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Emission computed tomography (ECT) is a technology for med-
ical imaging whose importance is increasing rapidly. There is a
growing appreciation for the value of the functional (as opposed
to anatomical) information that is provided by ECT and there are
significant advancements taking place, both in the instrumentation
for data collection, and in the computer methods for generating im-
ages from the measured data. These computer methods are designed
to solve the inverse problem known as “image reconstruction from
projections.” This paper uses the various models of the data col-
lection process as the framework for presenting an overview of the
wide variety of methods that have been developed for image recon-
struction in the major subfields of ECT, which are positron emission
tomography (PET) and single-photon emission computed tomog-
raphy (SPECT). The overall sequence of the major sections in the
paper, and the presentation within each major section, both proceed
from the more realistic and general models to those that are ideal-
ized and application specific. For most of the topics, the description
proceeds from the three-dimensional case to the two-dimensional
case. The paper presents a broad overview of algorithms for PET
and SPECT, giving references to the literature where these algo-
rithms and their applications are described in more detail.
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I. INTRODUCTION

Emission computed tomography (ECT) is a technology
for medical imaging whose importance is increasing rapidly.
There is a growing appreciation of the significance of the
functional (as opposed to anatomical) information that
is provided by ECT, and of its value for the purposes of
medical diagnosis and monitoring the response to therapy.
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There are also significant advancements taking place, both in
the instrumentation for data collection and in the computer
methods for generating images from the measured data.
These computer methods are designed to solve the inverse
problem known as “image reconstruction from projections.”

The major subfields of ECT are positron emission to-
mography (PET) and single-photon emission computed
tomography (SPECT). The purpose of this paper is to give
an overview of the computer algorithms that are used in PET
and SPECT to generate images from the measured data.
The design and implementation of these algorithms is a
multidisciplinary effort involving techniques from electrical
engineering (specifically, signal processing), computer
science (data structures, software engineering), physics
(modeling of radiation transport and detection processes),
mathematics (functional analysis, optimization, numerical
analysis), and statistics (random processes, statistical esti-
mation theory). This paper is aimed toward readers having
a background in electrical engineering, or one of the other
disciplines mentioned above, but who are not familiar with
algorithms for the inverse problem of ECT.

The paper presents a broad overview of algorithms for PET
and SPECT, without going into the details of any specific
topic in this field, since detailed descriptions of the specific
topics within the scope of this paper may be found in the ref-
erenced survey papers, selected topical papers, special issues
of journals, and books. This literature, in turn, contains refer-
ences to a very large number of specialized papers relevant to
some aspect of algorithms for reconstruction of images from
projection data.

II. BRIEF OUTLINE OF DATA COLLECTION IN EMISSION

TOMOGRAPHY

The goal of the radiology specialty of nuclear medicine,
which includes PET and SPECT, is to provide information
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on the distribution of a chosen molecule in space (and pos-
sibly also in time) inside the human body. For a molecule
of biochemical or physiological importance, an image of its
distribution within the body or a specific organ provides in-
formation on the functioning of the body or organ (including
information on the locations of abnormalities such as cancer
tumors) that is valuable for medical diagnosis and for moni-
toring the response to the treatment of disease.

The functional information obtained by PET and SPECT
is complementary to the anatomical information that is
available from other radiological imaging techniques, such
as X-ray-computed tomography (CT) and magnetic reso-
nance imaging (MRI). SPECT is firmly established as an
important tool for evaluating the functional status of the
heart muscle and its blood supply in order to determine if
surgery would lead to any improvement in cardiac function.
Although the majority of SPECT scans at the present
time are done for the diagnosis of cardiac disease, there
are many other clinical and research applications where
SPECT is used. PET is rapidly emerging as an important
tool for detecting cancer tumors and for evaluating their
degree of malignancy, based on differences in biochemistry
and metabolism between tumors and their surrounding
normal tissues. Although cancer applications are the driving
force behind the explosive increase in PET imaging at the
present time, PET (like SPECT) continues to be used in
a wide variety of clinical and research applications where
functional information is required. Fig. 1 shows an example
of an image obtained using PET.

The techniques used in nuclear medicine involve labeling
the chosen molecule with a radioactive atom and adminis-
tering a dose of the labeled molecules to the patient. The la-
beled molecules follow their specific biochemical pathways
inside the body. The atoms used as labels are unstable iso-
topes and undergo radioactive decay at random, leading to
the emission of gamma ray photons which can be detected
outside the body by the detector system of a PET or SPECT
scanner. Fig. 2 shows a typical PET scanner and the corre-
sponding coordinate system used in the paper.

The label atoms used for SPECT each emit a single
photon when they decay. The direction of the photon path is
random for each emitted photon. The label atoms used for
PET decay by emitting a positron, which is the antiparticle
of the electron, having the same mass but with a positive
charge. Within a short distance (usually less than 1 mm),
the positron combines with an electron in an “annihilation
event” (matter combining with anti-matter, mass converted
to energy) which produces two back-to-back gamma ray
photons, each of energy 511 keV and traveling in opposite
directions along the same line (of random orientation).

The instrumentation for detecting gamma rays emerging
from the body is different for PET and SPECT. We first de-
scribe the detection of gamma rays in PET, as illustrated in
Fig. 3.

The useful data in PET result from the situation where the
two photons emerge from the body without any interaction
with the material of the body, and each photon is intercepted
by the detector system. When two photons are detected at al-

Fig. 1. Clinical whole-body PET study of a melanoma patient
using FDG (i.e., deoxy-glucose labeled with Fluorine-18). The
FDG is highly accumulated in the lesions as illustrated by the
coronal slice containing a lesion in the axilla (i.e., armpit region).
The image was reconstructed by a fully three–dimensional (3-D)
iterative reconstruction algorithm (3-D RAMLA using blob basis
functions) from approximately 15 million histogram bins of data
(23 million coincidence counts) per bed position, with eight bed
positions having 50% overlap. (The study was done at the PET
Center in the Department of Radiology, University of Pennsylvania
Medical Center).

Fig. 2. A typical PET scanner, with a diagram of the coordinate
system used in the paper showing its relationship to the physical
scanner and patient bed.

most the same time, the coordinates of each photon intercep-
tion are recorded by the detector system, and the assumption
is made that these photons originated from an annihilation at
some point along the line in space between the two points at
which the photons were detected.

This situation is called a “true coincidence,” when two
photons from the same positron-electron annihilation travel
without interaction to the detector and both are detected
within a short time window (typically, 6–12 ns). If one of
the photons misses the detector for some reason, the time
window will usually contain only one detected photon and
the coordinates will be discarded, unless the same situation
arises with another annihilation at almost the same time.
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Fig. 3. Illustration of different photon paths in a PET scanner.
The scanner may consist of a continuous detector forming a ring
around the patient, or a pair of opposing detectors that rotates
around the patient (coronal view shown). Black color indicates
radioactive tracer in organ regions and tumors. Star symbol
indicates the location of an annihilation event where a photon
pair originates. Black line with an arrow represents the spatial
path of an individual photon. Some photon paths and other
lines have labels corresponding to the notation introduced in
Section III.g representsith line of response (LOR) showing
a true coincidence, i.e., both photons originate from a point on
this straight line.g illustrates an oblique line for a photon
pair originating from within the scanner, for which only a single
photon is detected (the other photon misses the detector surface).
Dashed lines represent nontrue LOR’s for individual photon pairs
(detected within a time coincidence window) as interpreted by
the detector system.g represents a dashed LOR for which a
random coincidence was detected. The twog examples show
dashed LORs for scatter coincidences, for which one of the photons
was scattered after originating inside or outside the scanner field
of view. (g ) represents the original line from which one photon
was lost (resulting in attenuation loss for this line) due to scatter
of the photon.

This case is called a “random coincidence” (or “accidental
coincidence”) and is a source of error in the data, since the
two detected photons come from different annihilations, nei-
ther of which is on the line in space joining the coordinates
of the detected photons.

Two other sources of error occur when one photon (or
both) interacts with the material and is deflected in a new
direction. This results in a loss of counts (“attenuation”) for
the true straight line path, and is therefore a source of error
in the data. If one photon (or both) is deflected from its orig-
inal path and then both are detected, the result is a “scatter
coincidence.” This is also a source of error in the data, since
the original annihilation is not on the line in space joining the
coordinates of the detected photons, as illustrated in Fig. 3.

We now briefly describe the detection of gamma rays in
SPECT, as illustrated in Fig. 4. In SPECT, each radioactive
decay produces one photon (having energy 140 keV for the
most commonly used radioactive label, Technetium-99m)
that travels from the point of decay to the detector. Each
element of the detector receives photons from a narrow
cone of directions, defined by the physical aperture of a
collimator device that rejects most of the incoming photons.
The most common form of collimator consists of a thick
slab of shielding material (e.g., lead, typical thickness 30–40
mm) having a large number of small diameter holes through

Fig. 4. Illustration of different photon paths in a SPECT scanner.
The scanner may consist of one collimated detector (as shown) that
rotates around the patient, or multiple collimated detectors arranged
around the patient (coronal view shown). Black color indicates
radioactive tracer in organ regions and tumors. Star symbol
indicates the location where a single photon originates. Black line
with an arrow represents the spatial path of an individual photon.
Some photon paths (and another line) have labels corresponding
to the notation introduced in Section III.g represents a true
count recorded by the detector from a photon that was accepted
by the parallel hole collimator and was not scattered from its
original straight-line path. The photons traveling on oblique lines
with respect to the collimator are rejected by the collimator (in
practice, some penetration occurs).g represents detection of a
scattered photon, which could originate from inside or outside the
scanner field of view.(g ) represents the original line from which
the photon was lost (resulting in attenuation loss for this line) due
to scatter of the photon.

it (typical diameter 1.5–2.5 mm) and placed adjacent to the
front surface of the detector. Another form of collimator
consists of a single pinhole aperture (typical diameter
0.5–2 mm) in a sheet of shielding material that is placed
some distance (e.g., 150 mm) from the front surface of
the detector, similar to the pinhole camera for visible-light
photons. In SPECT, the detector accumulates those photons
that pass through the collimator and that did not interact
with the attenuating material on their path through the body.
In practice, some scattered photons are also detected, as
illustrated in Fig. 4.

