
RDF Primer

RDF Primer

W3C Recommendation 10 February 2004

This version:
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

Latest version:
http://www.w3.org/TR/rdf-primer/

Previous version:
http://www.w3.org/TR/2003/PR-rdf-primer-20031215/

Editors:
Frank Manola, fmanola@acm.org
Eric Miller, W3C, em@w3.org

Series Editor:
Brian McBride, Hewlett-Packard Laboratories, bwm@hplb.hpl.hp.com

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

Copyright © 2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark, document
use and software licensing rules apply.

Abstract

The Resource Description Framework (RDF) is a language for representing information about
resources in the World Wide Web. This Primer is designed to provide the reader with the basic
knowledge required to effectively use RDF. It introduces the basic concepts of RDF and
describes its XML syntax. It describes how to define RDF vocabularies using the RDF
Vocabulary Description Language, and gives an overview of some deployed RDF applications. It
also describes the content and purpose of other RDF specification documents.

Status of this Document

This document has been reviewed by W3C Members and other interested parties, and it has
been endorsed by the Director as a W3C Recommendation. W3C's role in making the
Recommendation is to draw attention to the specification and to promote its widespread

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (1 of 107)04/05/2004 17:53:17

http://www.w3.org/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/2003/PR-rdf-primer-20031215/
mailto:fmanola@acm.org
mailto:em@w3.org
mailto:bwm@hplb.hpl.hp.com
http://www.w3.org/2001/sw/RDFCore/errata#rdf-primer
http://www.w3.org/2001/sw/RDFCore/translation/rdf-primer
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/2003/06/Process-20030618/tr.html#RecsW3C

RDF Primer

deployment. This enhances the functionality and interoperability of the Web.

This is one document in a set of six (Primer, Concepts, Syntax, Semantics, Vocabulary, and Test
Cases) intended to jointly replace the original Resource Description Framework specifications,
RDF Model and Syntax (1999 Recommendation) and RDF Schema (2000 Candidate
Recommendation). It has been developed by the RDF Core Working Group as part of the W3C
Semantic Web Activity (Activity Statement, Group Charter) for publication on 10 February 2004.

Changes to this document since the Proposed Recommendation Working Draft are detailed in
the change log.

The public is invited to send comments to www-rdf-comments@w3.org (archive) and to
participate in general discussion of related technology on www-rdf-interest@w3.org (archive).

A list of implementations is available.

The W3C maintains a list of any patent disclosures related to this work.

This section describes the status of this document at the time of its publication. Other documents
may supersede this document. A list of current W3C publications and the latest revision of this
technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Table of Contents

 1. Introduction
 2. Making Statements About Resources
 2.1 Basic Concepts
 2.2 The RDF Model
 2.3 Structured Property Values and Blank Nodes
 2.4 Typed Literals
 2.5 Concepts Summary
 3. An XML Syntax for RDF: RDF/XML
 3.1 Basic Principles
 3.2 Abbreviating and Organizing RDF URIrefs
 3.3 RDF/XML Summary
 4. Other RDF Capabilities
 4.1 RDF Containers
 4.2 RDF Collections
 4.3 RDF Reification
 4.4 More on Structured Values: rdf:value
 4.5 XML Literals
 5. Defining RDF Vocabularies: RDF Schema
 5.1 Describing Classes
 5.2 Describing Properties
 5.3 Interpreting RDF Schema Declarations

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (2 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-Introduction
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/2001/sw/RDFCore/
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/Activity
http://www.w3.org/2002/11/swv2/charters/RDFCoreWGCharter
http://www.w3.org/TR/2003/PR-rdf-primer-20031215/
mailto:www-rdf-comments@w3.org
http://lists.w3.org/Archives/Public/www-rdf-comments/
mailto:www-rdf-interest@w3.org
http://lists.w3.org/Archives/Public/www-rdf-interest/
http://www.w3.org/2001/sw/RDFCore/impls
http://www.w3.org/2001/sw/RDFCore/ipr-statements
http://www.w3.org/TR/

RDF Primer

 5.4 Other Schema Information
 5.5 Richer Schema Languages
 6. Some RDF Applications: RDF in the Field
 6.1 Dublin Core Metadata Initiative
 6.2 PRISM
 6.3 XPackage
 6.4 RSS 1.0: RDF Site Summary
 6.5 CIM/XML
 6.6 Gene Ontology Consortium
 6.7 Describing Device Capabilities and User Preferences
 7. Other Parts of the RDF Specification
 7.1 RDF Semantics
 7.2 Test Cases
 8. References
 8.1 Normative References
 8.2 Informational References
 9. Acknowledgments

Appendices

 A. More on Uniform Resource Identifiers (URIs)
 B. More on the Extensible Markup Language (XML)
 C. Changes

1. Introduction

The Resource Description Framework (RDF) is a language for representing information about
resources in the World Wide Web. It is particularly intended for representing metadata about Web
resources, such as the title, author, and modification date of a Web page, copyright and licensing
information about a Web document, or the availability schedule for some shared resource.
However, by generalizing the concept of a "Web resource", RDF can also be used to represent
information about things that can be identified on the Web, even when they cannot be directly
retrieved on the Web. Examples include information about items available from on-line shopping
facilities (e.g., information about specifications, prices, and availability), or the description of a
Web user's preferences for information delivery.

RDF is intended for situations in which this information needs to be processed by applications,
rather than being only displayed to people. RDF provides a common framework for expressing
this information so it can be exchanged between applications without loss of meaning. Since it is
a common framework, application designers can leverage the availability of common RDF
parsers and processing tools. The ability to exchange information between different applications
means that the information may be made available to applications other than those for which it
was originally created.

RDF is based on the idea of identifying things using Web identifiers (called Uniform Resource

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (3 of 107)04/05/2004 17:53:17

RDF Primer

Identifiers, or URIs), and describing resources in terms of simple properties and property values.
This enables RDF to represent simple statements about resources as a graph of nodes and arcs
representing the resources, and their properties and values. To make this discussion somewhat
more concrete as soon as possible, the group of statements "there is a Person identified by
http://www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email
address is em@w3.org, and whose title is Dr." could be represented as the RDF graph in Figure
1:

Figure 1: An RDF Graph Describing Eric Miller

Figure 1 illustrates that RDF uses URIs to identify:

● individuals, e.g., Eric Miller, identified by http://www.w3.org/People/EM/
contact#me

● kinds of things, e.g., Person, identified by http://www.w3.org/2000/10/swap/pim/
contact#Person

● properties of those things, e.g., mailbox, identified by http://www.w3.org/2000/10/
swap/pim/contact#mailbox

● values of those properties, e.g. mailto:em@w3.org as the value of the mailbox property
(RDF also uses character strings such as "Eric Miller", and values from other datatypes
such as integers and dates, as the values of properties)

RDF also provides an XML-based syntax (called RDF/XML) for recording and exchanging these
graphs. Example 1 is a small chunk of RDF in RDF/XML corresponding to the graph in Figure 1:

Example 1: RDF/XML Describing Eric Miller

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (4 of 107)04/05/2004 17:53:17

RDF Primer

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/
contact#">

 <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
 <contact:fullName>Eric Miller</contact:fullName>
 <contact:mailbox rdf:resource="mailto:em@w3.org"/>
 <contact:personalTitle>Dr.</contact:personalTitle>
 </contact:Person>

</rdf:RDF>

Note that this RDF/XML also contains URIs, as well as properties like mailbox and fullName
(in an abbreviated form), and their respective values em@w3.org, and Eric Miller.

Like HTML, this RDF/XML is machine processable and, using URIs, can link pieces of
information across the Web. However, unlike conventional hypertext, RDF URIs can refer to any
identifiable thing, including things that may not be directly retrievable on the Web (such as the
person Eric Miller). The result is that in addition to describing such things as Web pages, RDF
can also describe cars, businesses, people, news events, etc. In addition, RDF properties
themselves have URIs, to precisely identify the relationships that exist between the linked items.

The following documents contribute to the specification of RDF:

● RDF Concepts and Abstract Syntax [RDF-CONCEPTS]
● RDF/XML Syntax Specification [RDF-SYNTAX]
● RDF Vocabulary Description Language 1.0: RDF Schema [RDF-VOCABULARY]
● RDF Semantics [RDF-SEMANTICS]
● RDF Test Cases [RDF-TESTS]
● RDF Primer (this document)

This Primer is intended to provide an introduction to RDF and describe some existing RDF
applications, to help information system designers and application developers understand the
features of RDF and how to use them. In particular, the Primer is intended to answer such
questions as:

● What does RDF look like?
● What information can RDF represent?
● How is RDF information created, accessed, and processed?
● How can existing information be combined with RDF?

The Primer is a non-normative document, which means that it does not provide a definitive
specification of RDF. The examples and other explanatory material in the Primer are provided to
help readers understand RDF, but they may not always provide definitive or fully-complete
answers. In such cases, the relevant normative parts of the RDF specification should be
consulted. To help in doing this, the Primer describes the roles these other documents play in the
complete specification of RDF, and provides links pointing to the relevant parts of the normative
specifications, at appropriate places in the discussion.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (5 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TR/rdf-primer/

RDF Primer

It should also be noted that these RDF documents update and clarify previously-published RDF
specifications, the Resource Description Framework (RDF) Model and Syntax Specification [RDF-
MS] and the Resource Description Framework (RDF) Schema Specification 1.0 [RDF-S]. As a
result, there have been some changes in terminology, syntax, and concepts. This Primer reflects
the newer set of RDF specifications given in the bulleted list of RDF documents cited above.
Hence, readers familiar with the older specifications, and with earlier tutorial and introductory
articles based on them, should be aware that there may be differences between the current
specifications and those previous documents. The RDF Issue Tracking document [RDFISSUE]
can be consulted for a list of issues raised concerning the previous RDF specifications, and their
resolution in the current specifications.

2. Making Statements About Resources

RDF is intended to provide a simple way to make statements about Web resources, e.g., Web
pages. This section describes the basic ideas behind the way RDF provides these capabilities
(the normative specification describing these concepts is RDF Concepts and Abstract Syntax
[RDF-CONCEPTS]).

2.1 Basic Concepts

Imagine trying to state that someone named John Smith created a particular Web page. A
straightforward way to state this in a natural language such as English would be in the form of a
simple statement such as:

http://www.example.org/index.html has a creator whose value
is John Smith

Parts of this statement are emphasized to illustrate that, in order to describe the properties of
something, there need to be ways to name, or identify, a number of things:

● the thing the statement describes (the Web page, in this case)
● a specific property (creator, in this case) of the thing the statement describes
● the thing the statement says is the value of this property (who the creator is), for the thing

the statement describes

In this statement, the Web page's URL (Uniform Resource Locator) is used to identify it. In
addition, the word "creator" is used to identify the property, and the two words "John Smith" to
identify the thing (a person) that is the value of this property.

Other properties of this Web page could be described by writing additional English statements of
the same general form, using the URL to identify the page, and words (or other expressions) to
identify the properties and their values. For example, the date the page was created, and the
language in which the page is written, could be described using the additional statements:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (6 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/2000/03/rdf-tracking/
http://www.w3.org/TR/rdf-concepts/

RDF Primer

http://www.example.org/index.html has a creation-date whose
value is August 16, 1999
http://www.example.org/index.html has a language whose
value is English

RDF is based on the idea that the things being described have properties which have values, and
that resources can be described by making statements, similar to those above, that specify those
properties and values. RDF uses a particular terminology for talking about the various parts of
statements. Specifically, the part that identifies the thing the statement is about (the Web page in
this example) is called the subject. The part that identifies the property or characteristic of the
subject that the statement specifies (creator, creation-date, or language in these examples) is
called the predicate, and the part that identifies the value of that property is called the object. So,
taking the English statement

http://www.example.org/index.html has a creator whose value
is John Smith

the RDF terms for the various parts of the statement are:

● the subject is the URL http://www.example.org/index.html
● the predicate is the word "creator"
● the object is the phrase "John Smith"

However, while English is good for communicating between (English-speaking) humans, RDF is
about making machine-processable statements. To make these kinds of statements suitable for
processing by machines, two things are needed:

● a system of machine-processable identifiers for identifying a subject, predicate, or object in
a statement without any possibility of confusion with a similar-looking identifier that might
be used by someone else on the Web.

● a machine-processable language for representing these statements and exchanging them
between machines.

Fortunately, the existing Web architecture provides both these necessary facilities.

As illustrated earlier, the Web already provides one form of identifier, the Uniform Resource
Locator (URL). A URL was used in the original example to identify the Web page that John Smith
created. A URL is a character string that identifies a Web resource by representing its primary
access mechanism (essentially, its network "location"). However, it is also important to be able to
record information about many things that, unlike Web pages, do not have network locations or
URLs.

The Web provides a more general form of identifier for these purposes, called the Uniform
Resource Identifier (URI). URLs are a particular kind of URI. All URIs share the property that
different persons or organizations can independently create them, and use them to identify
things. However, URIs are not limited to identifying things that have network locations, or use

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (7 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/#dfn-property
http://www.w3.org/TR/rdf-concepts/#dfn-subject
http://www.w3.org/TR/rdf-concepts/#dfn-predicate
http://www.w3.org/TR/rdf-concepts/#dfn-object
http://www.isi.edu/in-notes/rfc2396.txt
http://www.isi.edu/in-notes/rfc2396.txt

RDF Primer

other computer access mechanisms. In fact, a URI can be created to refer to anything that needs
to be referred to in a statement, including

● network-accessible things, such as an electronic document, an image, a service (e.g.,
"today's weather report for Los Angeles"), or a group of other resources.

● things that are not network-accessible, such as human beings, corporations, and bound
books in a library.

● abstract concepts that do not physically exist, such as the concept of a "creator".

Because of this generality, RDF uses URIs as the basis of its mechanism for identifying the
subjects, predicates, and objects in statements. To be more precise, RDF uses URI references
[URIS]. A URI reference (or URIref) is a URI, together with an optional fragment identifier at the
end. For example, the URI reference http://www.example.org/index.html#section2
consists of the URI http://www.example.org/index.html and (separated by the "#"
character) the fragment identifier Section2. RDF URIrefs can contain Unicode [UNICODE]
characters (see [RDF-CONCEPTS]), allowing many languages to be reflected in URIrefs. RDF
defines a resource as anything that is identifiable by a URI reference, so using URIrefs allows
RDF to describe practically anything, and to state relationships between such things as well.
URIrefs and fragment identifiers are discussed further in Appendix A, and in [RDF-CONCEPTS].

To represent RDF statements in a machine-processable way, RDF uses the Extensible Markup
Language [XML]. XML was designed to allow anyone to design their own document format and
then write a document in that format. RDF defines a specific XML markup language, referred to
as RDF/XML, for use in representing RDF information, and for exchanging it between machines.
An example of RDF/XML was given in Section 1. That example (Example 1) used tags such as
<contact:fullName> and <contact:personalTitle> to delimit the text content Eric
Miller and Dr., respectively. Such tags allow programs written with an understanding of what
the tags mean to properly interpret that content. Both XML content and (with certain exceptions)
tags can contain Unicode [UNICODE] characters, allowing information from many languages to
be directly represented. Appendix B provides further background on XML in general. The specific
RDF/XML syntax used for RDF is described in more detail in Section 3, and is normatively
defined in [RDF-SYNTAX]

2.2 The RDF Model

Section 2.1 has introduced RDF's basic statement concepts, the idea of using URI references to
identify the things referred to in RDF statements, and RDF/XML as a machine-processable way
to represent RDF statements. With that background, this section describes how RDF uses URIs
to make statements about resources. The introduction said that RDF was based on the idea of
expressing simple statements about resources, where each statement consists of a subject, a
predicate, and an object. In RDF, the English statement:

http://www.example.org/index.html has a creator whose value
is John Smith

could be represented by an RDF statement having:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (8 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/#dfn-URI-reference
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006

RDF Primer

● a subject http://www.example.org/index.html
● a predicate http://purl.org/dc/elements/1.1/creator
● and an object http://www.example.org/staffid/85740

Note how URIrefs are used to identify not only the subject of the original statement, but also the
predicate and object, instead of using the words "creator" and "John Smith", respectively (some
of the effects of using URIrefs in this way will be discussed later in this section).

RDF models statements as nodes and arcs in a graph. RDF's graph model is defined in [RDF-
CONCEPTS]. In this notation, a statement is represented by:

● a node for the subject
● a node for the object
● an arc for the predicate, directed from the subject node to the object node.

So the RDF statement above would be represented by the graph shown in Figure 2:

Figure 2: A Simple RDF Statement

Groups of statements are represented by corresponding groups of nodes and arcs. So, to reflect
the additional English statements

http://www.example.org/index.html has a creation-date whose
value is August 16, 1999
http://www.example.org/index.html has a language whose
value is English

in the RDF graph, the graph shown in Figure 3 could be used (using suitable URIrefs to name the
properties "creation-date" and "language"):

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (9 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/#section-data-model

RDF Primer

Figure 3: Several Statements About the Same Resource

Figure 3 illustrates that objects in RDF statements may be either URIrefs, or constant values
(called literals) represented by character strings, in order to represent certain kinds of property
values. (In the case of the predicate http://purl.org/dc/elements/1.1/language the
literal is an international standard two-letter code for English.) Literals may not be used as
subjects or predicates in RDF statements. In drawing RDF graphs, nodes that are URIrefs are
shown as ellipses, while nodes that are literals are shown as boxes. (The simple character string
literals used in these examples are called plain literals, to distinguish them from the typed literals
to be introduced in Section 2.4. The various kinds of literals that can be used in RDF statements
are defined in [RDF-CONCEPTS]. Both plain and typed literals can contain Unicode [UNICODE]
characters, allowing information from many languages to be directly represented.)

Sometimes it is not convenient to draw graphs when discussing them, so an alternative way of
writing down the statements, called triples, is also used. In the triples notation, each statement in
the graph is written as a simple triple of subject, predicate, and object, in that order. For example,
the three statements shown in Figure 3 would be written in the triples notation as:

<http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/
creator> <http://www.example.org/staffid/85740> .

<http://www.example.org/index.html> <http://www.example.org/terms/
creation-date> "August 16, 1999" .

<http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/
language> "en" .

Each triple corresponds to a single arc in the graph, complete with the arc's beginning and ending
nodes (the subject and object of the statement). Unlike the drawn graph (but like the original
statements), the triples notation requires that a node be separately identified for each statement it
appears in. So, for example, http://www.example.org/index.html appears three times
(once in each triple) in the triples representation of the graph, but only once in the drawn graph.
However, the triples represent exactly the same information as the drawn graph, and this is a key
point: what is fundamental to RDF is the graph model of the statements. The notation used to
represent or depict the graph is secondary.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (10 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/#section-Literals
http://www.w3.org/TR/rdf-concepts/#dfn-plain-literal
http://www.w3.org/TR/rdf-concepts/#dfn-typed-literal
http://www.w3.org/TR/rdf-concepts/#dfn-rdf-triple

RDF Primer

The full triples notation requires that URI references be written out completely, in angle brackets,
which, as the example above illustrates, can result in very long lines on a page. For convenience,
the Primer uses a shorthand way of writing triples (the same shorthand is also used in other RDF
specifications). This shorthand substitutes an XML qualified name (or QName) without angle
brackets as an abbreviation for a full URI reference (QNames are discussed further in Appendix
B). A QName contains a prefix that has been assigned to a namespace URI, followed by a colon,
and then a local name. The full URIref is formed from the QName by appending the local name to
the namespace URI assigned to the prefix. So, for example, if the QName prefix foo is assigned
to the namespace URI http://example.org/somewhere/, then the QName foo:bar is
shorthand for the URIref http://example.org/somewhere/bar. Primer examples will also
use several "well-known" QName prefixes (without explicitly specifying them each time), defined
as follows:

prefix rdf:, namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#
prefix rdfs:, namespace URI: http://www.w3.org/2000/01/rdf-schema#
prefix dc:, namespace URI: http://purl.org/dc/elements/1.1/
prefix owl:, namespace URI: http://www.w3.org/2002/07/owl#
prefix ex:, namespace URI: http://www.example.org/ (or http://www.example.com/)
prefix xsd:, namespace URI: http://www.w3.org/2001/XMLSchema#

Obvious variations on the "example" prefix ex: will also be used as needed in the examples, for
instance,

prefix exterms:, namespace URI: http://www.example.org/terms/ (for terms used by an
example organization),
prefix exstaff:, namespace URI: http://www.example.org/staffid/ (for the example
organization's staff identifiers),
prefix ex2:, namespace URI: http://www.domain2.example.org/ (for a second example
organization), and so on.

Using this new shorthand, the previous set of triples can be written as:

ex:index.html dc:creator exstaff:85740 .

ex:index.html exterms:creation-date "August 16, 1999" .

ex:index.html dc:language "en" .

Since RDF uses URIrefs instead of words to name things in statements, RDF refers to a set of
URIrefs (particularly a set intended for a specific purpose) as a vocabulary. Often, the URIrefs in
such vocabularies are organized so that they can be represented as a set of QNames using a
common prefix. That is, a common namespace URIref will be chosen for all terms in a
vocabulary, typically a URIref under the control of whoever is defining the vocabulary. URIrefs
that are contained in the vocabulary are formed by appending individual local names to the end
of the common URIref. This forms a set of URIrefs with a common prefix. For instance, as
illustrated by the previous examples, an organization such as example.org might define a
vocabulary consisting of URIrefs starting with the prefix http://www.example.org/terms/
for terms it uses in its business, such as "creation-date" or "product", and another vocabulary of
URIrefs starting with http://www.example.org/staffid/ to identify its employees. RDF

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (11 of 107)04/05/2004 17:53:17

RDF Primer

uses this same approach to define its own vocabulary of terms with special meanings in RDF.
The URIrefs in this RDF vocabulary all begin with http://www.w3.org/1999/02/22-rdf-
syntax-ns#, conventionally associated with the QName prefix rdf:. The RDF Vocabulary
Description Language (described in Section 5) defines an additional set of terms having URIrefs
that begin with http://www.w3.org/2000/01/rdf-schema#, conventionally associated with
the QName prefix rdfs:. (Where a specific QName prefix is commonly used in connection with
a given set of terms in this way, the QName prefix itself is sometimes used as the name of the
vocabulary. For example, someone might refer to "the rdfs: vocabulary".)

Using common URI prefixes provides a convenient way to organize the URIrefs for a related set
of terms. However, this is just a convention. The RDF model only recognizes full URIrefs; it does
not "look inside" URIrefs or use any knowledge about their structure. In particular, RDF does not
assume there is any relationship between URIrefs just because they have a common leading
prefix (see Appendix A for further discussion). Moreover, there is nothing that says that URIrefs
with different leading prefixes cannot be considered part of the same vocabulary. A particular
organization, process, tool, etc. can define a vocabulary that is significant for it, using URIrefs
from any number of other vocabularies as part of its vocabulary.

In addition, sometimes an organization will use a vocabulary's namespace URIref as the URL of
a Web resource that provides further information about that vocabulary. For example, as noted
earlier, the QName prefix dc: will be used in Primer examples, associated with the namespace
URIref http://purl.org/dc/elements/1.1/. In fact, this refers to the Dublin Core
vocabulary described in Section 6.1. Accessing this namespace URIref in a Web browser will
retrieve additional information about the Dublin Core vocabulary (specifically, an RDF schema).
However, this is also just a convention. RDF does not assume that a namespace URI identifies a
retrievable Web resource (see Appendix B for further discussion).

In the rest of the Primer, the term vocabulary will be used when referring to a set of URIrefs
defined for some specific purpose, such as the set of URIrefs defined by RDF for its own use, or
the set of URIrefs defined by example.org to identify its employees. The term namespace will be
used only when referring specifically to the syntactic concept of an XML namespace (or in
describing the URI assigned to a prefix in a QName).

URIrefs from different vocabularies can be freely mixed in RDF graphs. For example, the graph in
Figure 3 uses URIrefs from the exterms:, exstaff:, and dc: vocabularies. Also, RDF
imposes no restrictions on how many statements using a given URIref as predicate can appear in
a graph to describe the same resource. For example, if the resource ex:index.html had been
created by the cooperative efforts of several staff members in addition to John Smith, example.
org might have written the statements:

ex:index.html dc:creator exstaff:85740 .

ex:index.html dc:creator exstaff:27354 .

ex:index.html dc:creator exstaff:00816 .

These examples of RDF statements begin to illustrate some of the advantages of using URIrefs
as RDF's basic way of identifying things. For instance, in the first statement, instead of identifying
the creator of the Web page by the character string "John Smith", he has been assigned a

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (12 of 107)04/05/2004 17:53:17

RDF Primer

URIref, in this case (using a URIref based on his employee number) http://www.example.
org/staffid/85740 . An advantage of using a URIref in this case is that the identification of
the statement's subject can be more precise. That is, the creator of the page is not the character
string "John Smith", or any one of the thousands of people named John Smith, but the particular
John Smith associated with that URIref (whoever created the URIref defines the association).
Moreover, since there is a URIref to refer to John Smith, he is a full-fledged resource, and
additional information can be recorded about him, simply by adding additional RDF statements
with John's URIref as the subject. For example, Figure 4 shows some additional statements
giving John's name and age.

Figure 4: More Information About John Smith

These examples also illustrate that RDF uses URIrefs as predicates in RDF statements. That is,
rather than using character strings (or words) such as "creator" or "name" to identify properties,
RDF uses URIrefs. Using URIrefs to identify properties is important for a number of reasons.
First, it distinguishes the properties one person may use from different properties someone else
may use that would otherwise be identified by the same character string. For instance, in the
example in Figure 4, example.org uses "name" to mean someone's full name written out as a
character string literal (e.g., "John Smith"), but someone else may intend "name" to mean
something different (e.g., the name of a variable in a piece of program text). A program
encountering "name" as a property identifier on the Web (or merging data from multiple sources)
would not necessarily be able to distinguish these uses. However, if example.org writes http://
www.example.org/terms/name for its "name" property, and the other person writes http://
www.domain2.example.org/genealogy/terms/name for hers, it is clear that there are
distinct properties involved (even if a program cannot automatically determine the distinct
meanings). Also, using URIrefs to identify properties enables the properties to be treated as
resources themselves. Since properties are resources, additional information can be recorded
about them (e.g., the English description of what example.org means by "name"), simply by
adding additional RDF statements with the property's URIref as the subject.

Using URIrefs as subjects, predicates, and objects in RDF statements supports the development
and use of shared vocabularies on the Web, since people can discover and begin using
vocabularies already used by others to describe things, reflecting a shared understanding of
those concepts. For example, in the triple

ex:index.html dc:creator exstaff:85740 .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (13 of 107)04/05/2004 17:53:17

RDF Primer

the predicate dc:creator, when fully expanded as a URIref, is an unambiguous reference to
the "creator" attribute in the Dublin Core metadata attribute set (discussed further in Section 6.1),
a widely-used set of attributes (properties) for describing information of all kinds. The writer of this
triple is effectively saying that the relationship between the Web page (identified by http://
www.example.org/index.html) and the creator of the page (a distinct person, identified by
http://www.example.org/staffid/85740) is exactly the concept identified by http://
purl.org/dc/elements/1.1/creator. Another person familiar with the Dublin Core
vocabulary, or who finds out what dc:creator means (say by looking up its definition on the
Web) will know what is meant by this relationship. In addition, based on this understanding,
people can write programs to behave in accordance with that meaning when processing triples
containing the predicate dc:creator.

Of course, this depends on increasing the general use of URIrefs to refer to things instead of
using literals; e.g., using URIrefs like exstaff:85740 and dc:creator instead of character
string literals like John Smith and creator. Even then, RDF's use of URIrefs does not solve
all identification problems because, for example, people can still use different URIrefs to refer to
the same thing. For this reason, it is a good idea to try to use terms from existing vocabularies
(such as the Dublin Core) where possible, rather than making up new terms that might overlap
with those of some other vocabulary. Appropriate vocabularies for use in specific application
areas are being developed all the time, as illustrated by the applications described in Section 6.
However, even when synonyms are created, the fact that these different URIrefs are used in the
commonly-accessible "Web space" provides the opportunity both to identify equivalences among
these different references, and to migrate toward the use of common references.

In addition, it is important to distinguish between any meaning that RDF itself associates with
terms (such as dc:creator in the previous example) used in RDF statements and additional,
externally-defined meaning that people (or programs written by those people) might associate
with those terms. As a language, RDF directly defines only the graph syntax of subject, predicate,
and object triples, certain meanings associated with URIrefs in the rdf: vocabulary, and certain
other concepts to be described later. These things are normatively defined in [RDF-CONCEPTS]
and [RDF-SEMANTICS]. However, RDF does not define the meanings of terms from other
vocabularies, such as dc:creator, that might be used in RDF statements. Specific
vocabularies will be created, with specific meanings assigned to the URIrefs defined in them,
externally to RDF. RDF statements using URIrefs from these vocabularies may convey the
specific meanings associated with those terms to people familiar with these vocabularies, or to
RDF applications written to process these vocabularies, without conveying any of these
meanings to an arbitrary RDF application not specifically written to process these vocabularies.

For example, people can associate meaning with a triple such as

ex:index.html dc:creator exstaff:85740 .

based on the meaning they associate with the appearance of the word "creator" as part of the
URIref dc:creator, or based on their understanding of the specific definition of dc:creator in
the Dublin Core vocabulary. However, as far as an arbitrary RDF application is concerned the
triple might as well be something like

fy:joefy.iunm ed:dsfbups fytubgg:85740 .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (14 of 107)04/05/2004 17:53:17

RDF Primer

as far as any built-in meaning is concerned. Similarly, any natural language text describing the
meaning of dc:creator that might be found on the Web provides no additional meaning that an
arbitrary RDF application can directly use.

