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Abstract. Business process modeling and implementation of process
supporting infrastructures are two challenging tasks which are not fully
aligned. On the one hand, languages such as Business Process Model-
ing Notation (BPMN) exist to capture business processes at the level
of domain analysis. On the other hand, programming paradigms and
technologies such as Service-Oriented Computing (SOC) and web ser-
vices have emerged to simplify the development of distributed web sys-
tems that control underlying business processes. BPMN is the most rec-
ognized language for specifying process workflows at the early design
steps. However, it is rather declarative and may lead to the executable
models which are incomplete or semantically erroneous. Therefore, an
approach for expressing and analyzing BPMN models in a formal way
is required. In this paper we describe how BPMN diagrams can be rep-
resented by means of a semantically precise channel-based coordination
language called Reo which admits formal analysis using model check-
ing and bisimulation techniques. Moreover, since additional requirements
may come from various regulatory/legislative documents, we discuss the
opportunities of Reo and its mathematical abstractions in expressing
process-related constraints such as Quality of Service (QoS) or time-
aware conditions on process states.

1 Introduction

The Service-Oriented Computing (SOC) paradigm supports the idea of building
distributed applications by composing self-contained and loosely-coupled ser-
vices. Service-Oriented Architecture (SOA) is the main architectural concept
within this paradigm designed to support the realization of cross-organizational
business processes. In this kind of architecture, services are employed to accom-
plish certain activities within a process. Several specifications coordinate the col-
laboration of individual services. In the simplest case, known as orchestration,
one business partner manages the order in which required services are executed.
In a more complex scenario, called choreography, each partner is responsible for
executing services that realize its own business logic as well as interacting with
other partners to achieve a common goal.

A stack of protocols that defines how web services collaborate is currently es-
tablished. In particular, WS-BPEL [1] and WS-CDL [2] are the most commonly
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recognized languages dealing with orchestration and choreography, respectively.
However, these languages are implementation-level languages while business pro-
cesses incorporate various aspects both functional and non-functional that may
be difficult to capture and convert directly into executable code. Therefore, addi-
tional tools are used at the level of domain analysis and abstract process design.
The Business Process Modeling Notation (BPMN) [3] is a standard and widely-
accepted graphical notation for this purpose. According to this notation, the
process can be represented in the form of activities produced either by humans
or software applications, important events occurring in the process and control
flow on the involved activities. One of the reasons why BPMN stands out among
other notations for business process modeling is its ability to define concurrent
tasks and sub-processes with exception handling and compensation associations,
which have been proven to be useful even at the stage of early design. As a trade-
off to its expressive power, BPMN lacks semantic precision.

Two attempts have been made at defining formal semantics for BPMN sub-
sets [4, 5]. In the first approach [4], a core subset of BPMN is mapped into Petri
nets. However, this approach encounters problems with reflecting the behavior of
multiple concurrent activities in a presence of exception handling. The second ap-
proach [5] formalizes the BPMN semantics (including time-aware semantics [6])
in a more consistent way using Communicating Sequential Processes (CSP). The
main drawback of this model is that it does not preserve the structure of BPMN
diagrams which makes the mapping difficult to follow. Additionally to these ap-
proaches, a number of works provide insights and tools for automated translation
of BPMN into BPEL processes [7, 8]. Such translations bridge the gap between
the process modeling and their implementation using web services technology.
However, they pose significant restrictions on admissible BPMN patterns and do
not prevent developers from implementing erroneous processes. Later on, BPEL
processes can be verified using a wide range of formal techniques [9–11] and
model checking tools [12], but this scenario shifts the process verification to the
implementation phase and thus slows down the incremental process design.

A number of challenging issues need to be addressed before the SOC be-
comes a mature approach for developing flexible business applications. Among
such issues is the SOA adaptation to the ever changing business/legislative re-
quirements and process evolution. Multitude of regulations constantly emerge
to shape the businesses and incorporate the best practices into corresponding
software applications. The aim of the recently started COMPAS (Compliance
driven Models, Languages, and Architectures for Services) project1 is to develop
an infrastructure that would ensure dynamic and ongoing compliance of services-
oriented applications to business regulations. These regulations come out from
legislative documents such as Basel II1, IFRS2, MiFID3, LSF4, HIPAA, Tabaks-
blat5, and the Sarbanes-Oxley6 Act, just to name a few. In addition to exter-
nal regulations, there are internal movements towards Quality of Service (QoS)
which result in similar requirements. Currently there are no well-established
practices for representing and tracking compliance-related controls. At the early

1 http://www.compas-ict.eu/
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process development stages they can be expressed by means of modeling lan-
guages like BPMN or UML with textual annotations. However, such specifica-
tions are often ambiguous and may result in erroneous process implementation.
Therefore, a modeling notation with precise semantics is required. This notation
should be powerful enough to represent the major structural and control/data
flow elements of processes, as well as to express various compliance concerns.

