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Abstract—Wireless sensor networks are capable of collecting an
enormous amount of data. Often, the ultimate objective is to es-
timate a parameter or function from these data, and such esti-
mators are typically the solution of an optimization problem (e.g.,
maximum likelihood, minimum mean-squared error, or maximum
a posteriori). This paper investigates a general class of distributed
optimization algorithms for “in-network” data processing, aimed
at reducing the amount of energy and bandwidth used for commu-
nication. Our intuition tells us that processing the data in-network
should, in general, require less energy than transmitting all of the
data to a fusion center. In this paper, we address the questions:
When, in fact, does in-network processing use less energy, and how
much energy is saved? The proposed distributed algorithms are
based on incremental optimization methods. A parameter estimate
is circulated through the network, and along the way each node
makes a small gradient descent-like adjustment to the estimate
based only on its local data. Applying results from the theory of
incremental subgradient optimization, we find that the distributed
algorithms converge to an approximate solution for a broad class
of problems. We extend these results to the case where the opti-
mization variable is quantized before being transmitted to the next
node and find that quantization does not affect the rate of conver-
gence. Bounds on the number of incremental steps required for a
certain level of accuracy provide insight into the tradeoff between
estimation performance and communication overhead. Our main
conclusion is that as the number of sensors in the network grows,
in-network processing will always use less energy than a central-
ized algorithm, while maintaining a desired level of accuracy.

Index Terms—Distributed algorithms, energy-accuracy
tradeoff, gradient methods, wireless sensor networks.

I. INTRODUCTION

I N MANY envisioned applications of wireless sensor net-
works, the ultimate objective is not the collection of “raw”

data, but rather an estimate of certain environmental parame-
ters or functions of interest (e.g., source locations, spatial distri-
butions). One means of achieving this objective is to transmit
all data to a central point for processing. However, transmit-
ting data from each sensor node to a central processing loca-
tion may place a significant drain on communication and en-
ergy resources. Such concerns could place undesirable limits
on the practical application of sensor networks. This paper con-
siders an alternate approach based on distributed in-network
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processing, in which the environmental parameters are com-
puted in a decentralized fashion. While the focus of this paper
is on applications in wireless sensor networks, as that was the
motivation for this work, the quantized incremental subgradient
algorithm developed and analyzed in this paper could find use
in other arenas (e.g., a distributed Internet anomaly detection
system). When data are distributed amongst a collection of net-
worked nodes with limited communication or energy resources
and the nodes must collaborate to solve a problem, distributed
optimization methods can significantly decrease the communi-
cation and energy resources consumed.

As an illustration of the basic idea, consider a sensor network
comprised of nodes randomly distributed uniformly over
the region , each of which collects measurements.
Suppose, for example, that our objective is simply to compute
the average value of all the measurements. There are three
approaches one might consider.

1) Sensors transmit all the data to a central processor which
then computes the average. In this approach, assuming a
constant number of bits per sample, bits need to
be transmitted over an average distance of length per
bit to reach the fusion center.

2) Sensors first compute a local average and then transmit the
local averages to a central processor which computes the
global average. This obvious improvement requires only

bits to be transmitted over an average distance of
length per bit to reach the fusion center.

3) Construct a path through the network which visits each
node once. Assume the sequence of nodes can be con-
structed so that the path hops from neighbor to neighbor.
Such sequences occur with high probability in large
networks, and a method for finding one is discussed in
Section VII. The global average can be computed by a
single accumulation process from start node to finish,
with each node adding its own local average to the total
along the way. This requires bits to be transmitted

over an average distance of only per bit.1

The third procedure makes much more efficient use of key re-
sources—it requires far fewer communications than the former
schemes and, hence, consumes less bandwidth and energy.
Similar procedures could be employed to compute any average
quantity (i.e., a least squares fit to a model with any number of
parameters). Averages can be viewed as the values minimizing
quadratic cost functions. Quadratic optimization problems are

1This rather nonintuitive value is related to the transmission radius required
to ensure that such a path through the network exists [2].
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very special since their solutions are linear functions of the
data, in which case an accumulation process leads to a solution.