Of course, URIrefs from a particular vocabulary can be used in RDF statements even though a
given application may not be able to associate any special meanings with them. For example,
generic RDF software would recognize that the above expression is an RDF statement, that ed:
dsfbups is the predicate, and so on. It will simply not associate with the triple any special
meaning that the vocabulary developer might have associated with a URIref like ed:dsfbups.
Moreover, based on their understanding of a given vocabulary, people can write RDF
applications to behave in accordance with the special meanings assigned to URIrefs from that
vocabulary, even though that meaning will not be accessible to RDF applications not written in
that way.

The result of all this is that RDF provides a way to make statements that applications can more
easily process. An application cannot actually "understand" such statements, as noted already,
any more than a database system "understands" terms like "employee" or "salary" in processing
a query like SELECT NAME FROM EMPLOYEE WHERE SALARY > 35000. However, if an
application is appropriately written, it can deal with RDF statements in a way that makes it seem
like it does understand them, just as a database system and its applications can do useful work in
processing employee and payroll information without understanding "employee" and "payroll".
For example, a user could search the Web for all book reviews and create an average rating for
each book. Then, the user could put that information back on the Web. Another Web site could
take that list of book rating averages and create a "Top Ten Highest Rated Books" page. Here,
the availability and use of a shared vocabulary about ratings, and a shared group of URIrefs
identifying the books they apply to, allows individuals to build a mutually-understood and
increasingly-powerful (as additional contributions are made) "information base" about books on
the Web. The same principle applies to the vast amounts of information that people create about
thousands of subjects every day on the Web.

RDF statements are similar to a number of other formats for recording information, such as:

● entries in a simple record or catalog listing describing the resource in a data processing
system.

● rows in a simple relational database.
● simple assertions in formal logic

and information in these formats can be treated as RDF statements, allowing RDF to be used to
integrate data from many sources.

2.3 Structured Property Values and Blank Nodes

Things would be very simple if the only types of information to be recorded about things were
obviously in the form of the simple RDF statements illustrated so far. However, most real-world
data involves structures that are more complicated than that, at least on the surface. For
instance, in the original example, the date the Web page was created is recorded as a single
exterms:creation-date property, with a plain literal as its value. However, suppose the
value of the exterms:creation-date property needed to record the month, day, and year as
separate pieces of information? Or, in the case of John Smith's personal information, suppose

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (15 of 107)04/05/2004 17:53:17

RDF Primer

John's address was being described. The whole address could be written out as a plain literal, as
in the triple

exstaff:85740 exterms:address "1501 Grant Avenue, Bedford,
Massachusetts 01730" .

However, suppose John's address needed to be recorded as a structure consisting of separate
street, city, state, and postal code values? How would this be done in RDF?

Structured information like this is represented in RDF by considering the aggregate thing to be
described (like John Smith's address) as a resource, and then making statements about that new
resource. So, in the RDF graph, in order to break up John Smith's address into its component
parts, a new node is created to represent the concept of John Smith's address, with a new URIref
to identify it, say http://www.example.org/addressid/85740 (abbreviated as
exaddressid:85740). RDF statements (additional arcs and nodes) can then be written with
that node as the subject, to represent the additional information, producing the graph shown in
Figure 5:

Figure 5: Breaking Up John's Address

or the triples:

exstaff:85740 exterms:address exaddressid:85740 .
exaddressid:85740 exterms:street "1501 Grant Avenue" .
exaddressid:85740 exterms:city "Bedford" .
exaddressid:85740 exterms:state "Massachusetts" .
exaddressid:85740 exterms:postalCode "01730" .

This way of representing structured information in RDF can involve generating numerous
"intermediate" URIrefs such as exaddressid:85740 to represent aggregate concepts such as
John's address. Such concepts may never need to be referred to directly from outside a particular
graph, and hence may not require "universal" identifiers. In addition, in the drawing of the graph

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (16 of 107)04/05/2004 17:53:17

RDF Primer

representing the group of statements shown in Figure 5, the URIref assigned to identify "John
Smith's address" is not really needed, since the graph could just as easily have been drawn as in
Figure 6:

Figure 6: Using a Blank Node

Figure 6, which is a perfectly good RDF graph, uses a node without a URIref to stand for the
concept of "John Smith's address". This blank node serves its purpose in the drawing without
needing a URIref, since the node itself provides the necessary connectivity between the various
other parts of the graph. (Blank nodes were called anonymous resources in [RDF-MS].)
However, some form of explicit identifier for that node is needed in order to represent this graph
as triples. To see this, trying to write the triples corresponding to what is shown in Figure 6 would
produce something like:

exstaff:85740 exterms:address ??? .
??? exterms:street "1501 Grant Avenue" .
??? exterms:city "Bedford" .
??? exterms:state "Massachusetts" .
??? exterms:postalCode "01730" .

where ??? stands for something that indicates the presence of the blank node. Since a complex
graph might contain more than one blank node, there also needs to be a way to differentiate
between these different blank nodes in a triples representation of the graph. As a result, triples
use blank node identifiers, having the form _:name, to indicate the presence of blank nodes. For
instance, in this example a blank node identifier _:johnaddress might be used to refer to the
blank node, in which case the resulting triples might be:

exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street "1501 Grant Avenue" .
_:johnaddress exterms:city "Bedford" .
_:johnaddress exterms:state "Massachusetts" .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (17 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/#dfn-blank-node
http://www.w3.org/TR/rdf-concepts/#dfn-blank-node-id

RDF Primer

_:johnaddress exterms:postalCode "01730" .

In a triples representation of a graph, each distinct blank node in the graph is given a different
blank node identifier. Unlike URIrefs and literals, blank node identifiers are not considered to be
actual parts of the RDF graph (this can be seen by looking at the drawn graph in Figure 6 and
noting that the blank node has no blank node identifier). Blank node identifiers are just a way of
representing the blank nodes in a graph (and distinguishing one blank node from another) when
the graph is written in triple form. Blank node identifiers also have significance only within the
triples representing a single graph (two different graphs with the same number of blank nodes
might independently use the same blank node identifiers to distinguish them, and it would be
incorrect to assume that blank nodes from different graphs having the same blank node
identifiers are the same). If it is expected that a node in a graph will need to be referenced from
outside the graph, a URIref should be assigned to identify it. Finally, because blank node
identifiers represent (blank) nodes, rather than arcs, in the triple form of an RDF graph, blank
node identifiers may only appear as subjects or objects in triples; blank node identifiers may not
be used as predicates in triples.

The beginning of this section noted that aggregate structures, like John Smith's address, can be
represented by considering the aggregate thing to be described as a separate resource, and then
making statements about that new resource. This example illustrates an important aspect of
RDF: RDF directly represents only binary relationships, e.g. the relationship between John Smith
and the literal representing his address. Representing the relationship between John and the
group of separate components of this address involves dealing with an n-ary (n-way) relationship
(in this case, n=5) between John and the street, city, state, and postal code components. In order
to represent such structures directly in RDF (e.g., considering the address as a group of street,
city, state, and postal code components), this n-way relationship must be broken up into a group
of separate binary relationships. Blank nodes provide one way to do this. For each n-ary
relationship, one of the participants is chosen as the subject of the relationship (John in this
case), and a blank node is created to represent the rest of the relationship (John's address in this
case). The remaining participants in the relationship (such as the city in this example) are then
represented as separate properties of the new resource represented by the blank node.

Blank nodes also provide a way to more accurately make statements about resources that may
not have URIs, but that are described in terms of relationships with other resources that do have
URIs. For example, when making statements about a person, say Jane Smith, it may seem
natural to use a URI based on that person's email address as her URI, e.g., mailto:
jane@example.org. However, this approach can cause problems. For example, it may be
necessary to record information both about Jane's mailbox (e.g., the server it is on) as well as
about Jane herself (e.g., her current physical address), and using a URIref for Jane based on her
email address makes it difficult to know whether it is Jane or her mailbox that is being described.
The same problem exists when a company's Web page URL, say http://www.example.
com/, is used as the URI of the company itself. Once again, it may be necessary to record
information about the Web page itself (e.g., who created it and when) as well as about the
company, and using http://www.example.com/ as an identifier for both makes it difficult to
know which of these is the actual subject.

The fundamental problem is that using Jane's mailbox as a stand-in for Jane is not really
accurate: Jane and her mailbox are not the same thing, and hence they should be identified
differently. When Jane herself does not have a URI, a blank node provides a more accurate way
of modeling this situation. Jane can be represented by a blank node, and that blank node used as

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (18 of 107)04/05/2004 17:53:17

RDF Primer

the subject of a statement with exterms:mailbox as the property and the URIref mailto:
jane@example.org as its value. The blank node could also be described with an rdf:type
property having a value of exterms:Person (types are discussed in more detail in the following
sections), an exterms:name property having a value of "Jane Smith", and any other
descriptive information that might be useful, as shown in the following triples:

_:jane exterms:mailbox <mailto:jane@example.org> .
_:jane rdf:type exterms:Person .
_:jane exterms:name "Jane Smith" .
_:jane exterms:empID "23748" .
_:jane exterms:age "26" .

(Note that mailto:jane@example.org is written within angle brackets in the first triple. This is
because mailto:jane@example.org is a full URIref in the mailto URI scheme, rather than a
QName abbreviation, and full URIrefs must be enclosed in angle brackets in the triples notation.)

This says, accurately, that "there is a resource of type exterms:Person, whose electronic
mailbox is identified by mailto:jane@example.org, whose name is Jane Smith, etc." That
is, the blank node can be read as "there is a resource". Statements with that blank node as
subject then provide information about the characteristics of that resource.

In practice, using blank nodes instead of URIrefs in these cases does not change the way this
kind of information is handled very much. For example, if it is known that an email address
uniquely identifies someone at example.org (particularly if the address is unlikely to be reused),
that fact can still be used to associate information about that person from multiple sources, even
though the email address is not the person's URI. In this case, if some RDF is found on the Web
that describes a book, and gives the author's contact information as mailto:jane@example.
org, it might be reasonable, combining this new information with the previous set of triples, to
conclude that the author's name is Jane Smith. The point is that saying something like "the
author of the book is mailto:jane@example.org" is typically a shorthand for "the author of
the book is someone whose mailbox is mailto:jane@example.org". Using a blank node to
represent this "someone" is just a more accurate way to represent the real world situation.
(Incidentally, some RDF-based schema languages allow specifying that certain properties are
unique identifiers of the resources they describe. This is discussed further in Section 5.5.)

Using blank nodes in this way can also help avoid the use of literals in what might be
inappropriate situations. For example, in describing Jane's book, lacking a URIref to identify the
author, the publisher might have written (using the publisher's own ex2terms: vocabulary):

ex2terms:book78354 rdf:type ex2terms:Book .
ex2terms:book78354 ex2terms:author "Jane Smith" .

However, the author of the book is not really the character string "Jane Smith", but a person
whose name is Jane Smith. The same information might be more accurately given by the
publisher using a blank node, as:

ex2terms:book78354 rdf:type ex2terms:Book .
ex2terms:book78354 ex2terms:author _:author78354 .
_:author78354 rdf:type ex2terms:Person .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (19 of 107)04/05/2004 17:53:17

RDF Primer

_:author78354 ex2terms:name "Jane Smith" .

This essentially says "resource ex2terms:book78354 is of type ex2terms:Book, and its
author is a resource of type ex2terms:Person, whose name is Jane Smith." Of course, in
this particular case the publisher might instead have assigned its own URIrefs to its authors
instead of using blank nodes to identify them, in order to encourage external references to its
authors.

Finally, the example above giving Jane's age as 26 illustrates the fact that sometimes the value
of a property may appear to be simple, but actually may be more complex. In this case, Jane's
age is actually 26 years, but the units information (years) is not explicitly given. Such information
is often omitted in contexts where it can be safely assumed that anyone accessing the property
value will understand the units being used. However, in the wider context of the Web, it is
generally not safe to make this assumption. For example, a U.S. site might give a weight value in
pounds, but someone accessing that data from outside the U.S. might assume that weights are
given in kilograms. In general, careful consideration should be given to explicitly representing
units and similar information. This issue is discussed further in Section 4.4, which describes an
RDF feature for representing such information as structured values, as well as some other
techniques for representing such information.

2.4 Typed Literals

The last section described how to handle situations in which property values represented by plain
literals had to be broken up into structured values to represent the individual parts of those
literals. Using this approach, instead of, say, recording the date a Web page was created as a
single exterms:creation-date property, with a single plain literal as its value, the value
would be represented as a structure consisting of the month, day, and year as separate pieces of
information, using separate plain literals to represent the corresponding values. However, so far,
all constant values that serve as objects in RDF statements have been represented by these
plain (untyped) literals, even when the intent is probably for the value of the property to be a
number (e.g., the value of a year or age property) or some other kind of more specialized value.

For example, Figure 4 illustrated an RDF graph recording information about John Smith. That
graph recorded the value of John Smith's exterms:age property as the plain literal "27", as
shown in Figure 7:

Figure 7: Representing John Smith's Age

In this case, the hypothetical organization example.org probably intends for "27" to be interpreted
as a number, rather than as the string consisting of the character "2" followed by the character

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (20 of 107)04/05/2004 17:53:17

RDF Primer

"7" (since the literal represents the value of an "age" property). However, there is no information
in Figure 7's graph that explicitly indicates that "27" should be interpreted as a number. Similarly,
example.org also probably intends for "27" to be interpreted as a decimal number, i.e., the value
twenty seven, rather than, say, as an octal number, i.e., the value twenty three. However, once
again there is no information in Figure 7's graph that explicitly indicates this. Specific applications
might be written with the understanding that they should interpret values of the exterms:age
property as decimal numbers, but this would mean that proper interpretation of this RDF would
depend on information not explicitly provided in the RDF graph, and hence on information that
would not necessarily be available to other applications that might need to interpret this RDF.

The common practice in programming languages or database systems is to provide this
additional information about how to interpret a literal by associating a datatype with the literal, in
this case, a datatype like decimal or integer. An application that understands the datatype
then knows, for example, whether the literal "10" is intended to represent the number ten, the
number two, or the string consisting of the character "1" followed by the character "0", depending
on whether the specified datatype is integer, binary, or string. (More specialized datatypes
could also be used to include the units information mentioned at the end of Section 2.3, e.g., a
datatype integerYears, although the Primer will not elaborate on this idea.) In RDF, typed
literals are used to provide this kind of information.

An RDF typed literal is formed by pairing a string with a URIref that identifies a particular
datatype. This results in a single literal node in the RDF graph with the pair as the literal. The
value represented by the typed literal is the value that the specified datatype associates with the
specified string. For example, using a typed literal, John Smith's age could be described as being
the integer number 27 using the triple:

<http://www.example.org/staffid/85740> <http://www.example.org/terms/
age> "27"^^<http://www.w3.org/2001/XMLSchema#integer> .

or, using the QName simplification for writing long URIs:

exstaff:85740 exterms:age "27"^^xsd:integer .

or as shown in Figure 8:

Figure 8: A Typed Literal for John Smith's Age

Similarly, in the graph shown in Figure 3 describing information about a Web page, the value of
the page's exterms:creation-date property was written as the plain literal "August 16,
1999". However, using a typed literal, the creation date of the Web page could be explicitly

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (21 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/#dfn-typed-literal
http://www.w3.org/TR/rdf-concepts/#dfn-typed-literal

RDF Primer

described as being the date August 16, 1999, using the triple:

ex:index.html exterms:creation-date "1999-08-16"^^xsd:date .

or as shown in Figure 9:

Figure 9: A Typed Literal for a Web Page's Creation Date

Unlike typical programming languages and database systems, RDF has no built-in set of
datatypes of its own, such as datatypes for integers, reals, strings, or dates. Instead, RDF typed
literals simply provide a way to explicitly indicate, for a given literal, what datatype should be used
to interpret it. The datatypes used in typed literals are defined externally to RDF, and identified by
their datatype URIs. (There is one exception: RDF defines a built-in datatype with the URIref
rdf:XMLLiteral to represent XML content as a literal value. This datatype is defined in [RDF-
CONCEPTS], and its use is described in Section 4.5.) For instance, the examples in Figure 8 and
Figure 9 use the datatypes integer and date from the XML Schema datatypes defined in XML
Schema Part 2: Datatypes [XML-SCHEMA2]. An advantage of this approach is that it gives RDF
the flexibility to directly represent information coming from different sources without the need to
perform type conversions between these sources and a native set of RDF datatypes. (Type
conversions would still be required when moving information between systems having different
sets of datatypes, but RDF would impose no extra conversions into and out of a native set of
RDF datatypes.)

RDF datatype concepts are based on a conceptual framework from XML Schema datatypes
[XML-SCHEMA2], as described in RDF Concepts and Abstract Syntax [RDF-CONCEPTS]. This
conceptual framework defines a datatype as consisting of:

● A set of values, called the value space, that literals of the datatype are intended to
represent. For example, for the XML Schema datatype xsd:date, this set of values is a
set of dates.

● A set of character strings, called the lexical space, that the datatype uses to represent its
values. This set determines which character strings can legally be used to represent
literals of this datatype. For example, the datatype xsd:date defines 1999-08-16 as
being a legal way to write a literal of this type (as opposed, say, to August 16, 1999).
As defined in [RDF-CONCEPTS], the lexical space of a datatype is a set of Unicode
[UNICODE] strings, allowing information from many languages to be directly represented.

● A lexical-to-value mapping from the lexical space to the value space. This determines the
value that a given character string from the lexical space represents for this particular
datatype. For example, the lexical-to-value mapping for datatype xsd:date determines
that, for this datatype, the string 1999-08-16 represents the date August 16, 1999. The

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (22 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/#dfn-datatype-URI
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/rdf-concepts/

RDF Primer

lexical-to-value mapping is a factor because the same character string may represent
different values for different datatypes.

Not all datatypes are suitable for use in RDF. For a datatype to be suitable for use in RDF, it must
conform to the conceptual framework just described. This basically means that, given a character
string, the datatype must unambiguously define whether or not the string is in its lexical space,
and what value in its value space the string represents. For example, the basic XML Schema
datatypes such as xsd:string, xsd:boolean, xsd:date, etc. are suitable for use in RDF.
However, some of the built-in XML Schema datatypes are not suitable for use in RDF. For
example, xsd:duration does not have a well-defined value space, and xsd:QName requires
an enclosing XML document context. Lists of the XML Schema datatypes that are currently
considered suitable and unsuitable for use in RDF are given in [RDF-SEMANTICS].

Since the value that a given typed literal denotes is defined by the typed literal's datatype, and,
with the exception of rdf:XMLLiteral, RDF does not define any datatypes, the actual
interpretation of a typed literal appearing in an RDF graph (e.g., determining the value it denotes)
must be performed by software that is written to correctly process not only RDF, but the typed
literal's datatype as well. Effectively, this software must be written to process an extended
language that includes not only RDF, but also the datatype, as part of its built-in vocabulary. This
raises the issue of which datatypes will be generally available in RDF software. Generally, the
XML Schema datatypes that are listed as suitable for use in RDF in [RDF-SEMANTICS] have a
"first among equals" status in RDF. As noted already, the examples in Figure 8 and Figure 9
used some of these XML Schema datatypes, and the Primer will be using these datatypes in
most of its other examples of typed literals as well (for one thing, XML Schema datatypes already
have assigned URIrefs that can be used to refer to them, specified in [XML-SCHEMA2]). These
XML Schema datatypes are treated no differently than any other datatype, but they are expected
to be the most widely used, and therefore the most likely to be interoperable among different
software. As a result, it is expected that much RDF software will also be written to process these
datatypes. However, RDF software could be written to process other sets of datatypes as well,
assuming they were determined to be suitable for use with RDF, as described already.

In general, RDF software may be called on to process RDF data that contains references to
datatypes that the software has not been written to process, in which case there are some things
the software will not be able to do. For one thing, with the exception of rdf:XMLLiteral, RDF
itself does not define the URIrefs that identify datatypes. As a result, RDF software, unless it has
been written to recognize specific URIrefs, will not be able to determine whether or not a URIref
written in a typed literal actually identifies a datatype. Moreover, even when a URIref does
identify a datatype, RDF itself does not define the validity of pairing that datatype with a particular
literal. This validity can only be determined by software written to correctly process that particular
datatype.

For example, the typed literal in the triple:

exstaff:85740 exterms:age "pumpkin"^^xsd:integer .

or the graph shown in Figure 10:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (23 of 107)04/05/2004 17:53:17

RDF Primer

Figure 10: An Invalid Typed Literal for John Smith's Age

is valid RDF, but obviously an error as far as the xsd:integer datatype is concerned, since
"pumpkin" is not defined as being in the lexical space of xsd:integer. RDF software not
written to process the xsd:integer datatype would not be able to recognize this error.

However, proper use of RDF typed literals provides more information about the intended
interpretation of literal values, and hence makes RDF statements a better means of information
exchange among applications.

2.5 Concepts Summary

Taken as a whole, RDF is basically simple: nodes-and-arcs diagrams interpreted as statements
about things identified by URIrefs. This section has presented an introduction to these concepts.
As noted earlier, the normative (i.e., definitive) RDF specification describing these concepts is
RDF Concepts and Abstract Syntax [RDF-CONCEPTS], which should be consulted for further
information. The formal semantics (meaning) of these concepts is defined in the (normative) RDF
Semantics [RDF-SEMANTICS] document.

However, in addition to the basic techniques for describing things using RDF statements
discussed so far, it should be clear that people or organizations also need a way to describe the
vocabularies (terms) they intend to use in those statements, specifically, vocabularies for:

● describing types of things (like exterms:Person)
● describing properties (like exterms:age and exterms:creation-date), and
● describing the types of things that can serve as the subjects or objects of statements

involving those properties (such as specifying that the value of an exterms:age property
should always be an xsd:integer).

The basis for describing such vocabularies in RDF is the RDF Vocabulary Description Language
1.0: RDF Schema [RDF-VOCABULARY], which will be described in Section 5.

Additional background on the basic ideas underlying RDF, and its role in providing a general
language for describing Web information, can be found in [WEBDATA]. RDF draws upon ideas
from knowledge representation, artificial intelligence, and data management, including
Conceptual Graphs, logic-based knowledge representation, frames, and relational databases.
Some possible sources of background information on these subjects include [SOWA], [CG],
[KIF], [HAYES], [LUGER], and [GRAY].

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (24 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/

RDF Primer

3. An XML Syntax for RDF: RDF/XML

As described in Section 2, RDF's conceptual model is a graph. RDF provides an XML syntax for
writing down and exchanging RDF graphs, called RDF/XML. Unlike triples, which are intended as
a shorthand notation, RDF/XML is the normative syntax for writing RDF. RDF/XML is defined in
the RDF/XML Syntax Specification [RDF-SYNTAX]. This section describes this RDF/XML syntax.

3.1 Basic Principles

The basic ideas behind the RDF/XML syntax can be illustrated using some of the examples
presented already. Take as an example the English statement:

http://www.example.org/index.html has a creation-date whose
value is August 16, 1999

The RDF graph for this single statement, after assigning a URIref to the creation-date
property, is shown in Figure 11:

Figure 11: Describing a Web Page's Creation Date

with a triple representation of:

ex:index.html exterms:creation-date "August 16, 1999" .

(Note that a typed literal is not used for the date value in this example. Representing typed literals
in RDF/XML will be described later in this section.)

Example 2 shows the RDF/XML syntax corresponding to the graph in Figure 11:

Example 2: RDF/XML for the Web Page's Creation Date

1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:exterms="http://www.example.org/terms/">

4. <rdf:Description rdf:about="http://www.example.org/index.html">
5. <exterms:creation-date>August 16, 1999</exterms:creation-date>
6. </rdf:Description>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (25 of 107)04/05/2004 17:53:17

http://www.w3.org/TR/rdf-syntax-grammar/

RDF Primer

7. </rdf:RDF>

(Line numbers are added to help in explaining the example.)

This seems like a lot of overhead. It is easier to understand what is going on by considering each
part of this XML in turn (a brief introduction to XML is provided in Appendix B).

Line 1, <?xml version="1.0"?>, is the XML declaration, which indicates that the following
content is XML, and what version of XML it is.

Line 2 begins an rdf:RDF element. This indicates that the following XML content (starting here
and ending with the </rdf:RDF> in line 7) is intended to represent RDF. Following the rdf:RDF
on this same line is an XML namespace declaration, represented as an xmlns attribute of the
rdf:RDF start-tag. This declaration specifies that all tags in this content prefixed with rdf: are
part of the namespace identified by the URIref http://www.w3.org/1999/02/22-rdf-
syntax-ns#. URIrefs beginning with the string http://www.w3.org/1999/02/22-rdf-
syntax-ns# are used for terms from the RDF vocabulary.

Line 3 specifies another XML namespace declaration, this time for the prefix exterms:. This is
expressed as another xmlns attribute of the rdf:RDF element, and specifies that the
namespace URIref http://www.example.org/terms/ is to be associated with the
exterms: prefix. URIrefs beginning with the string http://www.example.org/terms/ are
used for terms from the vocabulary defined by the example organization, example.org. The ">" at
the end of line 3 indicates the end of the rdf:RDF start-tag. Lines 1-3 are general
"housekeeping" necessary to indicate that this is RDF/XML content, and to identify the
namespaces being used within the RDF/XML content.

Lines 4-6 provide the RDF/XML for the specific statement shown in Figure 11. An obvious way to
talk about any RDF statement is to say it is a description, and that it is about the subject of the
statement (in this case, about http://www.example.org/index.html), and this is the way RDF/XML
represents the statement. The rdf:Description start-tag in line 4 indicates the start of a
description of a resource, and goes on to identify the resource the statement is about (the subject
of the statement) using the rdf:about attribute to specify the URIref of the subject resource.
Line 5 provides a property element, with the QName exterms:creation-date as its tag, to
represent the predicate and object of the statement. The QName exterms:creation-date is
chosen so that appending the local name creation-date to the URIref of the exterms: prefix
(http://www.example.org/terms/) gives the statement's predicate URIref http://www.
example.org/terms/creation-date. The content of this property element is the object of
the statement, the plain literal August 19, 1999 (the value of the creation-date property of the
subject resource). The property element is nested within the containing rdf:Description
element, indicating that this property applies to the resource specified in the rdf:about attribute
of the rdf:Description element. Line 6 indicates the end of this particular rdf:
Description element.

Finally, Line 7 indicates the end of the rdf:RDF element started on line 2. Using an rdf:RDF
element to enclose RDF/XML content is optional in situations where the XML can be identified as
RDF/XML by context. This is discussed further in [RDF-SYNTAX]. However, it does not hurt to
provide the rdf:RDF element in any case, and Primer examples will generally (but not always)

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (26 of 107)04/05/2004 17:53:17

RDF Primer

provide one.

Example 2 illustrates the basic ideas used by RDF/XML to encode an RDF graph as XML
elements, attributes, element content, and attribute values. The URIrefs of predicates (as well as
some nodes) are written as XML QNames, consisting of a short prefix denoting a namespace
URI, together with a local name denoting a namespace-qualified element or attribute, as
described in Appendix B. The (namespace URIref, local name) pair is chosen so that
concatenating them forms the URIref of the original node or predicate. The URIrefs of subject
nodes are written as XML attribute values (URIrefs of object nodes may sometimes be written as
attribute values as well). Literal nodes (which are always object nodes) become element text
content or attribute values. (Many of these options are described later in the Primer; all of these
options are described in [RDF-SYNTAX].)

An RDF graph consisting of multiple statements can be represented in RDF/XML by using RDF/
XML similar to Lines 4-6 in Example 2 to separately represent each statement. For example, to
write the following two statements:

ex:index.html exterms:creation-date "August 16, 1999" .
ex:index.html dc:language "en" .

the RDF/XML in Example 3 could be used:

Example 3: RDF/XML for Two Statements

1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:dc="http://purl.org/dc/elements/1.1/"
4. xmlns:exterms="http://www.example.org/terms/">

5. <rdf:Description rdf:about="http://www.example.org/index.html">
6. <exterms:creation-date>August 16, 1999</exterms:creation-
date>
7. </rdf:Description>

8. <rdf:Description rdf:about="http://www.example.org/index.html">
9. <dc:language>en</dc:language>
10. </rdf:Description>

11. </rdf:RDF>

Example 3 is the same as Example 2, with the addition of a second rdf:Description element
(in lines 8-10) to represent the second statement. (An additional namespace declaration is also
given in line 3 to identify the additional namespace used in this statement.) An arbitrary number
of additional statements could be written in the same way, using a separate rdf:Description
element for each additional statement. As Example 3 illustrates, once the overhead of writing the
XML and namespace declarations is dealt with, writing each additional RDF statement in RDF/
XML is both straightforward and not too complicated.

The RDF/XML syntax provides a number of abbreviations to make common uses easier to write.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (27 of 107)04/05/2004 17:53:17

RDF Primer

For example, it is typical for the same resource to be described with several properties and
values at the same time, as in Example 3, where the resource ex:index.html is the subject of
several statements. To handle such cases, RDF/XML allows multiple property elements
representing those properties to be nested within the rdf:Description element that identifies
the subject resource. For example, to represent the following group of statements about http://
www.example.org/index.html:

ex:index.html dc:creator exstaff:85740 .
ex:index.html exterms:creation-date "August 16, 1999" .
ex:index.html dc:language "en" .

whose graph (the same as Figure 3) is shown in Figure 12:

Figure 12: Several Statements About the Same Resource

the RDF/XML shown in Example 4 could be written:

Example 4: Abbreviating Multiple Properties

1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:dc="http://purl.org/dc/elements/1.1/"
4. xmlns:exterms="http://www.example.org/terms/">

5. <rdf:Description rdf:about="http://www.example.org/index.html">
6. <exterms:creation-date>August 16, 1999</exterms:creation-
date>
7. <dc:language>en</dc:language>
8. <dc:creator rdf:resource="http://www.example.org/
staffid/85740"/>
9. </rdf:Description>

10. </rdf:RDF>

Compared with the previous two examples, Example 4 adds an additional dc:creator property
element (in line 8). In addition, the property elements for the three properties whose subject is

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (28 of 107)04/05/2004 17:53:17

RDF Primer

http://www.example.org/index.html are nested within a single rdf:Description
element identifying that subject, rather than writing a separate rdf:Description element for
each statement.