In this paper, our objective is two-fold. Firstly, we consider the main business
process modeling primitives as defined in BPMN and show how they can be
represented using a semantically precise coordination language Reo. Secondly,
we discuss the potential of our formalism in expressing compliance concerns.

The rest of the paper is organized as follows. In Section 2, we sketch the main
steps of our approach to compliance-aware business process modeling. Section 3
contains an overview of BPMN and in Section 4, we introduce Reo. In Section 5,
we present the mapping from BPMN to Reo. In Section 6, we discuss compliance
rule modeling from the perspective of Reo. Finally, in Section 7, we outline
conclusions and future work.

2 Overview

The overall vision of our framework is shown in Fig. 1. Business analysts may
use traditional notations for creating business process models such as BPMN or
UML Activity Diagrams (ADs) as well as more specific ones, e.g., BPEL Graphi-
cal Modeling Tools (GMT)2. At this level, compliance concerns can be expressed
using Domain Specific Languages (DSL) or GMT extensions, see [13] and [14]
for examples of both approaches. One of the goals of the COMPAS project is
to develop DSLs capable of expressing major categories of compliance concerns.
These models will not necessarily guarantee the level of precision sufficient for
the direct process implementation. Therefore, we propose to introduce an inter-
mediate layer on which the high-level models will be verified and refined. The
basic semantics of this layer is defined by Reo.

Reo is a channel-based exogenous coordination language supported by a
graphical tool, an animation engine and a model checker3. These tools allow
us to use Reo both for graphical process modeling and for formal process ver-
ification before its actual implementation. There are several reasons why Reo
seems appropriate in the context of the COMPAS project. First, using Reo
connectors it is possible to represent both choreography and orchestration of
process activities as well as internal and external behavior of involved services
in unified formalism [15]. Moreover, Reo patterns can be automatically trans-
lated into Constraint Automata (CA) which are suitable for representing service
compositions with QoS guarantees [16] and time-aware processes [17]. CA are es-
sentially variants of labeled transition systems where transitions are augmented
with pairs 〈N, g〉 rather than action labels. The states of a CA stand for the net-
work configurations (e.g., contents of the buffers) while transition labels 〈N, g〉
2 http://www.eclipse.org/bpel/
3 http://homepages.cwi.nl/∼koehler/ect/index.htm
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Fig. 1. Reo for business process modeling with compliance concerns

can be viewed as I/O operations performed in parallel (more precisely, sets of
nodes where data flow is observed in parallel and boolean conditions on the data
items observed on those models). Moreover, CA can be extended by associating
various properties with states and transitions (e.g., QoS characteristics). We as-
sume that at this step, compliance rules are converted into automata transition
constraints, temporal logic formulae, or result into automata state reachability
checking. After model checking and refinement, the Reo/CA process models can
be automatically translated into executable SOC languages such as WS-BPEL,
as well as to Java code.

This paper focuses on the first step of the proposed framework, namely, on
the BPMN to Reo conversion. The choice of BPMN as a modeling notation is
justified by the fact that it comes with a number of useful process concepts such
as events, exception handling, transactions and message flow. BPMN is a de-facto
standard for business process modeling supported by a number of software tools.
Moreover, such a mapping is interesting from the research perspective since no
efficient semantic model for BPMN currently exists. Nonetheless, generally the
COMPAS project is not bounded to this notation and we are planning to develop
similar mapping tools for translating other design languages, in particular, UML
ADs and BPEL GMTs, into Reo models.