In both PET and SPECT, the detector system accumu-
lates counts for lines in space (actually, tube-shaped vol-
umes), where the counts are individual photons in SPECT
and are pairs of photons in time coincidence in PET. These
counts include the effects of attenuation, scatter, and (in the
case of PET) random coincidences. Apart from these effects,
the total accumulated count for each line indicates the total
number of label atoms along the line that underwent radioac-
tive decay, but it does not indicate where these atoms were
located along the line. The purpose of the image reconstruc-
tion algorithm is to process this imperfect count data for a
large number (often millions) of lines and millions of de-
tected photons to produce an image showing the distribution
in space of the label atoms, and hence the distribution of the
labeled molecules.

A. Notes and References

A fascinating book [1] describes the long history of tomo-
graphic imaging in radiology (i.e., imaging of cross sections
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of the body) using X-ray photons and gamma-ray photons.
The following books describe nuclear medicine physics and
instrumentation [2], fundamentals of radiological imaging
using X-rays and gamma rays [3], and the broad scope of
medical imaging techniques [4]–[8]. The following books
are specifically devoted to CT [9], MRI [10], [11], SPECT
[12] and PET [13]. Detailed review articles that describe
the physics and instrumentation associated with emission
imaging include [14]–[17].

The topics described in the present paper, and many more,
are treated in detail in the comprehensive book of Barrett
and Myers [18], which includes a detailed exposition of ap-
proaches to evaluate the suitability of images for their in-
tended purposes.

III. PROBLEM FORMULATION FOR EMISSION TOMOGRAPHY

Many applications where indirect imaging is employed,
including ECT, involve discrete measurements that corre-
spond to some integral transformation of a function of con-
tinuous spatial variables, where the function and the image to
be reconstructed from the data both represent the spatial dis-
tribution of some physical property of interest inside the ob-
ject being imaged. In these applications, the process of data
collection is naturally represented by a discrete-continuous
(D-C) model that relates the discrete data to the function of
continuous spatial variables, denoted here by .

In this paper, we assume that there is a linear, spatially
variant (LSV) relationship between the basic physical com-
ponent of the data and the function that represents
the spatial distribution. We first describe the LSV model, and
we then build upon this basic physical model to obtain a more
complete model of the data.

The LSV model is a good description of the basic physics
of data collection in ECT, where the detector response is
close to linear over the range of count rates found in most
imaging applications, but the detector response may have sig-
nificant variation with position. To specify the LSV model,
we denote the corresponding component of theth measure-
ment by , and we denote by the contribution
to the th measurement of a point of unit strength located
at . The basic physical model (D-C, LSV) of the
data collection process, with the number of measurements
denoted by , is

(1)
where denotes the finite domain of the spatial distribution.

In emission tomography, the integration kernel
has nonzero value inside a tube-shaped region of space, and
has zero value outside this tube, so that theth measurement
is modeled as the integral of , with a weighting
of , over the th tube. The tube-like shape of the
integration kernel is the distinguishing characteristic of the
problem of image reconstruction from projections, compared
to the problem of image restoration from a blurred image,
where the integration kernel is usually much more localized.

For both PET and SPECT, we choose to include in the in-
tegration kernel the effect of photon attenuation
on the measurements, although in the case of PET a factor
representing attenuation can be separated from the kernel,
as described in Sections VI-C, VII-A, and VII-B. In the fol-
lowing formulation, we choose to represent the contribution
of the scattered photons to the data as an additive term sep-
arate from , although the scatter contribution is a linear
function of , and could therefore be included in
the kernel, which would then have a much broader region
of support (compared to the tube-shaped region when the
kernel does not include scatter). In the case of PET, note that
the contribution of the random coincidences to the data is
a nonlinear function of (proportional to , see,
e.g., [2]), and therefore cannot be included in the integra-
tion kernel . We represent the contribution of the
random coincidences to the PET data as an additive term that
will be estimated separately, similar to the term representing
the scatter contribution.

We now describe a more complete model of the measure-
ment process in emission tomography. For the PET case, we
denote the th measurement in the data set by , with
similar notation for the SPECT case. Since each
measurement is obtained by counting photons produced by
a random emission process, and are samples
(realizations) of random variables whose means (expected
values) are denoted by and .

In the measurement process for PET, which involves de-
tection of pairs of emitted photons in time coincidence, the
mean for the th tube consists of the basic physical compo-
nent , and two additional (unwanted) components repre-
senting the additive contributions of the mean of the random
coincidences, denoted by , and the mean of the scatter co-
incidences, denoted by . Thus, we have

(2)

It can be shown that the probability distribution for each of
the three components is Poisson about its respective mean,
and we recall that the Poisson distribution with
mean has the property that the variance is equal to the
mean. Therefore,

(3)

(4)

For the SPECT case, which involves detection of single
emitted photons, the general structure of the model is sim-
ilar except that the random coincidences component is not
present. Therefore,

(5)

(6)

The kernel function , the LSV term , and the
scatter contribution are of course different in the SPECT
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case from those in PET, but we avoid indicating this explicitly
in the notation when the meaning is clear from the context.

From this point, we can take the D-C model and proceed
in three different directions.

• Obtain a discrete-discrete (D-D) model from the D-C
model by representing the unknown function
by a linear combination of a finite number of basis
functions. Each of the basis functions is multiplied by
a coefficient which is initially unknown, and is deter-
mined from the data by a specified computer algorithm.
We discuss this approach in Section V.

• Obtain a continuous-continuous (C-C) model from the
D-C model by interpreting the discrete data
or as samples of a function of contin-
uous variables in the measurement space. For the sim-
plest forms of integration kernel and mea-
surement geometry, it is possible to derive an inver-
sion formula expressing in terms of the func-
tion of the measurement space variables. Numerical
evaluation of the inversion formula produces samples

on a grid of points in image space, using
the discrete data or . We dis-
cuss this approach in Section VI.

• Proceed further with the D-C model. This leads to an
approach in which the set of functions
becomes the set of basis functions in the image space.
We discuss this approach in Section IV.

A. Notes and References

The various linear models (D-C, D-D, C-C) of data col-
lection in the context of imaging are described in [18]–[21].
Modeling of the data collection process is described for PET
[22], [23], for SPECT [24], [25], and for both [26]. The emis-
sion and detection of the photons in PET and SPECT involves
random processes in time and space [27], and the derivation
from first principles of the commonly used Poisson distri-
bution requires a number of steps and assumptions [26]. The
review paper [28] discusses the general topic of inverse prob-
lems from the statistical point of view.

The response of practical detectors degrades as the count
rate increases because of “dead time” associated with the de-
tection process for each incoming photon. Dead time intro-
duces nonlinearity into the data collection process and affects
the statistical distribution of the data. Although corrections
for dead time may be introduced to restore the linearity of
response up to some limiting count rate, the corrections also
affect the statistical distribution of the data. A detailed dis-
cussion is given in [29] and [30]. In the present paper we
describe reconstruction approaches that are based on linear
models, which do not include the effects of dead time.

In SPECT, the most commonly used collimators have par-
allel holes to select incoming photons from a defined range
of directions, but a wide variety of other collimation devices
have been developed. These include rotating slant-hole
collimators [31], [32], rotating slat collimators [33], pin-
hole collimators [34]–[36], and various converging beam
collimators having fan-beam geometry [37], cone-beam

geometry [38]–[40], and variable-focal-length geometry
[41], [42]. Each of these data collection schemes has its
own extensive literature—the few references cited here are
intended to give examples of recent work on these topics
and to provide entry points to the literature.

We note that there have been some efforts over the years
(but with only limited success to date) to develop so-called
time-of-flight (TOF) PET scanners capable of measuring
(approximately) the difference between the times of de-
tection of the two photons in the coincidence acceptance
window; see, e.g., [43]. The physical processes of photon
detection and the processes of position determination by
the detector system result in an uncertainty in the time
difference that is typically 0.5 ns, which corresponds to a
localization uncertainty of 7.5 cm along the tube between the
opposing detector elements. For TOF-PET, the measurement
process may again be modeled by (1), but in this case the
integration kernel has a region of support that is
only a segment of the tube-shaped region of support that it
has for conventional PET. For TOF-PET, the reconstruction
approaches based on the D-C and D-D models have the
same structure as those for conventional PET. However,
the inversion formulas derived from the C-C model for the
conventional case are not applicable to TOF-PET.

IV. I MAGE RECONSTRUCTIONAPPROACHBASED ON D-C
MODEL

This approach leads to a direct solution to the fundamental
D-C problem without introducing further discretization or
approximation. Although the approach has this attractive the-
oretical property, the methods based on it are not widely used
in PET or SPECT, so our description of this approach is more
brief than that of the other approaches.

We interpret each of the in (1) as the inner product
of the function and the function .
We denote by the linear operator that operates on

, as defined by (1), to produce the data-space
vector consisting of the com-
ponents (where superscript denotes transpose). We
denote by another vector that also hascomponents, i.e.,

. It is clear that a finite number of mea-
surements alone is not sufficient to determine an unknown
function of continuous variables, and further conditions on
the function (e.g., smoothness, norm, entropy) are needed to
obtain a unique solution. The Moore–Penrose generalized
solution (see, e.g., [44] and [45]) is the unique function of
minimum norm among those that minimize the norm of the
residual vector . It can be shown [44], [45]
that the Moore–Penrose generalized solution of the system
of linear functionals in (1) can be represented as

(7)

The right-hand side of (7) represents the adjoint of the oper-
ator applied to the vector. The coefficients are deter-
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mined from (1) as follows. In (1), we replace by
to obtain

(8)
which may be written as

(9)

where is the Gram matrix [21], [44]–[46] with elements

(10)

The major problem with this method is the need to con-
struct and to solve the large, nonsparse, linear system in (9),
given an estimate of from the measured data, in order
to obtain the vector . For realistic models, the calculation
of the matrix elements is not a trivial task, particularly
in SPECT where the attenuation and the detector response
are highly dependent on the location of the emission. For
3-D geometries, and for 3-D SPECT in particular, this ap-
proach requires an excessive amount of computation, com-
pared to other methods of image reconstruction from 3-D
data. The matrix of the linear system in (9) is very large
( , where is the number of measurements) and it is also
dense (relatively few elements are zero), because the func-
tions are not localized. These functions are the
basis functions that are superimposed to form the image, as
shown in (7). The approach described in Section V uses lo-
calized basis functions to form the image, leading to a sparse
system matrix.