Line 8 also introduces a new form of property element. The dc:language element in line 7 is
similar to the exterms:creation-date element used in Example 2. Both these elements
represent properties with plain literals as property values, and such elements are written by
enclosing the literal within start- and end-tags corresponding to the property name. However, the
dc:creator element on line 8 represents a property whose value is another resource, rather
than a literal. If the URIref of this resource were written as a plain literal within start- and end-tags
in the same way as the literal values of the other elements, this would say that the value of the
dc:creator element was the character string http://www.example.org/staffid/85740,
rather than the resource identified by that literal interpreted as a URIref. In order to indicate the
difference, the dc:creator element is written using what XML calls an empty-element tag (it
has no separate end-tag), and the property value is written using an rdf:resource attribute
within that empty element. The rdf:resource attribute indicates that the property element's
value is another resource, identified by its URIref. Because the URIref is being used as an
attribute value, RDF/XML requires the URIref to be written out (as an absolute or relative URIref),
rather than abbreviating it as a QName as was done in writing element and attribute names
(absolute and relative URIrefs are discussed in Appendix A).

It is important to understand that the RDF/XML in Example 4 is an abbreviation. The RDF/XML in
Example 5, in which each statement is written separately, describes exactly the same RDF graph
(the graph of Figure 12):

Example 5: Writing Example 4 as Separate Statements

 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:exterms="http://www.example.org/terms/">

 <rdf:Description rdf:about="http://www.example.org/index.html">
 <exterms:creation-date>August 16, 1999</exterms:creation-date>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.example.org/index.html">
 <dc:language>en</dc:language>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.example.org/index.html">
 <dc:creator rdf:resource="http://www.example.org/staffid/85740"/
>
 </rdf:Description>

 </rdf:RDF>

The following sections will describe a few additional RDF/XML abbreviations. [RDF-SYNTAX]
provides a more thorough description of the abbreviations that are available.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (29 of 107)04/05/2004 17:53:17

RDF Primer

RDF/XML can also represent graphs that include nodes that have no URIrefs, i.e., the blank
nodes described in Section 2.3. For example, Figure 13 (taken from [RDF-SYNTAX]) shows a
graph saying "the document 'http://www.w3.org/TR/rdf-syntax-grammar' has a title 'RDF/XML
Syntax Specification (Revised)' and has an editor, the editor has a name 'Dave Beckett' and a
home page 'http://purl.org/net/dajobe/' ".

Figure 13: A Graph Containing a Blank Node

This illustrates an idea discussed in Section 2.3: the use of a blank node to represent something
that does not have a URIref, but can be described in terms of other information. In this case, the
blank node represents a person, the editor of the document, and the person is described by his
name and home page.

RDF/XML provides several ways to represent graphs containing blank nodes. These are all
described in [RDF-SYNTAX]. The approach illustrated here, which is the most direct approach, is
to assign a blank node identifier to each blank node. A blank node identifier serves to identify a
blank node within a particular RDF/XML document but, unlike a URIref, is unknown outside the
document in which it is assigned. A blank node is referred to in RDF/XML using an rdf:nodeID
attribute, with a blank node identifier as its value, in places where the URIref of a resource would
otherwise appear. Specifically, a statement with a blank node as its subject can be written in RDF/
XML using an rdf:Description element with an rdf:nodeID attribute instead of an rdf:
about attribute. Similarly, a statement with a blank node as its object can be written using a
property element with an rdf:nodeID attribute instead of an rdf:resource attribute. Using
rdf:nodeID, Example 6 shows the RDF/XML corresponding to Figure 13:

Example 6: RDF/XML Describing a Blank Node

1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:dc="http://purl.org/dc/elements/1.1/"
4. xmlns:exterms="http://example.org/stuff/1.0/">

5. <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-
grammar">
6. <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (30 of 107)04/05/2004 17:53:17

RDF Primer

7. <exterms:editor rdf:nodeID="abc"/>
8. </rdf:Description>

9. <rdf:Description rdf:nodeID="abc">
10. <exterms:fullName>Dave Beckett</exterms:fullName>
11. <exterms:homePage rdf:resource="http://purl.org/net/
dajobe/"/>
12. </rdf:Description>

13. </rdf:RDF>

In Example 6, the blank node identifier abc is used in line 9 to identify the blank node as the
subject of several statements, and is used in line 7 to indicate that the blank node is the value of
a resource's exterms:editor property. The advantage of using a blank node identifier over
some of the other approaches described in [RDF-SYNTAX] is that using a blank node identifier
allows the same blank node to be referred to in more than one place in the same RDF/XML
document.

Finally, the typed literals described in Section 2.4 may be used as property values instead of the
plain literals used in the examples so far. A typed literal is represented in RDF/XML by adding an
rdf:datatype attribute specifying a datatype URIref to the property element containing the
literal.

For example, to change the statement in Example 2 to use a typed literal instead of a plain literal
for the exterms:creation-date property, the triple representation would be:

ex:index.html exterms:creation-date "1999-08-16"^^xsd:date .

with corresponding RDF/XML syntax shown in Example 7:

Example 7: RDF/XML Using a Typed Literal

1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:exterms="http://www.example.org/terms/">

4. <rdf:Description rdf:about="http://www.example.org/index.html">
5. <exterms:creation-date rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#date">1999-08-16
 </exterms:creation-date>
6. </rdf:Description>

7. </rdf:RDF>

In line 5 of Example 7, a typed literal is given as the value of the exterms:creation-date
property element by adding an rdf:datatype attribute to the element's start-tag to specify the
datatype. The value of this attribute is the URIref of the datatype, in this case, the URIref of the
XML Schema date datatype. Since this is an attribute value, the URIref must be written out,
rather than using the QName abbreviation xsd:date used in the triple. A literal appropriate to

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (31 of 107)04/05/2004 17:53:17

RDF Primer

this datatype is then written as the element content, in this case, the literal 1999-08-16, which is
the literal representation for August 16, 1999 in the XML Schema date datatype.

In the rest of the Primer, the examples will use typed literals from appropriate datatypes rather
than plain (untyped) literals, in order to emphasize the value of typed literals in conveying more
information about the intended interpretation of literal values. (The exceptions will be that plain
literals will continue to be used in examples taken from actual applications that do not currently
use typed literals, in order to accurately reflect the usage in those applications.) In RDF/XML,
both plain and typed literals (and, with certain exceptions, tags) can contain Unicode [UNICODE]
characters, allowing information from many languages to be directly represented.

Example 7 illustrates that using typed literals requires writing an rdf:datatype attribute with a
URIref identifying the datatype for each element whose value is a typed literal. As noted earlier,
RDF/XML requires that URIrefs used as attribute values must be written out, rather than
abbreviated as a QName. XML entities can be used in RDF/XML to improve readability in such
cases, by providing an additional abbreviation facility for URIrefs. Essentially, an XML entity
declaration associates a name with a string of characters. When the entity name is referenced
elsewhere within an XML document, XML processors replace the reference with the
corresponding string. For example, the ENTITY declaration (specified as part of a DOCTYPE
declaration at the beginning of the RDF/XML document):

<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

defines the entity xsd to be the string representing the namespace URIref for XML Schema
datatypes. This declaration allows the full namespace URIref to be abbreviated elsewhere in the
XML document by the entity reference &xsd;. Using this abbreviation, Example 7 could also be
written as shown in Example 8.

Example 8: RDF/XML Using a Typed Literal and an XML Entity

1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
XMLSchema#">]>

3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.org/terms/">

5. <rdf:Description rdf:about="http://www.example.org/index.html">
6. <exterms:creation-date rdf:datatype="&xsd;date">1999-08-16
 </exterms:creation-date>
7. </rdf:Description>

8. </rdf:RDF>

The DOCTYPE declaration in line 2 defines the entity xsd, which is used in line 6.

The use of XML entities as an abbreviation mechanism is optional in RDF/XML, and hence the
use of an XML DOCTYPE declaration is also optional in RDF/XML. (For readers familiar with XML,
RDF/XML is only required to be "well-formed" XML. RDF/XML is not designed to be validated
against a DTD by a validating XML processor. This is discussed more fully in Appendix B, which

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (32 of 107)04/05/2004 17:53:17

RDF Primer

provides additional information about XML.)

For readability purposes, examples in the rest of the Primer will use the XML entity xsd as just
described. XML entities are discussed further in Appendix B. As illustrated in Appendix B, other
URIrefs (and, more generally, other strings) can also be abbreviated using XML entities.
However, the URIrefs for XML Schema datatypes are the only ones that will be abbreviated in
this way in Primer examples.

Although additional abbreviated forms for writing RDF/XML are available, the facilities illustrated
so far provide a simple but general way to express graphs in RDF/XML. Using these facilities, an
RDF graph is written in RDF/XML as follows:

● All blank nodes are assigned blank node identifiers.
● Each node is listed in turn as the subject of an un-nested rdf:Description element,

using an rdf:about attribute if the node has a URIref, or an rdf:nodeID attribute if the
node is blank.
For each triple with this node as subject, an appropriate property element is created, with
either literal content (possibly empty), an rdf:resource attribute specifying the object of
the triple (if the object node has a URIref), or an rdf:nodeID attribute specifying the
object of the triple (if the object node is blank).

Compared to some of the more abbreviated approaches described in [RDF-SYNTAX], this simple
approach provides the most direct representation of the actual graph structure, and is particularly
recommended for applications in which the output RDF/XML is to be used in further RDF
processing.

3.2 Abbreviating and Organizing RDF URIrefs

So far, the examples have assumed that the resources being described have been given URIrefs
already. For instance, the initial examples provided descriptive information about example.org's
Web page, whose URIref was http://www.example.org/index.html. This resource was
identified in RDF/XML using an rdf:about attribute citing its full URIref. Although RDF does not
specify or control how URIrefs are assigned to resources, sometimes it is desirable to achieve
the effect of assigning URIrefs to resources that are part of an organized group of resources. For
example, suppose a sporting goods company, example.com, wanted to provide an RDF-based
catalog of its products, such as tents, hiking boots, and so on, as an RDF/XML document,
identified by (and located at) http://www.example.com/2002/04/products. In that
resource, each product might be given a separate RDF description. This catalog, along with one
of these descriptions, the catalog entry for a model of tent called the "Overnighter", might be
written in RDF/XML as shown in Example 9:

Example 9: RDF/XML for example.com's Catalog

1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.com/terms/">

5. <rdf:Description rdf:ID="item10245">

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (33 of 107)04/05/2004 17:53:17

RDF Primer

6. <exterms:model rdf:datatype="&xsd;string">Overnighter</
exterms:model>
7. <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:
sleeps>
8. <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:
weight>
9. <exterms:packedSize rdf:datatype="&xsd;integer">784</
exterms:packedSize>
10. </rdf:Description>

 ...other product descriptions...

11. </rdf:RDF>

Example 9 is similar to previous examples in the way it represents the properties (model,
sleeping capacity, weight) of the resource (the tent) being described. (The surrounding xml,
DOCTYPE, RDF, and namespace information is included in lines 1 through 4, and line 11, but
this information would only need to be provided once for the whole catalog, not repeated for each
entry in the catalog. Note also that although the datatypes associated with the various property
values are given explicitly, the units associated with some of these property values are not, even
though this information should be available to properly interpret the values. Representing units
and similar information that may be associated with property values is discussed in Section 4.4.
In this example, the value of exterms:sleeps is the number of persons the tent can sleep, the
value of exterms:weight is given in kilograms, and the value of exterms:packedSize is
given in square centimeters, the area the tent occupies on a backpack.)

An important difference from previous examples is that, in line 5, the rdf:Description
element has an rdf:ID attribute instead of an rdf:about attribute. Using rdf:ID specifies a
fragment identifier, given by the value of the rdf:ID attribute (item10245 in this case, which
might be the catalog number assigned by example.com), as an abbreviation of the complete
URIref of the resource being described. The fragment identifier item10245 will be interpreted
relative to a base URI, in this case, the URI of the containing catalog document. The full URIref
for the tent is formed by taking the base URI (of the catalog), and appending the character "#" (to
indicate that what follows is a fragment identifier) and then item10245 to it, giving the absolute
URIref http://www.example.com/2002/04/products#item10245.

The rdf:ID attribute is somewhat similar to the ID attribute in XML and HTML, in that it defines
a name which must be unique relative to the current base URI (in this example, that of the
catalog). In this case, the rdf:ID attribute appears to be assigning a name (item10245) to this
particular kind of tent. Any other RDF/XML within this catalog could refer to the tent by using
either the absolute URIref http://www.example.com/2002/04/products#item10245, or
the relative URIref #item10245. The relative URIref would be understood as being a URIref
defined relative to the base URIref of the catalog. Using a similar abbreviation, the URIref of the
tent could also be given by specifying rdf:about="#item10245" in the catalog entry (i.e., by
specifying the relative URIref directly) instead of rdf:ID="item10245" . As an abbreviation
mechanism, the two forms are essentially synonyms: the full URIref formed by RDF/XML is the
same in either case: http://www.example.com/2002/04/products#item10245.
However, using rdf:ID provides an additional check when assigning a set of distinct names,
since a given value of the rdf:ID attribute can only appear once relative to the same base URI
(the catalog document, in this example). Using either form, example.com would be giving the

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (34 of 107)04/05/2004 17:53:17

RDF Primer

URIref for the tent in a two-stage process, first assigning the URIref for the whole catalog, and
then using a relative URIref in the description of the tent in the catalog to indicate the URIref that
has been assigned to this particular kind of tent. Moreover, this use of a relative URIref can be
thought of either as being an abbreviation for a full URIref that has been assigned to the tent
independently of the RDF, or as being the assignment of the URIref to the tent within the catalog.

RDF located outside the catalog could refer to this tent by using the full URIref, i.e., by
concatenating the relative URIref #item10245 of the tent to the base URI of the catalog, forming
the absolute URIref http://www.example.com/2002/04/products#item10245. For
example, an outdoor sports Web site exampleRatings.com might use RDF to provide ratings of
various tents. The (5-star) rating given to the tent described in Example 9 might then be
represented on exampleRatings.com's Web site as shown in Example 10:

Example 10: exampleRatings.com's Rating of the Tent

1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:sportex="http://www.exampleRatings.com/terms/">

5. <rdf:Description rdf:about="http://www.example.com/2002/04/
products#item10245">
6. <sportex:ratingBy rdf:datatype="&xsd;string">Richard Roe</
sportex:ratingBy>
7. <sportex:numberStars rdf:datatype="&xsd;integer">5</sportex:
numberStars>
8. </rdf:Description>
9. </rdf:RDF>

In Example 10, line 5 uses an rdf:Description element with an rdf:about attribute whose
value is the full URIref of the tent. The use of this URIref allows the tent being referred to in the
rating to be precisely identified.

These examples illustrate several points. First, even though RDF does not specify or control how
URIrefs are assigned to resources (in this case, the various tents and other items in the catalog),
the effect of assigning URIrefs to resources in RDF can be achieved by combining a process
(external to RDF) that identifies a single document (the catalog in this case) as the source for
descriptions of those resources, with the use of relative URIrefs in descriptions of those
resources within that document. For instance, example.com could use this catalog as the central
source where its products are described, with the understanding that if a product's item number is
not in an entry in this catalog, it is not a product known to example.com. (Note that RDF does not
assume any particular relationship exists between two resources just because their URIrefs have
the same base, or are otherwise similar. This relationship may be known to example.com, but it is
not directly defined by RDF.)

These examples also illustrate one of the basic architectural principles of the Web, which is that
anyone should be able to freely add information about an existing resource, using any vocabulary
they please [BERNERS-LEE98]. The examples further illustrate that the RDF describing a
particular resource does not need to be located all in one place; instead, it may be distributed

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (35 of 107)04/05/2004 17:53:17

RDF Primer

throughout the Web. This is true not only for situations like this one, in which one organization is
rating or commenting on a resource defined by another, but also for situations in which the
original definer of a resource (or anyone else) wishes to amplify the description of that resource
by providing additional information about it. This may be done by modifying the RDF document in
which the resource was originally described, to add the properties and values needed to describe
the additional information. Or, as this example illustrates, a separate document could be created,
providing the additional properties and values in rdf:Description elements that refer to the
original resource via its URIref using rdf:about.

The discussion above indicated that relative URIrefs such as #item10245 will be interpreted
relative to a base URI. By default, this base URI would be the URI of the resource in which the
relative URIref is used. However, in some cases it is desirable to be able to explicitly specify this
base URI. For instance, suppose that in addition to the catalog located at http://www.
example.com/2002/04/products, example.org wanted to provide a duplicate catalog on a
mirror site, say at http://mirror.example.com/2002/04/products. This could create a
problem, since if the catalog was accessed from the mirror site, the URIref for the example tent
would be generated from the URI of the containing document, forming http://mirror.
example.com/2002/04/products#item10245, rather than http://www.example.
com/2002/04/products#item10245, and hence would apparently refer to a different
resource than the one intended. Alternatively, example.org might want to assign a base URIref
for its set of product URIrefs without publishing a single source document whose location defines
the base.

To deal with such cases, RDF/XML supports XML Base [XML-BASE], which allows an XML
document to specify a base URI other than the URI of the document itself. Example 11 shows
how the catalog would be described using XML Base:

Example 11: Using XML Base in example.com's Catalog

1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.com/terms/"
5. xml:base="http://www.example.com/2002/04/products">

6. <rdf:Description rdf:ID="item10245">
7. <exterms:model rdf:datatype="&xsd;string">Overnighter</
exterms:model>
8. <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:
sleeps>
9. <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:
weight>
10. <exterms:packedSize rdf:datatype="&xsd;integer">784</
exterms:packedSize>
11. </rdf:Description>

 ...other product descriptions...

12. </rdf:RDF>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (36 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/2001/REC-xmlbase-20010627/

RDF Primer

In Example 11, the xml:base declaration in line 5 specifies that the base URI for the content
within the rdf:RDF element (until another xml:base attribute is specified) is http://www.
example.com/2002/04/products, and all relative URIrefs cited within that content will be
interpreted relative to that base, no matter what the URI of the containing document is. As a
result, the relative URIref of the tent, #item10245, will be interpreted as the same absolute
URIref, http://www.example.com/2002/04/products#item10245, no matter what the
actual URI of the catalog document is, or whether the base URIref actually identifies a particular
document at all.

So far, the examples have used a single product description, a particular model of tent, from
example.com's catalog. However, example.com will probably offer several different models of
tents, as well as multiple instances of other categories of products, such as backpacks, hiking
boots, and so on. This idea of things being classified into different kinds or categories is similar to
the programming language concept of objects having different types or classes. RDF supports
this concept by providing a predefined property, rdf:type. When an RDF resource is described
with an rdf:type property, the value of that property is considered to be a resource that
represents a category or class of things, and the subject of that property is considered to be an
instance of that category or class. Using rdf:type, Example 12 shows how example.com might
indicate that the product description is that of a tent:

Example 12: Describing a Tent with rdf:type

1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.com/terms/"
5. xml:base="http://www.example.com/2002/04/products">

6. <rdf:Description rdf:ID="item10245">
7. <rdf:type rdf:resource="http://www.example.com/terms/Tent"/
>
8. <exterms:model rdf:datatype="&xsd;string">Overnighter</
exterms:model>
9. <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:
sleeps>
10. <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:
weight>
11. <exterms:packedSize rdf:datatype="&xsd;integer">784</
exterms:packedSize>
12. </rdf:Description>

 ...other product descriptions...

13. </rdf:RDF>

In Example 12, the rdf:type property in line 7 indicates that the resource being described is an
instance of the class identified by the URIref http://www.example.com/terms/Tent. This
assumes that example.com has described its classes as part of the same vocabulary that it uses
to describe its other terms (such as the property exterms:weight), so the absolute URIref of

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (37 of 107)04/05/2004 17:53:18

RDF Primer

the class is used to refer to it. If example.com had described these classes as part of the product
catalog itself, the relative URIref #Tent could have been used to refer to it.

RDF itself does not provide facilities for defining application-specific classes of things, such as
Tent in this example, or their properties, such as exterms:weight. Instead, such classes
would be described in an RDF schema, using the RDF Schema language discussed in Section 5.
Other such facilities for describing classes can also be defined, such as the DAML+OIL and OWL
languages described in Section 5.5.

It is fairly common in RDF for resources to have rdf:type properties that describe the
resources as instances of specific types or classes. Such resources are called typed nodes in the
graph, or typed node elements in the RDF/XML. RDF/XML provides a special abbreviation for
describing these typed nodes. In this abbreviation, the rdf:type property and its value are
removed, and the rdf:Description element for the node is replaced by an element whose
name is the QName corresponding to the value of the removed rdf:type property (a URIref
that names a class). Using this abbreviation, example.com's tent from Example 12 could also be
described as shown in Example 13:

Example 13: Abbreviating the Tent's Type

1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/
XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.com/terms/"
5. xml:base="http://www.example.com/2002/04/products">

6. <exterms:Tent rdf:ID="item10245">
7. <exterms:model rdf:datatype="&xsd;string">Overnighter</
exterms:model>
8. <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:
sleeps>
9. <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:
weight>
10. <exterms:packedSize rdf:datatype="&xsd;integer">784</
exterms:packedSize>
11. </exterms:Tent>

 ...other product descriptions...

12. </rdf:RDF>

Since a resource may be described as an instance of more than one class, a resource may have
more than one rdf:type property. However, only one of these rdf:type properties can be
abbreviated in this way. The others must be written out using rdf:type properties, in the
manner illustrated by the rdf:type property in Example 12.

In addition to its use in describing instances of user-defined classes such as exterms:Tent, the
typed node abbreviation is also commonly used in RDF/XML when describing instances of the
built-in RDF classes (such as rdf:Bag) to be described in Section 4, and the built-in RDF

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (38 of 107)04/05/2004 17:53:18

RDF Primer

Schema classes (such as rdfs:Class) to be described in Section 5.

Both Example 12 and Example 13 illustrate that RDF statements can be written in RDF/XML in a
way that closely resembles descriptions that might have been written directly in (non-RDF) XML.
This is an important consideration, given the increasing use of XML in all kinds of applications,
since it suggests that RDF could be used in these applications without requiring major changes in
the way their information is structured.

3.3 RDF/XML Summary

The examples above have illustrated some of the basic ideas behind the RDF/XML syntax.
These examples provide enough information to begin writing useful RDF/XML. A more thorough
discussion of the principles behind the modeling of RDF statements in XML (known as striping),
together with a presentation of the other RDF/XML abbreviations available, and other details and
examples about writing RDF in XML, is given in the (normative) RDF/XML Syntax Specification
[RDF-SYNTAX].

4. Other RDF Capabilities

RDF provides a number of additional capabilities, such as built-in types and properties for
representing groups of resources and RDF statements, and capabilities for representing XML
fragments as property values. These additional capabilities are described in the following
sections.

4.1 RDF Containers

There is often a need to describe groups of things: for example, to say that a book was created
by several authors, or to list the students in a course, or the software modules in a package. RDF
provides several predefined (built-in) types and properties that can be used to describe such
groups.

First, RDF provides a container vocabulary consisting of three predefined types (together with
some associated predefined properties). A container is a resource that contains things. The
contained things are called members. The members of a container may be resources (including
blank nodes) or literals. RDF defines three types of containers:

● rdf:Bag
● rdf:Seq
● rdf:Alt

A Bag (a resource having type rdf:Bag) represents a group of resources or literals, possibly
including duplicate members, where there is no significance in the order of the members. For
example, a Bag might be used to describe a group of part numbers in which the order of entry or
processing of the part numbers does not matter.

A Sequence or Seq (a resource having type rdf:Seq) represents a group of resources or
literals, possibly including duplicate members, where the order of the members is significant. For
example, a Sequence might be used to describe a group that must be maintained in alphabetical

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (39 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/rdf-syntax-grammar/

RDF Primer

order.

An Alternative or Alt (a resource having type rdf:Alt) represents a group of resources or
literals that are alternatives (typically for a single value of a property). For example, an Alt might
be used to describe alternative language translations for the title of a book, or to describe a list of
alternative Internet sites at which a resource might be found. An application using a property
whose value is an Alt container should be aware that it can choose any one of the members of
the group as appropriate.

To describe a resource as being one of these types of containers, the resource is given an rdf:
type property whose value is one of the predefined resources rdf:Bag, rdf:Seq, or rdf:Alt
(whichever is appropriate). The container resource (which may either be a blank node or a
resource with a URIref) denotes the group as a whole. The members of the container can be
described by defining a container membership property for each member with the container
resource as its subject and the member as its object. These container membership properties
have names of the form rdf:_n, where n is a decimal integer greater than zero, with no leading
zeros, e.g., rdf:_1, rdf:_2, rdf:_3, and so on, and are used specifically for describing the
members of containers. Container resources may also have other properties that describe the
container, in addition to the container membership properties and the rdf:type property.

It is important to understand that while these types of containers are described using predefined
RDF types and properties, any special meanings associated with these containers, e.g., that the
members of an Alt container are alternative values, are only intended meanings. These specific
container types, and their definitions, are provided with the aim of establishing a shared
convention among those who need to describe groups of things. All RDF does is provide the
types and properties that can be used to construct the RDF graphs to describe each type of
container. RDF has no more built-in understanding of what a resource of type rdf:Bag is than it
has of what a resource of type ex:Tent (discussed in Section 3.2) is. In each case, applications
must be written to behave according to the particular meaning involved for each type. This point
will be expanded on in the following examples.

A typical use of a container is to indicate that the value of a property is a group of things. For
example, to represent the sentence "Course 6.001 has the students Amy, Mohamed, Johann,
Maria, and Phuong", the course could be described by giving it a s:students property (from an
appropriate vocabulary) whose value is a container of type rdf:Bag (representing the group of
students). Then, using the container membership properties, individual students could be
identified as being members of that group, as in the RDF graph shown in Figure 14:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (40 of 107)04/05/2004 17:53:18

RDF Primer

Figure 14: A Simple Bag Container Description

Since the value of the s:students property in this example is described as a Bag, there is no
intended significance in the order given for the URIrefs of the students, even though the
membership properties in the graph have integers in their names. It is up to applications creating
and processing graphs that include rdf:Bag containers to ignore any (apparent) order in the
names of the membership properties.

RDF/XML provides some special syntax and abbreviations to make it simpler to describe such
containers. For example, Example 14 describes the graph shown in Figure 14:

Example 14: RDF/XML for a Bag of Students

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/students/vocab#">

 <rdf:Description rdf:about="http://example.org/courses/6.001">
 <s:students>
 <rdf:Bag>
 <rdf:li rdf:resource="http://example.org/students/Amy"/>
 <rdf:li rdf:resource="http://example.org/students/Mohamed"/
>
 <rdf:li rdf:resource="http://example.org/students/Johann"/>
 <rdf:li rdf:resource="http://example.org/students/Maria"/>
 <rdf:li rdf:resource="http://example.org/students/Phuong"/>
 </rdf:Bag>
 </s:students>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (41 of 107)04/05/2004 17:53:18

RDF Primer

 </rdf:Description>
</rdf:RDF>

Example 14 shows that RDF/XML provides rdf:li as a convenience element to avoid having to
explicitly number each membership property. The numbered properties rdf:_1, rdf:_2, and so
on are generated from the rdf:li elements in forming the corresponding graph. The element
name rdf:li was chosen to be mnemonic with the term "list item" from HTML. Note also the
use of a <rdf:Bag> element nested within the <s:students> property element. The <rdf:
Bag> element is another example of the abbreviation used in Example 13 that replaces both an
rdf:Description element and an rdf:type element with a single element when describing
an instance of a type (an instance of rdf:Bag in this case). Since no URIref is specified, the Bag
is a blank node. Its nesting within the <s:students> property element is an abbreviated way of
indicating that the blank node is the value of this property. These abbreviations are described
further in [RDF-SYNTAX].

The graph structure for an rdf:Seq container, and the corresponding RDF/XML, are similar to
those for an rdf:Bag (the only difference is in the type, rdf:Seq). Once again, although an
rdf:Seq container is intended to describe a sequence, it is up to applications creating and
processing the graph to appropriately interpret the sequence of integer-valued property names.

To illustrate an Alt container, the sentence "The source code for X11 may be found at ftp.
example.org, ftp1.example.org, or ftp2.example.org" could be expressed in the RDF graph shown
in Figure 15:

Figure 15: A Simple Alt Container Description

Example 15 shows how the graph in Figure 15 could be written in RDF/XML:

Example 15: RDF/XML for an Alt Container

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (42 of 107)04/05/2004 17:53:18

RDF Primer

 xmlns:s="http://example.org/packages/vocab#">

 <rdf:Description rdf:about="http://example.org/packages/X11">
 <s:DistributionSite>
 <rdf:Alt>
 <rdf:li rdf:resource="ftp://ftp.example.org"/>
 <rdf:li rdf:resource="ftp://ftp1.example.org"/>
 <rdf:li rdf:resource="ftp://ftp2.example.org"/>
 </rdf:Alt>
 </s:DistributionSite>
 </rdf:Description>
</rdf:RDF>

An Alt container is intended to have at least one member, identified by the property rdf:_1. This
member is intended to be considered as the default or preferred value. Other than the member
identified as rdf:_1, the order of the remaining elements is not significant.

The RDF in Figure 15 as written states simply that the value of the s:DistributionSite site
property is the Alt container resource itself. Any additional meaning that is to be read into this
graph, e.g., that one of the members of the Alt container is to be considered as the value of the s:
DistributionSite site property, or that ftp://ftp.example.org is the default or preferred
value, must be built into an application's understanding of the intended meaning of an Alt
container, and/or into the meaning defined for the particular property (s:DistributionSite in
this case), which also must be understood by the application.