3 Business Process Modeling Notation (BPMN)

In this section we overview the main structural elements of BPMN.
The basic BPMN concepts are flow objects, connecting objects, swimlanes

and artifacts. Flow objects are the main graphical elements defining the be-
havior of a business process. BPMN distinguishes three types of flow objects,
namely, events, activities and gateways. These elements are linked according to
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Fig. 2. Selected BPMN elements

well-defined syntactic rules by two connecting objects: sequence flow and mes-
sage flow. A third connecting object is association and it is used to connect
flow objects with text and non-flow elements. Two types of swimlanes, pools
and lanes, arrange the main BPMN elements into groups. Finally, artifacts are
introduced to provide additional information about a process. This concept is
extendable and besides three standard artifacts, that is, data objects, groups and
annotations, designers can introduce their own artifacts.

Figure 2 shows the selected BPMN elements that are essential for modeling
process behavior. BPMN identifies three types of events: a start event signals the
start of a process, an end event signals the end of a process and an intermediate
event is an event occurring during a process. Different triggers such as message,
timer, rule, link, error, cancel, compensation, terminate and multiple trigger can
be associated with events. The detailed description of the triggers and their usage
rules can be found in the BPMN specification [3].

An activity can be an atomic task or a sub-process. To each task a type can
be assigned. Among the specific task types are service, receive and send tasks.
A sub-process is a compound of other activities and a sequence flow on them.
BPMN introduces two attributes that are commonly used to identify special
types of activities (both tasks and sub-processes), namely, looping activities and
multiple concurrent instances of the same activity.

A gateway is a construct used to control divergence and convergence of the
sequence flow. A parallel fork gateway is used to split an incoming sequence
flow into several concurrent branches, while a parallel join gateway synchronizes
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several concurrent sequence flows. A data/event-based XOR decision gateways
select one out of a set of mutually exclusive sequence flows according to some
data-based condition or external event. An OR decision behaves similarly but
it admits more than one alternative to be selected. An OR merge shows the
convergence of several sequence flows into one sequence flow. Finally, complex
decision/merge gateways are used to cover the advanced sequence flow control
constructs which cannot be easily handled using other gateways. One such ex-
ample is the so called m out of n choice when m arrived tokens out of n initiated
parallel sequence flows are required to continue the process.

BPMN distinguishes two basic types of flow. The sequence flow prescribes
the order of activities performed by one entity while the message flow regulates
the flow between two communicating entities represented by separate pools. The
sequence flow consists of a normal flow to which a transition guard can be as-
signed (uncontrolled, conditional or default flow) and exception flow that origi-
nates from some event and is used to handle exceptions. Finally, BPMN defines
a number of advanced constructs such as compensation association and trans-
action. Due to space limits, we will not consider these constructs in this paper.

4 Reo

Reo [18] is a channel-based exogenous coordination model wherein complex coor-
dinators, called connectors, are compositionally constructed from simpler ones.
We summarize only the main concepts in Reo here. Further details about Reo
and its semantics can be found in [17–20].

Complex connectors in Reo are formed as a network of primitive connectors,
called channels, that serve to provide the protocol which controls and orga-
nizes the communication, synchronization and cooperation among the compo-
nents/services that they interconnect. Each channel has two channel ends which
can be of two types: source and sink. A source end accepts data into its channel,
and a sink end dispenses data out of its channel. It is possible for the ends of a
channel to be both sinks or both sources. Reo places no restriction on the be-
havior of a channel and thus allows an open-ended set of different channel types
to be used simultaneously together. Figure 3 shows the graphical representation
of basic channel types in Reo. A FIFO1 channel represents an asynchronous
channel with one buffer cell which is empty if no data item is shown in the box
(this is the case in Fig. 3). If a data element d is contained in the buffer of a
FIFO1 channel then d is shown inside the box in its graphical representation. A
synchronous channel has a source and a sink end and no buffer. It accepts a data
item through its source end iff it can simultaneously dispense it through its sink.
A lossy synchronous channel is similar to synchronous channel except that it al-
ways accepts all data items through its source end. The data item is transferred
if it is possible for the data item to be dispensed through the sink end, otherwise
the data item is lost. For a filter channel, its pattern P ⊆ Data specifies the type
of data items that can be transmitted through the channel. Any value d ∈ P
is accepted through its source end iff its sink end can simultaneously dispense
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Fig. 3. Some basic channels in Reo

(a) Exclusive router (b) Valve

Fig. 4. Examples of Reo connectors

d; all data items d /∈ P are always accepted through the source end but are
immediately lost. The P -producer is a variant of a synchronous channel whose
source accepts any data item, but the value dispensed through its sink is always
a data element d ∈ P .