More general optimization problems do not share this nice
feature, but nevertheless, can often be solved using simple,
distributed algorithms reminiscent of the way the average was
calculated above in the third approach. In particular, many
estimation cost functions possess the following important
factorization:

(1)

where is the parameter or function to be estimated, and
is a global cost function, which can be expressed as a sum of
“local” cost functions, , in which only
depends on the data measured at sensor . For example, in
the case of the sample average considered above,

is the cost function to be mini-
mized, and , where is the th
measurement at the th sensor.

The distributed algorithms proposed in this paper operate in
a very simple manner. An estimate of the parameter is passed
from node to node. Each node updates the parameter by ad-
justing the previous value to improve (i.e., reduce) its local cost,
and then passes the update to the next node. In the case of a
quadratic cost function, one could construct a simple algorithm
such as the one described in the third approach, which would
solve the optimization after one pass through the network. For
general cost functions, the algorithms are slightly more complex
and several “cycles” through the network are required to obtain
a solution. These distributed algorithms can be viewed as incre-
mental subgradient optimization procedures, and the number of
cycles required to obtain a good solution can be characterized
theoretically. Roughly speaking, a typical result states that after

cycles, the distributed minimization procedure is guaranteed
to produce an estimate satisfying ,
where is the minimizer of . Also, the procedure only re-
quires that a total of bits be communicated over an av-

erage distance of meters. This should be con-
trasted with transmitting all data to a central processor, which
requires that bits be transmitted over an average of
meter. If and are large, then a high quality estimate can be
obtained using a distributed optimization algorithm for far less
energy and far fewer communications than the centralized ap-
proach. Additionally, we analyze an incremental subgradient al-
gorithm where the parameter estimates are quantized before
they are transmitted between nodes. We find that while quan-
tization marginally affects the estimate quality, the number of
cycles required for a certain performance does not change
because of quantization.

The remainder of this paper is organized as follows. In
Section II, we formally state the problem and our assumptions.
In Section III, we analyze the algorithm described above
using existing results from the theory of incremental subgra-
dient optimization. These results are extended for incremental
subgradient methods with quantized steps in Section IV. In
Section V, we derive and discuss the energy-accuracy tradeoff
which arises between distributed incremental and centralized

algorithms. Robust estimation is presented as an example
application in Section VI. Some practical issues pertaining to
incremental distributed algorithms are discussed in Section VII.
Finally, we conclude in Section VIII.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Before analyzing the proposed in-network algorithm, we in-
troduce some notation and assumptions. Consider a sensor net-
work comprised of nodes. Each sensor, , collects
a set of measurements, , which one can either think of as de-
terministic values or realizations of random variables for our
purposes. The measurements are related to an unknown set of
global parameters through the functions . We would
like to find a which minimizes

Note that each node’s local objective function need not depend
on all components of . Likewise, all functions need not be
of the same form.

Throughout this paper denotes the Euclidean norm. In
our analysis, we assume that:

(A1) functions are convex (but not necessarily differen-
tiable) and there exists a constant such that for all

and all , the subgradient2

has magnitude bounded according to
:

(A2) set is nonempty, convex, and compact with
diameter :

(A3) optimal value .
Additionally, note that since is a convex function (the sum of
convex functions is convex) and since is a convex, compact
subset of Euclidean space, the set of optimal solutions

is a nonempty compact, convex subset
of . With this setup, we are ready to define and analyze the
algorithm.

III. DISTRIBUTED INCREMENTAL ALGORITHMS

FOR SENSOR NETWORKS

Incremental methods have an established tradition in opti-
mization theory, and we feel they are well suited for data pro-
cessing applications in the context of networked systems. In this
setup, a parameter estimate is cycled through the network. When
each sensor receives the current estimate, it makes a small ad-
justment based on its local data and then passes the updated es-
timate on to one of its neighbors. Without loss of generality, as-
sume that sensors have been numbered , with
these numbers corresponding to their order in the cycle. Let

be an operator which projects its argument to
the nearest point in . Here, and in the remainder of this paper,
when we refer to the “nearest point” in a set, we mean nearest
in the Euclidean distance sense. Note that such an operator is