Alt containers are frequently used in conjunction with language tagging. (RDF/XML permits the
use of the xml:lang attribute defined in [XML] to indicate that the element content is in a
specified language. The use of xml:lang is described in [RDF-SYNTAX], and illustrated later in
Section 6.2.) For example, a work whose title has been translated into several languages might
have its title property pointing to an Alt container holding literals representing the titles
expressed in each of the language variants.

The distinction between the intended meanings of a Bag and an Alt can be further illustrated by
considering the authorship of the book "Huckleberry Finn". The book has exactly one author, but
the author has two names (Mark Twain and Samuel Clemens). Either name is sufficient to
specify the author. Thus using an Alt container for the author's names more accurately
represents the relationship than using a Bag (which might suggest there are two different
authors).

Users are free to choose their own ways to describe groups of resources, rather than using the
RDF container vocabulary. These RDF containers are merely provided as common definitions
that, if generally used, could help make data involving groups of resources more interoperable.

Sometimes there are clear alternatives to using these RDF container types. For example, a
relationship between a particular resource and a group of other resources could be indicated by
making the first resource the subject of multiple statements using the same property. This is
structurally different from the resource being the subject of a single statement whose object is a
container containing multiple members. In some cases, these two structures may have equivalent
meaning, but in other cases they may not. The choice of which to use in a given situation should

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (43 of 107)04/05/2004 17:53:18

RDF Primer

be made with this in mind.

Consider as an example the relationship between a writer and her publications, as in the
sentence:

Sue has written "Anthology of Time", "Zoological Reasoning", and "Gravitational
Reflections".

In this case, there are three resources each of which was written independently by the same
writer. This could be expressed using repeated properties as:

exstaff:Sue exterms:publication ex:AnthologyOfTime .
exstaff:Sue exterms:publication ex:ZoologicalReasoning .
exstaff:Sue exterms:publication ex:GravitationalReflections .

In this example there is no stated relationship between the publications other than that they were
written by the same person. Each of the statements is an independent fact, and so using
repeated properties would be a reasonable choice. However, this could just as reasonably be
represented as a statement about the group of resources written by Sue:

exstaff:Sue exterms:publication _:z .
_:z rdf:type rdf:Bag .
_:z rdf:_1 ex:AnthologyOfTime .
_:z rdf:_2 ex:ZoologicalReasoning .
_:z rdf:_3 ex:GravitationalReflections .

On the other hand, the sentence:

The resolution was approved by the Rules Committee, having members Fred,
Wilma, and Dino.

says that the committee as a whole approved the resolution; it does not necessarily state that
each committee member individually voted in favor of the resolution. In this case, it would be
potentially misleading to model this sentence as three separate exterms:approvedBy
statements, one for each committee member, as shown below:

ex:resolution exterms:approvedBy ex:Fred .
ex:resolution exterms:approvedBy ex:Wilma .
ex:resolution exterms:approvedBy ex:Dino .

since these statements say that each member individually approved the resolution.

In this case, it would be better to model the sentence as a single exterms:approvedBy
statement whose subject is the resolution and whose object is the committee itself. The
committee resource could then be described as a Bag whose members are the members of the
committee, as in the following triples:

ex:resolution exterms:approvedBy ex:rulesCommittee .
ex:rulesCommittee rdf:type rdf:Bag .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (44 of 107)04/05/2004 17:53:18

RDF Primer

ex:rulesCommittee rdf:_1 ex:Fred .
ex:rulesCommittee rdf:_2 ex:Wilma .
ex:rulesCommittee rdf:_3 ex:Dino .

When using RDF containers, it is important to understand that the statements are not
constructing containers, as in a programming language data structure. Instead, the statements
are describing containers (groups of things) that presumably exist. For instance, in the Rules
Committee example just given, the Rules Committee is an unordered group of people, whether it
is described in RDF that way or not. Saying that the resource ex:rulesCommittee has type
rdf:Bag is not saying that the Rules Committee is a data structure, or constructing a particular
data structure to hold the members of the group (the Rules Committee could be described as a
Bag without describing any members at all). Instead, it is describing the Rules Committee as
having characteristics corresponding to those associated with a Bag container, namely that it has
members, and their order of description is not significant. Similarly, using the container
membership properties simply describes a container resource as having certain things as
members. This does not necessarily say that the things described as members are the only
members that exist. For example, the triples given above to describe the Rules Committee say
only that Fred, Wilma, and Dino are members of the committee, not that they are the only
members of the committee.

Also, Example 14 and Example 15 illustrated a common "pattern" in describing containers,
regardless of the type of container involved (e.g., use of a blank node with an appropriate rdf:
type property to represent the container itself, and use of rdf:li to generate sequentially-
numbered container membership properties). However, it is important to understand that RDF
does not enforce this particular way of using the RDF container vocabulary, and so it is possible
to use this vocabulary in other ways. For example, in some cases it might be appropriate to use a
container resource having a URIref rather than using a blank node. Moreover, it is possible to use
the container vocabulary in ways that may not describe graphs with the "well-formed" structures
shown in the previous examples. For example, Example 16 shows the RDF/XML for a graph
similar to the Alt container shown in Figure 15, but which writes the container membership
properties explicitly, rather than using rdf:li to generate them:

Example 16: RDF/XML for an "Ill-Formed" Alt Container

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/packages/vocab#">

 <rdf:Description rdf:about="http://example.org/packages/X11">
 <s:DistributionSite>
 <rdf:Alt>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-
syntax-ns#Bag"/>
 <rdf:_2 rdf:resource="ftp://ftp.example.org"/>
 <rdf:_2 rdf:resource="ftp://ftp1.example.org"/>
 <rdf:_5 rdf:resource="ftp://ftp2.example.org"/>
 </rdf:Alt>
 </s:DistributionSite>
 </rdf:Description>
</rdf:RDF>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (45 of 107)04/05/2004 17:53:18

RDF Primer

As noted in [RDF-SEMANTICS], RDF imposes no "well-formedness" conditions on the use of the
container vocabulary, so Example 16 is perfectly legal, even though the container is described as
both a Bag and an Alt, it is described as having two distinct values of the rdf:_2 property, and it
does not have rdf:_1, rdf:_3, or rdf:_4 properties.

As a result, RDF applications that require containers to be "well-formed" should be written to
check that the container vocabulary is being used appropriately, in order to be fully robust.

4.2 RDF Collections

A limitation of the containers described in Section 4.1 is that there is no way to close them, i.e., to
say "these are all the members of the container". As noted in Section 4.1, a container only says
that certain identified resources are members; it does not say that other members do not exist.
Also, while one graph may describe some of the members, there is no way to exclude the
possibility that there is another graph somewhere that describes additional members. RDF
provides support for describing groups containing only the specified members, in the form of RDF
collections. An RDF collection is a group of things represented as a list structure in the RDF
graph. This list structure is constructed using a predefined collection vocabulary consisting of the
predefined type rdf:List, the predefined properties rdf:first and rdf:rest, and the
predefined resource rdf:nil.

To illustrate this, the sentence "The students in course 6.001 are Amy, Mohamed, and Johann"
could be represented using the graph shown in Figure 16:

Figure 16: An RDF Collection (list structure)

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (46 of 107)04/05/2004 17:53:18

RDF Primer

In this graph, each member of the collection, such as s:Amy, is the object of an rdf:first
property whose subject is a resource (a blank node in this example) that represents a list. This
list resource is linked to the rest of the list by an rdf:rest property. The end of the list is
indicated by the rdf:rest property having as its object the resource rdf:nil (the resource
rdf:nil represents the empty list, and is defined as being of type rdf:List). This structure
will be familiar to those who know the Lisp programming language. As in Lisp, the rdf:first
and rdf:rest properties allow applications to traverse the structure. Each of the blank nodes
forming this list structure is implicitly of type rdf:List (that is, each of these nodes implicitly has
an rdf:type property whose value is the predefined type rdf:List), although this is not
explicitly shown in the graph. The RDF Schema language [RDF-VOCABULARY] defines the
properties rdf:first and rdf:rest as having subjects of type rdf:List, so the information
about these nodes being lists can generally be inferred, rather than the corresponding rdf:type
triples being written out all the time.

RDF/XML provides a special notation to make it easy to describe collections using graphs of this
form. In RDF/XML, a collection can be described by a property element that has the attribute
rdf:parseType="Collection", and that contains a group of nested elements representing
the members of the collection. RDF/XML provides the rdf:parseType attribute to indicate that
the contents of an element are to be interpreted in a special way. In this case, the rdf:
parseType="Collection" attribute indicates that the enclosed elements are to be used to
create the corresponding list structure in the RDF graph (other values of the rdf:parseType
attribute will be described in later sections of the Primer).

To illustrate how rdf:parseType="Collection" works, the RDF/XML from Example 17
would result in the RDF graph shown in Figure 16:

Example 17: RDF/XML for a Collection of Students

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/students/vocab#">

 <rdf:Description rdf:about="http://example.org/courses/6.001">
 <s:students rdf:parseType="Collection">
 <rdf:Description rdf:about="http://example.org/students/
Amy"/>
 <rdf:Description rdf:about="http://example.org/students/
Mohamed"/>
 <rdf:Description rdf:about="http://example.org/students/
Johann"/>
 </s:students>
 </rdf:Description>
</rdf:RDF>

The use of rdf:parseType="Collection" in RDF/XML always defines a list structure like the
one shown in Figure 16, i.e., a fixed finite list of items with a given length and terminated by rdf:
nil, and which uses "new" blank nodes that are unique to the list structure itself. However, RDF
does not enforce this particular way of using the RDF collection vocabulary, and so it is possible
to use this vocabulary in other ways, some of which may not describe lists or closed collections.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (47 of 107)04/05/2004 17:53:18

RDF Primer

To see why, note that the graph shown in Figure 16 could also be written in RDF/XML by writing
out the same triples "in longhand" (without using rdf:parseType="Collection") using the
collection vocabulary, as in Example 18:

Example 18: RDF/XML for a Collection of Students in "Longhand"

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/students/vocab#">

<rdf:Description rdf:about="http://example.org/courses/6.001">
 <s:students rdf:nodeID="sch1"/>
</rdf:Description>

<rdf:Description rdf:nodeID="sch1">
 <rdf:first rdf:resource="http://example.org/students/Amy"/>
 <rdf:rest rdf:nodeID="sch2"/>
</rdf:Description>

<rdf:Description rdf:nodeID="sch2">
 <rdf:first rdf:resource="http://example.org/students/Mohamed"/>
 <rdf:rest rdf:nodeID="sch3"/>
</rdf:Description>

<rdf:Description rdf:nodeID="sch3">
 <rdf:first rdf:resource="http://example.org/students/Johann"/>
 <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-
ns#nil"/>
</rdf:Description>
</rdf:RDF>

As noted in [RDF-SEMANTICS] (and as was the case for the container vocabulary described in
Section 4.1), RDF imposes no "well-formedness" conditions on the use of the collection
vocabulary so, when writing triples in longhand, it is possible to define RDF graphs with
structures other than the well-structured graphs that would be automatically generated by using
rdf:parseType="Collection". For example, it is not illegal to assert that a given node has
two distinct values of the rdf:first property, to create structures that have forked or non-list
tails, or to simply omit part of the description of a collection. Also, graphs defined by using the
collection vocabulary in longhand could use URIrefs to identify the components of the list instead
of blank nodes unique to the list structure. In this case, it would be possible to create triples in
other graphs that effectively added elements to the collection, making it non-closed.

As a result, RDF applications that require collections to be well-formed should be written to check
that the collection vocabulary is being used appropriately, in order to be fully robust. In addition,
languages such as OWL [OWL], which can define additional constraints on the structure of RDF
graphs, can rule out some of these cases.

4.3 RDF Reification

RDF applications sometimes need to describe other RDF statements using RDF, for instance, to

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (48 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/owl-ref/

RDF Primer

record information about when statements were made, who made them, or other similar
information (this is sometimes referred to as "provenance" information). For example, Example 9
in Section 3.2 described a particular tent with URIref exproducts:item10245, offered for sale
by example.com. One of the triples from that description, describing the weight of the tent, was:

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .

and it might be useful for example.com to record who provided that particular piece of
information.

RDF provides a built-in vocabulary intended for describing RDF statements. A description of a
statement using this vocabulary is called a reification of the statement. The RDF reification
vocabulary consists of the type rdf:Statement, and the properties rdf:subject, rdf:
predicate, and rdf:object. However, while RDF provides this reification vocabulary, care is
needed in using it, because it is easy to imagine that the vocabulary defines some things that are
not actually defined. This point will be discussed further later in this section.

Using the reification vocabulary, a reification of the statement about the tent's weight would be
given by assigning the statement a URIref such as exproducts:triple12345 (so statements
can be written describing it), and then describing the statement using the statements:

exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .

These statements say that the resource identified by the URIref exproducts:triple12345 is
an RDF statement, that the subject of the statement refers to the resource identified by
exproducts:item10245, the predicate of the statement refers to the resource identified by
exterms:weight, and the object of the statement refers to the decimal value identified by the
typed literal "2.4"^^xsd:decimal. Assuming that the original statement is actually identified
by exproducts:triple12345, it should be clear by comparing the original statement with the
reification that the reification actually does describe it. The conventional use of the RDF
reification vocabulary always involves describing a statement using four statements in this
pattern; the four statements are sometimes referred to as a "reification quad" for this reason.

Using reification according to this convention, example.com could record the fact that John Smith
made the original statement about the tent's weight by first assigning the original statement a
URIref (such as exproducts:triple12345 as before), describing that statement using the
reification just described, and then adding an additional statement that exproducts:
triple12345 was written by John Smith (using a URIref to identify which John Smith is being
referred to). The resulting statements would be:

exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .
exproducts:triple12345 dc:creator exstaff:85740 .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (49 of 107)04/05/2004 17:53:18

RDF Primer

The original statement, together with the reification and the attribution of the statement to John
Smith, forms the graph shown in Figure 17:

Figure 17: A Statement, Its Reification, and Its Attribution

This graph could be written in RDF/XML as shown in Example 19:

Example 19: RDF/XML for the Reification Example

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:exterms="http://www.example.com/terms/"
 xml:base="http://www.example.com/2002/04/products">

 <rdf:Description rdf:ID="item10245">
 <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
 </rdf:Description>

 <rdf:Statement rdf:about="#triple12345">
 <rdf:subject rdf:resource="http://www.example.com/2002/04/
products#item10245"/>
 <rdf:predicate rdf:resource="http://www.example.com/terms/weight"/
>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (50 of 107)04/05/2004 17:53:18

RDF Primer

 <rdf:object rdf:datatype="&xsd;decimal">2.4</rdf:object>

 <dc:creator rdf:resource="http://www.example.com/staffid/85740"/>
 </rdf:Statement>

</rdf:RDF>

Section 3.2 introduced the use of the rdf:ID attribute in RDF/XML in an rdf:Description
element to abbreviate the URIref of the subject of a statement. rdf:ID can also be used in a
property element to automatically produce a reification of the triple that the property element
generates. Example 20 shows how this could be used to produce the same graph as Example 19:

Example 20: Generating Reifications using rdf:ID

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:exterms="http://www.example.com/terms/"
 xml:base="http://www.example.com/2002/04/products">

 <rdf:Description rdf:ID="item10245">
 <exterms:weight rdf:ID="triple12345" rdf:datatype="&xsd;
decimal">2.4
 </exterms:weight>
 </rdf:Description>

 <rdf:Description rdf:about="#triple12345">
 <dc:creator rdf:resource="http://www.example.com/staffid/85740"/>
 </rdf:Description>

</rdf:RDF>

In this case, specifying the attribute rdf:ID="triple12345" in the exterms:weight
element results in the original triple describing the tent's weight:

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .

plus the reification triples:

exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .

The subject of these reification triples is a URIref formed by concatenating the base URI of the
document (given in the xml:base declaration), the character "#" (to indicate that what follows is
a fragment identifier), and the value of the rdf:ID attribute; that is, the triples have the same
subject exproducts:triple12345 as in the previous examples.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (51 of 107)04/05/2004 17:53:18

RDF Primer

Note that asserting the reification is not the same as asserting the original statement, and neither
implies the other. That is, when someone says that John said something about the weight of a
tent, they are not making a statement about the weight of a tent themselves, they are making a
statement about something John said. Conversely, when someone describes the weight of a tent,
they are not also making a statement about a statement they made (since they may have no
intention of talking about things called "statements").

The text above deliberately referred in a number of places to "the conventional use of reification".
As noted earlier, care is needed when using the RDF reification vocabulary because it is easy to
imagine that the vocabulary defines some things that are not actually defined. While there are
applications that successfully use reification, they do so by following some conventions, and
making some assumptions, that are in addition to the actual meaning that RDF defines for the
reification vocabulary, and the actual facilities that RDF provides to support it.

For one thing, it is important to note that in the conventional use of reification, the subject of the
reification triples is assumed to identify a particular instance of a triple in a particular RDF
document, rather than some arbitrary triple having the same subject, predicate, and object. This
particular convention is used because reification is intended for expressing properties such as
dates of composition and source information, as in the examples given already, and these
properties need to be applied to specific instances of triples. There could be several triples that
have the same subject, predicate, and object and, although a graph is defined as a set of triples,
several instances with the same triple structure might occur in different documents. Thus, to fully
support this convention, there needs to be some means of associating the subject of the
reification triples with an individual triple in some document. However, RDF provides no way to
do this.

For instance, in the examples above, there is no explicit information in either the triples or the
RDF/XML that actually indicates that the original statement describing the tent's weight is the
resource exproducts:triple12345, the resource that is the subject of the four reification
statements and the statement that John Smith created it. This can be seen by looking at the
drawn graph shown in Figure 17. The original statement is certainly part of this graph, but as far
as the information in the graph is concerned, exproducts:triple12345 is a separate
resource, rather than identifying that part of the graph. RDF does not provide a built-in way of
indicating how a URIref like exproducts:triple12345 is associated with a particular
statement or graph, any more than it provides a built-in way of indicating how a URIref like
exproducts:item10245 is associated with an actual tent. Associating specific URIrefs with
specific resources (statements in this case) must be done using mechanisms outside of RDF.

Using rdf:ID as shown in Example 20 generates the reification automatically, and provides a
convenient way of indicating the URIref to be used as the subject of the statements in the
reification. Moreover, it provides a partial "hook" relating the triples in the reification with the piece
of RDF/XML syntax that caused them to be created, since the value triple12345 of the rdf:
ID attribute is used to generate the URIref of the subject of the reification triples. However, this
relationship is once again outside RDF, since there is nothing in the resulting triples that explicitly
says that the original triple had the URIref exproducts:triple12345 (RDF does not assume
there is any relationship between a URIref and any RDF/XML that it might have been used or
abbreviated in).

The lack of a built-in means for assigning URIrefs to statements does not mean that

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (52 of 107)04/05/2004 17:53:18

RDF Primer

"provenance" information of this kind cannot be expressed in RDF, just that it cannot be done
using only the meaning RDF associates with the reification vocabulary. For example, if an RDF
document (say, a Web page) has a URI, statements could be made about the resource identified
by that URI and, based on some application-dependent understanding of how those statements
should be interpreted, an application could act as if those statements "distribute" over (apply
equally to) all the statements in the document. Also, if some mechanism exists (outside of RDF)
to assign URIs to individual RDF statements, then statements could certainly be made about
those individual statements, using their URIs to identify them. However, in these cases, it would
also not be strictly necessary to use the reification vocabulary in the conventional way.

To see this, assuming the original statement:

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .

had a URIref of exproducts:triple12345, the statement could be attributed to John Smith
simply by the statement:

exproducts:triple12345 dc:creator exstaff:85740 .

with no use of the reification vocabulary (although the description of exproducts:
triple12345 as having rdf:type rdf:Statement might also be helpful).

In addition, the reification vocabulary could be used directly according to the convention
described above, along with an application-dependent understanding as to how to associate
specific triples with their reifications. However, other applications receiving this RDF would not
necessarily share this application-dependent understanding, and thus would not necessarily
interpret the graphs appropriately.

It is also important to note that the interpretation of reification described here is not the same as
"quotation", as found in some languages. Instead, the reification describes the relationship
between a particular instance of a triple and the resources the triple refers to. The reification can
be read intuitively as saying "this RDF triple talks about these things", rather than (as in
quotation) "this RDF triple has this form." For instance, in the reification example used in this
section, the triple:

exproducts:triple12345 rdf:subject exproducts:item10245 .

describing the rdf:subject of the original statement says that the subject of the statement is
the resource (the tent) identified by the URIref exproducts:item10245. It does not say that
the subject of the statement is the URIref itself (i.e., a string beginning with certain characters), as
quotation would do.

4.4 More on Structured Values: rdf:value

Section 2.3 noted that the RDF model intrinsically supports only binary relations; that is, a
statement specifies a relation between two resources. For example, the statement:

exstaff:85740 exterms:manager exstaff:62345 .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (53 of 107)04/05/2004 17:53:18

RDF Primer

states that the relation exterms:manager holds between two employees (presumably one
manages the other).

However, in some cases it is necessary to represent information involving higher arity relations
(relations between more than two resources) in RDF. Section 2.3 discussed one example of this,
where the problem was to represent the relationship between John Smith and his address
information, and the value of John's address was a structured value of his street, city, state, and
postal code. Writing this as a relation shows that this address is a 5-ary relation of the form:

address(exstaff:85740, "1501 Grant Avenue", "Bedford",
"Massachusetts", "01730")

Section 2.3 noted that this kind of structured information can be represented in RDF by
considering the aggregate thing be described (here, the group of components representing
John's address) as a separate resource, and then making separate statements about that new
resource, as in the triples:

exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street "1501 Grant Avenue" .
_:johnaddress exterms:city "Bedford" .
_:johnaddress exterms:state "Massachusetts" .
_:johnaddress exterms:postalCode "01730" .

(where _:johnaddress is the blank node identifier of the blank node representing John's
address.)

This is a general way to represent any n-ary relation in RDF: select one of the participants (John
in this case) to serve as the subject of the original relation (address in this case), then specify
an intermediate resource to represent the rest of the relation (either with or without assigning it a
URI), then give that new resource properties representing the remaining components of the
relation.

In the case of John's address, none of the individual parts of the structured value could be
considered the "main" value of the exterms:address property; all of the parts contribute
equally to the value. However, in some cases one of the parts of the structured value is often
thought of as the "main" value, with the other parts of the relation providing additional contextual
or other information that qualifies the main value. For instance, in Example 9 in Section 3.2, the
weight of a particular tent was given as the decimal value 2.4 using a typed literal, i.e.,

exproduct:item10245 exterms:weight "2.4"^^xsd:decimal .

In fact, a more complete description of the weight would have been 2.4 kilograms rather than just
the decimal value 2.4. To state this, the value of the exterms:weight property would need to
have two components, the typed literal for the decimal value and an indication of the unit of
measure (kilograms). In this situation the decimal value could be considered the "main" value of
the exterms:weight property, because frequently the value would be recorded simply as the

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (54 of 107)04/05/2004 17:53:18

RDF Primer

typed literal (as in the triple above), relying on an understanding of the context to fill in the
unstated units information.

In the RDF model a qualified property value of this kind can be considered as simply another kind
of structured value. To represent this, a separate resource could be used to represent the
structured value as a whole (the weight, in this case), and to serve as the object of the original
statement. That resource could then be given properties representing the individual parts of the
structured value. In this case, there should be a property for the typed literal representing the
decimal value, and a property for the unit. RDF provides a predefined rdf:value property to
describe the main value (if there is one) of a structured value. So in this case, the typed literal
could be given as the value of the rdf:value property, and the resource exunits:kilograms
as the value of an exterms:units property (assuming the resource exunits:kilograms is
defined as part of example.org's vocabulary). The resulting triples would be:

exproduct:item10245 exterms:weight _:weight10245 .
_:weight10245 rdf:value "2.4"^^xsd:decimal .
_:weight10245 exterms:units exunits:kilograms .

which can be expressed using the RDF/XML shown in Example 21:

Example 21: RDF/XML using rdf:value

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:exterms="http://www.example.org/terms/">

 <rdf:Description rdf:about="http://www.example.com/2002/04/
products#item10245">
 <exterms:weight rdf:parseType="Resource">
 <rdf:value rdf:datatype="&xsd;decimal">2.4</rdf:value>
 <exterms:units rdf:resource="http://www.example.org/units/
kilograms"/>
 </exterms:weight>
 </rdf:Description>

</rdf:RDF>

Example 21 also illustrates a second use of the rdf:parseType attribute introduced in Section
4.2, in this case, rdf:parseType="Resource". An rdf:parseType="Resource" attribute
is used to indicate that the contents of an element are to be interpreted as the description of a
new (blank node) resource, without actually having to write a nested rdf:Description
element. In this case, the rdf:parseType="Resource" attribute used in the exterms:
weight property element indicates that a blank node is to be created as the value of the
exterms:weight property, and that the enclosed elements (rdf:value and exterms:
units) describe properties of that blank node. Further details on rdf:
parseType="Resource" are given in [RDF-SYNTAX].

The same approach can be used to represent quantities using any units of measure, as well as
values taken from different classification schemes or rating systems, by using the rdf:value

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (55 of 107)04/05/2004 17:53:18

RDF Primer

property to give the main value, and using additional properties to identify the classification
scheme or other information that further describes the value.

There is no need to use rdf:value for these purposes (e.g., a user-defined property name,
such as exterms:amount, could have been used instead of rdf:value in Example 21), and
RDF does not associate any special meaning with rdf:value. rdf:value is simply provided
as a convenience for use in these commonly-occurring situations.

However, even though much existing data in databases and on the Web (and in later Primer
examples) takes the form of simple values for properties such as weights, costs, etc., the
principle that such simple values are often insufficient to adequately describe these values is an
important one. In a global environment such as the Web, it is generally not safe to make the
assumption that anyone accessing a property value will understand the units being used (or other
contextually-dependent information that may be involved). For example, a U.S. site might give a
weight value in pounds, but someone accessing that data from outside the U.S. might assume
that weights are given in kilograms. The correct interpretation of data in the Web environment
may require that additional information (such as units information) be explicitly recorded. This can
be done in many ways, such as using rdf:value, building units into property names (e.g.,
exterms:weightInKg), defining specialized datatypes that include units information (e.g.,
extypes:kilograms), or adding additional user-defined properties to specify this information (e.
g., exterms:unitOfWeight), either in descriptions of individual items or products, in
descriptions of sets of data (e.g., all the data in a catalog or on a site), or in schemas (see
Section 5).

4.5 XML Literals

Sometimes the value of a property needs to be a fragment of XML, or text that might contain XML
markup. For example, a publisher might maintain RDF metadata that includes the titles of books
and articles. While such titles are often just simple strings of characters, this is not always the
case. For instance, the titles of books on mathematics may contain mathematical formulas that
could be represented using MathML [MATHML]. Titles might also include markup for other
reasons, such as for Ruby annotations [RUBY], or for bidirectional rendering or special glyph
variants (see, e.g., [CHARMOD]).

RDF/XML provides a special notation to make it easy to write literals of this kind. This is done
using a third value of the rdf:parseType attribute. Giving an element the attribute rdf:
parseType="Literal" indicates that the contents of the element are to be interpreted as an
XML fragment. Example 22 illustrates the use of rdf:parseType="Literal":

Example 22: RDF/XML for an XML Literal

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:base="http://www.example.com/books">

 <rdf:Description rdf:ID="book12345">
 <dc:title rdf:parseType="Literal">

 The
 Element Considered Harmful.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (56 of 107)04/05/2004 17:53:18

RDF Primer

 </dc:title>
 </rdf:Description>

</rdf:RDF>

The RDF/XML in Example 22 describes a graph containing a single triple with subject ex:
book12345, and predicate dc:title. The rdf:parseType="Literal" attribute in the RDF/
XML indicates that all the XML within the <dc:title> element is an XML fragment that is the
value of the dc:title property. In the graph, this value is a typed literal, whose datatype, rdf:
XMLLiteral, is defined in [RDF-CONCEPTS] specifically to represent fragments of XML
(including character sequences that may or may not include XML markup). The XML fragment is
canonicalized according to the XML Exclusive Canonicalization recommendation [XML-XC14N].
This causes declarations of used namespaces to be added to the fragment, the uniform escaping
or unescaping of characters, the expansion of empty-element tags, and other transformations.
(For these reasons, and the fact that the triples notation itself requires further escaping, the
actual typed literal is not shown here. RDF/XML provides the rdf:parseType="Literal"
attribute so that RDF users will not have to deal directly with these transformations. Those
interested in the details should consult [RDF-CONCEPTS] and [RDF-SYNTAX].) Contextual
attributes, such as xml:lang and xml:base are not inherited from the RDF/XML document,
and, if required, must, as shown in the example, be explicitly specified in the XML fragment.

This example illustrates that care must be taken in designing RDF data. It might appear at first
glance that titles are simple strings best represented as plain literals, and only later might it be
discovered that some titles contain markup. In cases where the value of a property may
sometimes contain markup and sometimes not, either rdf:parseType="Literal" should be
used throughout, or software must handle both plain literals and literals of type rdf:
XMLLiteral as values of the property.