A. Notes and References

Reconstruction methods using image basis functions that
are the same as the integration kernels of the measurement
process in tomography were formulated independently by
at least four groups [47]–[50]. These basis functions were
named “natural pixels” [50] and their use by linear recon-
struction methods has a solid foundation in the theory of
linear inverse problems with discrete data; see, e.g., [21],
[44]–[46]. This linear inversion approach is quite general, as
demonstrated by a recent application in MRI [20], but most
developments have been directed toward reconstruction in
SPECT, e.g., [51]–[54], with some also in PET [55], [56].

A nonlinear reconstruction method [47] has also been for-
mulated, and is widely used in some nonmedical applica-
tions of tomographic imaging where only a small number of
measurements are available. This method is based on a D-C
model with uniform strip functions as the integration ker-
nels, and the solution is defined as the function having max-
imum entropy among those that satisfy the data constraints.
This leads to a nonnegative imagefor which
is composed of a sum of strip functions whose coefficients
are determined by solving a nonlinear system of equations
using an iterative algorithm. A similar approach [48] applied
to various optimization criteria for the image function leads
to a variety of linear and nonlinear reconstruction methods.

We note that several other image reconstruction approaches
involving the maximum entropy criterion (but not based on
a D-C model) were described in the literature prior to [47],
where the earliest appears to be [57].

Image basis functions known as “ridge functions” appear
in the theory of image reconstruction from continuous line
integral projections at discrete angles, where the projection at
each angle is given as a function of the continuous variable in
the direction perpendicular to the lines, e.g., [58] and [59]. In
this abstract setting where the projections are functions, one
can also formulate [44], [60]–[62] an iterative process within
a space of image functions that operates on one projection
at a time and does not introduce any new structure into the
image along the direction of integration for this projection.

V. IMAGE RECONSTRUCTIONAPPROACHBASED ON D-D
MODEL

This approach begins by representing the function
by a finite series expansion involving a chosen

set of basis functions. We denote by the approxi-
mation to generated by the linear combination of
a finite number of basis functions, where we denote the
th basis function by and we denote by the

coefficient that multiplies this basis function, so that

(11)

When is substituted for in the D-C
expression (1) for we obtain the corresponding D-D
model of the physics of the data collection process, with

(12)

where

(13)

is the contribution of the th basis function to theth mea-
surement.

We denote by the matrix composed of the elements .
We denote by the column vector consisting
of the components (where superscript denotes trans-
pose), and we denote bythe column vector
(in order to distinguish the vectorfrom the function , from
now on we write all functions with their variables stated ex-
plicitly). The D-D expression (12) for may be written
in matrix-vector form as

(14)

The basic task of the reconstruction process is to find a
vector of basis function coefficients such that the vector

is close (according to some chosen measure) to the cor-
responding constituent of the data vector [see (2) and
(4))]. In order to do this, we need to have estimatesand

of the random coincidence contribution and the scatter
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contribution to , which is the expected value of
the th measurement (omitting the random term in the case
of ). Then, from (2) and (4), the specific task of the
reconstruction process is to find a vectorof basis function
coefficients such that the vector , which
is the estimate of the mean of the data given, is close (ac-
cording to some chosen measure) to the data vector (or

). For a Gaussian model of the data statistics with a
uniform variance, the square norm of the difference between
these vectors, i.e., , is a natural mea-
sure, leading to the use of an algorithm for least squares esti-
mation in the reconstruction process. For the Poisson model
of the data statistics, the Poisson likelihood function is a nat-
ural measure, which increases as these vectors become more
similar, leading to the use of an algorithm for maximum like-
lihood estimation in the reconstruction process.

For a given image and a given vector of measure-
ments, the likelihood is the probability of obtaining
a data vector identical to the measurement vector if the
measurement process were applied to this image. For a
given image, the probability of obtaining an individual
measurement is given by the Poisson probability with the
mean given by the model of the measurement process. The
probability of obtaining the measurement vector from the
given image, i.e., the likelihood , is the product of
the probabilities for the individual measurements (assuming
independent measurements). For the derivation of practical
algorithms, it is convenient to maximize the logarithm of
the likelihood, rather than the likelihood itself. Taking the
logarithm of results in a sum of terms, some of
which are independent of and may therefore be omitted
from the cost function to be maximized. This cost function
is known as the log likelihood, which we denote by .

When the data are very noisy, as is frequently the case in
emission tomography, the use of the maximum likelihood
(ML) or the least-squares (LS) criterion alone leads to im-
ages that fit the detailed structure of the data too closely,
so the images are excessively noisy. These data fitting cri-
teria need to be augmented by a regularization term, which
we denote by , that penalizes image roughness or pe-
nalizes significant deviations from a given image model or
image prior. The algorithm for regularized image reconstruc-
tion finds the coefficients that optimize the penalized log
likelihood , or the penalized square norm
of the residual vector, where the parameterdetermines the
relative weight of the two terms.

Image reconstruction approaches based on the D-D model
consist of five general components [26], [63]. Within each
of these general components, a specific option to be imple-
mented must be selected from a wide array of possibilities.
The five general components are as follows.

1) A set of basis functions,which enables the image
to be represented by a finite number of parame-
ters—There are two different kinds of basis functions,
namely, localized and global. The prime example of
a localized basis function is the voxel, for which the
basis function has unit value inside a small cube and

has zero value outside. Global basis functions, such
as the basis functions of a Fourier series expansion,
make contributions over the whole image region.

2) A model of the physics of the measurement
process—The LSV model described in Section III
is such a model, which involves specifying the mea-
surement kernel . The integration kernel

includes the radiometric sensitivity factor
for detection of photons originating from the point

, and it includes the effect of photon attenua-
tion, which is described in Sections VI-C and VII.

3) A model of the measurement uncertainty,i.e., a
model of the probability distribution of each mea-
surement around its expectation value—The Poisson
distribution is such a model, as incorporated into the
expressions for and in (3)–(6).

4) An objective function—This function consists of a
data fitting criterion and an image property criterion,
and gives a measure of how well an image fits the
data and how well this image matches the desired
image properties. We denote the objective function by

. For the case of penalized log likelihood, we
have

(15)

where is a parameter that controls the balance be-
tween the data fitting criterion and the image property
criterion, and thereby controls the tradeoff between
spatial resolution and noise in the reconstructed image.

5) A numerical algorithm to produce the values of the
coefficients of the basis functions chosen in category
(1), given the measured data and driven by the choices
made in categories (2), (3), and (4)—The numerical
algorithm is designed to find the image vector for
which the objective function is at its maximum (or
minimum). When the data set is relatively small and
a simple objective function is chosen in (4), it may be
feasible to use a noniterative algorithm. However, in
most cases a noniterative algorithm does not exist, or
it would require a nonfeasible amount of computation.
In most cases, image reconstruction based on a D-D
model requires the use of an iterative algorithm that
produces successive estimates of the set of coefficients
of the basis functions. The algorithm is designed to
produce a sequence of estimates that converges to a
solution maximizing (or minimizing) the objective
function.

In principle, the choice of the numerical algorithm should
be relatively routine, once the other choices have been made,
and the final image should be dependent on these choices and
not on the choice of the algorithm. In practice, however, it is
common to stop an iterative algorithm before the sequence of
estimates has converged, in which case different algorithms
will lead to different final images. Historically, the choice of
numerical algorithm received much emphasis during the de-
velopment of image reconstruction approaches based on the
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D-D model, while not much attention was paid to choices be-
yond the simplest ones in categories 1)–4). It is now appre-
ciated that the choices made in 1)–4) have a strong influence
on the characteristics of the final image, and that the use of
better models leads to better reconstructed images.

A. Examples of Image Reconstruction Methods Using
ML-EM Approach

We now give specific examples of a reconstruction algo-
rithm for PET using basic choices for the general components
3)–5) listed above. After presenting these examples, we then
revisit the general components 1)–5) and describe some of
the alternatives that are available for each.

The objective function used in the examples is the log like-
lihood for the Poisson model, with no regularization term,
i.e., (15) with . In the examples, the iterative algorithm
to find the maximum-likelihood (ML) image uses the statis-
tical optimization strategy known as expectation maximiza-
tion (EM) applied to the log likelihood for the Poisson model.

The EM strategy is a general-purpose procedure for the
iterative computation of ML estimates, where the update to
the current estimate consists of two steps—the expectation
step (E) and the maximization step (M). The general formu-
lation of the approach, together with the EM name, appeared
in a much-cited paper [64], although many specific applica-
tions of the underlying principles had been described previ-
ously in the statistical literature. There is now a book [65]
on this topic, and a recent book [66] gives a broader view of
the place of the EM approach in the statistical literature. The
EM procedure for computing ML estimates was introduced
into medical imaging in [67]–[69] and has been widely used
since that time.

We denote by the estimate of the image produced by
image update . Given the current estimate , we need to
compute the “forward projection” , where

(16)

The ML-EM algorithm produces the new estimate
from the current estimate as follows. For ,

(17)
Although this algorithm is well-justified for the model we
have described, the algorithm in (17) is not commonly used in
practice in this specific form. One reason is that the sequence
of estimates produced by this algorithm converges at a
very slow rate. Much computation is required to get to an
acceptable solution, since each new estimate requires a com-
plete cycle through the entire data set. In practice, it is now
common to partition the data set into subsets and to use ver-
sions of this algorithm that operate on one subset at a time
(but not in the natural order of the subsets) to produce a
new estimate for each subset processed. These mod-
ified forms of the ML-EM algorithm are known as “ordered
subset” or “block iterative” methods [70], [71] and the lim-

iting case [72]–[74] uses subsets that each contain only a
single measurement, so that the image is updated after the
processing of each individual measurement. After only one
or two cycles through the data set (i.e., one or two “itera-
tions”), it is typical for these methods to achieve essentially
the same result as the ML-EM algorithm achieves after ten
or 20 iterations, although mathematical proof of convergence
exists for only some of the fast methods.