2Subgradients generalize the notion of a gradient to nondifferentiable func-
tions. For a convex function f(x), a subgradient of f at x is any direction g

such that f(x) � f(x )+(x�x ) g for all x. The set of subgradients of f at
a point x is denoted @f(x). At points x where f is differentiable, the gradient
of f is the only subgradient of f at x .
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well defined since is compact and, thus, closed. On the th
cycle, sensor receives an estimate from its predecessor
and computes an update according to

(2)

where is a small positive scalar step size and
. Thus, the sensor makes an update based on

the previous value of the estimate, received from its
neighbor, and based on its local data reflected in . After each
complete cycle through the network, we get the next iterate,

.
Such an algorithm fits the framework of incremental subgra-

dient algorithms first studied by Kibardin [3], and more recently
by Nedić and Bertsekas in [4], [5]. Because each step of the al-
gorithm uses only local information, one cannot guarantee con-
vergence in general. One condition under which convergence to
the globally optimal value is guaranteed is when the step size
gradually decreases to zero, however, the rate of convergence
is usually very slow in this case. Instead, we advocate the use
of a fixed step size (positive constant). Although convergence
is not guaranteed in this case, it has been observed that incre-
mental algorithms perform well in practice. In general, the iter-
ates quickly reach a neighborhood of the optimal value and then
continue to move around within this neighborhood. However, in
terms of rigorously analyzing their performance, the best we can
hope to do is to characterize the limiting behavior as exempli-
fied in the following theorem.

Theorem 1 (Nedić and Bertsekas, 1999): Under assumptions
(A1)–(A3), for the sequence generated by the incremental
subgradient algorithm described above, we have

See [4] for the proof.
Additionally, we are interested in the rate at which the in-

cremental algorithm reaches this limiting behavior since the
amount of communication and, thus, the amount of energy re-
quired for the algorithm to operate, is directly proportional to
this value. Let denote the Euclidean distance be-
tween an arbitrary initial value and the nearest point
in . The following result characterizes the rate at which the
limiting behavior of the algorithm is reached.

Theorem 2 (Nedić and Bertsekas, 2000): Under assumptions
(A1)–(A3), for the sequence generated by the incremental
subgradient algorithm described above and for any , we
have

where is given by

See [5] for the proof.
The theorem above confirms that the iterates attain a value

of arbitrary accuracy in a finite number of cycles. The theorem

characterizes the distance between and . Setting
, it is clear that for arbitrarily small, we obtain

arbitrarily close to . Here, however, there
is a tradeoff in that the number of cycles (and, thus, the
amount of communication) required is inversely related to the
step size. More generally, this theorem tells us that the iterates

are guaranteed to reach a value within of after
cycles.

Alternatively, one could consider using a decreasing sequence
of step sizes as (e.g., ) in which case
convergence to is guaranteed under very mild assumptions.
However, while the decreasing step size approach may conver-
gence to a neighborhood around the solution in a reasonable
number of steps, the rate of convergence slows down dramat-
ically as gets small, and the overall convergence behavior
is generally slower than that of a constant step size algorithm.
In many applications of wireless sensor networks, acquiring a
coarse estimate of the desired parameter or function may be an
acceptable tradeoff if the amount of energy and bandwidth used
by the network is less than that required to achieve a more accu-
rate estimate. Furthermore, many of the proposed applications
of wireless sensor networks involve deployment in a dynamic
environment for the purpose of not only identifying but also
tracking phenomena. For these reasons, we advocate the use of
a fixed step size.

IV. QUANTIZED DISTRIBUTED INCREMENTAL ALGORITHM

We modify the incremental subgradient algorithm discussed
above by quantizing each iterate in a very simple fashion as de-
scribed next. For a given scalar , consider the quantization
lattice defined by

This lattice consists of points regularly spaced by along each
coordinate axis. Set , and let be an
operator which projects its argument first onto the set and then
onto the nearest lattice point in . Thus, .
Note that applying the operator to is not equivalent
to directly projecting to the nearest point in . In particular,
when , the nearest point to in can be different from

, and may result in a larger error. We will study the quan-
tized incremental subgradient algorithm where, upon receiving

from its neighbor, node computes and transmits an in-
cremental update according to

(3)

where , and is, again, a small constant
step size. After a complete cycle through the network, we obtain
the iterate

(4)

Each incremental step of the quantized algorithm amounts to
computing the usual incremental step of the unquantized algo-
rithm and then projecting this new value to the nearest quantiza-
tion lattice point in . Thus, applying the operator enforces
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the constraint at each incremental step and also ensures
that lies on a point in so that it can be transmitted using
a finite number of bits. Since is bounded there are a finite
number of lattice points in and, thus, any point in can be
coded with a finite number of bits. We have the following the-
orem which summarizes the limiting behavior of this algorithm.