5. Defining RDF Vocabularies: RDF Schema

RDF provides a way to express simple statements about resources, using named properties and
values. However, RDF user communities also need the ability to define the vocabularies (terms)
they intend to use in those statements, specifically, to indicate that they are describing specific
kinds or classes of resources, and will use specific properties in describing those resources. For
example, the company example.com from the examples in Section 3.2 would want to describe
classes such as exterms:Tent, and use properties such as exterms:model, exterms:
weightInKg, and exterms:packedSize to describe them (QNames with various "example"
namespace prefixes are used as the names of classes and properties here as a reminder that in
RDF these names are actually URI references, as discussed in Section 2.1). Similarly, people
interested in describing bibliographic resources would want to describe classes such as ex2:
Book or ex2:MagazineArticle, and use properties such as ex2:author, ex2:title, and
ex2:subject to describe them. Other applications might need to describe classes such as ex3:
Person and ex3:Company, and properties such as ex3:age, ex3:jobTitle, ex3:
stockSymbol, and ex3:numberOfEmployees. RDF itself provides no means for defining such
application-specific classes and properties. Instead, such classes and properties are described
as an RDF vocabulary, using extensions to RDF provided by the RDF Vocabulary Description
Language 1.0: RDF Schema [RDF-VOCABULARY], referred to here as RDF Schema.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (57 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/

RDF Primer

RDF Schema does not provide a vocabulary of application-specific classes like exterms:Tent,
ex2:Book, or ex3:Person, and properties like exterms:weightInKg, ex2:author or ex3:
JobTitle. Instead, it provides the facilities needed to describe such classes and properties, and
to indicate which classes and properties are expected to be used together (for example, to say
that the property ex3:jobTitle will be used in describing a ex3:Person). In other words, RDF
Schema provides a type system for RDF. The RDF Schema type system is similar in some
respects to the type systems of object-oriented programming languages such as Java. For
example, RDF Schema allows resources to be defined as instances of one or more classes. In
addition, it allows classes to be organized in a hierarchical fashion; for example a class ex:Dog
might be defined as a subclass of ex:Mammal which is a subclass of ex:Animal, meaning that
any resource which is in class ex:Dog is also implicitly in class ex:Animal as well. However,
RDF classes and properties are in some respects very different from programming language
types. RDF class and property descriptions do not create a straightjacket into which information
must be forced, but instead provide additional information about the RDF resources they
describe. This information can be used in a variety of ways, which will be discussed in Section
5.3.

The RDF Schema facilities are themselves provided in the form of an RDF vocabulary; that is, as
a specialized set of predefined RDF resources with their own special meanings. The resources in
the RDF Schema vocabulary have URIrefs with the prefix http://www.w3.org/2000/01/
rdf-schema# (conventionally associated with the QName prefix rdfs:). Vocabulary
descriptions (schemas) written in the RDF Schema language are legal RDF graphs. Hence, RDF
software that is not written to also process the additional RDF Schema vocabulary can still
interpret a schema as a legal RDF graph consisting of various resources and properties, but will
not "understand" the additional built-in meanings of the RDF Schema terms. To understand these
additional meanings, RDF software must be written to process an extended language that
includes not only the rdf: vocabulary, but also the rdfs: vocabulary, together with their built-in
meanings. This point will be illustrated in the next section.

The following sections will illustrate RDF Schema's basic resources and properties.

5.1 Describing Classes

A basic step in any kind of description process is identifying the various kinds of things to be
described. RDF Schema refers to these "kinds of things" as classes. A class in RDF Schema
corresponds to the generic concept of a Type or Category, somewhat like the notion of a class in
object-oriented programming languages such as Java. RDF classes can be used to represent
almost any category of thing, such as Web pages, people, document types, databases or
abstract concepts. Classes are described using the RDF Schema resources rdfs:Class and
rdfs:Resource, and the properties rdf:type and rdfs:subClassOf.

For example, suppose an organization example.org wanted to use RDF to provide information
about different kinds of motor vehicles. In RDF Schema, example.org would first need a class
to represent the category of things that are motor vehicles. The resources that belong to a class
are called its instances. In this case, example.org intends for the instances of this class to be
resources that are motor vehicles.

In RDF Schema, a class is any resource having an rdf:type property whose value is the
resource rdfs:Class. So the motor vehicle class would be described by assigning the class a

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (58 of 107)04/05/2004 17:53:18

RDF Primer

URIref, say ex:MotorVehicle (using ex: to stand for the URIref http://www.example.
org/schemas/vehicles, which is used as the prefix for URIrefs from example.org's
vocabulary) and describing that resource with an rdf:type property whose value is the
resource rdfs:Class. That is, example.org would write the RDF statement:

ex:MotorVehicle rdf:type rdfs:Class .

As indicated in Section 3.2, the property rdf:type is used to indicate that a resource is an
instance of a class. So, having described ex:MotorVehicle as a class, resource exthings:
companyCar would be described as a motor vehicle by the RDF statement:

exthings:companyCar rdf:type ex:MotorVehicle .

(This statement uses a common convention that class names are written with an initial uppercase
letter, while property and instance names are written with an initial lowercase letter. However, this
convention is not required in RDF Schema. The statement also assumes that example.org has
decided to define separate vocabularies for classes of things, and instances of things.)

The resource rdfs:Class itself has an rdf:type of rdfs:Class. A resource may be an
instance of more than one class.

After describing class ex:MotorVehicle, example.org might want to describe additional
classes representing various specialized kinds of motor vehicle, e.g., passenger vehicles, vans,
minivans, and so on. These classes can be described in the same way as class ex:
MotorVehicle, by assigning a URIref for each new class, and writing RDF statements
describing these resources as classes, e.g., writing:

ex:Van rdf:type rdfs:Class .
ex:Truck rdf:type rdfs:Class .

and so on. However, these statements by themselves only describe the individual classes.
example.org may also want to indicate their special relationship to class ex:MotorVehicle, i.
e., that they are specialized kinds of MotorVehicle.

This kind of specialization relationship between two classes is described using the predefined
rdfs:subClassOf property to relate the two classes. For example, to state that ex:Van is a
specialized kind of ex:MotorVehicle, example.org would write the RDF statement:

ex:Van rdfs:subClassOf ex:MotorVehicle .

The meaning of this rdfs:subClassOf relationship is that any instance of class ex:Van is also
an instance of class ex:MotorVehicle. So if resource exthings:companyVan is an instance
of ex:Van then, based on the declared rdfs:subClassOf relationship, RDF software written to
understand the RDF Schema vocabulary can infer the additional information that exthings:
companyVan is also an instance of ex:MotorVehicle.

This example of exthings:companyVan illustrates the point made earlier about RDF Schema
defining an extended language. RDF itself does not define the special meaning of terms from the
RDF Schema vocabulary such as rdfs:subClassOf. So if an RDF schema defines this rdfs:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (59 of 107)04/05/2004 17:53:18

RDF Primer

subClassOf relationship between ex:Van and ex:MotorVehicle, RDF software not written
to understand the RDF Schema terms would recognize this as a triple, with predicate rdfs:
subClassOf, but it would not understand the special significance of rdfs:subClassOf, and
not be able to draw the additional inference that exthings:companyVan is also an instance of
ex:MotorVehicle.

The rdfs:subClassOf property is transitive. This means, for example, that given the RDF
statements:

ex:Van rdfs:subClassOf ex:MotorVehicle .
ex:MiniVan rdfs:subClassOf ex:Van .

RDF Schema defines ex:MiniVan as also being a subclass of ex:MotorVehicle. As a result,
RDF Schema defines resources that are instances of class ex:MiniVan as also being instances
of class ex:MotorVehicle (as well as being instances of class ex:Van). A class may be a
subclass of more than one class (for example, ex:MiniVan may be a subclass of both ex:Van
and ex:PassengerVehicle). RDF Schema defines all classes as subclasses of class rdfs:
Resource (since the instances belonging to all classes are resources).

Figure 18 shows the full class hierarchy being discussed in these examples.

Figure 18: A Vehicle Class Hierarchy

(To simplify the figure, the rdf:type properties relating each of the classes to rdfs:Class are
omitted in Figure 18. In fact, RDF Schema defines both the subjects and objects of statements
that use the rdfs:subClassOf property to be resources of type rdfs:Class, so this
information could be inferred. However, in actually writing schemas, it is good practice to

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (60 of 107)04/05/2004 17:53:18

RDF Primer

explicitly provide this information.)

This schema could also be described by the triples:

ex:MotorVehicle rdf:type rdfs:Class .
ex:PassengerVehicle rdf:type rdfs:Class .
ex:Van rdf:type rdfs:Class .
ex:Truck rdf:type rdfs:Class .
ex:MiniVan rdf:type rdfs:Class .

ex:PassengerVehicle rdfs:subClassOf ex:MotorVehicle .
ex:Van rdfs:subClassOf ex:MotorVehicle .
ex:Truck rdfs:subClassOf ex:MotorVehicle .

ex:MiniVan rdfs:subClassOf ex:Van .
ex:MiniVan rdfs:subClassOf ex:PassengerVehicle .

Example 23 shows how this schema could be written in RDF/XML.

Example 23: The Vehicle Class Hierarchy in RDF/XML

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/vehicles">

<rdf:Description rdf:ID="MotorVehicle">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Description>

<rdf:Description rdf:ID="PassengerVehicle">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>

<rdf:Description rdf:ID="Truck">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>

<rdf:Description rdf:ID="Van">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>

<rdf:Description rdf:ID="MiniVan">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (61 of 107)04/05/2004 17:53:18

RDF Primer

</rdf:Description>

</rdf:RDF>

As discussed in Section 3.2 in connection with Example 13, RDF/XML provides an abbreviation
for describing resources having an rdf:type property (typed nodes). Since RDF Schema
classes are RDF resources, this abbreviation can be applied to the description of classes. Using
this abbreviation, the schema could also be described as shown in Example 24:

Example 24: The Vehicle Class Hierarchy Using the Typed Node Abbreviation

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/vehicles">

<rdfs:Class rdf:ID="MotorVehicle"/>

<rdfs:Class rdf:ID="PassengerVehicle">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Truck">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Van">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="MiniVan">
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdfs:Class>

</rdf:RDF>

Similar typed node abbreviations will be used throughout the rest of this section.

The RDF/XML in Example 23 and Example 24 introduces names, such as MotorVehicle, for
the resources (classes) that it describes using rdf:ID, to give the effect of "assigning" URIrefs
relative to the schema document as described in Section 3.2. rdf:ID is useful here because it
both abbreviates the URIrefs, and also provides an additional check that the value of the rdf:ID
attribute is unique against the current base URI (usually the document URI). This helps pick up
repeated rdf:ID values when defining the names of classes and properties in RDF schemas.
Relative URIrefs based on these names can then be used in other class definitions within the
same schema (e.g., as #MotorVehicle is used in the description of the other classes). The full
URIref of this class, assuming that the schema itself was the resource http://example.org/

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (62 of 107)04/05/2004 17:53:18

RDF Primer

schemas/vehicles, would be http://example.org/schemas/
vehicles#MotorVehicle (shown in Figure 18). As noted in Section 3.2, to ensure that the
references to these schema classes would be consistently maintained even if the schema were
relocated or copied (or to simply assign a base URIref for the schema classes without assuming
they are all published at a single location), the class descriptions could also include an explicit
xml:base="http://example.org/schemas/vehicles" declaration. Use of an explicit
xml:base declaration is considered good practice, and one is provided in both examples.

To refer to these classes in RDF instance data (e.g., data describing individual vehicles of these
classes) located elsewhere, example.org would need to identify the classes either by writing
absolute URIrefs, by using relative URIrefs together with an appropriate xml:base declaration,
or by using QNames together with an appropriate namespace declaration that allows the
QNames to be expanded to the proper URIrefs. For example, the resource exthings:
companyCar could be described as an instance of the class ex:MotorVehicle described in
the schema of Example 24 by the RDF/XML shown in Example 25 :

Example 25: An Instance of ex:MotorVehicle

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/schemas/vehicles#"
 xml:base="http://example.org/things">

 <ex:MotorVehicle rdf:ID="companyCar"/>

</rdf:RDF>

Note that the QName ex:MotorVehicle, when expanded using the namespace declaration
xmlns:ex="http://example.org/schemas/vehicles#", becomes the full URIref
http://example.org/schemas/vehicles#MotorVehicle, which is the correct URIref for
the MotorVehicle class as shown in Figure 18. The xml:base declaration xml:
base="http://example.org/things" is provided to allow the rdf:ID="companyCar" to
expand to the proper exthings:companyCar URIref (since a QName cannot be used as the
value of the rdf:ID attribute).

5.2 Describing Properties

In addition to describing the specific classes of things they want to describe, user communities
also need to be able to describe specific properties that characterize those classes of things
(such as rearSeatLegRoom to describe a passenger vehicle). In RDF Schema, properties are
described using the RDF class rdf:Property, and the RDF Schema properties rdfs:domain,
rdfs:range, and rdfs:subPropertyOf.

All properties in RDF are described as instances of class rdf:Property. So a new property,
such as exterms:weightInKg, is described by assigning the property a URIref, and describing
that resource with an rdf:type property whose value is the resource rdf:Property, for
example, by writing the RDF statement:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (63 of 107)04/05/2004 17:53:18

RDF Primer

exterms:weightInKg rdf:type rdf:Property .

RDF Schema also provides vocabulary for describing how properties and classes are intended to
be used together in RDF data. The most important information of this kind is supplied by using
the RDF Schema properties rdfs:range and rdfs:domain to further describe application-
specific properties.

The rdfs:range property is used to indicate that the values of a particular property are
instances of a designated class. For example, if example.org wanted to indicate that the
property ex:author had values that are instances of class ex:Person, it would write the RDF
statements:

ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:range ex:Person .

These statements indicate that ex:Person is a class, ex:author is a property, and that RDF
statements using the ex:author property have instances of ex:Person as objects.

A property, say ex:hasMother, can have zero, one, or more than one range property. If ex:
hasMother has no range property, then nothing is said about the values of the ex:hasMother
property. If ex:hasMother has one range property, say one specifying ex:Person as the
range, this says that the values of the ex:hasMother property are instances of class ex:
Person. If ex:hasMother has more than one range property, say one specifying ex:Person
as its range, and another specifying ex:Female as its range, this says that the values of the ex:
hasMother property are resources that are instances of all of the classes specified as the
ranges, i.e., that any value of ex:hasMother is both a ex:Female and a ex:Person.

This last point may not be obvious. However, stating that the property ex:hasMother has the
two ranges ex:Female and ex:Person involves making two separate statements:

ex:hasMother rdfs:range ex:Female .
ex:hasMother rdfs:range ex:Person .

For any given statement using this property, say:

exstaff:frank ex:hasMother exstaff:frances .

in order for both the rdfs:range statements to be correct, it must be the case that exstaff:
frances is both an instance of ex:Female and of ex:Person.

The rdfs:range property can also be used to indicate that the value of a property is given by a
typed literal, as discussed in Section 2.4. For example, if example.org wanted to indicate that
the property ex:age had values from the XML Schema datatype xsd:integer, it would write
the RDF statements:

ex:age rdf:type rdf:Property .
ex:age rdfs:range xsd:integer .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (64 of 107)04/05/2004 17:53:18

RDF Primer

The datatype xsd:integer is identified by its URIref (the full URIref being http://www.w3.
org/2001/XMLSchema#integer). This URIref can be used without explicitly stating in the
schema that it identifies a datatype. However, it is often useful to explicitly state that a given
URIref identifies a datatype. This can be done using the RDF Schema class rdfs:Datatype.
To state that xsd:integer is a datatype, example.org would write the RDF statement:

xsd:integer rdf:type rdfs:Datatype .

This statement says that xsd:integer is the URIref of a datatype (which is assumed to
conform to the requirements for RDF datatypes described in [RDF-CONCEPTS]). Such a
statement does not constitute a definition of a datatype, e.g., in the sense that example.org is
defining a new datatype. There is no way to define datatypes in RDF Schema. As noted in
Section 2.4, datatypes are defined externally to RDF (and to RDF Schema), and referred to in
RDF statements by their URIrefs. This statement simply serves to document the existence of the
datatype, and indicate explicitly that it is being used in this schema.

The rdfs:domain property is used to indicate that a particular property applies to a designated
class. For example, if example.org wanted to indicate that the property ex:author applies to
instances of class ex:Book, it would write the RDF statements:

ex:Book rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .

These statements indicate that ex:Book is a class, ex:author is a property, and that RDF
statements using the ex:author property have instances of ex:Book as subjects.

A given property, say exterms:weight, may have zero, one, or more than one domain
property. If exterms:weight has no domain property, then nothing is said about the resources
that exterms:weight properties may be used with (any resource could have a exterms:
weight property). If exterms:weight has one domain property, say one specifying ex:Book
as the domain, this says that the exterms:weight property applies to instances of class ex:
Book. If exterms:weight has more than one domain property, say one specifying ex:Book as
the domain and another one specifying ex:MotorVehicle as the domain, this says that any
resource that has a exterms:weight property is an instance of all of the classes specified as
the domains, i.e., that any resource that has a exterms:weight property is both a ex:Book
and a ex:MotorVehicle (illustrating the need for care in specifying domains and ranges).

As in the case of rdfs:range, this last point may not be obvious. However, stating that the
property exterms:weight has the two domains ex:Book and ex:MotorVehicle involves
making two separate statements:

exterms:weight rdfs:domain ex:Book .
exterms:weight rdfs:domain ex:MotorVehicle .

For any given statement using this property, say:

exthings:companyCar exterms:weight "2500"^^xsd:integer .

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (65 of 107)04/05/2004 17:53:18

RDF Primer

in order for both the rdfs:domain statements to be correct, it must be the case that exthings:
companyCar is both an instance of ex:Book and of ex:MotorVehicle.

The use of these range and domain descriptions can be illustrated by extending the vehicle
schema, adding two properties ex:registeredTo and ex:rearSeatLegRoom, a new class
ex:Person, and explicitly describing the datatype xsd:integer as a datatype. The ex:
registeredTo property applies to any ex:MotorVehicle and its value is a ex:Person. For
the sake of this example, ex:rearSeatLegRoom applies only to instances of class ex:
PassengerVehicle. The value is an xsd:integer giving the number of centimeters of rear
seat legroom. These descriptions are shown in Example 26:

Example 26: Some Property Descriptions for the Vehicle Schema

<rdf:Property rdf:ID="registeredTo">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
 <rdfs:range rdf:resource="#Person"/>
</rdf:Property>

<rdf:Property rdf:ID="rearSeatLegRoom">
 <rdfs:domain rdf:resource="#PassengerVehicle"/>
 <rdfs:range rdf:resource="&xsd;integer"/>
</rdf:Property>

<rdfs:Class rdf:ID="Person"/>

<rdfs:Datatype rdf:about="&xsd;integer"/>

Note that an <rdf:RDF> element is not used in Example 26, because it is assumed this RDF/
XML is being added to the vehicle schema described in Example 24. This same assumption also
allows the use of relative URIrefs like #MotorVehicle to refer to other classes from that
schema.

RDF Schema provides a way to specialize properties as well as classes. This specialization
relationship between two properties is described using the predefined rdfs:subPropertyOf
property. For example, if ex:primaryDriver and ex:driver are both properties, example.
org could describe these properties, and the fact that ex:primaryDriver is a specialization of
ex:driver, by writing the RDF statements:

ex:driver rdf:type rdf:Property .
ex:primaryDriver rdf:type rdf:Property .
ex:primaryDriver rdfs:subPropertyOf ex:driver .

The meaning of this rdfs:subPropertyOf relationship is that if an instance exstaff:fred is
an ex:primaryDriver of the instance ex:companyVan, then RDF Schema defines exstaff:
fred as also being an ex:driver of ex:companyVan. The RDF/XML describing these
properties (assuming again that it is being added to the vehicle schema described in Example 24)
is shown in Example 27.

Example 27: More Properties for the Vehicle Schema

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (66 of 107)04/05/2004 17:53:18

RDF Primer

<rdf:Property rdf:ID="driver">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
</rdf:Property>

<rdf:Property rdf:ID="primaryDriver">
 <rdfs:subPropertyOf rdf:resource="#driver"/>
</rdf:Property>

A property may be a subproperty of zero, one or more properties. All RDF Schema rdfs:range
and rdfs:domain properties that apply to an RDF property also apply to each of its
subproperties. So, in the above example, RDF Schema defines ex:primaryDriver as also
having an rdfs:domain of ex:MotorVehicle, because of its subproperty relationship to ex:
driver.

Example 28 shows the RDF/XML for the full vehicle schema, containing all the descriptions given
so far:

Example 28: The Full Vehicle Schema

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/vehicles">

<rdfs:Class rdf:ID="MotorVehicle"/>

<rdfs:Class rdf:ID="PassengerVehicle">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Truck">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Van">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="MiniVan">
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Person"/>

<rdfs:Datatype rdf:about="&xsd;integer"/>

<rdf:Property rdf:ID="registeredTo">
 <rdfs:domain rdf:resource="#MotorVehicle"/>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (67 of 107)04/05/2004 17:53:18

RDF Primer

 <rdfs:range rdf:resource="#Person"/>
</rdf:Property>

<rdf:Property rdf:ID="rearSeatLegRoom">
 <rdfs:domain rdf:resource="#PassengerVehicle"/>
 <rdfs:range rdf:resource="&xsd;integer"/>
</rdf:Property>

<rdf:Property rdf:ID="driver">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
</rdf:Property>

<rdf:Property rdf:ID="primaryDriver">
 <rdfs:subPropertyOf rdf:resource="#driver"/>
</rdf:Property>

</rdf:RDF>

Having shown how to describe classes and properties using RDF Schema, instances using those
classes and properties can now be illustrated. For example, Example 29 describes an instance of
the ex:PassengerVehicle class described in Example 28, together with some hypothetical
values for its properties.

Example 29: An Instance of ex:PassengerVehicle

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/schemas/vehicles#"
 xml:base="http://example.org/things">

 <ex:PassengerVehicle rdf:ID="johnSmithsCar">
 <ex:registeredTo rdf:resource="http://www.example.org/
staffid/85740"/>
 <ex:rearSeatLegRoom
 rdf:datatype="&xsd;integer">127</ex:rearSeatLegRoom>
 <ex:primaryDriver rdf:resource="http://www.example.org/
staffid/85740"/>
 </ex:PassengerVehicle>
</rdf:RDF>

This example assumes that the instance is described in a separate document from the schema.
Since the schema has an xml:base of http://example.org/schemas/vehicles, the
namespace declaration xmlns:ex="http://example.org/schemas/vehicles#" is
provided to allow QNames such as ex:registeredTo in the instance data to be properly
expanded to the URIrefs of the classes and properties described in that schema. An xml:base
declaration is also provided for this instance, to allow rdf:ID="johnSmithsCar" to expand to
the proper URIref independently of the location of the actual document.

Note that an ex:registeredTo property can be used in describing this instance of ex:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (68 of 107)04/05/2004 17:53:18

RDF Primer

PassengerVehicle, because ex:PassengerVehicle is a subclass of ex:MotorVehicle.
Note also that a typed literal is used for the value of the ex:rearSetLegRoom property in this
instance, rather than a plain literal (i.e., rather than stating the value as <ex:
rearSeatLegRoom>127</ex:rearSeatLegRoom>). Because the schema describes the
range of this property as an xsd:integer, the value of the property should be a typed literal of
that datatype in order to match the range description (i.e., the range declaration does not
automatically "assign" a datatype to a plain literal, and so a typed literal of the appropriate
datatype must be explicitly provided). Additional information, either in the schema, or in additional
instance data, could also be provided to explicitly specify the units of the ex:rearSetLegRoom
property (centimeters), as discussed in Section 4.4.

5.3 Interpreting RDF Schema Declarations

As noted earlier, the RDF Schema type system is similar in some respects to the type systems of
object-oriented programming languages such as Java. However, RDF differs from most
programming language type systems in several important respects.

One important difference is that instead of describing a class as having a collection of specific
properties, an RDF schema describes properties as applying to specific classes of resources,
using domain and range properties. For example, a typical object-oriented programming
language might define a class Book with an attribute called author having values of type
Person. A corresponding RDF schema would describe a class ex:Book, and, in a separate
description, a property ex:author having a domain of ex:Book and a range of ex:Person.

The difference between these approaches may seem to be only syntactic, but in fact there is an
important difference. In the programming language class description, the attribute author is part
of the description of class Book, and applies only to instances of class Book. Another class (say,
softwareModule) might also have an attribute called author, but this would be considered a
different attribute. In other words, the scope of an attribute description in most programming
languages is restricted to the class or type in which it is defined. In RDF, on the other hand,
property descriptions are, by default, independent of class definitions, and have, by default,
global scope (although they may optionally be declared to apply only to certain classes using
domain specifications).

As a result, an RDF schema could describe a property exterms:weight without a domain
being specified. This property could then be used to describe instances of any class that might be
considered to have a weight. One benefit of the RDF property-based approach is that it becomes
easier to extend the use of property definitions to situations that might not have been anticipated
in the original description. At the same time, this is a "benefit" which must be used with care, to
insure that properties are not mis-applied in inappropriate situations.

Another result of the global scope of RDF property descriptions is that it is not possible in an RDF
schema to define a specific property as having locally-different ranges depending on the class of
the resource it is applied to. For example, in defining the property ex:hasParent, it would be
desirable to be able to say that if the property is used to describe a resource of class ex:Human,
then the range of the property is also a resource of class ex:Human, while if the property is used
to describe a resource of class ex:Tiger, then the range of the property is also a resource of
class ex:Tiger. This kind of definition is not possible in RDF Schema. Instead, any range
defined for an RDF property applies to all uses of the property, and so ranges should be defined

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (69 of 107)04/05/2004 17:53:18

RDF Primer

with care. However, while such locally-different ranges cannot be defined in RDF Schema, they
can be defined in some of the richer schema languages discussed in Section 5.5.

Another important difference is that RDF Schema descriptions are not necessarily prescriptive in
the way programming language type declarations typically are. For example, if a programming
language declares a class Book with an author attribute having values of type Person, this is
usually interpreted as a group of constraints. The language will not allow the creation of an
instance of Book without an author attribute, and it will not allow an instance of Book with an
author attribute that does not have a Person as its value. Moreover, if author is the only
attribute defined for class Book, the language will not allow an instance of Book with some other
attribute.

RDF Schema, on the other hand, provides schema information as additional descriptions of
resources, but does not prescribe how these descriptions should be used by an application. For
example, suppose an RDF schema states that an ex:author property has an rdfs:range of
class ex:Person. This is simply an RDF statement that RDF statements containing ex:author
properties have instances of ex:Person as objects.

This schema-supplied information might be used in different ways. One application might
interpret this statement as specifying part of a template for RDF data it is creating, and use it to
ensure that any ex:author property has a value of the indicated (ex:Person) class. That is,
this application interprets the schema description as a constraint in the same way that a
programming language might. However, another application might interpret this statement as
providing additional information about data it is receiving, information which may not be provided
explicitly in the original data. For example, this second application might receive some RDF data
that includes an ex:author property whose value is a resource of unspecified class, and use
this schema-provided statement to conclude that the resource must be an instance of class ex:
Person. A third application might receive some RDF data that includes an ex:author property
whose value is a resource of class ex:Corporation, and use this schema information as the
basis of a warning that "there may be an inconsistency here, but on the other hand there may not
be". Somewhere else there may be a declaration that resolves the apparent inconsistency (e.g., a
declaration to the effect that "a Corporation is a (legal) Person").

Moreover, depending on how the application interprets the property descriptions, a description of
an instance might be considered valid either without some of the schema-specified properties (e.
g., there might be an instance of ex:Book without an ex:author property, even if ex:author
is described as having a domain of ex:Book), or with additional properties (there might be an
instance of ex:Book with an ex:technicalEditor property, even though the schema
describing class ex:Book does not describe such a property).

In other words, statements in an RDF schema are always descriptions. They may also be
prescriptive (introduce constraints), but only if the application interpreting those statements wants
to treat them that way. All RDF Schema does is provide a way of stating this additional
information. Whether this information conflicts with explicitly specified instance data is up to the
application to determine and act upon.

5.4 Other Schema Information

RDF Schema provides a number of other built-in properties, which can be used to provide

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (70 of 107)04/05/2004 17:53:18

RDF Primer

documentation and other information about an RDF schema or about instances. For example the
rdfs:comment property can be used to provide a human-readable description of a resource.
The rdfs:label property can be used to provide a more human-readable version of a
resource's name. The rdfs:seeAlso property can be used to indicate a resource that might
provide additional information about the subject resource. The rdfs:isDefinedBy property is a
subproperty of rdfs:seeAlso, and can be used to indicate a resource that (in a sense not
specified by RDF; e.g., the resource may not be an RDF schema) "defines" the subject resource.
RDF Vocabulary Description Language 1.0: RDF Schema [RDF-VOCABULARY] should be
consulted for further discussion of these properties.

As with a number of the built-in RDF properties such as rdf:value, the uses described for
these RDF Schema properties are only their intended uses. [RDF-SEMANTICS] defines no
special meanings for these properties, and RDF Schema does not define any constraints based
on these intended uses. For example, there is no constraint specified that the object of a rdfs:
seeAlso property must provide additional information about the subject of the statement in
which it appears.

5.5 Richer Schema Languages

RDF Schema provides basic capabilities for describing RDF vocabularies, but additional
capabilities are also possible, and can be useful. These capabilities may be provided through
further development of RDF Schema, or in other languages based on RDF. Other richer schema
capabilities that have been identified as useful (but that are not provided by RDF Schema)
include:

● cardinality constraints on properties, e.g., that a Person has exactly one biological father.
● specifying that a given property (such as ex:hasAncestor) is transitive, e.g., that if A ex:
hasAncestor B, and B ex:hasAncestor C, then A ex:hasAncestor C.

● specifying that a given property is a unique identifier (or key) for instances of a particular
class.

● specifying that two different classes (having different URIrefs) actually represent the same
class.

● specifying that two different instances (having different URIrefs) actually represent the
same individual.

● specifying constraints on the range or cardinality of a property that depend on the class of
resource to which a property is applied, e.g., being able to say that for a soccer team the
ex:hasPlayers property has 11 values, while for a basketball team the same property
should have only 5 values.

● the ability to describe new classes in terms of combinations (e.g., unions and intersections)
of other classes, or to say that two classes are disjoint (i.e., that no resource is an instance
of both classes).