Another reason for using a modified version of the
algorithm in (17) is that many of the currently available
PET scanners perform online subtraction of counts obtained
as samples from the distribution of random coincidences.
We denote by the PET measurement with online
randoms correction. This randoms correction decreases
the mean and increases the variance, so the distribution
of the randoms-subtracted data is no longer Poisson. The
consequences for the noise model are described in more
detail below. In practice, the algorithm is frequently run on
data from which an estimate of the scatter has also been
subtracted, so that is used in place of
in the numerator of (17), and alone is used in the
denominator. In this case, the data are not consistent with
the Poisson model on which the algorithm is based, but this
algorithm is very robust and is still capable of generating
reasonable results.

We now discuss the randoms correction in more detail,
since it illustrates the problem of matching the algorithm to
the statistics of the data. All PET scanners have a timing
window to identify coincident photons, and many current
scanners also have a timing window that is delayed rela-
tive to the primary window. The output from the primary
window contains not only true and scatter coincidences that
result from the same annihilation, but also random coinci-
dences where each photon comes from a different annihi-
lation. If a photon is detected within the delayed window,
that photon could not have come from the same annihilation
that triggered the primary window, so the delayed window
provides samples from the distribution of random coinci-
dences. Preferably, the counts of the randoms from the de-
layed window would be accumulated and stored in the same
way as the coincidences (trues+randoms+scatter) from the
primary window, which would provide an estimate of the
mean of the randoms contribution to the coincidence data
for later use by the reconstruction algorithm. However, as
noted above, many current scanners perform an online sub-
traction of the counts of the randoms. This operation is a sub-
traction of one Poisson variable from another and the vari-
ance of a Poisson variable is equal to its mean, so the result
is no longer a Poisson variable (since the mean of the result
is equal to the difference of the two means and for indepen-
dent variables the variance of the result is equal to the sum of
the two variances). The PET measurement with online ran-
doms correction is denoted by , and its mean and
variance are given by

(18)

(19)

(20)
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It has been shown [75]–[77] that an additive offset of
can be applied to the randoms-subtracted data such that the
distribution of the offset data is approximated well by a
shifted-Poisson model which has the same mean and vari-
ance as this distribution. For this model, the corresponding
log likelihood and the corresponding ML-EM algorithm
(or some other algorithm) can be formulated, leading to
a reconstruction method that incorporates a model of the
statistical distribution of the data. When randoms correction
is done online, the counts of the randoms from the delayed
window are not available, and less direct methods [63], [78]
must be used to obtain an estimateof the mean of the
randoms contribution to the coincidence data for use by the
reconstruction algorithm.

We show as an example the modified version of the
ML-EM algorithm of (17) for ordered subsets and for
randoms-corrected PET data [78]. For ,

(21)
where is the subset of the data being used for theth
update of the image.

B. Some Design Options for Image Reconstruction Methods

We now revisit the general components 1)–5) and describe
some of the alternatives that are available for each. These
general components and some of their associated options are:

1) A set of basis functions,which enables the image to
be represented by a finite number of parameters—The
prime example of a localized basis function is the
voxel, for which the basis function has unit value
inside a small cube and has zero value outside. We
have investigated alternative basis functions, known as
“blobs,” that have spherical symmetry and bell-shaped
radial profiles [74], [79]–[82]. Blobs are localized, but
are also smooth (almost bandlimited) functions. The
represented image is also a smooth function, since it
is composed of the superposition of blobs arranged on
a grid in 3-D space. The coefficients of the blobs are
determined by the reconstruction algorithm, which is
therefore searching in a space of smooth functions for
a represented image whose model data is a good fit to
the measured data. In this way, a global smoothness
property of the image is being achieved through the
use of these basis functions, instead of by incorpo-
rating such a constraint into the objective function.

2) A model of the physics of the measurement
process—The LSV model described in Section III is
such a model, which involves specifying the measure-
ment kernel . The size of the reconstruction
problem makes it impossible to store the complete
matrix (except for relatively small two–dimensional
(2-D) problems). One approach is to compute the
elements as they are needed. This approach is
best suited to fairly simple models. Another approach
is to represent the matrix as the product of several

matrices, each of which corresponds to a component
of the physical model. The most complete formulation
and implementation of this approach for PET has been
done by Leahy, Qi, and colleagues [23], [78], [83],
[84], where the matrix is factored as

(22)

Here, we only indicate the role of each matrix, since
full descriptions of these matrices are given in the ref-
erences. The matrices represent models of the positron
travel from the radioactive decay to the annihilation,
the geometrical mapping between each image basis
function and each pair of detector elements (with no
attenuation), the attenuation that modifies the geomet-
rical mapping, the detector blurring introduced by the
physical processes within the detector, and the detector
sensitivity.

In the case of SPECT, a similar amount of research
and development effort has gone into the modeling of
the spatially variant detector response and the atten-
uation of the photons; see, e.g., [14]–[16], [24], [25],
[85]. The modeling of attenuation in PET is much sim-
pler than it is in SPECT, as described in Sections VI-C
and VII. In both PET and SPECT, much effort has also
gone into methods for estimating the scatter contribu-
tion to the data. This is a field in itself, with its own
specialized methods, which we do not describe further
in this paper.

3) A model of the measurement uncertainty,i.e., a
model of the probability distribution of each mea-
surement around its expectation value—The Poisson
distribution is a good model for the number of photons
reaching a specific detector element within a specific
interval of time. However, the probability distribution
of each measurement may be changed significantly
by processing operations on the data. One example of
such an operation is the online subtraction of random
coincidences, and further operations such as normal-
ization and interpolation are routinely performed on
the data in practical scanners. An example in [86] of
the effect of interpolation on the variance shows a
strong spatial pattern of higher and lower values in the
variance map of the interpolated data.

In general, each element of the data vector that is
supplied to the reconstruction algorithm does not have
a simple probability distribution, such as Poisson or
Gaussian. However, as described in [87], it is possible
to apply an additive offset or a multiplicative scale
factor to each data element so that its distribution is
approximately Poisson, in the sense that the mean and
variance of the modified data element match those of
the Poisson distribution. This approach enables algo-
rithms that are based on the assumption of Poisson sta-
tistics to be used with data that is non-Poisson as a re-
sult of previous processing operations.

4) An objective function—The objective function
in (15) for the penalized log likelihood, and
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the similar objective function for the penalized least
squares criterion, both contain a roughness penalty
term . The general purpose of this regularization
term is to impose a smoothness constraint on the
reconstructed image, and the specific form of this
term in PET and SPECT is often motivated by the
assumption that the spatial distribution being im-
aged consists of distinct uniform regions with sharp
boundaries between them. The design of this term is
a challenging task, since it involves not only encour-
aging local smoothness within uniform regions of the
image but also avoiding blurring of their boundaries.
A typical roughness penalty is

(23)

where is the set of voxels in a defined neighbor-
hood of voxel , and are factors that give more
weight to voxels in nearer to voxel compared to
those further away. The function is a penalty
function whose value increases as the difference be-
tween the values increases for a pair of voxels. The
relative difference between the voxel values may be
used [88] but it is more common to use the abso-
lute difference, in which case the penalty function re-
duces to a function of one variable, denoted here by

, with . The choice of a
basic quadratic function for makes it relatively
simple to optimize the objective function

, but results in over-smooth images.
A number of modified quadratic functions and other
functions for have been investigated that allow
the formation of edges by reducing the rate of increase
of the penalty function (or by tapering off to a con-
stant value) above a specified value of(see, e.g., [23],
[89]). Functions of this kind have been studied exten-
sively in the field of robust statistics.

The same objective function may be ob-
tained from a Bayesian formulation where the image
prior is given by the Gibbs distribution proportional to

, and the posterior density is the product
of the likelihood function and the image prior
(and divided by , which is independent of ).
The objective function is obtained by taking
the log of the posterior density (and omitting terms
that are independent of). The maximuma posteriori
(MAP) estimate is obtained by finding the imagethat
maximizes . The paper [23] gives a detailed de-
scription of this approach and of the functions
that have been investigated. Image models relevant to
this approach are reviewed in [90], and reconstruction
approaches using other kinds of image priors are dis-
cussed in [91] and [92].

5) A numerical algorithm to produce the values of the
coefficients of the basis functions chosen in category
1), given the measured data and driven by the choices

made in categories 2)–4)—The numerical algorithm
is designed to find the image vector for which the
objective function is at its maximum (or minimum).
As the objective functions incorporate more complex
models of the image, it becomes more difficult to
derive special-purpose algorithms and it becomes
more attractive to use general-purpose optimization
methods. One popular class of methods involves
gradient ascent, using preconditioners combined with
the conjugate gradient approach [84], [93]–[96].
Reference [78] compares two algorithms for objective
functions that incorporate the statistical model of
randoms-subtracted data. One algorithm is that of
(21), which optimizes an objective function that does
not include image properties, and a second algorithm
optimizes an objective function that incorporates
image properties in the form of a Gibbs distribution.

C. Image Reconstruction From List-Mode Data

We mention briefly another class of algorithms designed
for a different format of the data, since this data format and
its associated algorithms have been receiving increasing at-
tention in recent years. For the methods described in the other
sections of the paper, the data space is partitioned intobins
where, in the PET case,is (at most) the number of pairs of
opposing detector elements and, in the SPECT case,is (at
most) the number of detector elements on the gamma camera
(or cameras) multiplied by the number of camera positions
around the patient. In the conventional format for the data,
the individual counts are accumulated in this set of bins to
form a histogram in the data space.

In the practical situation in PET, the numberof his-
togram bins is usually much smaller than the number of pairs
of opposing detector elements, which is 75–200 million
for typical clinical scanners (and is much larger than this
for some research scanners). It would not be efficient to
store and process this number of histogram bins, since the
number of measured coincidences is usually much smaller
than this, typically, 20–50 million. However, the use of a
smaller number of histogram bins results in some loss of
spatial resolution, since the counts associated with a number
of neighboring lines in space that are individually resolvable
by the detector system will be accumulated together in the
same histogram bin.

In the more basic format for the data, known as “list
mode,” the detector coordinates of each individual count are
stored sequentially in a long list as the photons are detected.
List-mode data can be binned into the histogram format at
any time after data collection, then reconstructed by con-
ventional algorithms, or reconstruction can be done directly
from the list-mode data, as summarized in this subsection.
Historically, the use of list mode has been mainly associated
with PET, although there have been recent developments
specifically for SPECT [97], [98] and for reconstruction
from Compton-scatter data [99]. We focus here on the use
of list-mode data in PET.