Theorem 3: Under assumptions (A1)–(A3), for the sequence
generated by the quantized incremental subgradient algo-

rithm (3)–(4), we have

(5)

where is the dimension of the variables and , and is
as defined in assumption (A2). Furthermore, for any , we
have

(6)
where

(7)

and is the minimum Euclidean distance from to
a point in .

A proof is presented in the Appendix.
The error terms in the limiting expression can be classified

as follows. There is an error of attributed to the lo-
calized, myopic nature of the incremental subgradient update
step, which we also observe in the unquantized algorithm
(cf. Theorem 1). An additional error of

arises from the fact that we are quantizing each incremental step
before transmitting it. If the quantization is very precise then
this term is negligible. However, for the highly resource-con-
strained scenarios envisioned as standard sensor network ap-
plications, we expect that coarse quantization will be used to
reduce the amount of energy expended in communication, and
this error must be taken into consideration. Theorem 3 also indi-
cates that although there is an additional error because we quan-
tize the values before transmitting, the number of incremental
steps required to reach the limiting behavior is not affected.
We emphasize that Theorem 3 describes the worst case limiting
behavior of the algorithm, and that experimentally we observe
better average behavior.

In the previous section, we saw that the error term in the un-
quantized algorithm is controlled by the step size parameter .
To summarize Theorem 2, the unquantized incremental subgra-
dient algorithm is guaranteed to achieve a worst case error pro-
portional to after, at most, a number of iterations inversely
proportional to . For a given problem specification (fixing ,

, and ), the error term in Theorem 3 above for the quantized
algorithm depends on both the step size and the quantization
bin width . Consider the error term in (6). If we take arbi-
trarily small without adjusting the bin width , the error due

to quantization will dominate the expression. Likewise, if the
quantizer is infinitely precise, then we get the same expression
as for the unquantized algorithm and the error depends solely
on . In order to balance the error bounds associated with these
two parameters, we set

(8)

in which case the error term in (6) reduces to

For small (e.g., ) the and terms are negligible
in comparison to the term. Taking , we can summa-
rize Theorem 3 as saying that the quantized incremental sub-
gradient algorithm is guaranteed to achieve a worst case error
(roughly) proportional to after no more than a number of iter-
ations which is inversely proportional to .

V. ENERGY-ACCURACY TRADEOFF

In this section, we derive the tradeoff between the energy
expended in running our algorithm and the accuracy achieved,
and compare this performance to the approach where all data
is quantized and transmitted to a fusion center for processing.
It is commonly accepted that the amount of energy con-
sumed for a single wireless communication of 1 bit is orders
of magnitude greater than the energy required for a single
local computation [6]. Accordingly, we focus our analysis
on the energy used for wireless communication and compare
the energy used by our in-network processing algorithm to
that required for every sensor to transmit its data to a fusion
center for processing. We assume that the network employs
multihop communication as opposed to direct point-to-point
communication. Chakrabarti et al. have shown that multihop
communication asymptotically achieves the optimal throughput
(as the number of nodes in the network tends to infinity) for
the fusion center accumulation setup [7], and our incremental
algorithm lends itself to a multihop setup since all communi-
cation occurs between neighboring nodes in the network. We
find it most interesting to study the asymptotic properties of the
distributed and centralized algorithms as the number of nodes
in the sensor network tends to infinity. Our main conclusion
is that as the size of the sensor network increases, the amount
of energy used by the quantized incremental algorithm in
the entire network is bit-hops in comparison to

bit-hops for the centralized algorithm.
For a given data processing algorithm using multihop com-

munication, and for a network of nodes, let denote the
number of bits transmitted through the network, let be the
average number of hops traversed per bit, and let denote
the amount of energy expended when a node transmits 1 bit over
one hop. The total energy used for in-network communication
as a function of the number of nodes in the sensor network for
any algorithm is given by
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In general, depends on the density of nodes, the actual
communication implementation employed, and physical-layer
channel properties. Rather than restricting our analysis to a par-
ticular setup, we express energy consumption in units of
(i.e., one unit per bit-hop).