There are some more exotic channels permitted in Reo: (A)synchronous
drains have two source ends and no sink end. A synchronous drain can accept
a data item through one of its ends iff a data item is also available for it to
simultaneously accept through its other end as well and all data accepted by the
channel are lost. An asynchronous drain accepts data items through its source
ends and loses them, but never simultaneously. (A)synchronous Spouts are duals
to the drain channels, as they have two sink ends. A timer channel with early
expiration allows the timer to produce its timeout signal through its sink end
and reset itself when it consumes a special “expire” value through its source [17].
Complex connectors are constructed by composing simpler ones via the join and
hiding operations, see [17] for more details.

Example 1. Figure 4(a) shows an implementation of an exclusive router by com-
posing five synchronous channels, one synchronous drain and two lossy syn-
chronous channels together. The connector provides three nodes A, B and C for
other entities (connectors or component instances) to write to or take from. A
data item arriving at the input port A flows through to only one of the output
ports B or C, depending on which one is ready to consume it. The input data
is never replicated to more than one of the output ports. If both output ports
are ready to consume a data item, then one is selected non-deterministically. To
avoid writing an exclusive router every time it is used, we introduce a notation
similar to a node to represent this connector. We will also use XOR-nodes with
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more than two outputs. Such a connector can be defined by combining several
exclusive routers with two outputs.

Additionally, it is useful to define a priority on the outputs of an exclusive
router in such a way that the data item will always flow into the prioritized
output if more than one output is available. Such a deterministic prioritized
exclusive router can be implemented by connecting the input of an exclusive
router with its non-prioritized outputs through valve connectors (see Fig. 4(b)).
A valve connector is able to close and reopen the flow from A and B. Initially, the
circuit is in the “open” state, i.e., a data item arriving at the input port A flows
to the output B until the close command arrives. After that the circuit goes into
the “close” state, i.e., the flow remains blocked until the open command arrives.
If the prioritized output of the exclusive router becomes ready to accept data,
it can simultaneously close the valves thus making other outputs unavailable.

5 Mapping BPMN to Reo

In this section we use Reo to represent a comprehensive set of BPMN modeling
primitives and common constructs.

5.1 Basic Objects: Tasks, Events, Gateways and Message Flow

Generally, BPMN tasks and sub-processes correspond to external components
or black-boxes whose collaboration is coordinated by Reo. However, it is still
possible to simulate the behavior of certain activities using Reo channels. For
example, an atomic task with one input and one output can be represented by a
simple FIFO1 or a timer channel while a sub-process can be modeled by a Reo
connector that preserves the number of its incoming and outgoing flows.

An event with no trigger (start, end or intermediate) or an end event with
a terminate trigger can be shown as a Reo node (source, sink or mixed). Other
event triggers can be modeled using the basic Reo channels. Thus, (i) a timer
event can be represented with the help of a timer channel, (ii) an incoming mes-
sage event can be simulated by a synchronous drain whose first end is an input
port and the second end is an internal process node (see Fig. 5(a)) while (iii)
an event with a rule trigger corresponds to a filter channel with an appropri-
ate transition condition. Other BPMN events such as outgoing messages, error,
compensate, cancel or link events occurred as a part of the sequence flow cor-
respond to the immediate transitions into required places of the process where
they will be triggered and can be represented by means of synchronous channels.
However, if a process or a subprocess that must react to such an event is not
ready to accept it, the current sequence flow will be blocked. This problem can
be resolved either by using a lossy synchronous channel that indicates that if an
event is not picked up at the destination point it will be lost, or a FIFO1 channel
that indicates that a message generated by an event will be waiting until it can
be processed. Figure 5(b) shows the Reo connectors corresponding to these three
message sending protocols. The composite conditions such as the case when the
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(a) Events (b) Messages

Fig. 5. Modeling BPMN events and messages in Reo

process execution continues when a required message has arrived or a certain
time-date has been reached, can be modeled by the combination of several Reo
channels. The Reo pattern for the aforementioned complex event is shown in
Fig. 5(a). It uses a valve connector introduced in Fig. 4(b) to control the data
flow from the start to the end node. We assume that initially in this circuit the
valve is closed and reopened upon a timer event or a message arrival.