The additional capabilities mentioned above, in addition to others, are the targets of ontology
languages such as DAML+OIL [DAML+OIL] and OWL [OWL]. Both these languages are based
on RDF and RDF Schema (and both currently provide all the additional capabilities mentioned
above). The intent of such languages is to provide additional machine-processable semantics for
resources, that is, to make the machine representations of resources more closely resemble their
intended real world counterparts. While such capabilities are not necessarily needed to build
useful applications using RDF (see Section 6 for a description of a number of existing RDF

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (71 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/owl-ref/

RDF Primer

applications), the development of such languages is a very active subject of work as part of the
development of the Semantic Web.

6. Some RDF Applications: RDF in the Field

The previous sections have described the general capabilities of RDF and RDF Schema. While
examples were used in those sections to illustrate those capabilities, and some of those
examples may have suggested potential RDF applications, those sections did not actually
discuss any real applications. This section will describe some actual deployed RDF applications,
showing how RDF supports various real-world requirements to represent and manipulate
information about a wide variety of things.

6.1 Dublin Core Metadata Initiative

Metadata is data about data. Specifically, the term refers to data used to identify, describe, or
locate information resources, whether these resources are physical or electronic. While
structured metadata processed by computers is relatively new, the basic concept of metadata
has been used for many years in helping manage and use large collections of information.
Library card catalogs are a familiar example of such metadata.

The Dublin Core is a set of "elements" (properties) for describing documents (and hence, for
recording metadata). The element set was originally developed at the March 1995 Metadata
Workshop in Dublin, Ohio. The Dublin Core has subsequently been modified on the basis of later
Dublin Core Metadata workshops, and is currently maintained by the Dublin Core Metadata
Initiative. The goal of the Dublin Core is to provide a minimal set of descriptive elements that
facilitate the description and the automated indexing of document-like networked objects, in a
manner similar to a library card catalog. The Dublin Core metadata set is intended to be suitable
for use by resource discovery tools on the Internet, such as the "Webcrawlers" employed by
popular World Wide Web search engines. In addition, the Dublin Core is meant to be sufficiently
simple to be understood and used by the wide range of authors and casual publishers who
contribute information to the Internet. Dublin Core elements have become widely used in
documenting Internet resources (the Dublin Core creator element has already been used in
earlier examples). The current elements of the Dublin Core are defined in the Dublin Core
Metadata Element Set, Version 1.1: Reference Description [DC], and contain definitions for the
following properties:

● Title: A name given to the resource.
● Creator: An entity primarily responsible for making the content of the resource.
● Subject: The topic of the content of the resource.
● Description: An account of the content of the resource.
● Publisher: An entity responsible for making the resource available
● Contributor: An entity responsible for making contributions to the content of the resource.
● Date: A date associated with an event in the life cycle of the resource.
● Type: The nature or genre of the content of the resource.
● Format: The physical or digital manifestation of the resource.
● Identifier: An unambiguous reference to the resource within a given context.
● Source: A reference to a resource from which the present resource is derived.
● Language: A language of the intellectual content of the resource.
● Relation: A reference to a related resource.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (72 of 107)04/05/2004 17:53:18

http://www.w3.org/2001/sw/Activity
http://dublincore.org/
http://dublincore.org/
http://dublincore.org/documents/2003/06/02/dces/
http://dublincore.org/documents/2003/06/02/dces/

RDF Primer

● Coverage: The extent or scope of the content of the resource.
● Rights: Information about rights held in and over the resource.

Information using the Dublin Core elements may be represented in any suitable language (e.g., in
HTML meta elements). However, RDF is an ideal representation for Dublin Core information.
The examples below represent the simple description of a set of resources in RDF using the
Dublin Core vocabulary. Note that the specific Dublin Core RDF vocabulary shown here is not
intended to be authoritative. The Dublin Core Reference Description [DC] is the authoritative
reference.

The first example, Example 30, describes a Web site home page using Dublin Core properties:

Example 30: A Web Page Described using Dublin Core Properties

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://www.dlib.org">
 <dc:title>D-Lib Program - Research in Digital Libraries</dc:
title>
 <dc:description>The D-Lib program supports the community of
people
 with research interests in digital libraries and electronic
 publishing.</dc:description>
 <dc:publisher>Corporation For National Research Initiatives</dc:
publisher>
 <dc:date>1995-01-07</dc:date>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>Research; statistical methods</rdf:li>
 <rdf:li>Education, research, related topics</rdf:li>
 <rdf:li>Library use Studies</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:type>World Wide Web Home Page</dc:type>
 <dc:format>text/html</dc:format>
 <dc:language>en</dc:language>
 </rdf:Description>
</rdf:RDF>

Note that both RDF and the Dublin Core define an (XML) element called "Description" (although
the Dublin Core element name is written in lowercase). Even if the initial letter were identically
uppercase, the XML namespace mechanism enables these two elements to be distinguished
(one is rdf:Description, and the other is dc:description). Also, as a matter of interest,
accessing http://purl.org/dc/elements/1.1/ (the namespace URI used to identify the Dublin Core
vocabulary in this example) in a Web browser (as of the current writing) will retrieve an RDF
Schema declaration for [DC].

The second example, Example 31, describes a published magazine:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (73 of 107)04/05/2004 17:53:18

http://purl.org/dc/elements/1.1/

RDF Primer

Example 31: Describing A Magazine Using Dublin Core

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/">
 <rdf:Description rdf:about="http://www.dlib.org/dlib/
may98/05contents.html">
 <dc:title>DLIB Magazine - The Magazine for Digital Library
Research
 - May 1998</dc:title>
 <dc:description>D-LIB magazine is a monthly compilation of
 contributed stories, commentary, and briefings.</dc:description>
 <dc:contributor>Amy Friedlander</dc:contributor>
 <dc:publisher>Corporation for National Research Initiatives</dc:
publisher>
 <dc:date>1998-01-05</dc:date>
 <dc:type>electronic journal</dc:type>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>library use studies</rdf:li>
 <rdf:li>magazines and newspapers</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:format>text/html</dc:format>
 <dc:identifier rdf:resource="urn:issn:1082-9873"/>
 <dcterms:isPartOf rdf:resource="http://www.dlib.org"/>
 </rdf:Description>
 </rdf:RDF>

Example 31 uses (in the third line from the bottom) the Dublin Core qualifier isPartOf (from a
separate vocabulary) to indicate that this magazine is "part of" the previously-described Web site.

The third example, Example 32, describes a specific article in the magazine described in
Example 31.

Example 32: Describing a Magazine Article

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/">
 <rdf:Description rdf:about="http://www.dlib.org/dlib/may98/
miller/05miller.html">
 <dc:title>An Introduction to the Resource Description Framework</
dc:title>
 <dc:creator>Eric J. Miller</dc:creator>
 <dc:description>The Resource Description Framework (RDF) is an
 infrastructure that enables the encoding, exchange and reuse of
 structured metadata. rdf is an application of xml that imposes
needed

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (74 of 107)04/05/2004 17:53:18

RDF Primer

 structural constraints to provide unambiguous methods of
expressing
 semantics. rdf additionally provides a means for publishing both
 human-readable and machine-processable vocabularies designed to
 encourage the reuse and extension of metadata semantics among
 disparate information communities. the structural constraints
rdf
 imposes to support the consistent encoding and exchange of
 standardized metadata provides for the interchangeability of
separate
 packages of metadata defined by different resource description
 communities. </dc:description>
 <dc:publisher>Corporation for National Research Initiatives</dc:
publisher>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>machine-readable catalog record formats</rdf:li>
 <rdf:li>applications of computer file organization and
 access methods</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:rights>Copyright © 1998 Eric Miller</dc:rights>
 <dc:type>Electronic Document</dc:type>
 <dc:format>text/html</dc:format>
 <dc:language>en</dc:language>
 <dcterms:isPartOf rdf:resource="http://www.dlib.org/dlib/
may98/05contents.html"/>
 </rdf:Description>
</rdf:RDF>

Example 32 also uses the qualifier isPartOf, this time to indicate that this article is "part of" the
previously-described magazine.

Computer languages and file formats do not always make explicit provision for embedding
metadata with the data it describes. In many cases, the metadata has to be specified as a
separate resource and explicitly linked to the data (this has been done for the RDF metadata that
describes the Primer; there is an explicit link to this metadata at the end of the Primer). However,
applications and languages are increasingly making explicit provision for embedding metadata
directly with the data. For example, the W3C's Scalable Vector Graphics language [SVG]
(another XML-based language) provides an explicit metadata element for recording metadata
along with other SVG data. Any XML-based metadata language can be used inside this element.
[SVG] includes the example shown in Example 33 of how to embed metadata describing an SVG
document in the SVG document itself. The example uses the Dublin Core vocabulary, and RDF/
XML for recording the metadata.

Example 33: Including Metadata in an SVG Document

<?xml version="1.0"?>
<svg width="4in" height="3in" version="1.1"
 xmlns = 'http://www.w3.org/2000/svg'>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (75 of 107)04/05/2004 17:53:18

RDF Primer

 <desc xmlns:myfoo="http://example.org/myfoo">
 <myfoo:title>This is a financial report</myfoo:title>
 <myfoo:descr>The global description uses markup from the
 <myfoo:emph>myfoo</myfoo:emph> namespace.</myfoo:descr>
 <myfoo:scene><myfoo:what>widget $growth</myfoo:what>
 <myfoo:contains>$three $graph-bar</myfoo:contains>
 <myfoo:when>1998 $through 2000</myfoo:when> </myfoo:scene>
 </desc>
 <metadata>
 <rdf:RDF
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc = "http://purl.org/dc/elements/1.1/" >
 <rdf:Description rdf:about="http://example.org/myfoo"
 dc:title="MyFoo Financial Report"
 dc:description="$three $bar $thousands $dollars $from
1998 $through 2000"
 dc:publisher="Example Organization"
 dc:date="2000-04-11"
 dc:format="image/svg+xml"
 dc:language="en" >
 <dc:creator>
 <rdf:Bag>
 <rdf:li>Irving Bird</rdf:li>
 <rdf:li>Mary Lambert</rdf:li>
 </rdf:Bag>
 </dc:creator>
 </rdf:Description>
 </rdf:RDF>
 </metadata>
</svg>

Adobe's Extensible Metadata Platform (XMP) is another example of technology that allows
metadata about a file to be embedded into the file itself. XMP uses RDF/XML as the basis of its
metadata representation. A number of Adobe products already support XMP.

6.2 PRISM

PRISM: Publishing Requirements for Industry Standard Metadata [PRISM] is a metadata
specification developed in the publishing industry. Magazine publishers and their vendors formed
the PRISM Working Group to identify the industry's needs for metadata and define a specification
to meet them. Publishers want to use existing content in many ways in order to get a greater
return on the investment made in creating it. Converting magazine articles to HTML for posting
on the Web is one example. Licensing it to aggregators like LexisNexis is another. All of these
are "first uses" of the content; typically they all go live at the time the magazine hits the stands.
The publishers also want their content to be "evergreen". It might be used in new issues, such as
in a retrospective article. It could be used by other divisions in the company, such as in a book
compiled from the magazine's photos, recipes, etc. Another use is to license it to outsiders, such
as in a reprint of a product review, or in a retrospective produced by a different publisher. This

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (76 of 107)04/05/2004 17:53:18

http://www.adobe.com/products/xmp/main.html
http://www.prismstandard.org/
http://www.lexisnexis.com/

RDF Primer

overall goal requires a metadata approach that emphasizes discovery, rights tracking, and end-to-
end metadata.

Discovery: Discovery is a general term for finding content which encompasses searching,
browsing, content routing, and other techniques. Discussions of discovery frequently center on a
consumer searching a public Web site. However, discovering content is much broader than that.
The audience may consist of consumers, or it may consist of internal users such as researchers,
designers, photo editors, licensing agents, etc. To assist discovery, PRISM provides properties to
describe the topics, formats, genre, origin, and contexts of a resource. It also provides means for
categorizing resources using multiple subject description taxonomies.

Rights Tracking: Magazines frequently contain material licensed from others. Photos from a stock
photo agency are the most common type of licensed material, but articles, sidebars, and all other
types of content may be licensed. Simply knowing if content was licensed for one-time use,
requires royalty payments, or is wholly-owned by the publisher is a struggle. PRISM provides
elements for basic tracking of such rights. A separate vocabulary defined in the PRISM
specification supports description of places, times, and industries where content may or may not
be used.

End-to-end metadata: Most published content already has metadata created for it. Unfortunately,
when content moves between systems, the metadata is frequently discarded, only to be re-
created later in the production process at considerable expense. PRISM aims to reduce this
problem by providing a specification that can be used in multiple stages in the content production
pipeline. An important feature of the PRISM specification is its use of other existing
specifications. Rather than create an entirely new thing, the group decided to use existing
specifications as much as possible, and only define new things where needed. For this reason,
the PRISM specification uses XML, RDF, Dublin Core, and well as various ISO formats and
vocabularies.

A PRISM description may be as simple as a few Dublin Core properties with plain literal values.
Example 34 describes a photograph, giving basic information on its title, photographer, format,
etc.

Example 34: A PRISM Description of a Photograph

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:lang="en-US">

 <rdf:Description rdf:about="http://travel.example.com/2000/08/Corfu.
jpg">
 <dc:title>Walking on the Beach in Corfu</dc:title>
 <dc:description>Photograph taken at 6:00 am on Corfu with two models
 </dc:description>
 <dc:creator>John Peterson</dc:creator>
 <dc:contributor>Sally Smith, lighting</dc:contributor>
 <dc:format>image/jpeg</dc:format>
 </rdf:Description>
</rdf:RDF>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (77 of 107)04/05/2004 17:53:18

RDF Primer

PRISM also augments the Dublin Core to allow more detailed descriptions. The augmentations
are defined as three new vocabularies, generally cited using the prefixes prism:, pcv:, and
prl:.

prism: This prefix refers to the main PRISM vocabulary, whose terms use the URI prefix
http://prismstandard.org/namespaces/basic/1.0/. Most of the properties in this
vocabulary are more specific versions of properties from the Dublin Core. For example, more
specific versions of dc:date are provided by properties like prism:publicationTime,
prism:releaseTime, prism:expirationTime, etc.

pcv: This prefix refers to the PRISM Controlled Vocabulary (pcv) vocabulary, whose terms use
the URI prefix http://prismstandard.org/namespaces/pcv/1.0/. Currently, common
practice for describing the subject(s) of an article is by supplying descriptive keywords.
Unfortunately, simple keywords do not make a great difference in retrieval performance, due to
the fact that different people will use different keywords [BATES96]. Best practice is to code the
articles with subject terms from a "controlled vocabulary". The vocabulary should provide as
many synonyms as possible for its terms in the vocabulary. This way the controlled terms provide
a meeting ground for the keywords supplied by the searcher and the indexer. The pcv vocabulary
provides properties for specifying terms in a vocabulary, the relations between terms, and
alternate names for the terms.

prl: This prefix refers to the PRISM Rights Language vocabulary, whose terms use the URI
prefix http://prismstandard.org/namespaces/prl/1.0/. Digital Rights Management is
an area undergoing considerable upheaval. There are a number of proposals for rights
management languages, but none are clearly favored throughout the industry. Because there
was no clear choice to recommend, the PRISM Rights Language (PRL) was defined as an
interim measure. It provides properties which let people say if an item can or cannot be "used",
depending on conditions of time, geography, and industry. This is believed to be an 80/20 trade-
off which will help publishers begin to save money when tracking rights. It is not intended to be a
general rights language, or allow publishers to automatically enforce limits on consumer uses of
the content.

PRISM uses RDF because of its abilities for dealing with descriptions of varying complexity.
Currently, a great deal of metadata uses simple character string (plain literal) values, such as:

<dc:coverage>Greece</dc:coverage>

Over time the developers of PRISM expect uses of the PRISM specification to become more
sophisticated, moving from simple literal values to more structured values. In fact, that range of
values is a situation being faced now. Some publishers already use sophisticated controlled
vocabularies, others are barely using manually-supplied keywords. To illustrate this, some
examples of the different kinds of values that can be given for the dc:coverage property are:

<dc:coverage>Greece</dc:coverage>

<dc:coverage rdf:resource="http://prismstandard.org/vocabs/ISO-3166/GR"/
>

(i.e., using either a plain literal or a URIref to identify the country) and

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (78 of 107)04/05/2004 17:53:18

RDF Primer

<dc:coverage>
 <pcv:Descriptor rdf:about="http://prismstandard.org/vocabs/ISO-3166/
GR">
 <pcv:label xml:lang="en">Greece</pcv:label>
 <pcv:label xml:lang="fr">Grèce</pcv:label>
 </pcv:Descriptor>
</dc:coverage>

(using a structured value to provide both a URIref and names in various languages).

Note also that there are properties whose meanings are similar, or subsets of other properties.
For example, the geographic subject of a resource could be given with

<prism:subject>Greece</prism:subject>
<dc:coverage>Greece</dc:coverage>

or

<prism:location>Greece</prism:location>

Any of those properties might use the simple literal value, or a more complex structured value.
Such a range of possibilities cannot be adequately described by DTDs, or even by the newer
XML Schemas. While there is a wide range of syntactic variations to deal with, RDF's graph
model has a simple structure - a set of triples. Dealing with the metadata in the triples domain
makes it much easier for older software to accommodate content with new extensions.

This section closes with two final examples. Example 35 says that the image (.../Corfu.jpg)
cannot be used (#none) in the tobacco industry (code 21 in SIC, the Standard Industrial
Classifications).

Example 35: A PRISM Description of an Image

<rdf:RDF xmlns:prism="http://prismstandard.org/namespaces/basic/1.0/"
 xmlns:prl="http://prismstandard.org/namespaces/prl/1.0/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description rdf:about="http://travel.example.com/2000/08/Corfu.
jpg">
 <dc:rights rdf:parseType="Resource"
 xml:base="http://prismstandard.org/vocabularies/1.0/usage.
xml">
 <prl:usage rdf:resource="#none"/>
 <prl:industry rdf:resource="http://prismstandard.org/vocabs/
SIC/21"/>
 </dc:rights>
 </rdf:Description>
</rdf:RDF>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (79 of 107)04/05/2004 17:53:18

RDF Primer

Example 36 says that the photographer for the Corfu image was employee 3845, better known as
John Peterson. It also says that the geographic coverage of the photo is Greece. It does so by
providing, not just a code from a controlled vocabulary, but a cached version of the information
for that term in the vocabulary.

Example 36: Additional Information about the Image from Example 35

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pcv="http://prismstandard.org/namespaces/pcv/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:base="http://travel.example.com/">

 <rdf:Description rdf:about="/2000/08/Corfu.jpg">
 <dc:identifier rdf:resource="/content/2357845" />
 <dc:creator>
 <pcv:Descriptor rdf:about="/emp3845">
 <pcv:label>John Peterson</pcv:label>
 </pcv:Descriptor>
 </dc:creator>
 <dc:coverage>
 <pcv:Descriptor
 rdf:about="http://prismstandard.org/vocabs/ISO-3166/GR">
 <pcv:label xml:lang="en">Greece</pcv:label>
 <pcv:label xml:lang="fr">Grece</pcv:label>
 </pcv:Descriptor>
 </dc:coverage>
 </rdf:Description>
</rdf:RDF>

6.3 XPackage

Many situations involve the need to maintain information about structured groupings of resources
and their associations that are, or may be, used as a unit. The XML Package (XPackage)
specification [XPACKAGE] provides a framework for defining such groupings, called packages.
XPackage specifies a framework for describing the resources included in such packages, the
properties of those resources, their method of inclusion, and their relationships with each other.
XPackage applications include specifying the style sheets used by a document, declaring the
images shared by multiple documents, indicating the author and other metadata of a document,
describing how namespaces are used by XML resources, and providing a manifest for bundling
resources into a single archive file.

The XPackage framework is based upon XML, RDF, and the XML Linking Language [XLINK],
and provides multiple RDF vocabularies: one for general packaging descriptions, and several
other vocabularies for providing supplemental resource information useful to package processors.

One application of XPackage is the description of XHTML documents and their supporting
resources. An XHTML document retrieved from a Web site may rely on other resources such as
style sheets and image files that also need to be retrieved. However, the identities of these
supporting resources may not be obvious without processing the entire document. Other

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (80 of 107)04/05/2004 17:53:18

http://www.xpackage.org/specification/
http://www.xpackage.org/specification/
http://www.w3.org/TR/xlink/

RDF Primer

information about the document, such as the name of its author, may also not be available
without processing the document. XPackage allows such descriptive information to be stored in a
standard way in a package description document containing RDF. The outer elements of a
package description document describing such an XHTML document might look like Example 37
(with namespace declarations removed for simplicity):

Example 37: Outer Elements of an XPackage Package Description Document

<?xml version="1.0"?>
<xpackage:description>
 <rdf:RDF>

 (description of individual resources go here)

 </rdf:RDF>
</xpackage:description>

Resources (such as the XHTML document, style sheets, and images) are described within this
package description document using standard RDF/XML syntax. Each resource description
element may include RDF properties from various vocabularies (XPackage uses the term
"ontology" for what RDF calls a "vocabulary"). Besides the main packaging vocabulary,
XPackage itself specifies several supplemental vocabularies, including:

● a vocabulary (using prefix file:) for describing files (with properties such as file:size)
● a vocabulary (using prefix mime:) for providing MIME information (with properties such as
mime:contentType)

● a vocabulary (using prefix unicode:) for providing character usage information (with
properties such as unicode:script)

● a vocabulary (using prefix x:) for describing XML-based resources (with properties such
as x:namespace and x:style)

In Example 38, the document's MIME content type ("application/xhtml+xml") is defined using a
standard XPackage property from the XPackage MIME vocabulary, mime:contentType.
Another property, the document's author (in this case, "Garret Wilson"), is described using a
property from the Dublin Core vocabulary, defined outside of XPackage, resulting in a dc:
creator property.

Example 38: A Description of an XHTML Document

<?xml version="1.0"?>
<xpackage:description
 xmlns:xpackage="http://xpackage.org/namespaces/2003/
xpackage#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:mime="http://xpackage.org/namespaces/2003/mime#"
 xmlns:x="http://xpackage.org/namespaces/2003/xml#"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <rdf:RDF>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (81 of 107)04/05/2004 17:53:18

RDF Primer

 <!--doc.html-->
 <rdf:Description rdf:about="urn:example:xhtmldocument-doc">
 <rdfs:comment>The XHTML document.</rdfs:comment>
 <xpackage:location xlink:href="doc.html"/>
 <mime:contentType>application/xhtml+xml</mime:contentType>
 <x:namespace rdf:resource="http://www.w3.org/1999/xhtml"/>
 <x:style rdf:resource="urn:example:xhtmldocument-stylesheet"/>
 <dc:creator>Garret Wilson</dc:creator>
 <xpackage:manifest rdf:parseType="Collection">
 <rdf:Description rdf:about="urn:example:xhtmldocument-
stylesheet"/>
 <rdf:Description rdf:about="urn:example:xhtmldocument-image"/>
 </xpackage:manifest>
 </rdf:Description>

 </rdf:RDF>
</xpackage:description>

The xpackage:manifest property indicates that both the style sheet and image resources are
necessary for processing; those resources are described separately within the package
description document. The example style sheet resource description in Example 39 lists its
location within the package ("stylesheet.css") using the general XPackage vocabulary
xpackage:location property (which is compatible with XLink), and shows through use of the
XPackage MIME vocabulary mime:contentType property that it is a CSS style sheet ("text/
css").

Example 39: A Style Sheet Resource Description

<?xml version="1.0"?>
<xpackage:description
 xmlns:xpackage="http://xpackage.org/namespaces/2003/
xpackage#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:mime="http://xpackage.org/namespaces/2003/mime#"
 xmlns:x="http://xpackage.org/namespaces/2003/xml#"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <rdf:RDF>

 <!--stylesheet.css-->
 <rdf:Description rdf:about="urn:example:xhtmldocument-css">
 <rdfs:comment>The document style sheet.</rdfs:comment>
 <xpackage:location xlink:href="stylesheet.css"/>
 <mime:contentType>text/css</mime:contentType>
 </rdf:Description>

 </rdf:RDF>
</xpackage:description>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (82 of 107)04/05/2004 17:53:18

RDF Primer

The full version of this example may be found in [XPACKAGE].

6.4 RSS 1.0: RDF Site Summary

People sometimes need to access a wide variety of information on the Web on a day-to-day
basis, such as schedules, to-do lists, news headlines, search results, "What's New", etc. As the
sources and diversity of the information on the Web increases, it becomes increasingly difficult to
manage this information and integrate it into a coherent whole. RSS 1.0 ("RDF Site Summary") is
an RDF vocabulary that provides a lightweight, yet powerful way of describing information for
timely, large-scale distribution and reuse. RSS 1.0 is also perhaps the most widely deployed RDF
application on the Web.

To give a simple example, the W3C home page is a primary point of contact with the public and
serves in part to disseminate information about the deliverables of the Consortium. An example
of the W3C home page as of a certain date is shown in Figure 19. The center column of news
items changes frequently. To support the timely dissemination of this information, the W3C Team
has implemented an RDF Site Summary (RSS 1.0) news feed that makes the content in the
center column available to others to reuse as they will. News syndication sites may merge the
headlines into a summary of the day's latest news, others may display the headlines as links as a
service to their readers, and, increasingly, individuals may subscribe to this feed with a desktop
application. These desktop RSS readers allow their users to keep track of potentially hundreds of
sites, without having to visit each one in their browser.

Figure 19: The W3C Home Page

Numerous sites all over the Web provide RSS 1.0 feeds. Example 40 is an example of the W3C
feed (from a different date):

Example 40: An Example of the W3C RSS 1.0 Feed

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (83 of 107)04/05/2004 17:53:18

http://purl.org/rss/1.0
http://www.w3.org/
http://purl.org/rss/1.0/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/w3c-rss.crop.gif
http://www.w3.org/2000/08/w3c-synd/home.rss
http://www.w3.org/2000/08/w3c-synd/home.rss

RDF Primer

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns="http://purl.org/rss/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <channel rdf:about="http://www.w3.org/2000/08/w3c-synd/home.rss">
 <title>The World Wide Web Consortium</title>
 <description>Leading the Web to its Full Potential...</description>
 <link>http://www.w3.org/</link>

 <dc:date>2002-10-28T08:07:21Z</dc:date>

 <items>
 <rdf:Seq>
 <rdf:li rdf:resource="http://www.w3.org/News/2002#item164"/
>
 <rdf:li rdf:resource="http://www.w3.org/News/2002#item168"/
>
 <rdf:li rdf:resource="http://www.w3.org/News/2002#item167"/
>
 </rdf:Seq>
 </items>

 </channel>

 <item rdf:about="http://www.w3.org/News/2002#item164">
 <title>User Agent Accessibility Guidelines Become a W3C
 Proposed Recommendation</title>
 <description>17 October 2002: W3C is pleased to announce the
 advancement of User Agent Accessibility Guidelines 1.0 to
 Proposed Recommendation. Comments are welcome through 14
November.
 Written for developers of user agents, the guidelines lower
 barriers to Web accessibility for people with disabilities
 (visual, hearing, physical, cognitive, and neurological).
 The companion Techniques Working Draft is updated. Read about
 the Web Accessibility Initiative. (News archive)</description>
 <link>http://www.w3.org/News/2002#item164</link>
 <dc:date>2002-10-17</dc:date>
 </item>

 <item rdf:about="http://www.w3.org/News/2002#item168">
 <title>Working Draft of Authoring Challenges for Device
 Independence Published</title>
 <description>25 October 2002: The Device Independence
 Working Group has released the first public Working Draft of
 Authoring Challenges for Device Independence. The draft
describes
 the considerations that Web authors face in supporting access
to

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (84 of 107)04/05/2004 17:53:18

RDF Primer

 their sites from a variety of different devices. It is written
 for authors, language developers, device experts and developers
 of Web applications and authoring systems. Read about the
Device
 Independence Activity (News archive)</description>
 <link>http://www.w3.org/News/2002#item168</link>
 <dc:date>2002-10-25</dc:date>
 </item>

 <item rdf:about="http://www.w3.org/News/2002#item167">
 <title>CSS3 Last Call Working Drafts Published</title>
 <description>24 October 2002: The CSS Working Group has
 released two Last Call Working Drafts and welcomes comments
 on them through 27 November. CSS3 module: text is a set of
 text formatting properties and addresses international
contexts.
 CSS3 module: Ruby is properties for ruby, a short run of text
 alongside base text typically used in East Asia. CSS3 module:
 The box model for the layout of textual documents in visual
 media is also updated. Cascading Style Sheets (CSS) is a
 language used to render structured documents like HTML and
 XML on screen, on paper, and in speech. Visit the CSS home
 page. (News archive)</description>
 <link>http://www.w3.org/News/2002#item167</link>
 <dc:date>2002-10-24</dc:date>
 </item>

</rdf:RDF>

As Example 40 shows, the format is designed for content that can be packaged into easily
distinguishable sections. News sites, Web logs, sports scores, stock quotes, and the like are all
use-cases for RSS 1.0.

The RSS feed can be requested by any application able to "speak" HTTP. More recently,
however, RSS 1.0 applications are splitting into three different categories:

● On-line aggregators - Sites such as Meerkat and NewsIsFree, shown side-by-side in
Figure 20 (each mirroring W3C's column of news). These gather feeds from thousands of
sources, separate each of the <item>s out, and add them together again into one large
group. The whole group is then made searchable. In this way, one can search for the latest
news on, for example, "Java" from perhaps thousands of sites, without having to search
them all.

● Desktop Readers - Utilities such as Amphetadesk and NetNewsWire Lite allow their users
to subscribe to hundreds of feeds from their desktop. Readers customarily refresh each
feed once an hour, allowing users to stay up to date.