Now, let us take a look at what happens for the in-network
algorithm described in Section IV. Each sensor makes a single
communication to a neighboring node, so the number of hops
per bit for the distributed algorithm is . Using the
uniform scalar quantization scheme described in the previous
section, the number of bits which must be transmitted to reach
the limiting behavior of the incremental subgradient algorithm
is

num. bits per transmission

since each node transmits once in each cycle. Suppose that the
uniform scalar quantizer has been designed to use bits per
component so that any can be represented using bits.
Then, based on the assumed bound on the diameter of , we
know that the range of values taken by each component of
any is such that

for . Distributing points uniformly over an in-
terval of length gives us a maximum quantization error of

per coordinate. Setting according to (8) to bal-
ance the error terms, we find that the appropriate number of bits
for a given number of sensors grows like

Additionally, we set and find that the number of cycles
needed to reach the limiting behavior is

where the inequality follows from the assumed bound on the
diameter of . In other words, as the number of nodes in the
network tends to infinity, the upper bound on the number of
cycles necessary to achieve a specified level of accuracy remains
constant. Thus, we have

and the total energy required to run the distributed incremental
algorithm grows with the number of nodes in the network ac-
cording to

In the centralized case, nodes must also quantize their data
before transmitting it to the fusion center for processing, hence,
there will be some error incurred. It is difficult to say exactly

what this error is without further specifying the functions
. However, for the sake of making a point, suppose

sensors do their best to minimize the amount of data to be
transmitted to the fusion center without affecting the accuracy
of the centralized algorithm. After they process their data
(via local averaging, coding, quantizing, etc.), each of the
sensors transmits at least 1 bit so that . We model
the deployment of nodes in the sensor network using a random
geometric graph model, where nodes are randomly distributed
uniformly over a unit square region . For a network of
nodes in this model, it has been shown that nodes must set their
transmit power such that the communication radius decays like

for some positive constant in order to guarantee
that the network will be connected with high probability.3

[8] Consequently, the expected radius of the network in hops
(equivalently, the expected number of hops to the fusion center)
grows roughly like the inverse of the communication radius,
and . Thus, the expected total energy
for a centralized processing scheme grows at best like

We emphasize that this is an extremely optimistic analysis, and
that in general much more energy will be required for the cen-
tralized approach.

It is clear from this analysis that the distributed incremental
algorithm scales better than a centralized approach. Also, we
emphasize that the analysis of the distributed incremental algo-
rithm accounts for the worst case behavior so that
is an upper bound on the growth rate of expected total energy.
To put it plainly, we have a lower bound on energy usage for
the centralized processing approach which grows faster than
the upper bound on energy usage for a distributed incremental
algorithm.

The above analysis dealt with the total energy used over the
entire network for both the in-network and centralized algo-
rithms. It is also worth making a few remarks on per-node en-
ergy usage. In the distributed incremental scheme, each node
transmits once per cycle so energy is used uniformly throughout
the network. On the other hand, when all nodes transmit their
data to a fusion center there is a greater demand on the resources
of nodes which are close to the fusion center since they must
transmit the data of other nodes which are further away in addi-
tion to their own data.

To further illustrate this point, we can compare the per-node
energy usage for the distributed incremental algorithm

with the per-node energy usage for the centralized approach

3In [8], Gupta and Kumar analyze the case where nodes are uniformly dis-
tributed over the unit disc at random, however, a similar analysis reveals that the
radius must decay at the same rate for nodes uniformly, randomly distributed
over the unit square. See, e.g., [2].
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Thus, the number of transmissions per sensor grows logarithmi-
cally in the distributed case as opposed to polynomially in the
centralized approach.

VI. EXAMPLE: ROBUST ESTIMATION

In parametric statistical inference the model underlying the
inference procedure plays an important role in the overall per-
formance of the procedure. If the model used in constructing the
inference procedure does not exactly match the true model, then
the accuracy and variance of the estimator can suffer greatly.
The field of statistics known as robust statistics is concerned
with developing inference procedures which are insensitive to
small deviations from the assumptions [9].