Figure 6(a) shows the Reo connectors for the basic BPMN gateways, namely,
data-based XOR decision, event-based XOR decision, XOR merge, parallel fork
and parallel join. A data-based XOR decision is modeled using a synchronous
channel which represents the incoming flow and two (or more) filter channels
with a common source that represent the alternative outgoing flows. Filter tran-
sition conditions (guards) are defined by boolean expressions g1 and g2. The
representation of an event-based XOR decision mainly depends on the seman-
tics of the events that affect the decision. In our case, the lower branch is selected
if a message arrives in a predefined period of time, and the higher branch is pre-
ferred otherwise. An XOR merge consists of two (or more) synchronous channels
with a common sink. A parallel fork is composed of two (or more) diverging syn-
chronous channels. A parallel join consists of two (or more) synchronous channels
representing the incoming parallel sequence flows that are further synchronized
with the help of a synchronous drain channel. Several lossy synchronous chan-
nels with a common sink then are used to get a single outgoing token. An OR
decision gateway can be modeled in Reo similarly to the data-based XOR de-
cision whose guards are not necessarily mutually exclusive. Additionally, using
Reo, the designer can define various complex control gateways. For example,
Fig. 6(b) shows a connector for an m out of n synchronizer pattern. This is a
lossy version of the pattern, that is, the circuit loses its extra inputs before the
next cycle. Alternatively, by substituting n lossy synchronous channels introduc-
ing the input data with n simple synchronous channels one can create a sparing
m out of n pattern that delays to spare its extra inputs for the next cycle.

In BPMN a message flow is used to show the flow of messages between two
entities that are prepared to send and receive them. Therefore, by default we
can represent the BPMN message flow using synchronous channels. However,
BPMN does not aim at specifying any further details about entity communi-
cation except for textual annotations. In contrast, the Reo syntax enables the
process designers to model this aspect at a high level of detail. Thus, one can
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(a) Basic gateways (b) Complex gateway: lossy m out of n

join

Fig. 6. Modeling BPMN gateways in Reo

(a) Synchronous message exchange: Send/Receive

Order Scenario

(b) Asynchronous message exchange

Fig. 7. Modeling BPMN message flows in Reo

differentiate synchronous and asynchronous message exchanges. In the former
case, the sequence flow is blocked until the reply message is received. In the
latter case, other activities can be performed while waiting for a reply message.
Figure 7(a) shows a synchronous version of a Send/Receive Order scenario while
Fig. 7(b) demonstrates how the asynchronous messaging can be represented in
Reo: after sending a message M1 the entity can perform activities of the sub-
process P until a reply message M2 is received. Here we assume that the output
of the exclusive router being opened by the message M2 has a priority and a
token will successfully leave the cycle. We use a small exclamation mark to show
a prioritized output on the figure.

Despite the behavioral simplicity of the basic Reo channels, the issue of build-
ing Reo connectors with a desired behavior is not a trivial task. Therefore, in
the following subsections we provide Reo connectors for the most tricky BPMN
constructs, namely, sub-processes with exception handling and transactions.
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(a) Atomic tasks (b) Sub-processes with possible internal excep-

tions

Fig. 8. Exception handling in processes consisting of sequential activities

5.2 Sub-processes and Exception Handling

Each sub-process can be seen as a separate BPMN process. The translation of
BPMN processes without exception handling into Reo circuits is rather straight-
forward. However, the occurrence of an exception event within a sub-process in-
terrupts the execution of the sequence flow and spawns the exception flow that
often affects other sub-processes and must be appropriately handled. There are
two major issues here, namely, (i) to be able to interrupt a sub-process at any
point of its execution and (ii) to clean all tokens/data in the circuit including
those used to propagate exception events. The composition of Reo connectors
implementing these issues depends on the structural aspects of sub-processes.
We consider four basic constructs, namely, (i) sequential execution of atomic
tasks, (ii) sequential execution of sub-processes, (iii) parallel execution of atomic
tasks, and (iv) parallel execution of sub-processes.

Figure 8(a) depicts a Reo circuit that simulates the execution of a process P
consisting of n serial atomic tasks. The normal flow traverses tasks (T1, T2, ..., Tn)
from the start to the end. Each two neighbor tasks are interconnected using an
exclusive router with priority that is used to interrupt the process. Another
exclusive router is used to direct a cancel message into the point where the
execution token currently resides. The cancel message opens the output of the
prioritized exclusive router and two tokens fire in the corresponding synchronous
drain. Simultaneously, the cancel message is directed to the exception output
which signals that the process has been interrupted.