There is only a limited choice of algorithms for image
reconstruction from list-mode data in PET, in contrast to the
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wide variety for data in the conventional histogram format.
The problem of reconstruction from list-mode data lends
itself naturally to an ML formulation and subsequently to
algorithms for estimating the ML solution given list-mode
data [100]–[107]. Alternatively, the well-known ML-EM
algorithm for binned PET data that uses the EM strategy
can be decomposed into operations on the individual events
[108]–[113]. This simple alternative derivation in fact leads
to the same algorithm as that derived more rigorously by
applying the EM strategy to the ML formulation specifically
for list-mode data (except for the algorithm of [101], which
employs a partitioning of the data space). The algorithm
described in [113] is being used in one of the commercial
PET scanners using a rotating pair of gamma cameras [114],
[115]. These list-mode approaches derived from the ML
formulation involve the same five D-D components (but for
different data) as those for the conventional approaches,
namely, image basis functions, model of the measurement
physics, model of the measurement statistics, objective
function with a log-likelihood term and possibly a penalty
term, and numerical algorithm. Another approach to re-
construction from list-mode data involves event-by-event
backprojection, followed by spatially-variant filtering or by
iterative refinement of the image. Algorithms based on this
approach have been investigated for many years—a recent
example is found in [116] and [117].

Although the focus of this paper is on reconstruction
methods for static imaging, we note that list-mode data is
advantageous for dynamic imaging, since the time of the
event (and indeed any other measurable parameter) can be
recorded for each photon pair. For dynamic studies using
list-mode data, one possibility is to pursue a hybrid approach
to processing in which the time variable is continuous and
partitioning of the space is used for the geometric variables,
as described in [118], [119].

D. Notes and References

The general features and some specific examples of the
image reconstruction approach based on the D-D model are
described in [63] and [120], and further in [121, Ch. 10] and
[26]. Surveys of the methods used in PET include [22] and
[23], and [122] gives an overview for PET and SPECT. There
is much research activity at present on the topic of iterative
algorithms, involving a wide variety of methods, as summa-
rized in [123]. Non-iterative algorithms have also been inves-
tigated for SPECT [124] and PET [125], although their use is
limited to 2-D applications at present because of their compu-
tational demands. Iterative algorithms also have large com-
putational demands, especially when used with the data sets
produced by the current generation of high resolution PET
scanners, and work is underway to implement these algo-
rithms on clusters of commodity PC processors [84], [126].

The topic of this section concerns methods based on
D-D models for the problem of reconstructing emission
maps from the emission data in PET and SPECT. A closely
related problem in PET and SPECT is the reconstruction of
attenuation maps from transmission data obtained using an
external source of radiation that transmits photons through

the body to the detector, as outlined in Section VII. The
concepts and algorithms for the transmission problem are
described in detail in [127], and these have much in common
with the methods for emission data.

The current work on reconstruction methods for PET and
SPECT emphasizes the optimization of objective functions
that are based on statistical models of the measurement
process. However, much work on reconstruction methods
has also resulted from considering algorithms for finding a
solution to an inconsistent system of equations (or inequali-
ties), where each measurement may be weighted according
to an estimate of its variance. Such methods are not optimal
for low-count data, where the probability distribution of each
measurement is not symmetric around its expectation value.
However, such methods can produce useful results in many
practical applications, and iterative reconstruction algo-
rithms of this kind have been used since the earliest days of
computed tomography, including the original 1971 EMI CT
scanner. As early as 1974, review papers [128]–[130] were
classifying such algorithms, including ones for weighted
least squares reconstruction, which is still an important
option today. A general formulation [62] includes as special
cases many previously published algorithms, and another
significant paper [131] describes the use of the conjugate
gradient algorithm for computing the weighted least squares
solution. Many iterative methods are described and analyzed
in the first book on image reconstruction algorithms [132],
in the early review paper [120], and in the recent book [121]
and review paper [133].

The basic task of seeking a solution of (14) can be inter-
preted as an instance of the convex feasibility problem, which
is an active topic of investigation in the applied mathematics
literature; see, e.g., [134]. In that area there is a popular class
of methods called “projection methods,” where the word pro-
jection is meant in the geometric sense of finding a point in a
given set, closest to another given point in space (and not in
the sense it is used in the title of this paper). The well-known
ART algorithm for image reconstruction [132], [133] is such
a projection method and the ML-EM algorithm can also be
treated as an alternating projections method; see [135] and
[136]. In an analogous fashion to the block iterative (ordered
subset) versions of the ML-EM algorithm mentioned in Sec-
tion V-A, the quest for alternative algorithmic structures is
also an active topic of investigation for other image recon-
struction methods; see, e.g., [137] and [138], and for more
general projection methods, e.g., [139].

VI. I MAGE RECONSTRUCTIONAPPROACHBASED ON

C-C MODEL

This approach begins by obtaining a C-C model from the
D-C expression (1) for by interpreting this component
of the measurement vector as being a sample of a continuous
function in the measurement space. The next step is to make
simplifications to the model of the measurement process until
we obtain a C-C model for which an analytic inversion for-
mula can be derived. This approach leads to fast methods that
are widely used in practice, but their performance is certainly
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less than optimal since they are linear methods that do not in-
corporate detailed models of the physics of the measurement
process or of the signal-dependent statistics of the measure-
ments that are obtained in emission tomography.

In this paper, we focus on the geometries of data collec-
tion that lead to parallel-ray projections, since this partic-
ular case is the one of major practical importance in PET
and SPECT (and in many other applications, such as elec-
tron microscopy). Other data collection geometries that lead
to projections composed of nonparallel rays are also found in
SPECT, where some applications use converging beam col-
limators or pinhole apertures, so that the data are collected
in the form of fan beam projections or cone beam projec-
tions. Similar projections are also produced by the transmis-
sion scans in PET and SPECT, as described in Section VII-A,
and they are also of major practical importance in X-ray CT;
see, e.g., [9] and the papers on X-ray volume imaging in this
Special Issue. The derivations of inversion formulas for fan
beam and cone beam projections involve specialized topics
that are beyond the scope of this paper, in which the descrip-
tion of the C-C approach is directed toward the case of par-
allel-ray projections.

The first simplification of the C-C approach involves
shrinking each of the tube-shaped regions of integration to
an infinitely thin line, replacing the 3-D integral over the
volume of the tube by a one-dimensional (1-D) integral
along the line, and setting the integration kernel
to the same constant value for all points along the line and
for all lines . This simplification approximates
the LSV model, not only by a linear spatially invariant (LSI)
model, but also by a special case of the LSI model involving
integration of along lines.

In order to specify the location of a line in 3-D space, we
define rotated coordinates , as illustrated in Fig. 5,
where these coordinates result from a rotation of the original
coordinates by an angle about the axis, followed
by a rotation by an angleabout the new axis (so that for

the axis is in the - plane). We define the line
in space as being parallel to theaxis and passing through
the point , so that the line is specified by the four
parameters .

We now have the C-C model

(24)

where are the coordinates in the fixed system of a
point which is on the line of integration and is specified by

in the rotated coordinates. Here
is a continuous function of the variables in the measurement
space, and the physical component of theth measurement
is the value of this function at the point in the
measurement space.

For a given orientation , the function of the re-
maining two variables is known as the parallel
ray projection of , for this direction of the lines

Fig. 5. Illustration of the projection data coordinates(x ; z ; �; �)
with respect to the 3-D coordinate system(x; y; z) of the scanner.
Projection integration is done in they direction of the rotated
coordinate sytem(x ; y ; z ) (illustrated on the right). The original
coordinate system(x; y; z) is first rotated around thez axis by
the angle� (the(x; y) plane is rotated to get the newx and
preliminaryy axes). In the second step, the coordinate system is
further rotated around the newx axis by the angle� (the(y ; z)
plane is rotated to get the finaly andz axes). For the case of
� = 0 and� = 0 , thex andz projection coordinates are
equivalent to the imagex andz coordinates (center illustration).
The orientation of the projection coordinate system for� = 70
and� = 15 is illustrated at the left (note that they axis is
oriented away from us in this example).

of integration. We denote the parallel ray projection by
, where

(25)

For parallel ray projections, there is a simple relationship
[140] between the 2-D Fourier transform of each parallel ray
projection and a corresponding plane within the 3-D Fourier
transform of the function . This relationship is
known by various names, including Fourier projection the-
orem, Fourier central section theorem, and projection slice
theorem. We demonstrate this relationship for the special
case where and , so that ,
and then infer the general case from the well-known prop-
erty that rotation of a function corresponds to rotation of its
Fourier transform [141], [142]. We denote by
the Fourier space variables corresponding to . We
denote by the function that is the 3-D Fourier
transform of , and we denote by the
function that is the 2-D Fourier transform of . We
define the Fourier transforms of and
by

(26)

(27)
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We now consider the values of the 3-D Fourier transform of
on the 2-D plane through the origin of the

3-D Fourier space, which are

(28)

The final expression is simply the 2-D Fourier transform of
the parallel ray projection at the orientation , , for
which the lines of integration are perpendicular to the plane

. The general case of a parallel-ray projection at an arbi-
trary orientation corresponds to the , projection of
a rotated version of the object, whose Fourier transform is a
similarly rotated version of the Fourier transform of the orig-
inal object. The relationship therefore exists in the general
case, where the 2-D Fourier transform of a parallel-ray pro-
jection at a specific orientation is equal to the values of
the 3-D Fourier transform on the 2-D plane through
the origin having the corresponding specific orientation (i.e.,
perpendicular to the lines of integration). The statement of
the Fourier central section theorem is, therefore, expressed
as

(29)

We now use the inverse Fourier transform to express
in terms of , which in turn is ex-

pressed in terms of using the Fourier central
section theorem as follows:

(30)

(31)

where , are the rotated coordinates of
on one of the planes (of the set of planes) containing both
the Fourier space origin and , and where and

are the rotation angles of this plane. Since
is obtainable from the projection by 2-D Fourier
transformation, we now have an inversion formula that is
derived from the C-C model, and that expresses
in terms of its parallel ray projections. The next step in the
image reconstruction approach based on the C-C model
involves specifying a method for the numerical evalua-
tion of the inversion formula in order to produce samples

on a grid of points in image space, using

the discrete data. Although this is the simplest example of
an inversion formula for 3-D reconstruction, a number of
problems arise when we consider using it in the practical
application of 3-D reconstruction in PET (or SPECT). We
discuss some of these practical issues in the following
subsections.