In sensor networks, there are many reasons one might want
to consider using robust estimates rather than standard inference
schemes. Consider the following illustrative example. Suppose
that a sensor network has been deployed over an urban region
for the purpose of monitoring pollution. Each sensor collects a
set of pollution level measurements , ,
over the course of a day, and at the end of the day the sample
mean pollution level, , is calculated. If the
variance of each measurement is then, assuming independent
identically distributed (i.i.d.) samples, the variance of the esti-
mator is . However, what if some ratio – say 10% – of the
sensors are damaged or mis-calibrated so that they give readings
with variance ? Then, the estimator variance increases by
a factor of roughly 10. From simulations of this simple example,
we will see that robust estimation techniques can be extremely
useful in a practical system.

In robust estimation, the typical least squares loss function

(9)

is replaced with a different loss function

(10)

with typically chosen to give less weight to data points
which deviate greatly from the parameter . The distance
is one example of a robust loss function. Another standard ex-
ample is the Huber loss functional for one-dimensional (1-D)
data

for

for

This choice of loss function acts as the usual squared error loss
function if the data point is close (within ) to the parameter

, but gives less weight to points outside a radius from the
location [9].

A distributed robust estimation algorithm is easily achieved
in the incremental subgradient framework by equating

. Consider an incremental subgradient al-
gorithm using the Huber loss function. In order to fix a step size

and determine the convergence rate of this algorithm, observe
that

Then, for a desired level of accuracy , we need at most
cycles. We find that in practice this bound is very loose and much
quicker convergence and a finer level of accuracy are achieved.

To demonstrate the usefulness of this procedure, we have sim-
ulated the scenario described above where sensors take i.i.d. 1-D
measurements corrupted by additive white Gaussian noise. In
this example, 100 sensors each make 10 measurements, how-
ever, 10% of the sensors are damaged and give noisier readings
than the other sensors. We use the notation to de-
note a Gaussian distributed random variable with mean and
variance . A sensor which is working makes readings with
distribution , and a damaged sensor makes
readings distributed according to . We use
the Huber loss function with and step size . Ex-
amples showing convergence of quantized and unquantized in-
cremental methods using both least squares (which corresponds
the maximum likelihood estimate, in this case), and robust loss
functions are shown in Fig. 1. The plots depict the evolution
of the residual error after each node makes an update. The hori-
zontal dashed lines in each plot show the magnitude of the clair-
voyant maximum likelihood estimate. That is, the dashed lines
indicate the error which would be achieved if all of the unquan-
tized, real-valued sensor data was processed at a fusion center.
The figures on the left show the residual for each unquantized in-
cremental algorithm, and the figures on the right show residuals
for the quantized algorithms. The algorithms used to generate
both figures on the right used quantization bins of width .
We repeated each scenario 100 times and found that the algo-
rithm always converges after two cycles through the network
which is much lower than the theoretical bound. We declare that
the incremental procedure has converged if after successive cy-
cles the change in estimate values is less than 0.1. Also, note
that the true mean 10.3 is not an integer and, thus, does not lie
on one of the quantization lattice points.

VII. DISCUSSION OF OTHER PRACTICAL ISSUES

A. Cyclic Routing

For the purpose of analyzing routing schemes, we represent
the network by a graph where sensor nodes in the network corre-
spond to nodes in the graph, and an edge is placed between two
nodes if the two sensor nodes have a direct line of communica-
tion (they are neighbors). Our in-network processing algorithm
hinges on finding a cycle through the network which touches
each node once. In graph theoretic terms such a cycle is known
as a Hamilton cycle, and the problem of determining whether
a graph contains a Hamilton cycle is known to be NP-complete
[10]. While this may seem discouraging, there are results per-
taining to Hamilton cycles in random geometric graphs which
are relevant in the context of this paper.
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Fig. 1. Example of (a) unquantized and (b) quantized robust incremental estimation procedure using the Huber loss function when 10% of the sensors are damaged.
The network consists of 100 sensors, each making 10 measurements. Good sensors make measurements from a N (10:3; 1) distribution, and measurements
from damaged sensors are distributed according to N (10:3;100). In comparison, the residuals for (c) unquantized and (d) quantized incremental least squares
(in-network maximum likelihood) estimates are also depicted. In all figures, the horizontal dashed lines indicate the error that a clairvoyant centralized algorithm
would produce for this data set. In each quantized algorithm integer precision is used.