● Scripts - RSS's original purpose was to allow Webmasters to include the content of
another's site within their own. RSS 1.0 is still used in this way, with many sites (Slashdot
for example) incorporating RSS feeds on their front page.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (85 of 107)04/05/2004 17:53:18

http://www.oreillynet.com/meerkat/index.php?&c=4743&t=ALL
http://www.newsisfree.com/sources/info/906/
http://www.disobey.com/amphetadesk/
http://ranchero.com/netnewswire/
http://slashdot.org/

RDF Primer

Figure 20: MeerKat and NewsIsFree

RSS 1.0 is extensible by design. By importing additional RDF vocabularies (or modules as they
are known within the RSS development community), the RSS 1.0 author can provide large
amounts of metadata and handling instructions to the recipient of the file. Modules can, as with
more general RDF vocabularies, be written by anyone. Currently there are 3 official modules and
19 proposed modules readily recognized by the community at large. These modules range from
the complete Dublin Core module to more specialized RSS-centric modules such as the
Aggregation module.

Care should be taken when discussing "RSS" in the scope of RDF. There are currently two RSS
specification strands. One strand (RSS 0.91,0.92,0.93,0.94 and 2.0) does not use RDF. The
other strand (RSS 0.9 and 1.0) does.

6.5 CIM/XML

Electric utilities use power system models for a number of different purposes. For example,
simulations of power systems are necessary for planning and security analysis. Power system
models are also used in actual operations, e.g., by the Energy Management Systems (EMS)
used in energy control centers. An operational power system model can consist of thousands of
classes of information. In addition to using these models in-house, utilities need to exchange
system modeling information, both in planning, and for operational purposes, e.g., for
coordinating transmission and ensuring reliable operations. However, individual utilities use
different software for these purposes, and as a result the system models are stored in different
formats, making the exchange of these models difficult.

In order to support the exchange of power system models, utilities needed to agree on common
definitions of power system entities and relationships. To support this, the Electric Power
Research Institute (EPRI) a non-profit energy research consortium, developed a Common
Information Model (CIM) [CIM]. The CIM specifies common semantics for power system
resources, their attributes, and relationships. In addition, to further support the ability to
electronically exchange CIM models, the power industry has developed CIM/XML, a language for
expressing CIM models in XML. CIM/XML is an RDF application, using RDF and RDF Schema to
organize its XML structures. The North American Electric Reliability Council (NERC) (an industry-
supported organization formed to promote the reliability of electricity delivery in North America)
has adopted CIM/XML as the standard for exchanging models between power transmission
system operators. The CIM/XML format is also going through an IEC international

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (86 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/meerkat-rss.crop.gif
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/newsisfree-rss.crop.gif
http://web.resource.org/rss/1.0/
http://web.resource.org/rss/1.0/modules/proposed.html
http://web.resource.org/rss/1.0/modules/dc/
http://web.resource.org/rss/1.0/modules/aggregation/
http://www.epri.com/
http://www.epri.com/
http://www.langdale.com.au/CIMXML/
http://www.nerc.com/

RDF Primer

standardization process. An excellent discussion of CIM/XML can be found in [DWZ01]. [NB: This
power industry CIM should not be confused with the CIM developed by the Distributed
Management Task Force for representing management information for distributed software,
network, and enterprise environments. The DMTF CIM also has an XML representation, but does
not currently use RDF, although independent research is underway in that direction.]

The CIM can represent all of the major objects of an electric utility as object classes and
attributes, as well as their relationships. CIM uses these object classes and attributes to support
the integration of independently developed applications between vendor specific EMS systems,
or between an EMS system and other systems that are concerned with different aspects of power
system operations, such as generation or distribution management.

The CIM is specified as a set of class diagrams using the Unified Modeling Language (UML). The
base class of the CIM is the PowerSystemResource class, with other more specialized classes
such as Substation, Switch, and Breaker being defined as subclasses. CIM/XML
represents the CIM as an RDF Schema vocabulary, and uses RDF/XML as the language for
exchanging specific system models. Example 41 shows examples of CIM/XML class and
property definitions:

Example 41: Examples of CIM/XML Class and Property Definitions

<rdfs:Class rdf:ID="PowerSystemResource">
 <rdfs:label xml:lang="en">PowerSystemResource</rdfs:label>
 <rdfs:comment>"A power system component that can be either an
 individual element such as a switch or a set of elements
 such as a substation. PowerSystemResources that are sets
 could be members of other sets. For example a Switch is a
 member of a Substation and a Substation could be a member
 of a division of a Company"</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="Breaker">
 <rdfs:label xml:lang="en">Breaker</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Switch" />
 <rdfs:comment>"A mechanical switching device capable of making,
 carrying, and breaking currents under normal circuit conditions
 and also making, carrying for a specified time, and breaking
 currents under specified abnormal circuit conditions e.g. those
 of short circuit. The typeName is the type of breaker, e.g.,
 oil, air blast, vacuum, SF6."</rdfs:comment>
</rdfs:Class>

<rdf:Property rdf:ID="Breaker.ampRating">
 <rdfs:label xml:lang="en">ampRating</rdfs:label>
 <rdfs:domain rdf:resource="#Breaker" />
 <rdfs:range rdf:resource="#CurrentFlow" />
 <rdfs:comment>"Fault interrupting rating in amperes"</rdfs:comment>
</rdf:Property>

CIM/XML uses only a subset of the complete RDF/XML syntax, in order to simplify expressing

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (87 of 107)04/05/2004 17:53:18

http://www.dmtf.org/
http://www.dmtf.org/
http://www.uml.org/

RDF Primer

the models. In addition, CIM/XML implements some extensions to the RDF Schema vocabulary.
These extensions support the description of inverse roles and multiplicity (cardinality) constraints
describing how many instances of a given property are allowed for a given resource (allowable
values for a multiplicity declaration are zero-or-one, exactly-one, zero-or-more, one-or-more). The
properties in Example 42 illustrate these extensions (which are identified by a cims: QName
prefix):

Example 42: Some CIM/XML Extensions of RDF Schema

<rdf:Property rdf:ID="Breaker.OperatedBy">
 <rdfs:label xml:lang="en">OperatedBy</rdfs:label>
 <rdfs:domain rdf:resource="#Breaker" />
 <rdfs:range rdf:resource="#ProtectionEquipment" />
 <cims:inverseRoleName rdf:resource="#ProtectionEquipment.Operates" /
>
 <cims:multiplicity rdf:resource="http://www.cim-logic.com/
schema/990530#M:0..n" />
 <rdfs:comment>"Circuit breakers may be operated by
 protection relays."</rdfs:comment>
</rdf:Property>

<rdf:Property rdf:ID="ProtectionEquipment.Operates">
 <rdfs:label xml:lang="en">Operates</rdfs:label>
 <rdfs:domain rdf:resource="#ProtectionEquipment" />
 <rdfs:range rdf:resource="#Breaker" />
 <cims:inverseRoleName rdf:resource="#Breaker.OperatedBy" />
 <cims:multiplicity rdf:resource="http://www.cim-logic.com/
schema/990530#M:0..n" />
 <rdfs:comment>"Circuit breakers may be operated by
 protection relays."</rdfs:comment>
</rdf:Property>

EPRI has conducted successful interoperability tests using CIM/XML to exchange real-life, large-
scale models (involving, in the case of one test, data describing over 2000 substations) between
a variety of vendor products, and validating that these models would be correctly interpreted by
typical utility applications. Although the CIM was originally intended for EMS systems, it is also
being extended to support power distribution and other applications as well.

The Object Management Group has adopted an object interface standard to access CIM power
system models called the Data Access Facility [DAF]. Like the CIM/XML language, the DAF is
based on the RDF model and shares the same CIM schema. However, while CIM/XML enables a
model to be exchanged as a document, DAF enables an application to access the model as a set
of objects.

CIM/XML illustrates the useful role RDF can play in supporting XML-based exchange of
information that is naturally expressed as entity-relationship or object-oriented classes, attributes,
and relationships (even when that information will not necessarily be Web-accessible). In these
cases, RDF provides a basic structure for the XML in support of identifying objects, and using
them in structured relationships. This connection is illustrated by a number of applications using
RDF/XML for information interchange, as well as a number of projects investigating linkages

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (88 of 107)04/05/2004 17:53:18

http://www.omg.org/

RDF Primer

between RDF (or ontology languages such as OWL) and UML (and its XML representations).
CIM/XML's need to extend RDF Schema to support cardinality constraints and inverse
relationships also illustrates the kinds of requirements that have led to the development of more
powerful RDF-based schema/ontology languages such as DAML+OIL and OWL described in
Section 5.5. Such languages may be appropriate in supporting many similar modeling
applications in the future.

Finally, CIM/XML also illustrates an important fact for those looking for additional examples of
"RDF in the Field": sometimes languages are described as "XML" languages, or systems are
described as using "XML", and the "XML" they are actually using is RDF/XML, i.e., they are RDF
applications. Sometimes it is necessary to go fairly far into the description of the language or
system in order to find this out (in some examples that have been found, RDF is never explicitly
mentioned at all, but sample data clearly shows it is RDF/XML). Moreover, in applications such
as CIM/XML, the RDF that is created will not be readily found on the Web, since it is intended for
information exchange between software components rather than for general access (although
future scenarios could be imagined in which more of this type of RDF would become Web-
accessible).

6.6 Gene Ontology Consortium

Structured metadata using controlled vocabularies such as SNOMED RT (Systematized
Nomenclature of Medicine Reference Terminology) and MeSH (Medical Subject Headings) plays
an important role in medicine, enabling more efficient literature searches and aiding in the
distribution and exchange of medical knowledge [COWAN]. At the same time, the field of
medicine is rapidly changing, and with that comes the need to develop additional vocabularies.

The objective of the Gene Ontology (GO) Consortium [GO] is to provide controlled vocabularies
to describe specific aspects of gene products. Collaborating databases annotate their gene
products (or genes) with GO terms, providing references and indicating what kind of evidence is
available to support the annotations. The use of common GO terms by these databases
facilitates uniform queries across them. The GO ontologies are structured to allow both attribution
and querying to be performed at different levels of granularity. The GO vocabularies are dynamic,
since knowledge of gene and protein roles in cells is accumulating and changing.

The three organizing principles of the GO are molecular function, biological process, and cellular
component. A gene product has one or more molecular functions and is used in one or more
biological processes; it may be, or may be associated with, one or more cellular components.
Definitions of the terms within all three of these ontologies are contained in a single (text)
definition file. XML formatted versions, containing all three ontology files and all available
definitions, are generated monthly.

Function, process and component are represented as directed acyclic graphs (DAGs) or
networks. A child term may be an "instance" of its parent term (isa relationship) or a component
of its parent term (part-of relationship). A child term may have more than one parent term and
may have a different class of relationship with its different parents. Synonyms and cross-
references to external databases are also represented in the ontologies. GO uses RDF/XML
facilities to represent the relationships between terms in the XML versions of the ontologies,
because of its flexibility in representing these graph structures, as well as its widespread tool
support. At the same time, GO currently uses non-RDF nested XML structures within the term

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (89 of 107)04/05/2004 17:53:18

http://www.snomed.org/
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.geneontology.org/

RDF Primer

descriptions, so the language used is not pure RDF/XML.

Example 43 shows some sample GO information from the GO documentation:

Example 43: Sample GO Information

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE go:go>
<go:go xmlns:go="http://www.geneontology.org/xml-dtd/go.dtd#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <go:version timestamp="Wed May 9 23:55:02 2001" />

 <rdf:RDF>
 <go:term rdf:about="http://www.geneontology.org/go#GO:0003673">
 <go:accession>GO:0003673</go:accession>
 <go:name>Gene_Ontology</go:name>
 <go:definition></go:definition>
 </go:term>

 <go:term rdf:about="http://www.geneontology.org/go#GO:0003674">
 <go:accession>GO:0003674</go:accession>
 <go:name>molecular_function</go:name>
 <go:definition>The action characteristic of a gene product.</
go:definition>
 <go:part-of rdf:resource="http://www.geneontology.org/
go#GO:0003673" />
 <go:dbxref>
 <go:database_symbol>go</go:database_symbol>
 <go:reference>curators</go:reference>
 </go:dbxref>
 </go:term>

 <go:term rdf:about="http://www.geneontology.org/go#GO:0016209">
 <go:accession>GO:0016209</go:accession>
 <go:name>antioxidant</go:name>
 <go:definition></go:definition>
 <go:isa rdf:resource="http://www.geneontology.org/
go#GO:0003674" />
 <go:association>
 <go:evidence evidence_code="ISS">
 <go:dbxref>
 <go:database_symbol>fb</go:database_symbol>
 <go:reference>fbrf0105495</go:reference>
 </go:dbxref>
 </go:evidence>
 <go:gene_product>
 <go:name>CG7217</go:name>
 <go:dbxref>
 <go:database_symbol>fb</go:database_symbol>
 <go:reference>FBgn0038570</go:reference>
 </go:dbxref>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (90 of 107)04/05/2004 17:53:18

http://www.geneontology.org/GO.doc.html

RDF Primer

 </go:gene_product>
 </go:association>
 <go:association>
 <go:evidence evidence_code="ISS">
 <go:dbxref>
 <go:database_symbol>fb</go:database_symbol>
 <go:reference>fbrf0105495</go:reference>
 </go:dbxref>
 </go:evidence>
 <go:gene_product>
 <go:name>Jafrac1</go:name>
 <go:dbxref>
 <go:database_symbol>fb</go:database_symbol>
 <go:reference>FBgn0040309</go:reference>
 </go:dbxref>
 </go:gene_product>
 </go:association>
 </go:term>
 </rdf:RDF>
</go:go>

Example 43 illustrates that go:term is the basic element. In some cases, the GO has defined its
own terms rather than using RDF Schema. For example, term GO:0016209 has the element
<go:isa rdf:resource="http://www.geneontology.org/go#GO:0003674" />. This
tag represents the relationship "GO:0016209 isa GO:0003674", or, in English, "Antioxidant is a
molecular function." Another specialized relationship is go:part-of. For example, GO:0003674
has the element <go:part-of rdf:resource="http://www.geneontology.org/
go#GO:0003673" />. This says that "Molecular function is part of the Gene Ontology".

Every annotation must be attributed to a source, which may be a literature reference, another
database or a computational analysis. The annotation must indicate what kind of evidence is
found in the cited source to support the association between the gene product and the GO term.
A simple controlled vocabulary is used to record evidence. Examples include:

● ISS means "inferred from sequence similarity [with <database:sequence_id>]"
● IDA means "inferred from direct assay"
● TAS means "traceable author statement"

The go:dbxref element represents the term in an external database, and go:association
represents the gene associations of each term. go:association can have both go:
evidence, which holds a go:dbxref to the evidence supporting the association, and a go:
gene_product, which contains the gene symbol and go:dbxref. These elements illustrate
that the GO XML syntax is not "pure" RDF/XML, since the nesting of other elements within these
elements does not conform to the alternate node/predicate arc "stripes" described in Sections 2.1
and 2.2 of [RDF-SYNTAX].

The GO illustrates a number of interesting points. First, it shows that the value of using XML for
information exchange can be enhanced by structuring that XML using RDF. This is particularly
true for data that has an overall graph or network structure, rather than being a strict hierarchy.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (91 of 107)04/05/2004 17:53:18

RDF Primer

The GO is also another example in which data using RDF will not necessarily appear for direct
use on the Web (although the files are Web-accessible). It is also another example of data which
is, on the surface, described as "XML", but on closer examination uses RDF/XML facilities (albeit
not "pure" RDF/XML). Finally, the GO illustrates the role RDF can play as a basis for representing
ontologies. This role will be further enhanced once richer RDF-based languages for specifying
ontologies, such as the DAML+OIL or OWL languages discussed in Section 5.5, become more
widely used. In fact, a Gene Ontology Next Generation project is currently developing a
representation of the GO ontologies in these richer languages.

6.7 Describing Device Capabilities and User Preferences

In recent years a large number of new mobile devices for browsing the Web have appeared.
Many of these devices have highly divergent capabilities including a wide range of input and
output capabilities as well as different levels of language support. Mobile devices may also have
widely differing network connectivity capabilities. Users of these new devices expect a usable
presentation regardless of the device's capabilities or the current network characteristics.
Likewise, users want their dynamically changing preferences (e.g. turn audio on/off) to be
considered when content or an application is presented. The reality, however, is that device
heterogeneity, and the lack of a standard way for users to convey their preferences to the server,
may result in: content that cannot be stored on the device, content that cannot be displayed, or
content that violates the desires of the user. Additionally, the resulting content may take too long
to convey over the network to the client device.

A solution for addressing these problems is for a client to encode its delivery context - the
device's capabilities, the user's preferences, the network characteristics, etc. - in such a way that
a server can use the context to customize content for the device and user (see [DIPRINC] for a
definition of delivery context). The W3C's Composite Capabilities/Preferences Profile (CC/PP)
specification [CC/PP] helps to address this problem by defining a generic framework for
describing a delivery context.

The CC/PP framework defines a relatively simple structure - a two-level hierarchy of components
and attribute/value pairs. A component may be used to capture a part of a delivery context (e.g.
network characteristics, software supported by a device, or the hardware characteristics of a
device). A component may contain one or more attributes. For example a component that
encodes user preferences may contain an attribute to specify whether or not AudioOutput is
desired.

CC/PP defines its structure (the hierarchy described above) using RDF Schema (see [CC/PP] for
details of the structure schema). A CC/PP vocabulary defines specific components and their
attributes. [CC/PP], however, does not define such vocabularies. Instead, vocabularies are
defined by other organizations or applications (as described below). [CC/PP] also does not define
a protocol for transporting an instance of a CC/PP vocabulary.

An instance of a CC/PP vocabulary is called a profile. CC/PP attributes are encoded as RDF
properties in a profile. Example 44 shows a profile fragment of user preferences for a user that
prefers an audio presentation:

Example 44: A CC/PP Profile Fragment

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (92 of 107)04/05/2004 17:53:18

http://gong.man.ac.uk/

RDF Primer

 <ccpp:component>
 <rdf:Description rdf:ID="UserPreferences">
 <rdf:type rdf:resource="http://www.example.org/profiles/prefs/
v1_0#UserPreferences"/>
 <ex:AudioOutput>Yes</ex:AudioOutput>
 <ex:Graphics>No</ex:Graphics>
 <ex:Languages>
 <rdf:Seq>
 <rdf:li>en-cockney</rdf:li>
 <rdf:li>en</rdf:li>
 </rdf:Seq>
 </ex:Languages>
 </rdf:Description>
 </ccpp:component>

There are several advantages to using RDF in this application. First, a profile encoded via CC/PP
may include attributes that were defined in schemas created by different organizations. RDF is a
natural fit for these profiles because no single organization is likely to create a super schema for
the aggregated profile data. A second advantage of RDF is that it facilitates (by virtue of its graph-
based data model) the insertion of arbitrary attributes (RDF properties) into a profile. This is
particularly useful for profiles that include frequently changing data such as location information.

The Open Mobile Alliance has defined the User Agent Profile (UAProf) [UAPROF] - a CC/PP-
based framework that includes a vocabulary for describing device capabilities, user agent
capabilities, network characteristics, etc., as well as a protocol for transporting a profile. UAProf
defines six components including: HardwarePlatform, SoftwarePlatform, NetworkCharacteristics
and BrowserUA. It also defines several attributes for each of its components although a
component's attributes are not fixed - they may be supplemented or overridden. Example 45
shows a fragment of UAProf's HardwarePlatform component:

Example 45: A Fragment of UAProf's HardwarePlatform Component

 <prf:component>
 <rdf:Description rdf:ID="HardwarePlatform">
 <rdf:type rdf:resource="http://www.openmobilealliance.org/profiles/
UAPROF/ccppschema-20021113#HardwarePlatform"/>
 <prf:ScreenSizeChar>15x6</prf:ScreenSizeChar>
 <prf:BitsPerPixel>2</prf:BitsPerPixel>
 <prf:ColorCapable>No</prf:ColorCapable>
 <prf:BluetoothProfile>
 <rdf:Bag>
 <rdf:li>headset</rdf:li>
 <rdf:li>dialup</rdf:li>
 <rdf:li>lanaccess</rdf:li>
 </rdf:Bag>
 </prf:BluetoothProfile>
 </rdf:Description>
 </prf:component>

The UAProf protocol supports both static profiles and dynamic profiles. A static profile is

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (93 of 107)04/05/2004 17:53:18

RDF Primer

accessed via a URI. This has several advantages: a client's request to a server only contains a
URI rather a potentially verbose XML document (thus minimizing over the air traffic); the client
does not have to store and/or create the profile; the implementation burden on a client is
relatively light-weight. Dynamic profiles are created on-the-fly and consequently do not have an
associated URI. They may consist of a profile fragment containing a difference from a static
profile, but they may also contain unique data that is not included in the client's static profile. A
request may contain any number of static profiles and dynamic profiles. However, the ordering of
the profiles is important as later profiles override earlier profiles in the request. See [UAPROF] for
more information about UAProf's protocol and its rules for resolving multiple profiles.

Several other communities (i.e. 3GPP's TS 26.234 [3GPP] and the WAP Forum's Multimedia
Messaging Service Client Transactions Specification [MMS-CTR]) have defined vocabularies
based on CC/PP. As a result, a profile may take advantage of the distributed nature of RDF and
include components defined from various vocabularies. Example 46 shows such a profile:

Example 46: A Profile Using Several Vocabularies

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-
20010330#"
 xmlns:mms="http://www.wapforum.org/profiles/MMS/ccppschema-
20010111#"
 xmlns:pss="http://www.3gpp.org/profiles/PSS/ccppschema-YYYYMMDD#">

 <rdf:Description rdf:ID="SomeDevice">
 <prf:component>
 <rdf:Description rdf:ID="Streaming">
 <rdf:type rdf:resource="http://www.3gpp.org/profiles/PSS/
ccppschema-PSS5#Streaming"/>
 <pss:AudioChannels>Stereo</pss:AudioChannels>
 <pss:VideoPreDecoderBufferSize>30720</pss:
VideoPreDecoderBufferSize>
 <pss:VideoInitialPostDecoderBufferingPeriod>0</pss:
VideoInitialPostDecoderBufferingPeriod>
 <pss:VideoDecodingByteRate>16000</pss:VideoDecodingByteRate>
 </rdf:Description>
 </prf:component>

 <prf:component>
 <rdf:Description rdf:ID="MmsCharacteristics">
 <rdf:type rdf:resource="http://www.wapforum.org/profiles/MMS/
ccppschema-20010111#Streaming"/>
 <mms:MmsMaxMessageSize>2048</mms:MmsMaxMessageSize>
 <mms:MmsMaxImageResolution>80x60</mms:MmsMaxImageResolution>
 <mms:MmsVersion>2.0</mms:MmsVersion>
 </rdf:Description>
 </prf:component>

 <prf:component>
 <rdf:Description rdf:ID="PushCharacteristics">
 <rdf:type rdf:resource="http://www.openmobilealliance.org/profiles/

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (94 of 107)04/05/2004 17:53:18

RDF Primer

UAPROF/ccppschema-20010330#PushCharacteristics"/>
 <prf:Push-MsgSize>1024</prf:Push-MsgSize>
 <prf:Push-MaxPushReq>5</prf:Push-MaxPushReq>
 <prf:Push-Accept>
 <rdf:Bag>
 <rdf:li>text/html</rdf:li>
 <rdf:li>text/plain</rdf:li>
 <rdf:li>image/gif</rdf:li>
 </rdf:Bag>
 </prf:Push-Accept>
 </rdf:Description>
 </prf:component>

 </rdf:Description>
</rdf:RDF>

The definition of a delivery context and the data within a context will continually evolve.
Consequently, RDF's inherent extensibility, and thus support for dynamically changing
vocabularies, make RDF a good framework for encoding a delivery context.

7. Other Parts of the RDF Specification

Section 1 indicated that the RDF Specification consists of a number of documents (in addition to
this Primer):

● RDF Concepts and Abstract Syntax [RDF-CONCEPTS]
● RDF/XML Syntax Specification [RDF-SYNTAX]
● RDF Vocabulary Description Language 1.0: RDF Schema [RDF-VOCABULARY]
● RDF Semantics [RDF-SEMANTICS]
● RDF Test Cases [RDF-TESTS]

The Primer has already discussed the subjects of several of these documents, basic RDF
concepts (in Section 2), the RDF/XML syntax (in Section 3) and RDF Schema (in Section 5). This
section briefly describes the remaining documents (even though there have already been
numerous references to [RDF-SEMANTICS] as well), in order to explain their role in the complete
specification of RDF.

7.1 RDF Semantics

As discussed in the preceding sections, RDF is intended to be used to express statements about
resources in the form of a graph, using specific vocabularies (names of resources, properties,
classes, etc.). RDF is also intended to be the foundation for more advanced languages, such as
those discussed in Section 5.5. In order to serve these purposes, the "meaning" of an RDF graph
must be defined in a very precise manner.

Exactly what constitutes the "meaning" of an RDF graph in a very general sense may depend on
many factors, including conventions within a user community to interpret user-defined RDF
classes and properties in specific ways, comments in natural language, or links to other content-

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (95 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-testcases/

RDF Primer

bearing documents. As noted briefly in Section 2.2, much of the meaning conveyed in these
forms will not be directly accessible to machine processing, although this meaning may be used
by human interpreters of the RDF information, or by programmers writing software to perform
various kinds of processing on that RDF information. However, RDF statements also have a
formal meaning which determines, with mathematical precision, the conclusions (or entailments)
that machines can draw from a given RDF graph. The RDF Semantics [RDF-SEMANTICS]
document defines this formal meaning, using a technique called model theory for specifying the
semantics of a formal language. [RDF-SEMANTICS] also defines the semantic extensions to the
RDF language represented by RDF Schema, and by individual datatypes. In other words, the
RDF model theory provides the formal underpinnings for all RDF concepts. Based on the
semantics defined in the model theory, it is simple to translate an RDF graph into a logical
expression with essentially the same meaning.

7.2 Test Cases

The RDF Test Cases [RDF-TESTS] supplement the textual RDF specifications with test cases
(examples) corresponding to particular technical issues addressed by the RDF Core Working
Group. To help describe these examples, the Test Cases document introduces a notation called
N-Triples, which provides the basis for the triples notation used throughout this Primer. The test
cases are published in machine-readable form at Web locations referenced by the Test Cases
document, so developers can use these as the basis for automated testing of RDF software.

The test cases are divided into a number of categories:

● Positive and Negative Parser Tests: These test whether RDF/XML parsers produce a
correct N-Triples output graph from legal RDF/XML input documents, or correctly report
errors if the input documents are not legal RDF/XML.

● Positive and Negative Entailment Tests: These test whether proper entailments
(conclusions) are or are not drawn from sets of specified RDF statements.

● Datatype-aware Entailment Tests: These are positive or negative entailment tests that
involve the use of datatypes, and hence require additional support for the specific
datatypes involved in the tests.

● Miscellaneous Tests: These are tests that do not fall into one of the other categories.

The test cases are not a complete specification of RDF, and are not intended to take precedence
over the other specification documents. However, they are intended to illustrate the intent of the
RDF Core Working Group with respect to the design of RDF, and developers may find these test
cases helpful should the wording of the specifications be unclear on any point of detail.

8. References

8.1 Normative References

[RDF-CONCEPTS]
Resource Description Framework (RDF): Concepts and Abstract Syntax, Klyne G., Carroll
J. (Editors), W3C Recommendation, 10 February 2004. This version is http://www.w3.org/
TR/2004/REC-rdf-primer-20040210/. The latest version is http://www.w3.org/TR/rdf-
concepts/.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (96 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TR/rdf-testcases/#ntriples
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-concepts/

RDF Primer

[RDF-MIME-TYPE]
MIME Media Types, The Internet Assigned Numbers Authority (IANA). This document is
http://www.iana.org/assignments/media-types/ . The registration for application/rdf
+xml is archived at http://www.w3.org/2001/sw/RDFCore/mediatype-registration .

[RDF-MS]
Resource Description Framework (RDF) Model and Syntax Specification, Lassila O., Swick
R. (Editors), World Wide Web Consortium, 22 February 1999. This version is http://www.
w3.org/TR/1999/REC-rdf-syntax-19990222/. The latest version is http://www.w3.org/TR/
REC-rdf-syntax/.

[RDF-SEMANTICS]
RDF Semantics, Hayes P. (Editor), W3C Recommendation, 10 February 2004. This
version is http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. The latest version is http://
www.w3.org/TR/rdf-mt/.

[RDF-SYNTAX]
RDF/XML Syntax Specification (Revised), Beckett D. (Editor), W3C Recommendation, 10
February 2004. This version http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-
20040210/. The latest version is http://www.w3.org/TR/rdf-syntax-grammar/.

[RDF-TESTS]
RDF Test Cases, Grant J., Beckett D. (Editors), W3C Recommendation, 10 February
2004. This version is http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/. The latest
version is http://www.w3.org/TR/rdf-testcases/.

[RDF-VOCABULARY]
RDF Vocabulary Description Language 1.0: RDF Schema, Brickley D., Guha R.V.
(Editors), W3C Recommendation, 10 February 2004. This version is http://www.w3.org/
TR/2004/REC-rdf-schema-20040210/. The latest version is http://www.w3.org/TR/rdf-
schema/.

[UNICODE]
The Unicode Standard, Version 3, The Unicode Consortium, Addison-Wesley, 2000. ISBN
0-201-61633-5, as updated from time to time by the publication of new versions. (See http://
www.unicode.org/unicode/standard/versions/ for the latest version and additional
information on versions of the standard and of the Unicode Character Database).

[URIS]
RFC 2396 - Uniform Resource Identifiers (URI): Generic Syntax, Berners-Lee T., Fielding
R., Masinter L., IETF, August 1998, http://www.isi.edu/in-notes/rfc2396.txt.