A. Geometry of Data Collection

In the image reconstruction approach based on the C-C
model, the geometry of the data collection has a major in-
fluence on all aspects of the approach, namely, the model,
the inversion formula based on the model, and the numerical
evaluation of the inversion formula. Much effort has gone
into the development of specific inversion formulas and spe-
cific data processing procedures for a wide variety of appli-
cations involving image reconstruction from projections. We
now outline some of the specific geometrical issues that arise
when the approach based on the C-C model is used in PET.

Consideration of the Fourier central section theorem
shows that the parallel ray projections corresponding to

and to covering the range [0, ] are sufficient
to cover Fourier space, and would therefore be sufficient
for reconstruction. In this case, the 3-D reconstruction
procedure decomposes in thedirection into a separate
2-D reconstruction for each value of. In PET, the data can
be formatted into projections covering a range of oblique
angles . From the geometrical point of view,
these projections contain more lines of integration than
necessary. Recall that this situation arises in the simplest
3-D inversion formula (31), where the required value of

is available from more than one projection
transform plane. In PET, the measurement for each line of
integration often consists of only a few photon pairs and,
from the statistical point of view, it is important to ensure
that geometrically redundant measurements make suitably
weighted contributions to the reconstructed image.

Another geometrical issue arises in PET with parallel-ray
projections at oblique angles because the cylindrical
detector (or pair of planar detectors) cannot measure the parts
of the projections near the ends of the range of, leading
to incomplete projections, as illustrated in Fig. 6. However,
the typical inversion formulas are derived for complete pro-
jections. For example, the complete projection is
needed in order to obtain its Fourier transform .
The approach adopted in PET [143], [144] is to first obtain
a low-statistics preliminary image from the nonoblique data
( , or in a small range around zero). Line integrals
through this reconstructed image are then calculated, and
these estimated data are used to fill in the missing parts of
the projections. This augmentation of the data set enables an
inversion formula that is derived for the spatially invariant
case of complete projections to be used for PET, in which
the measured projections are incomplete and the process of
data collection is spatially variant.

B. Design of Reconstruction Algorithm for Discrete Data

After an inversion formula is derived, the next step in-
volves designing a numerical procedure to evaluate it. This
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Fig. 6. Illustration of the geometrical configurations of the
projection data for photon pairs that do not scatter.a represents
a photon pair traveling in the nonoblique direction(�=0), i.e.,
perpendicular to thez axis, which is the axis of the detector
cylinder. All nonoblique photon pairs which originate from within
the scanner field of view are detected.b represents a photon pair
traveling in an oblique direction(� 6=0) for which both photons
are detected.c represents a photon pair traveling in an oblique
direction which originated from within the scanner field of view,
but for which one of the photons misses the detector cylinder. The
projections at oblique directions contain regions, marked byx in
the diagram, that correspond to oblique lines where one of the
photons misses the detector cylinder.

may involve manipulating the formula to obtain a modified
version that is theoretically equivalent, but is more suitable
for numerical evaluation. This may also involve introducing
regularization to provide control over the smoothness prop-
erties of the solution and over the noise amplification of the
inversion process.

We now consider the numerical evaluation of the inversion
formula based on the Fourier central section theorem. The
simplest format for the data consists of a Cartesian grid in
the variables on each projection plane, with equally
spaced angles in over the range [0, ] and equally spaced
angles in over the range of oblique angles . If
parts of the projection plane are not measured, as is the case
in PET, the missing data must be estimated, as described in
the previous subsection. The fast Fourier transform (FFT) al-
gorithm applied to the data on a projection plane will produce
the values of on a Cartesian grid in the vari-
ables . The critical step in the procedure involves
using these values to determine the values of
on a 3-D Cartesian grid. Once this is done, using the pro-
jection planes at all of the discrete angles, the inverse FFT
algorithm applied to the 3-D transform values will produce
the values of on a 3-D Cartesian grid.

The critical step involves using the available data on a
highly nonuniform grid in the 3-D transform space to esti-
mate the required values on a Cartesian grid. It is natural
to attempt to estimate these values using a simple interpo-
lation approach but, unfortunately, this leads to poor results,
even when oversampling is used (the reasons for this are dis-
cussed in, e.g., [145]). Although the concept of using Fourier
transforms for image reconstruction from projections was

known in the 1950s and 1960s in radio astronomy [140],
[146], [147] and in electron microscopy [148]–[150], it is
only comparatively recently that the problems of this critical
step have been resolved. Instead of using simple interpola-
tion, a method known as “gridding,” which originated in the
radio astronomy field [151] and was introduced into medical
imaging in [152], is used to estimate the required values on
the Cartesian grid. Briefly, this involves pre-weighting the
data on the nonuniform grid (based on the local density of
the available samples), convolving this data with a smooth,
almost-bandlimited kernel, sampling the result on the Carte-
sian grid, and optionally a further post-weighting [153] of
the values on this grid. An inverse Fourier transform is then
performed from the values on the Cartesian grid to a Carte-
sian grid in the image space, where the result is weighted to
compensate for the Fourier-domain convolution by the inter-
polation kernel. This approach has been shown to give good
results in 2-D X-ray CT [154] and 3-D PET [153], and is used
extensively in MRI, e.g., [155], [156].

We now describe an alternative approach that is based on
a modified version of the Fourier inversion formula. This
approach involves a change of variables in the 3-D inverse
Fourier transform, so that polar variables are used

instead of , where . The

2-D Fourier integral with respect to of the projection
at angles is then combined with the inverse Fourier
integral over the radial variable to produce a 2-D convolu-
tion of the projection with a filter kernel. The inverse Fourier
integral over the angular variables is now simply an
image-space superposition of the filtered projections, which
is an operation known as “backprojection” of the filtered pro-
jections. The values of each filtered projection are known on
a 2-D Cartesian grid, and interpolation is required to deter-
mine the contribution of this filtered projection to a point in
the image (on the 3-D image grid). In this case, a simple inter-
polation method leads to good results, in contrast to the case
of interpolation between values of the Fourier transform of
the projection.

This approach leads to the most widely used class of al-
gorithms for discrete data, known as “convolution-backpro-
jection.” The 2-D version of convolution-backprojection (re-
viewed in, e.g., [145]) is a simple and robust algorithm [146],
and [157]–[160] that has been widely used since the early
1970s. In the case of 2-D reconstruction, the filter kernel
that is convolved with each 1-D projection is the inverse
Fourier transform of the function , where
is a window function that controls the tradeoff between the
spatial resolution and the noise amplification in the recon-
struction process. In the case of 3-D reconstruction in PET,
the specification of the filter kernel is more complex [144],
because of the geometrical redundancy of the data and the
need to incorporate an appropriate weighting of this data. In
the case of 3-D reconstruction in electron microscopy [150],
the data sets typically have geometrical insufficiency rather
than redundancy (e.g., projections for only a single value of
the oblique angle ), and a filter kernel and weighting have
been devised [161] for this data. As in the 2-D case, a mul-
tiplicative low-pass window function in Fourier space con-
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trols the noise-resolution tradeoff. The 3-D version of con-
volution-backprojection is widely used in PET [143], [144],
where it is known as 3DRP, with the RP denoting the opera-
tion of reprojection that is needed to estimate the unmeasured
parts of the projections (see Section VI-A and Fig. 6) prior
to convolving the projections with the filter kernel.

C. Inversion for C-C Model With Attenuation

The inversion approaches described in the previous sec-
tions are based on the simplest C-C model of ECT in which
the data are line integrals of the function to be determined.
Inversion is also possible for a more realistic C-C model of
ECT that incorporates the attenuation of the photons between
the point of emission and the detector.

Introducing notation similar to that of [45], denotes the
line of integration, denotes the section of be-
tween the point on and the detector in the SPECT
case, and in the PET case and de-
note the two sections of between the point on
and the two opposing detectors. We denote by the linear
attenuation coefficient at the pointalong the line, so that

is the probability that a photon is successful
in traversing a differential element of length without in-
teraction with the attenuating material.

In SPECT, each radioactive decay produces one photon
that travels from the point of decay to the detector and the
detector accumulates those photons that are traveling in the
direction and that did not interact with the attenu-
ating material on their path to the detector. We denote by

the projection at orientation obtained
from the C-C model of SPECT with attenuation, which is ex-
pressed as

(32)

where, as before, are the coordinates in the fixed
system of a point which is on the line of integrationand is
specified by in the rotated coordinates. In practice,
some scattered photons are also detected, but this model does
not include their contributions to the SPECT data.

In PET, each radioactive decay produces two photons that
travel in opposite directions from the point of decay to the op-
posing two detectors. The detector system records a “true co-
incidence” count when the two individual photons do not in-
teract with the attenuating material on their respective paths
to the detectors, and they are detected at almost the same
time (i.e., within a short time window, typically 6–12 ns).
In practice, some scattered photons are also detected, and
sometimes two photons originating from two different ra-
dioactive decays are detected within the time window, known
as “random” (or “accidental”) coincidences. We now state a
C-C model of PET that includes the effect of attenuation, but
does not include the contributions of scatter and random co-
incidences to the PET data. We denote by the

projection at orientation obtained from the C-C model
of PET with attenuation, which is expressed as

(33)

where, as before, are the coordinates in the fixed
system of a point which is on the line of integrationand is
specified by in the rotated coordinates.

Compared to SPECT, the influence of attenuation on the
projection data is much simpler in PET, since the detection
probability for a decay somewhere along a line does not de-
pend on the location of the decay along the line, but only
depends on the integral of attenuation over the whole line. In
the case of PET, inversion methods developed for
can be used, after doing a preprocessing operation on the data
to correct for the effect of attenuation. Preprocessing opera-
tions are discussed in Section VII.