A random geometric graph is one where nodes are placed uni-
formly at random in the unit square,4 and two nodes are joined
with a link if the distance between them is less than a radius

. Let be a sequence of radii. A well-known result
states that if the radius decays according to
as a function of the number of nodes in the network, then as

the resulting random geometric graph is connected5

with high probability. Gupta and Kumar use this result as a con-
dition on the rate of decay for the communication radius to en-
sure connectivity in a heterogeneous sensor network [8].

A similar result due to Petit states that if

where and

then not only is the random geometric graph connected, but it
also contains a Hamilton cycle with high probability [2]. This

4In more mathematical terms, the nodes of a random geometric graph are
placed according to a planar Poisson point process.

5A graph is connected if there is a path between any two nodes.

result is encouraging in that it tells us that we can obtain a net-
work which contains a Hamilton cycle for the small price of
increasing the communication radius by a negligible amount

(e.g., ). In his paper, Petit also discusses a
divide-and-conquer approach for finding a Hamilton cycle in a
random geometric graph by dividing the unit square into smaller
squares, finding a Hamilton cycle through the nodes in each of
these smaller regions, and then patching the smaller Hamilton
cycles together at the boundaries to get a Hamilton cycle for the
entire graph. The intuition behind this procedure stems from the
notion that nodes in a random geometric graph are nicely dis-
tributed over the unit square, making it possible to guarantee that
there will be cycles in the smaller squares and that these cycles
can be connected. Petit describes in further detail how to set the
size of the smaller boxes appropriately. Additionally, Levy et al.
describe a distributed algorithm which finds Hamilton cycles in
more general random graphs with high probability when they
exist [11]. Their algorithm runs in polynomial time (as a func-
tion of the number of nodes and edges in the graph) and may



RABBAT AND NOWAK: QUANTIZED INCREMENTAL ALGORITHMS FOR DISTRIBUTED OPTIMIZATION 805

be useful for finding Hamilton cycles in smaller squares before
patching them together according to Petit’s scheme. Such al-
gorithms could be used in an initialization phase to establish a
cycle though the network, on which the distributed incremental
algorithm could then be run.

B. Imperfect Transmission

Throughout this paper, we have assumed that a node can
transmit perfectly and reliably to its neighbor, however, in re-
ality, this may not be the case. A thorough study of the effects of
lossy channels and other physical-layer communication issues
is beyond the scope of this work, however, we do have a few
remarks. For the centralized data processing approach where all
nodes transmit their data to a fusion center, if some data is cor-
rupted with transmission noise or if some data is even lost in
transit, because all of the data is being transmitted to the fu-
sion center, it is not likely that errors or losses will have a major
effect on the computation. On the other hand, with in-network
processing and cyclic routing, if a packet is dropped, then the
optimization parameter is effectively gone and the process must
be restarted. If this happens too often, then the algorithm will
never run long enough to achieve the limiting behavior. This
problem can be remedied if a reliable transmission scheme is
used to avoid dropped packets, however, reliable transmission
generally comes at the cost of higher latency. If channel con-
ditions are extremely unreliable transmissions may need to be
rerouted which would also incur a delay and require additional
energy and bandwidth resources. We are currently investigating
ways of adaptively dealing with unreliable networking condi-
tions in the context of decentralized incremental algorithms.

VIII. CONCLUSION

This paper is concerned with determining when in-network
processing makes more efficient use of network resources than a
centralized approach. We adopted a class of incremental subgra-
dient methods from optimization theory which are well suited
to the task of distributed optimization in sensor networks, and
developed a quantized version of the algorithm which addresses
the need, in practice, to transmit information in a finite number
of bits. We found that the amount of energy required to run
the quantized incremental algorithm (in the worst case) is on
the order of bit-hops, whereas the amount of energy re-
quired for nodes to transmit a minimal amount of data to a fusion
center grows at best like . Thus, the in-network al-
gorithm scales much better than the centralized approach. An
example application of robust estimation in sensor networks
demonstrated the performance of our distributed incremental al-
gorithm. Throughout this paper, we have assumed that the local
objective functions were convex. In our other work, we have
investigated the use of incremental algorithms for solving non-
convex problems, and experimental results indicate that these
algorithms behave well for minimizing some important non-
convex applications, including source localization and tracking
[1], [12].