In the above circuit we assumed that an atomic task, once invoked, always
completes successfully. This may not be the case for some activities. Figure 8(b)
depicts a Reo circuit that simulates the execution of a process P ′ consisting
of n serial sub-processes (P1, P2, ..., Pn). Each sub-process Pi, 1 ≤ i ≤ n, can
be interrupted from outside by a cancel message or can generate an internal
exception. The exception handling in the former case is analogous to the case of
atomic tasks. In the latter case, the exception flow originating from a sub-process
is redirected to the exception output of the process P ′.

Figure 9(a) shows a process consisting of n parallel atomic tasks. This Reo
circuit is essentially composed of a parallel fork and a parallel join gateways with
n outgoing and n incoming branches, respectively. When a task Ti, 1 ≤ i ≤ n,
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(a) Atomic tasks (b) Sub-processes with possible internal excep-

tions

Fig. 9. Exception handling in processes consisting of parallel activities

is completed, the corresponding token waits in the FIFO1 channel until other
tasks are completed as well. After that, the token flows to the circuit output. For
interrupting the process, the cancel message is directed to each of the prioritized
exclusive routers. FIFO1 channels are used to avoid synchronization of task
cancelations. Indeed, the fact that some tasks were not completed when a cancel
message has arrived should not prevent the interruption of the tasks in other
branches. Additionally, the cancel message is directed to the exception output
to signal the interruption of the process P .

If an internal exception occurs in a sub-process that is executed in parallel
with other sub-processes within a process, this exception should be propagated
to all other branches in order to interrupt them as well. Figure 9(b) shows how a
Reo connector looks in this case. In each branch, an additional exclusive router
is employed to propagate a cancel message (originating either from an internal
or external event) to a sub-process being executed or to the point where the
token waits for a synchronization with other sub-processes.

In the Reo connectors for processes with sequential activities we assumed
that once a process has been invoked it will not be invoked again until the first
invocation has completed. Such mutual exclusion behavior can be ensured by a
FIFO1 channel whose source end coincides with the start state of the process
and whose sink end is connected using a synchronous drain with the end state of
the process. When a process is invoked, one token flows into the FIFO1 channel
and waits until the execution reaches the end state, thus, preventing other tokens
from entering the circuit through the process input port. It is easy to see that this
assumption can be released without significant changes in the circuit behavior.
The main difference is that in this case a cancel message will choose one of
the executions non-deterministically and stop it without affecting the others.
Please also observe that if the previous invocation has been interrupted, the
valve connectors (see Fig. 4(b)) used to implement prioritized exclusive routers
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may be closed. Before the next execution cycle, they must be reopened by means
of messages sent to their open ports.

6 Reo Perspectives in Compliance Rule Modeling

In this section we outline our initial ideas about using Reo for modeling advanced
process requirements.

Legal, regulatory, and business requirements cause a vast number of orga-
nizations to make major changes in their business processes and supporting IT
infrastructures. Currently, there are no well-established techniques to ensure the
compliance of a process with regulations that may be relevant for it. Most of
the regulatory/legislative acts are subject to domain-specific and process-specific
interpretations. Often, these interpretations are not even properly documented.
Moreover, there is no obvious notation or (semi-)formal modeling language for
expressing compliance concerns.