In the case of SPECT, the derivation of an inversion for-
mula from the C-C model with attenuation is a challenging
task, even in the 2-D case. A less general form of the model
for 2-D SPECT, which leads to a formulation known as the
exponential Radon transform, is obtained when the attenua-
tion coefficient can be modeled as constant (of known value)
within a region of the plane containing the support of
the activity distribution. The exponential Radon transform
corresponds to (32) with a constant value of, and with
restriction to and the 2-D slice . Inver-
sion formulas for the exponential Radon transform were ob-
tained in 1979–1980, in the Fourier domain [162], and in
the spatial domain [163]. The spatial-domain formula may
be implemented as a convolution-backprojection algorithm,
where the filter is a modified version of the filter, and
the filtered projections are backprojected with an exponen-
tial weighting factor. Other inversion formulas were obtained
independently after 1980. In 1995, it was shown [164], [165]
that four inversion formulas for the exponential Radon trans-
form (including those of [162], [163]) can be interpreted as
special cases of a broad class of linear methods, and that
this generalization includes a new method having better noise
properties than the methods known previously.

The model for 2-D SPECT with spatially varying atten-
uation coefficient, and which is known for all , leads
to a formulation known as the attenuated Radon transform.
Inversion of this transform was an open problem until around
2000, when deep analytical insights led to two different
derivations of two equivalent inversion formulas [166],
[167], and further analysis [45], [168]. Once again, the
inversion process has the convolution-backprojection struc-
ture, where the data are pre-weighted before the convolution
with a specified filter kernel, followed by post-weighting,
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after which the filtered projections are backprojected with
an exponential weighting factor. References [167], [169],
and [170] contain detailed descriptions of the adaptations of
the inversion formulas to produce reconstruction algorithms
for discrete data, along with some promising results of initial
tests. This remarkable algorithm is a significant accomplish-
ment that has elevated the C-C formulation for SPECT from
a theoretical concept to a model having practical relevance
for SPECT reconstruction.

D. Notes and References

Many of the books already cited contain some descrip-
tion of inversion methods based on the C-C model. Inver-
sion formulas for image reconstruction from various kinds
of known projections date back at least as far as the now-fa-
mous paper of Radon in 1917. English translations of the
original German paper may be found in [171, Appendix A]
and in [172] (which contains translator’s notes and a list of
corrections, and is preceded by a brief biography [173]). A
recent paper [174] gives an overview of the historical devel-
opment of CT and the associated inversion formulas. Early
survey papers include [129]–[131], [160], and [175]–[179].
The first comprehensive textbook devoted to image recon-
struction algorithms is [132], and the fundamentals of radio-
logical imaging using X-rays and gamma rays are described
in detail in [3]. Another early book on image reconstruction
methods and applications [171] (reprinted 1993) has an ex-
tensive bibliography of the work prior to 1983. Further publi-
cations from this era and having broad scope include a review
chapter [180] and an extensive bibliography [181]. Tutorial
descriptions of the C-C based inversion methods from the
point of view of physics and engineering may be found in [8],
[144], [145], [182], [183] and a recent concise survey [184]
gives references to a selection of key papers, journal special
issues, and books. The mathematical foundations of these in-
version methods are described in detail, but also in a con-
structive manner accessible to theoretically inclined physi-
cists and engineers, in [44] and [45]. Another book [185]
on the mathematical foundations of these methods gives de-
tailed tutorial descriptions (at the level of advanced under-
graduate and beginning graduate students) of a wide range
of mathematical topics relevant to the analysis of imaging
systems, motivated by examples involving the inversion for-
mulas for 2-D X-ray CT and their discrete implementations.
Books directed primarily to mathematicians include [186],
[187], and there is an extensive literature in the related branch
of mathematics (integral geometry).

VII. PROCESSING OFTRANSMISSIONDATA AND EMISSION

DATA PRIOR TO EMISSION RECONSTRUCTION

A. Processing of Transmission Data to Obtain Map of
Attenuation Coefficient

In both PET and SPECT, and for reconstruction methods
derived from any of the described approaches (C-C, D-D,
D-C), there is a need to obtain an image of the spatial distri-
bution of the attenuation coefficient prior to doing the recon-
struction of the emission distribution. This is done by using

an external source of radiation that transmits photons through
the body of the patient to the detector [188]–[190]. The trans-
mission data are recorded in this situation, and also in the sit-
uation when there is no patient in the scanner, and the ratio
of these measurements for theth line gives an estimate of
the probability of no interaction with the attenuating material
for photons traveling the full length of this line, i.e., the ex-
ponential factor in (33). In principle, this
estimate could be used directly in PET since the reciprocal
of the above ratio gives an estimate of the attenuation cor-
rection factor for the data, but the largest correction factors
would result from the fewest available counts, leading to very
noisy estimates.

Another approach involves taking the logarithm of each
such ratio of counts to obtain estimates of the line integrals
of the attenuation coefficient distribution, as in X-ray CT,
and then reconstructing the distribution from this data using
a standard CT algorithm for the transmission geometry.
In fact, some recent scanner developments combine a CT
scanner with an ECT scanner to form combined CT-SPECT
or CT-PET systems [114], [115], [191], [192]. The result of
reconstruction from the transmission data can be smoothed,
or segmented into discrete regions, to form an attenuation
map, e.g., [193], [194]. Using this map, integrals can be
calculated for complete lines (PET) or partial lines (SPECT),
either for incorporating in the D-D models (PET, SPECT)
or for preprocessing the emission data (PET only).

Although this approach using the logarithm of the count
data works well when the transmission data sets have large
numbers of counts, as is the case with a CT scanner and
its X-ray tube source, most PET and SPECT scanners use
comparatively weak (low flux) radioactive sources to obtain
the transmission measurements, which therefore have only
low numbers of counts. In this case, it is far from optimal
to take the logarithm of the low-count data to obtain esti-
mates of line integrals, since low-count Poisson data are not
symmetric about the mean and contain measurements having
zero counts. In practice, the data contain additional contri-
butions from scatter and from the emission activity, which
is often present in the patient at the same time as the trans-
mission scan is being done. Estimates of these contributions
are often subtracted from the data, which can result in some
counts becoming negative, leading to further problems when
attempting to take the logarithm. For low-count data, it is
preferable to formulate a statistical model of the measure-
ment process and to derive an algorithm that operates directly
on the original count data to obtain the attenuation map,
e.g., [195]. A recent review [127] provides a comprehensive
description of statistical image reconstruction methods for
low-count transmission measurements. The formulation of
the model and the algorithms that are derived for the trans-
mission problem using this approach have much in common
with the corresponding formulation and algorithms for the
emission problem.

All methods for the processing of transmission data result
in the propagation of noise and measurement errors from the
transmission data into the reconstructed map of the attenua-
tion coefficients, and from there into the corrected emission
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data or the system matrix of emission reconstruction, and fi-
nally into the reconstructed image of the emission activity.
The analysis of the propagation of noise and errors from
the transmission data is a challenging problem; see, e.g., the
analysis and references in [196].

B. Preprocessing of Emission Data to Compensate for
Attenuation

In order to use inversion formulas that express the spatial
distribution in terms of the projections ,
we first need to estimate, from the measured data, the values
of the projections for a discrete set of lines in space. We con-
sider the case of PET, where we have previously introduced
the notation for the measurement associated with the
th line, and we have denoted by and the estimates of,

respectively, the random coincidence contributionand the
scatter contribution to the expected value of theth mea-
surement. We denote by and the estimated values,
for the th line, of and in (33). Now

may be estimated from the measurement using
the relationship

(34)

which is based on (2), where the measurement is used
in place of the expected value in that equation, and
is the model of PET with attenuation, replacing the corre-
sponding model term . We denote by the attenuation
correction factor (ACF) for theth line, where

(35)

We can now use (33) to express the estimated projection
value in terms of the estimated value corresponding to the
model of PET with attenuation, and then use (34) to obtain

(36)

(37)

This equation indicates the operations that are necessary to
preprocess measured PET data prior to using reconstruction
algorithms derived for line integral projections. In practice,
the attenuation correction factor is multiplied by a normal-
ization factor (not shown in this equation) that compensates
for the nonuniformity of response of different detector ele-
ments. This nonuniformity is caused by individual variations
in detector efficiencies and by systematic variations resulting
from the geometrical arrangement of the detector elements.

The preprocessing of each measurement requires esti-
mates of the normalization factor, the attenuation correction
factor, the contribution of random coincidences, and the
contribution of scatter coincidences, each of which is a
significant problem on its own [197]. Of course, the same
estimates are required when using a reconstruction algorithm
based on the D-D model, where the derivation of such an
algorithm is usually based on an assumption that the data are
distributed according to a simple probability distribution,
e.g., Poisson. However, the distribution of the original data
is changed dramatically by preprocessing operations. For

such an algorithm, it is preferable to incorporate these
estimates (i.e., normalization, attenuation, randoms, scatter)
directly into the D-D model of the data acquisition process
as described in Section V, (17)–(22) and in the references
cited at (22), rather than doing preprocessing operations on
the data.

In SPECT, a preprocessing operation can be applied to the
data to subtract an estimate of the scatter contribution (and
there is no random contribution in this case). In SPECT, no
preprocessing operation can remove the effect of attenuation,
but in practice some approximate techniques, such as aver-
aging opposing views, can reduce its effect [131]. Approxi-
mate postprocessing techniques [198] have also been devised
that reduce the effect of attenuation when applied to the re-
constructed image. Although they do not have a strong theo-
retical justification, these preprocessing and postprocessing
techniques can lead to surprisingly good results when ap-
plied in combination with the basic convolution-backprojec-
tion method, and this approach is widely used in practical
applications of SPECT.

C. Fourier Deblurring of Data in SPECT, and Fourier
Rebinning of Data in PET

We now return to considering reconstruction of the emis-
sion distribution in SPECT using methods derived from the
C-C approach. In addition to the significant problem of atten-
uation in SPECT, there is a further problem concerning the
model of the data collection process. The spatially invariant
model involves integration with uniform weight along lines,
but this is not a good approximation for SPECT. In SPECT,
each element of the detector receives photons from a narrow
cone of directions, defined by the physical aperture of a colli-
mator device that rejects most of the incoming photons. The
most common form of collimator consists of a thick slab of
shielding material (e.g., lead) having a large number of small
diameter parallel holes and placed adjacent to the front sur-
face of the detector. Another form of collimator consists of a
single pinhole aperture in a sheet of shielding material that is
placed some distance from the front surface of the detector.
In each case, the response of an element of the detector to a
point source of photons varies significantly as a function of
the distance from the point to the entry aperture of the colli-
mator.