[XML]
Extensible Markup Language (XML) 1.0, Second Edition, Bray T., Paoli J., Sperberg-
McQueen C.M., Maler E. (Editors), World Wide Web Consortium, 6 October 2000. This
version is http://www.w3.org/TR/2000/REC-xml-20001006. The latest version is http://www.
w3.org/TR/REC-xml.

[XML-BASE]
XML Base, Marsh J. (Editor), World Wide Web Consortium, 27 June 2001. This version is
http://www.w3.org/TR/2001/REC-xmlbase-20010627/. The latest version is http://www.w3.
org/TR/xmlbase/.

[XML-NS]
Namespaces in XML, Bray T., Hollander D., Layman A. (Editors), World Wide Web
Consortium, 14 January 1999. This version is http://www.w3.org/TR/1999/REC-xml-names-
19990114/. The latest version is http://www.w3.org/TR/REC-xml-names/.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (97 of 107)04/05/2004 17:53:18

http://www.iana.org/assignments/media-types/
http://www.w3.org/2001/sw/RDFCore/mediatype-registration
http://www.w3.org/2001/sw/RDFCore/mediatype-registration
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/rdf-schema/
http://www.unicode.org/unicode/standard/versions/
http://www.unicode.org/unicode/standard/versions/
http://www.isi.edu/in-notes/rfc2396.txt
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/REC-xml-names/

RDF Primer

[XML-XC14N]
Exclusive XML Canonicalization Version 1.0, Boyer J., Eastlake D.E. 3rd, Reagle J.
(Authors/Editors), World Wide Web Consortium, 18 July 2002. This version is http://www.
w3.org/TR/2002/REC-xml-exc-c14n-20020718/. The latest version is http://www.w3.org/TR/
xml-exc-c14n/.

8.2 Informational References

[3GPP]
3GPP TS 26.234. 3rd Generation Partnership Project; Technical Specification Group
Services and System Aspects; Transparent end-to-end packet switched streaming service;
Protocols and codecs V5.2.0 (2002-09). This document is available at http://www.3gpp.org/
specs/specs.htm via directory ftp://ftp.3gpp.org/specs/2002-09/Rel-5/26_series/.

[ADDRESS-SCHEMES]
Addressing Schemes, Connolly D., 2001. This document is http://www.w3.org/Addressing/
schemes.html.

[BATES96]
Indexing and Access for Digital Libraries and the Internet: Human, Database, and Domain
Factors, Bates M.J., 1996. This document is http://is.gseis.ucla.edu/research/mjbates.html.

[BERNERS-LEE98]
What the Semantic Web can represent, Berners-Lee T., 1998. This document is http://www.
w3.org/DesignIssues/RDFnot.html.

[CC/PP]
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies, Klyne G.,
Reynolds F., Woodrow C., Ohto H., Hjelm J., Butler M., Tran, L., W3C Recommendation,
15 January 2004. This version is http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-
20040115/. The latest version is http://www.w3.org/TR/CCPP-struct-vocab/.

[CG]
Conceptual Graphs, Sowa J., ISO working document ISO/JTC1/SC32/WG2 N 000, 2 April
2001 (work in progress). Available at http://users.bestweb.net/~sowa/cg/cgstand.htm.

[CHARMOD]
Character Model for the World Wide Web 1.0, Dürst M., Yergeau F., Ishida R., Wolf M.,
Freytag A., Texin T. (Editors), World Wide Web Consortium, 20 February 2002 (work in
progress). This version is http://www.w3.org/TR/2002/WD-charmod-20020220/. The latest
version is http://www.w3.org/TR/charmod/.

[CIM]
Common Information Model (CIM): CIM 10 Version, EPRI, Palo Alto, CA: 2001, 1001976.
This document is available at http://www.epri.com/attachments/286161_1001976(1).pdf
(267pp.).

[COWAN]
Metadata, Reuters Health Information, and Cross-Media Publishing , Cowan J., 2002.
Presentation at Seybold New York 2002 Enterprise Publishing Conference. This document
is http://seminars.seyboldreports.com/seminars/2002_new_york/presentations/014/
cowan_john.ppt. An accompanying transcript is http://seminars.seyboldreports.
com/2002_new_york/files/transcripts/doc/transcript_EP7.doc

[DAF]
Utility Management System (UMS) Data Access Facility, version 2.0, Object Management
Group, November 2002. This document is available at http://www.omg.org/technology/

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (98 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/
http://www.w3.org/TR/xml-exc-c14n/
http://www.3gpp.org/specs/specs.htm
http://www.3gpp.org/specs/specs.htm
http://www.w3.org/Addressing/schemes.html
http://www.w3.org/Addressing/schemes.html
http://is.gseis.ucla.edu/research/mjbates.html
http://is.gseis.ucla.edu/research/mjbates.html
http://is.gseis.ucla.edu/research/mjbates.html
http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/CCPP-struct-vocab/
http://users.bestweb.net/~sowa/cg/cgstand.htm
http://www.w3.org/TR/2002/WD-charmod-20020220/
http://www.w3.org/TR/2002/WD-charmod-20020220/
http://www.w3.org/TR/charmod/
http://www.w3.org/TR/charmod/
http://www.epri.com/attachments/286161_1001976(1).pdf
http://seminars.seyboldreports.com/2002_new_york/files/presentations/014/cowan_john.ppt
http://seminars.seyboldreports.com/2002_new_york/files/presentations/014/cowan_john.ppt
http://seminars.seyboldreports.com/2002_new_york/files/transcripts/doc/transcript_EP7.doc
http://www.omg.org/technology/documents/formal/UMS_Data_Access_Facility.htm
http://www.omg.org/technology/documents/formal/UMS_Data_Access_Facility.htm

RDF Primer

documents/formal/UMS_Data_Access_Facility.htm.
[DAML+OIL]

DAML+OIL (March 2001) Reference Description, Connolly D., van Harmelen F., Horrocks
I., McGuinness D.L., Patel-Schneider P.F., Stein L.A., World Wide Web Consortium, 18
December 2001. This document is http://www.w3.org/TR/daml+oil-reference.

[DC]
Dublin Core Metadata Element Set, Version 1.1: Reference Description, 02 June 2003.
This version is http://dublincore.org/documents/2003/06/02/dces/. The latest version is
http://dublincore.org/documents/dces/.

[DIPRINC]
Device Independence Principles. Gimson, R., Finkelstein, S., Maes, S., Suryanarayana, L.,
World Wide Web Consortium, 18 September 2001 (work in progress). This version is http://
www.w3.org/TR/2001/WD-di-princ-20010918. The latest version is http://www.w3.org/TR/
di-princ/.

[DWZ01]
XML for CIM Model Exchange , deVos A., Widergreen S.E., Zhu J., Proc. IEEE
Conference on Power Industry Computer Systems, Sydney, Australia, 2001. This
document is http://www.langdale.com.au/PICA/.

[GO]
Gene Ontology: tool for the unification of biology, The Gene Ontology Consortium, Nature
Genetics, Vol. 25: 25-29, May 2000. Available at http://www.geneontology.org/
GO_nature_genetics_2000.pdf

[GRAY]
Logic, Algebra and Databases, Gray P., Ellis Horwood Ltd., 1984. ISBN 0-85312-709-3, 0-
85312-803-0, 0-470-20103-7, 0-470-20259-9.

[HAYES]
In Defense of Logic, Hayes P., Proceedings from the International Joint Conference on
Artificial Intelligence, 1975, San Francisco. Morgan Kaufmann Inc., 1977. Also in
Computation and Intelligence: Collected Readings, Luger G. (ed), AAAI press/MIT press,
1995. ISBN 0-262-62101-0.

[KIF]
Knowledge Interchange Format, Genesereth M., draft proposed American National
Standard NCITS.T2/98-004. Available at http://logic.stanford.edu/kif/dpans.html.

[LBASE]
LBase: Semantics for Languages of the Semantic Web, Guha R. V., Hayes P., W3C Note,
10 October 2003. This version is http://www.w3.org/TR/2003/NOTE-lbase-20031010/. The
latest version is http://www.w3.org/TR/lbase/.

[LUGER]
Artificial Intelligence: Structures and Strategies for Complex Problem Solving (3rd ed.),
Luger G., Stubblefield W., Addison Wesley Longman, 1998. ISBN 0-805-31196-3.

[MATHML]
Mathematical Markup Language (MathML) Version 2.0, Carlisle D., Ion P., Miner R.,
Poppelier N. (Editors); Ausbrooks R., Buswell S., Dalmas S., Devitt S., Diaz A., Hunter R.,
Smith B., Soiffer N., Sutor R., Watt S. (Principal Authors), World Wide Web Consortium, 21
February 2001. This version is http://www.w3.org/TR/2001/REC-MathML2-20010221/. The
latest version is http://www.w3.org/TR/MathML2/.

[MMS-CTR]
Multimedia Messaging Service Client Transactions Specification. WAP-206-MMSCTR-

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (99 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/daml+oil-reference
http://dublincore.org/documents/2003/06/02/dces/
http://dublincore.org/documents/2003/06/02/dces/
http://dublincore.org/documents/dces/
http://www.w3.org/TR/di-princ/
http://www.w3.org/TR/2001/WD-di-princ-20010918/
http://www.w3.org/TR/di-princ/
http://www.langdale.com.au/PICA/
http://www.langdale.com.au/PICA/
http://www.langdale.com.au/PICA/
http://www.geneontology.org/GO_nature_genetics_2000.pdf
http://www.geneontology.org/GO_nature_genetics_2000.pdf
http://www.geneontology.org/GO_nature_genetics_2000.pdf
http://logic.stanford.edu/kif/dpans.html
http://www.w3.org/TR/2003/NOTE-lbase-20031010/
http://www.w3.org/TR/2003/NOTE-lbase-20031010/
http://www.w3.org/TR/lbase/
http://www.w3.org/TR/2001/REC-MathML2-20010221/
http://www.w3.org/TR/2001/REC-MathML2-20010221/
http://www.w3.org/TR/MathML2/
http://www.openmobilealliance.org/

RDF Primer

20020115-a. This document is available at http://www.openmobilealliance.org/.
[NAMEADDRESS]

Naming and Addressing: URIs, URLs, ..., Connolly D., 2002. This document is http://www.
w3.org/Addressing/.

[OWL]
OWL Web Ontology Language Reference, Dean M., Schreiber G (Editors); van Harmelen
F., Hendler J., Horrocks I., McGuinness D.L., Patel-Schneider P.F., Stein L.A. (Authors),
W3C Recommendation, 10 February 2004. The latest version is http://www.w3.org/TR/owl-
ref/.

[PRISM]
PRISM: Publishing Requirements for Industry Standard Metadata, Version 1.1, 19
February 2002. The latest version of the PRISM specification is available at http://www.
prismstandard.org/.

[RDFISSUE]
RDF Issue Tracking, McBride B., 2002. This document is http://www.w3.org/2000/03/rdf-
tracking/.

[RDF-S]
Resource Description Framework (RDF) Schema Specification 1.0 , Brickley D., Guha, R.
V. (Editors), World Wide Web Consortium. 27 March 2000. This version is http://www.w3.
org/TR/2000/CR-rdf-schema-20000327/.

[RSS]
RDF Site Summary (RSS) 1.0, Beged-Dov G., Brickley D., Dornfest R., Davis I., Dodds L.,
Eisenzopf J., Galbraith D., Guha R.V., MacLeod K., Miller E., Swartz A., van der Vlist E.,
2000. This document is http://purl.org/rss/1.0/spec.

[RUBY]
Ruby Annotation, Sawicki M., Suignard M., Ishikawa M., Dürst M., Texin T. (Editors), World
Wide Web Consortium, 31 May 2001. This version is http://www.w3.org/TR/2001/REC-
ruby-20010531/. The latest version is http://www.w3.org/TR/ruby/.

[SOWA]
Knowledge Representation: Logical, Philosophical and Computational Foundations, Sowa
J., Brookes/Cole, 2000. ISBN 0-534-94965-7.

[SVG]
Scalable Vector Graphics (SVG) 1.1 Specification, Ferraiolo J., Fujisawa J., Jackson D.
(Editors), World Wide Web Consortium, 14 January 2003. This version is http://www.w3.
org/TR/2003/REC-SVG11-20030114/. The latest version is http://www.w3.org/TR/SVG11/.

[UAPROF]
User Agent Profile. OMA-WAP-UAProf-v1_1. This document is available at http://www.
openmobilealliance.org/.

[WEBDATA]
Web Architecture: Describing and Exchanging Data, Berners-Lee T., Connolly D., Swick
R., World Wide Web Consortium, 7 June 1999. This document is http://www.w3.
org/1999/04/WebData.

[XLINK]
XML Linking Language (XLink) Version 1.0, DeRose S., Maler E., Orchard D. (Editors),
World Wide Web Consortium, 27 June 2001. This version is http://www.w3.org/TR/2001/
REC-xlink-20010627/. The latest version is http://www.w3.org/TR/xlink/.

[XML-SCHEMA2]
XML Schema Part 2: Datatypes, Biron P., Malhotra A. (Editors), World Wide Web

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (100 of 107)04/05/2004 17:53:18

http://www.w3.org/Addressing/
http://www.w3.org/Addressing/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/owl-ref/
http://www.prismstandard.org/
http://www.prismstandard.org/
http://www.w3.org/2000/03/rdf-tracking/
http://www.w3.org/2000/03/rdf-tracking/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
http://purl.org/rss/1.0/spec
http://purl.org/rss/1.0/spec
http://www.w3.org/TR/2001/REC-ruby-20010531/
http://www.w3.org/TR/2001/REC-ruby-20010531/
http://www.w3.org/TR/ruby/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/SVG11/
http://www.openmobilealliance.org/
http://www.w3.org/1999/04/WebData
http://www.w3.org/1999/04/WebData
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

RDF Primer

Consortium. 2 May 2001. This version is http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/. The latest version is http://www.w3.org/TR/xmlschema-2/.

[XPACKAGE]
XML Package (XPackage) 1.0 , Wilson G., Editor's Working Draft, 6 March 2003. This
version is http://www.xpackage.org/specification/xpackage-draft-20030306.html. The latest
version is http://www.xpackage.org/specification/.

9. Acknowledgments

This document has benefited from inputs from many members of the RDF Core Working Group.
Specific thanks are due to Art Barstow, Dave Beckett, Dan Brickley, Ron Daniel, Ben
Hammersley, Martyn Horner, Graham Klyne, Sean Palmer, Patrick Stickler, Aaron Swartz, Ralph
Swick, and Garret Wilson who, together with the many people who commented on earlier
versions of the Primer, provided valuable contributions to this document.

In addition, this document contains a significant contribution from Pat Hayes, Sergey Melnik, and
Patrick Stickler, who led the development of the RDF datatype facilities described in the RDF
family of specifications.

Frank Manola also thanks The MITRE Corporation, Frank's employer during most of the
preparation of this document, for its support of his RDF Core Working Group activities under a
MITRE Sponsored Research grant.

Appendix A: More on Uniform Resource Identifiers (URIs)

Note: This section is intended to provide a brief introduction to URIs. The definitive specification
of URIs is RFC 2396 [URIS], which should be consulted for further details. Additional discussion
of URIs can also be found in Naming and Addressing: URIs, URLs, ... [NAMEADDRESS].

As discussed in Section 2.1, the Web provides a general form of identifier, called the Uniform
Resource Identifier (URI), for identifying (naming) resources on the Web. Unlike URLs, URIs are
not limited to identifying things that have network locations, or use other computer access
mechanisms. A number of different URI schemes (URI forms) have been already been
developed, and are being used, for various purposes. Examples include:

● http: (Hypertext Transfer Protocol, for Web pages)
● mailto: (email addresses), e.g., mailto:em@w3.org
● ftp: (File Transfer Protocol)
● urn: (Uniform Resource Names, intended to be persistent location-independent resource

identifiers), e.g., urn:isbn:0-520-02356-0 (for a book)

A list of existing URI schemes can be found in Addressing Schemes [ADDRESS-SCHEMES],
and it is a good idea to consider adapting one of the existing schemes for any specialized
identification purposes, rather than trying to invent a new one.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (101 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/xmlschema-2/
http://www.xpackage.org/specification/xpackage-draft-20030306.html
http://www.xpackage.org/specification/xpackage-draft-20030306.html
http://www.xpackage.org/specification/xpackage-draft-20030306.html
http://www.xpackage.org/specification/
http://www.xpackage.org/specification/
http://www.w3.org/2001/sw/RDFCore/
http://www.mitre.org/
http://www.isi.edu/in-notes/rfc2396.txt
http://www.w3.org/Addressing/
http://www.isi.edu/in-notes/rfc2396.txt
http://www.isi.edu/in-notes/rfc2396.txt
http://www.w3.org/Addressing/schemes.html

RDF Primer

No one person or organization controls who makes URIs or how they can be used. While some
URI schemes, such as URL's http:, depend on centralized systems such as DNS, other
schemes, such as freenet:, are completely decentralized. This means that, as with any other
kind of name, no one needs special authority or permission to create a URI for something. Also,
anyone can create URIs to refer to things they do not own, just as in ordinary language anyone
can use whatever name they like for things they do not own.

As also noted in Section 2.1, RDF uses URI references [URIS] to name subjects, predicates, and
objects in RDF statements. A URI reference (or URIref) is a URI, together with an optional
fragment identifier at the end. For example, the URI reference http://www.example.org/
index.html#section2 consists of the URI http://www.example.org/index.html and
(separated by the "#" character) the fragment identifier Section2. RDF URIrefs can contain
Unicode [UNICODE] characters (see [RDF-CONCEPTS]), allowing many languages to be
reflected in URIrefs.

URIrefs may be either absolute or relative. An absolute URIref refers to a resource independently
of the context in which the URIref appears, e.g., the URIref http://www.example.org/
index.html. A relative URIref is a shorthand form of an absolute URIref, where some prefix of
the URIref is missing, and information from the context in which the URIref appears is required to
fill in the missing information. For example, the relative URIref otherpage.html, when
appearing in a resource http://www.example.org/index.html, would be filled out to the
absolute URIref http://www.example.org/otherpage.html. A URIref without a URI part is
considered a reference to the current document (the document in which it appears). So, an empty
URIref within a document is considered equivalent to the URIref of the document itself. A URIref
consisting of just a fragment identifier is considered equivalent to the URIref of the document in
which it appears, with the fragment identifier appended to it. For example, within http://www.
example.org/index.html, if #section2 appeared as a URIref, it would be considered
equivalent to the absolute URIref http://www.example.org/index.html#section2.

[RDF-CONCEPTS] notes that RDF graphs (the abstract models) do not use relative URIrefs, i.e.,
the subjects, predicates, and objects (and datatypes in typed literals) in RDF statements must
always be identified independently of any context. However, a specific concrete RDF syntax,
such as RDF/XML, may allow relative URIrefs to be used as a shorthand for absolute URIrefs in
certain situations. RDF/XML does permit such use of relative URIrefs, and some of the RDF/XML
examples in this Primer illustrate such uses. [RDF-SYNTAX] should be consulted for further
details.

Both RDF and Web browsers use URIrefs to identify things. However, RDF and browsers
interpret URIrefs in slightly different ways. This is because RDF uses URIrefs only to identify
things, while browsers also use URIrefs to retrieve things. Often there is no effective difference,
but in some cases the difference can be significant. One obvious difference is that when a URIref
is used in a browser, there is the expectation that it identifies a resource that can actually be
retrieved: that something is actually "at" the location identified by the URI. However, in RDF a
URIref may be used to identify something, such as a person, that cannot be retrieved on the
Web. People sometimes use RDF together with a convention that, when a URIref is used to
identify an RDF resource, a page containing descriptive information about that resource will be
placed on the Web "at" that URI, so that the URIref can be used in a browser to retrieve that
information. This can be a useful convention in some circumstances, although it creates a
difficulty in distinguishing the identity of the original resource from the identity of the Web page

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (102 of 107)04/05/2004 17:53:18

RDF Primer

describing it (a subject discussed further in Section 2.3). However, this convention is not an
explicit part of the definition of RDF, and RDF itself does not assume that a URIref identifies
something that can be retrieved.

Another difference is in the way URIrefs with fragment identifiers are handled. Fragment
identifiers are often seen in the URLs that identify HTML documents, where they serve to identify
a specific place within the document identified by the URL. In normal HTML usage, where URI
references are used to retrieve the indicated resources, the two URIrefs:

http://www.example.org/index.html
http://www.example.org/index.html#Section2

are related (they both refer to the same document, the second one identifying a location within
the first one). However, as noted already, RDF uses URI references purely to identify resources,
not to retrieve them, and RDF assumes no particular relationship between these two URIrefs. As
far as RDF is concerned, they are syntactically different URI references, and hence may refer to
unrelated things. This does not mean that the HTML-defined containment relationship might not
exist, just that RDF does not assume that a relationship exists based only on the fact that the URI
parts of the URI references are the same.

Carrying this point further, RDF does not assume that there is any relationship between URI
references that share a common leading string, whether there is a fragment identifier or not. For
example, as far as RDF is concerned, the two URIrefs:

http://www.example.org/foo.html
http://www.example.org/bar.html

have no particular relationship even though both of them start with the string http://www.
example.org/. To RDF, they are simply different resources, because their URIrefs are
different. (They may in fact be two files located in the same directory, but RDF does not assume
this or any other relationship exists.)

Appendix B: More on the Extensible Markup Language (XML)

Note: This section is intended to provide a brief introduction to XML. The definitive specification
of XML is [XML], which should be consulted for further details.

The Extensible Markup Language [XML] was designed to allow anyone to design their own
document format and then write a document in that format. Like HTML documents (Web pages),
XML documents contain text. This text consists primarily of plain text content, and markup in the
form of tags. This markup allows a processing program to interpret the various pieces of content
(called elements). Both XML content and (with certain exceptions) tags can contain Unicode
[UNICODE] characters, allowing information from many languages to be directly represented. In
HTML, the set of permissible tags, and their interpretation, is defined by the HTML specification.
However, XML allows users to define their own markup languages (tags and the structures in
which they can appear) adapted to their own specific requirements (the RDF/XML language
described in Section 3 is one such XML markup language). For example, the following is a simple
passage marked up using an XML-based markup language:

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (103 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/2000/REC-xml-20001006

RDF Primer

<sentence><person webid="http://example.com/#johnsmith">I</person>
just got a new pet <animal>dog</animal>.</sentence>

Elements delimited by tags (<sentence>, <person>, etc.) are introduced to reflect a particular
structure associated with the passage. The tags allow a program written with an understanding of
these particular elements, and the way they are structured, to properly interpret the passage. For
example, one of the elements in this example is <animal>dog</animal>. This consists of the
start-tag <animal>, the element content, and a matching end-tag </animal>. This animal
element, together with the person element, are nested as part of the content of the sentence
element. The nesting is possibly clearer (and closer to some of the more "structured" XML
contained in the rest of this Primer) if the sentence is written:

<sentence>
 <person webid="http://example.com/#johnsmith">I</person>
 just got a new pet
 <animal>dog</animal>.
</sentence>

In some cases, an element may have no content. This can be written either by enclosing no
content within the pair of delimiting start- and end-tags, as in <animal></animal>, or by using
a shorthand form of tag called an empty-element tag, as in <animal/>.

In some cases, a start-tag (or empty-element tag) may contain qualifying information other than
the tag name, in the form of attributes. For example, the start-tag of the <person> element
contains the attribute webid="http://example.com/#johnsmith" (presumably identifying
the specific person referred to). An attribute consists of a name, an equal sign, and a value
(enclosed in quotes).

This particular markup language uses the words "sentence," "person," and "animal" as tag names
in an attempt to convey some of the meaning of the elements; and they would convey meaning to
an English-speaking person reading it, or to a program specifically written to interpret this
vocabulary. However, there is no built-in meaning here. For example, to non-English speakers, or
to a program not written to understand this markup, the element <person> may mean absolutely
nothing. Take the following passage, for example:

<dfgre><reghh bjhbw="http://example.com/#johnsmith">I</reghh>
just got a new pet <yudis>dog</yudis>.</dfgre>

To a machine, this passage has exactly the same structure as the previous example. However, it
is no longer clear to an English-speaker what is being said, because the tags are no longer
English words. Moreover, others may have used the same words as tags in their own markup
languages, but with completely different intended meanings. For example, "sentence" in another
markup language might refer to the amount of time that a convicted criminal must serve in a
penal institution. So additional mechanisms must be provided to help keep XML vocabulary
straight.

To prevent confusion, it is necessary to uniquely identify markup elements. This is done in XML
using XML Namespaces [XML-NS]. A namespace is just a way of identifying a part of the Web
(space) which acts as a qualifier for a specific set of names. A namespace is created for an XML

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (104 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/REC-xml-names/

RDF Primer

markup language by creating a URI for it. By qualifying tag names with the URIs of their
namespaces, anyone can create their own tags and properly distinguish them from tags with
identical spellings created by others. A convention that is sometimes followed is to create a Web
page to describe the markup language (and the intended meaning of the tags) and use the URL
of that Web page as the URI for its namespace. However, this is just a convention, and neither
XML nor RDF assumes that a namespace URI identifies a retrievable Web resource. The
following example illustrates the use of an XML namespace.

<user:sentence xmlns:user="http://example.com/xml/documents/">
 <user:person user:webid="http://example.com/#johnsmith">I</user:
person>
just got a new pet <user:animal>dog</user:animal>.
</user:sentence>

In this example, the attribute xmlns:user="http://example.com/xml/documents/"
declares a namespace for use in this piece of XML. It maps the prefix user to the namespace
URI http://example.com/xml/documents/. The XML content can then use qualified
names (or QNames) like user:person as tags. A QName contains a prefix that identifies a
namespace, followed by a colon, and then a local name for an XML tag or attribute name. By
using namespace URIs to distinguish specific groups of names, and qualifying tags with the URIs
of the namespaces they come from, as in this example, there is no need to worry about tag
names conflicting. Two tags having the same spelling are considered the same only if they also
have the same namespace URIs.

Every XML document is required to be well-formed. This means the XML document must satisfy
a number of syntactic conditions, for example, that every start-tag must have a matching end-tag,
and that elements must be properly nested within other elements (elements may not overlap).
The complete set of well-formedness conditions is defined in [XML].

In addition, an XML document may optionally include an XML document type declaration to
define additional constraints on the structure of the document, and to support the use of
predefined units of text within the document. The document type declaration (introduced with
DOCTYPE) contains or points to declarations that define a grammar for the document. This
grammar is known as a document type definition, or DTD. The declarations in a DTD specify
such things as which XML elements and attributes may appear in XML documents corresponding
to the DTD, the relationships of these elements and attributes (e.g., which elements can be
nested within which other elements, or which attributes may appear with which elements), and
whether elements or attributes are required or optional. The document type declaration can point
to a set of declarations located outside the document (called the external subset, which can be
used to allow common declarations to be shared among multiple documents), can include the
declarations directly in the document (called the internal subset), or can have both internal and
external DTD subsets. The complete DTD for a document consists of both subsets taken
together. A simple example of an XML document with a document type declaration is shown in
Example 47:

Example 47: An XML Document With a Document Type Declaration

<?xml version="1.0"?>
<!DOCTYPE greeting SYSTEM "http://www.example.org/dtds/hello.dtd">
<greeting>Hello, world!</greeting>

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (105 of 107)04/05/2004 17:53:18

RDF Primer

In this case, the document has only an external DTD subset, and the system identifier http://
www.example.org/dtds/hello.dtd provides its location (a URIref).

An XML document is valid if it has an associated document type declaration and the document
complies with the constraints defined by the document type declaration.

An RDF/XML document is only required to be well-formed XML; it is not intended to be validated
against an XML DTD (or an XML Schema), and [RDF-SYNTAX] does not specify a normative
DTD that could be used for validating arbitrary RDF/XML (an appendix of [RDF-SYNTAX] does
provide a non-normative example schema for RDF/XML). As a result, more detailed discussion of
XML DTD grammars is beyond the scope of this Primer. Further information on XML DTDs and
XML validation can be found in [XML], and the numerous books on XML.

However, there is one use of XML document type declarations that is relevant to RDF/XML, and
that is their use in defining XML entities. An XML entity declaration essentially associates a name
with a string of characters. When the entity name is used elsewhere within an XML document,
XML processors replace the entity name with the corresponding string. This provides a way to
abbreviate long strings such as URIrefs, and can help make XML documents containing such
strings more readable. Using a document type declaration just to declare XML entities is allowed,
and can be useful, even when (as in RDF/XML) the documents are not intended to be validated.

In RDF/XML documents, entities are generally declared within the document itself, i.e., using only
an internal DTD subset (one reason for this is that RDF/XML is not intended to be validated, and
non-validating XML processors are not required to process external DTD subsets). For example,
providing the document type declaration shown in Example 48 at the beginning of an RDF/XML
document allows the URIrefs in that document for the rdf, rdfs, and xsd namespaces to be
abbreviated as &rdf;, &rdfs;, and &xsd; respectively, as shown in the example.

Example 48: Some XML Entity Declarations

<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
]>

<rdf:RDF
 xmlns:rdf = "&rdf;"
 xmlns:rdfs = "&rdfs;"
 xmlns:xsd = "&xsd;">

...RDF statements...

</rdf:RDF>

Appendix C: Changes

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (106 of 107)04/05/2004 17:53:18

RDF Primer

Only minor editorial and typographic changes have been made since the Proposed
Recommendation version. Older changes are detailed in its change log.

http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ (107 of 107)04/05/2004 17:53:18

http://www.w3.org/TR/2003/PR-rdf-primer-20031215/
http://www.w3.org/TR/2003/PR-rdf-primer-20031215/
http://www.w3.org/TR/2003/PR-rdf-primer-20031215/#changes
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/metadata.rdf

	w3.org
	RDF Primer