The major drawbacks of the proposed distributed incremental
algorithm revolve around the fact that routing occurs on a cycle
through the network which touches each node exactly once. Be-
cause it is sequential in nature, the latency of this algorithm will
generally be higher than that needed to accumulate data from
all sensors at a fusion center. Additionally, since only one node
makes an update at each point in time, it seems as though some
energy is being wasted since many nodes may hear the broadcast
of an updated value if they are in the neighborhood of the trans-
mitter. Finally, maintaining a cycle through the network is a non-
trivial task when faced with challenges such as faulty commu-
nication channels or failing nodes. This begs the question: Can
similar algorithms be designed for other routing structures? We
plan to address all of these issues in the near future.

APPENDIX

PROOF OF THEOREM 3

Before proceeding with the proof of Theorem 3, we de-
rive a few useful properties of the operator described in
Section IV.

Lemma 1: The quantization operator de-
scribed in Section IV has the following properties.

1) For all the quantization error is bounded by

2) For all , , we have

Proof: Because , the operation amounts to
quantizing to the nearest lattice point in . The first property
follows from the design of the quantization lattice and that as-
sumption that is a convex, compact set. For the second prop-
erty observe that, in general, and

. Invoking the triangle inequality and using the first property
from this lemma, we have

where the last line follows since projects its argument onto
which is a convex set.
The next result characterizes the performance of a single

cycle of the incremental algorithm and will be the basis of the
proof of Theorem 3.

Lemma 2: Under assumptions (A1)–(A3) listed in Section II,
for the sequence generated by the quantized incremental
subgradient algorithm (3) and (4), for all and for all

, we have

(11)
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Proof: This proof is similar to the proof of Lemma 2.1 in
[4]. Without loss of generality, we assume that so that

for all , and . Applying part 2 of
Lemma 1 yields

(12)

(13)

(14)

Invoking the triangle inequality, we obtain

where the second to last line follows from the bounds described
in assumptions (A1) and (A2). Since is a subgradient of the
convex function at , by definition

(15)

so that

(16)

Summing both sides of the above inequality over
and rearranging terms, we obtain

Recalling that , the above expression is
equivalent to (17) and (18) shown at the bottom of the page.
Note that the summation in the last line is only over terms

since . Let so that,
similar to (15), we have

(19)

Using this in (18) and applying the Cauchy–Schwarz inequality,
we obtain (20) and (21) shown at the bottom of the page. Next,
observe that using part 2 of Lemma 1, we can write

(17)

(18)

(20)

(21)
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where we use the bound from assumption (A1) to obtain the last
line. Moreover

so that after taking the norm of both sides and applying the tri-
angle inequality, we obtain

Using this last result in (21), see the equation at the bottom of the
page, where the last line holds since .
To finish off the proof, observe that

Then, we have that for all and all

Proof of Theorem 3: This proof is similar to Nedić and
Bertsekas’s proofs in [4, Proposition 2.1] and in [5, Proposition
2.3], but we restate it here for completeness.

We first establish the limiting behavior of the sequence gen-
erated by the algorithm (3) and (4). Suppose, for the sake of a
contradiction, that there exists a such that

Let be a point in such that

(22)
Additionally, for all , we have

(23)

Combining the statements (22) and (23), we get that for all

In particular, this equation holds for , and applying it
in (11) from Lemma 2 with , we find that

...

For large enough the right hand side can be made negative con-
tradicting the definition of a norm as being nonnegative. Hence,
we have

Next, we examine the number of steps required to approx-
imate this limiting behavior to within a factor of . Let

be an optimal solution which achieves
. Assume, for the sake of a contradiction that for all

Using this inequality in (11) from Lemma 2 above with
now, we find that

...

The left-hand side is a normed quantity, implying that the right-
hand side is greater than or equal to zero, but if
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then

which contradicts the definition of , as desired.
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