Preprocessing methods have been devised to reduce the
effect of the distance-dependent response of the collimator
on the data at the input of the reconstruction algorithm,
so that methods derived from the line integral model can
achieve better results when applied to SPECT data. We now
describe one particular preprocessing method for the case
of parallel-ray projections, such as those obtained using
a parallel-hole collimator. We describe this method here,
because the principle involved is also the basis of a popular
preprocessing method in PET.

We consider nonoblique projections for the 2-D
slice , so that these projections are .
We consider the Fourier decomposition of these projections,
where the Fourier decomposition involves both variables
and and is obtained by a Fourier transform with respect to
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, with continuous frequency variable , and by a Fourier
series representation in, with integer harmonic index .
We denote the Fourier coefficients by with the
Fourier pair defined by

(38)

(39)

It is shown in [199]–[201] that this Fourier representation
has a special property, known as the “frequency-distance
relation” for the Fourier coefficients, that is valid asymp-
totically at large radial frequencies . This relation
states that as goes from 0 to , the most significant
contribution of an arbitrary point object to the value of
the coefficient occurs at an angle such
that the point’s distance coordinate along the line of
integration is . This relation implies that one can
modify the band of coefficients in the Fourier domain that
have almost the same value of and obtain the
effect of modifying contributions to the projection data that
have originated within a small range of distances from the
detector. In SPECT, it is therefore possible to separate ap-
proximately the distance-dependent spatial blurring factors
in the Fourier coefficients of the blurred projection data,
and perform distance-dependent spatial filtering of this data
prior to reconstruction. This approach has been investigated
and compared with other approaches in, e.g., [202]–[205].

It is shown in [206]–[208] that the frequency-distance rela-
tion also leads to a very useful preprocessing method for PET
data, known as Fourier rebinning (FORE). In PET, the same
Fourier decomposition with respect to the variablesand
is applied to the oblique (nonzero) projections
to obtain coefficients . It can be shown that the
frequency-distance relation continues to hold in the trans-
verse planes (constant), so that the most significant contri-
butions to the value of this coefficient come from emissions
originating at a distance along the lines of integration for
which the transverse component of, relative to the center of
the line, is . Since the slope of the lines is ,
the corresponding component in thedirection, again rela-
tive to the center of the line, is . This pro-
vides a link between the Fourier coefficients of the oblique
projections and another set of Fourier coefficients associated
with the nonoblique projections, so that

(40)

where is the coordinate of the center of the lines for
this . This approximate relation (whose accuracy im-
proves as the radial frequency increases) leads to a pre-
processing method for PET that takes the oblique projections
that are measured over the PET scanner’s range of, and pro-
duces a set of equivalent projections for . For each slice
, the projection data can be reconstructed by a

2-D algorithm. This preprocessing method therefore decom-
poses the problem of 3-D reconstruction in PET into a set of
2-D problems, which greatly reduces the amount of compu-
tation required for reconstruction.

A similar decomposition can be done exactly by a re-
binning method known as FOREX [207], [208], but this
method requires estimation of the unmeasured parts of the
projections, as needed for the 3-D direct Fourier method and
also for the 3-D convolution-backprojection method (see
Section VI-A and Fig. 6). A similar decomposition can be
done exactly by another rebinning method known as FORE-J
[209], which operates directly (without an estimation step)
on the axially truncated data measured by the PET detector
system, as is also the case with the approximate method
FORE. The relationship between these three rebinning
methods (FORE, FOREX, FORE-J) is discussed in [209].

After the PET data are rebinned by one of these methods
into a set of independent projections of 2-D slices, the 2-D
reconstructions can be done by an algorithm derived from
the C-C model, such as convolution-backprojection. Alter-
natively, the 2-D reconstruction can be done by an algorithm
derived from the D-D model. Since the rebinning operation
is derived from the C-C model, the use of an algorithm de-
rived from the D-D model leads to a hybrid approach to the
overall reconstruction problem. Note that the rebinning oper-
ation, being derived from the C-C model, requires as its input
the projection data resulting from corrections to the mea-
sured PET data for normalization, attenuation, scatter, and
randoms, as described in the text associated with (37). The
hybrid approach using a reconstruction algorithm derived
from the D-D model has the advantage over the uniformly
C-C approach of being able to take account of the statistical
distribution of the noise in the rebinned data, if this is avail-
able, although it is difficult (and perhaps impossible) to fully
characterize the probability distribution of the data that result
from the preprocessing operations done by the Fourier rebin-
ning methods. The difficulty arises not only from the nature
of the rebinning operations themselves, which involve many
different linear combinations of the Fourier coefficients of
different projections, but also from the fact that these opera-
tions are being done on data that have already undergone cor-
rections, which have modified the statistical distribution of
the data from its original Poisson distribution. However, it is
possible to obtain estimates of the variance by making some
reasonable approximations, and estimates of the variance of
the rebinned data are being used in recent hybrid methods
[210]–[212].

VIII. D ISCUSSION—LINEARITY VERSUSOPTIMALITY

The C-C formulation of the reconstruction problem leads
to inversion formulas and algorithms that involve only linear
operations on the data. LSI algorithms such as convolution-
backprojection are characterized by a point-spread function
(PSF), which is the reconstructed image of a point emission
source. For such an algorithm, the PSF does not depend on
the location of the point within the field of view. In addition,
the PSF does not depend on the emission activity level of the
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local background on which the point source is superimposed,
or on the emissions from other parts of the object. The central
part of the PSF has the form of a narrow bell-shaped peak,
whose full width at half maximum (FWHM) can be used
to specify the spatial resolution of the reconstructed image,
which is spatially invariant and object independent.

For linear algorithms, the propagation of noise from the
data to the image can be analyzed using the standard results
of linear systems theory (see, e.g., [3] and [213]). In emission
tomography, the noise in the data is signal-dependent, and
linear estimators are not statistically optimal. For Poisson
data, the variance is equal to the mean, so that a high-count
measurement has a low relative noise level (standard devia-
tion/mean) but has a high absolute noise level (standard de-
viation). The backprojection of a high-count measurement
introduces a high absolute level of noise along a line through
the image, leading to a high relative noise in low-count re-
gions, as discussed in [214] and [215]. For linear methods,
most of the noise in the image is caused by high-count mea-
surements spread across the image, so the noise level is quite
uniform throughout the image.

Maximum likelihood estimators are nonlinear, and their
noise characteristics are quite different. Such estimators are
able to localize the absolute noise levels in the image, so that
the local image variance remains proportional to the local
count level, resulting in images where the noise is high in re-
gions of high emission activity and the noise is low in regions
of low emission activity, as clearly demonstrated in [215]
and [216]. These images appear less noisy and more visu-
ally appealing than images reconstructed by linear methods.
The analysis of the noise properties of nonlinear methods is
of course much more difficult than for linear methods, al-
though considerable progress has been made in recent years
[213], [214], [216]–[220].

A significant problem with nonlinear methods is that
the spatial resolution, as indicated by the PSF, is spatially
variant and object dependent [221], [222]. This is a sig-
nificant problem for applications that require absolute
quantitation [223], [224], especially those involving deter-
mination of the parameters of a kinetic model from a time
sequence of images [225]. In addition to the position and
object dependence, the PSF may be highly asymmetric,
indicating that the local smoothing is strongly anisotropic,
as demonstrated in [226]. Such blurring distorts the shapes
of objects so, for example, circular objects appear elliptical.

These effects result from the use of the conventional ob-
jective function for penalized log likelihood stated in (15)
and (23), where the penalty term has the same voxel
weights throughout the image. In order to achieve uniform
spatial resolution in the image, the regularization needs to be
spatially variantto compensate for the variations in count
density in the data and in the image [222]. Recent papers de-
scribe methods to design the spatially variant weights of the
penalty function to achieve near-uniform resolution [220],
[226] or to optimize the local contrast to noise ratio [219],
[220] in order to improve lesion detectability, which has been
confirmed by recent analysis [213] to be better than the de-
tectability achievable by linear reconstruction methods. It is

likely that these more sophisticated regularization methods
will become increasingly important in the future as applica-
tions of PET and SPECT demand more quantitative informa-
tion from the reconstructed images produced by maximum
likelihood estimators.

IX. CONCLUSION

This paper has used the various models of the data col-
lection process as the framework for presenting an overview
of the wide variety of methods that have been developed for
image reconstruction in PET and SPECT. The overall se-
quence of the major sections in the paper, and the presenta-
tion within each major section, both proceed from the more
realistic and general models to those that are idealized and
application-specific. For most of the topics, the description
proceeds from the 3-D case to the 2-D case.

For the methods based on the more general models, there is
no fundamental difference between 3-D and 2-D, or between
PET and SPECT. For the methods based on inversion for-
mulas derived from idealized models, the 3-D case is funda-
mentally different from the 2-D case, and the effect of photon
attenuation is fundamentally different in SPECT, compared
to the much simpler situation in PET.

Historically, the development of image reconstruction
methods began with 2-D methods that were based on
idealized models and that were developed for specific
applications. The trend today is increasingly toward more
versatile 3-D methods for static and dynamic (3-D, time)
reconstruction that are based on more general and more
realistic models, into which the application-specific physics
and geometry of the data collection process are incorporated.
However, such methods require large amounts of compu-
tation, and their use at the present time is often limited
by the computational power that is available. Since the
computational power available to typical users is increasing
rapidly, these methods will play an increasingly important
role in the future.

A wide variety of methods has been developed for image
reconstruction in PET and SPECT, since these include a wide
variety of applications having different acquisition geome-
tries, different amounts of noise in the data, different sizes
of the data sets and image grids, different computational re-
sources or time constraints, and different end uses for the im-
ages (e.g., qualitative use of images for tumor detection tasks
versus quantitative use for parameter estimation tasks). For
these reasons, there can be no single universal algorithm for
image reconstruction that is suitable for all of the various ap-
plications of PET and SPECT.

The paper has presented a broad overview of algorithms
for PET and SPECT. It is hoped that the list of references will
provide a useful starting point for the reader who is interested
in more detailed descriptions of these algorithms and their
applications.
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