Compliance policies are very broad in nature. Clearly, some policies relate to
business processes, while others may only partially do or may not relate to them
at all. Business process modeling languages and their graphical representations
are relevant for capturing, describing, formalizing, executing and enforcing poli-
cies that can be expressed in a form of local or global constraints or permissions
and obligations on control or data flow. Often, process definition languages are
augmented with modal or temporal logic formulae to encode certain kinds of
compliance rules such as that some condition will eventually be true or will not
be true until another statement becomes true. Several frameworks exploit this
approach for modeling legislative/regulatory compliance rules [14, 21]. In par-
ticular, Liu et al. [14] introduce the Business Process Specification Language
(BPSL) for expressing compliance concerns on top of BPEL processes. Then,
BPSL constructs are automatically translated into Linear Temporal Logic (LTL)
while BPEL processes are first translated into pi-calculus and finally into Finite
State Machines to enable static process verification by means of model-checking
techniques. Ghose and Koliadis [21] deal with BPMN processes that are further
refined and represented in a form of semantically-annotated digraphs called Se-
mantic Process Networks (SPNets). Compliance rules in this work are modeled
using Computation Tree Logic (CTL). Giblin et al. [22] introduce REALM (Reg-
ulations Expressed as Logical Models), a metamodel and a method for modeling
compliance rules over concept models in UML. Since the UML Object Constraint
Language (OCL) does not support temporal predicates, REALM specifically fo-
cuses on time-based properties expressed in a specially designed Real-time Tem-
poral Object Logic (RTOL). Several other approaches consider specific categories
of compliance rules. For example, Governatori et al. [23] developed a Formal
Contract Language (FCL) for representing compliance requirements extracted
from service contracts. FCL expresses normative behavior of the contract signing
parties by means of chains of permissions, obligations, and violations. Brunel et
al. [24] use Labeled Kripke Structures (LKS) which are a state/event extension
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of LTL both for specifying system behavior and related security requirements,
also defined in a form of permissions, obligations, and violations.

In this context, we see Reo and its underlying mathematical formalisms,
in particular extended CA (e.g, quantitative CA [16], timed CA [17], resource-
sensitive timed CA [25]), as a common operational semantics for unambigu-
ous modeling of both process workflows and compliance rules. As mentioned in
Section 2, Reo and CA have been successfully applied for service composition
with end-to-end QoS guarantees [16] and for the construction of systems with
real-time properties expressed by means of temporal logics [17]. Existing model-
checking and bisimulation tools for Reo are able to automatically verify some
important properties of process models such as the absence of deadlocks, reacha-
bility of certain states and proper completion, as well as to check the behavioral
equivalence of Reo circuits [26]. Moreover, we believe that using the application
of graph transformation theory to Reo [27] we will be able to guarantee process
compliance with some structural requirements such as that “any large loan must
be approved by at least two authorized bank officers”.

Our intuition that Reo and its formal models can be used for representing
and reasoning about (some kinds of) process-related compliance concerns is sup-
ported by a recent independent work in this direction. Brandt and Engel [28]
apply Reo, Abstract Behavior Types, and algebraic graph transformations in
addition to DSLs for secure modeling of distributed IT systems in a real-world
banking scenario. The authors as well claim that security requirements can be
modeled by graph constraints on the domain specific models. The mentioned
formal methods in particular are used to control requirements originating from
security compliance frameworks such as ISO 27001:2005, ISO 27002:2007, SOX
or CobiT (e.g., firewall placement and secure connection).

7 Conclusions and Future Work

In this paper, we have presented a novel approach to semantically unambiguous
modeling of business process workflows. We have used Reo channels as basic
building blocks to model a comprehensive set of BPMN objects and advanced
constructs such as sequential and parallel sub-processes with exception han-
dling. The mapping of BPMN diagrams into Reo networks helps to unveil some
process aspects that otherwise may remain underspecified (e.g. message syn-
chronization). The resulting Reo models make it possible to formally analyze
and compare business processes. In addition, we have discussed how Reo can
cope with possible business process modeling extensions that aim at enforcing
process-related compliance concerns.

Our approach has several advantages over existing efforts to formalize BPMN
semantics, most notably [4, 5]. In contrast to the Petri-net-based approaches [4]
our model appropriately deals with exception handling and concurrency. In con-
trast to the CSP-based approaches [5], Reo is compositional and preserves the
exact structure of BPMN diagrams by appropriate grouping of basic channels
and finer-grained connectors into coarser-grained connectors. Similarly to [6], we
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can take into account time-aware aspects of business processes by means of timer
connectors. Moreover, in our work we have considered a significantly larger set
of BPMN elements. However, part of our results, in particular, representation of
compensation associations, transaction modeling and dynamic reconfiguration
of Reo connectors to deal with multiple instances of the same activity, remain
uncovered in this paper and are subjects for upcoming publications.

Our future work includes implementation of a BPMN to Reo convertor. We
also plan to elaborate our initial ideas on applying Reo and CA for modeling
and analyzing compliance-driven processes as discussed in this paper, both the-
oretically and on a number of practical examples illustrating how the proposed
approach can be used to alleviate the problem of erroneous process implemen-
tation.
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