving some out turns out
to be impossible to do by hand.

In our attribute grammar system (uuagc on Hackage), we per-
form a global flow analysis, which makes it possible to schedule the
computations explicitly (Kastens 1980). Once we know the evalua-
tion order we do not have to rely on lazy evaluation, and all param-
eter positions can be made strict. When combined with a unique-
ness analysis we can, by reusing space occupied by unreachable
attributes, get an even further increase in speed. This leads to a
considerable, despite constant, speed improvement. Unfortunately
we do not see how we can perform such analyses with the approach
described in this paper: the semantic functions defining the values
of the attributes in principle access the whole input family, and we
cannot find out which functions only access part of such a family,
and if so which part.

Of course a straightforward implementation of extensible records
will be quite expensive, since basically we use nested pairs to rep-
resent attributions. We think however that a not too complicated
program analysis will reveal enough information to be able to
transform the program into a much more efficient form by flatten-
ing such nested pairs. Note that thanks to our type-level functions,
which are completely evaluated by the compiler, we do not have
to perform any run-time checks as in (de Moor et al. 2000a): once
the program type-checks there is nothing which will prevent it to
run to completion, apart form logical errors in the definitions of the
attributes.

Concluding we think that the library described here is quite use-
ful and relatively easy to experiment with. We notice furthermore
that a conventional attribute grammar restriction, stating that no at-
tribute should depend on itself, does not apply since we build on top
of a lazily evaluated language. An example of this can be found in
online pretty printing (Swierstra 2004; Swierstra and Chitil 2009).
Once we go for speed it may become preferable to use more con-
ventional off-line generators. Ideally we should like to have a mixed
approach in which we can use the same definitions as input for both
systems.

10. Acknowledgments

We want to thank Oege de Moor for always lending an ear in
discussing the merits of attribute grammars, and how to further
profit from them. Marcos Viera wants to thank the EU project
Lernet for funding his stay in Utrecht. Finally, we would like to
thank the anonymous referees for their helpful reviews.

References

Richard S. Bird. Using circular programs to eliminate multiple traversals
of data. Acta Inf., 21:239-250, 1984.

John Boyland. Remote attribute grammars. Journal of the ACM (JACM,
52(4), Jul 2005. URL
http://portal.acm.org/citation.cfm?id=1082036.1082042.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
Associated type synonyms. In ICFP ’05: Proceedings of the tenth ACM
SIGPLAN international conference on Functional programming, pages
241-253, New York, NY, USA, 2005. ACM.

Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-class
attribute grammars. Informatica (Slovenia), 24(3), 2000a.

Oege de Moor, L. Peyton Jones, Simon, and Van Wyk, Eric.
Aspect-oriented compilers. In GCSE *99: Proceedings of the First
International Symposium on Generative and Component-Based
Software Engineering, pages 121-133, London, UK, 2000b.
Springer-Verlag. ISBN 3-540-41172-0.

Atze Dijkstra and S. Doaitse Swierstra. Typing Haskell with an Attribute
Grammar. In Advanced Functional Programming Summerschool,
number 3622 in LNCS. Springer-Verlag, 2004.

Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The structure of
the essential haskell compiler, or coping with compiler complexity. In
Implementation of Functional Languages, 2007.

Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of
the Utrecht Haskell compiler. In Haskell Symposium, New York, NY,
USA, September 2009. ACM.

Jeroen Fokker and S. Doaitse Swierstra. Abstract interpretation of
functional programs using an attribute grammar system. In Adrian
Johnstone and Jurgen Vinju, editors, Language Descriptions, Tools and
Applications, 2008.

Benedict R. Gaster and Mark P. Jones. A polymorphic type system for
extensible records and variants. NOTTCS-TR 96-3, Nottingham, 1996.

Thomas Hallgren. Fun with functional dependencies or (draft) types as
values in static computations in haskell. In Proc. of the Joint CS/CE
Winter Meeting, 2001.

Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege de
Moor, editors, The Fun of Programming, pages 245-262. Palgrave
Macmillan, 2003.

Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.
URL http://wuw.cse.ogi.edu/ mpj/thih/thih-sep1-1999/.

P. Jones, Mark. Type classes with functional dependencies. In ESOP "00:
Proceedings of the 9th European Symposium on Programming
Languages and Systems, pages 230-244, London, UK, 2000.
Springer-Verlag.

Uwe Kastens. Ordered Attribute Grammars. Acta Informatica, 13:
229-256, 1980.

Oleg Kiselyov, Ralf Laimmel, and Keean Schupke. Strongly typed
heterogeneous collections. In Haskell '04: Proceedings of the ACM
SIGPLAN workshop on Haskell, pages 96-107. ACM Press, 2004.

Conor McBride. Faking it simulating dependent types in haskell. J. Funct.
Program., 12(5):375-392, 2002.

Ulf Norell. Dependently typed programming in Agda. In 6th International
School on Advanced Functional Programming, 2008.

Nicolas Oury and Wouter Swierstra. The power of Pi. In ICFP ’08:
Proceedings of the Thirteenth ACM SIGPLAN International Conference
on Functional Programming, 2008.

Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an
exploration of the design space. In Haskell Workshop, June 1997.

W. Reps, Thomas, Carla Marceau, and Tim Teitelbaum. Remote attribute
updating for language-based editors. In POPL '86: Proceedings of the
13th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 1-13, New York, NY, USA, 1986.
ACM.

J.C. Reynolds. User defined types and procedural data as complementary
approaches to data abstraction. In S.A. Schuman, editor, New
Directions in Algorithmic Languages. INRIA, 1975.

Alexandra Silva and Joost Visser. Strong types for relational databases. In
Haskell "06: Proceedings of the 2006 ACM SIGPLAN workshop on
Haskell, pages 25-36, New York, NY, USA, 2006. ACM. ISBN
1-59593-489-8.

S. Doaitse Swierstra and Olaf Chitil. Linear, bounded, functional
pretty-printing. Journal of Functional Programming, 19(01):1-16,
2009.

S. Doaitse Swierstra, Pablo R. Azero Alcocer, and Jodao A. Saraiva.
Designing and implementing combinator languages. In S. D. Swierstra,
Pedro Henriques, and José Oliveira, editors, Advanced Functional
Programming, Third International School, AFP’98, volume 1608 of
LNCS, pages 150-206. Springer-Verlag, 1999.

S.D. Swierstra. Linear, online, functional pretty printing (extended and
corrected version). Technical Report UU-CS-2004-025a, Inst. of
Information and Comp. Science, Utrecht Univ., 2004.

Phil Wadler. The Expression Problem. E-mail available online., 1998.

