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Abstract

More than 15 years after Model Predictive Control (MPC) appeared in industry as an effective
means to deal with multivariable constrained control problems, a theoretical basis for this technique has
started to emerge. The issues of feasibility of the on-line optimization, stability and performance are
largely understood for systems described by linear models. Much progress has been made on these issues
for nonlinear systems but for practical applications many questions remain, including the reliability
and efficiency of the on-line computation scheme. To deal with model uncertainty “rigorously” an
involved dynamic programming problem must be solved. The approximation techniques proposed for
this purpose are largely at a conceptual stage. Among the broader research needs the following areas are
identified: multivariable system identification, performance monitoring and diagnostics, nonlinear state
estimation, and batch system control. Many practical problems like control objective prioritization and
symptom-aided diagnosis can be integrated systematically and effectively into the MPC framework by
expanding the problem formulation to include integer variables yielding a Mixed-Integer Quadratic or

Linear Program. Very efficient techniques for solving these problems are becoming available.

INTRODUCTION

The intention of this paper is to give an overview
of the origins of Model Predictive Control and its
glorious present. No attempt is made to categorize
and comprehensively review the literature which in-
cludes several books (Robert R. Bitmead and Wertz,
1990; Soeterboek, 1992; Martin Sanchez and Rodel-
lar, 1996; Clarke, 1994; Berber, 1995; Camacho and
Bordons, 1995) and hundreds of papers (Kwon, 1994).
The review should give the novice reader an impres-
sion which practical objectives have been pursued,
which theoretical problems have been formulated and
what progress has been made without undue mathe-
matical complexity. All citations are only exemplary
and should point the reader in a direction where more
details are available. There is more emphasis on the
future of MPC than on its past. MPC brings out
new needs in related areas like system identification,
state estimation, monitoring and diagnostics, etc. We
show that many important practical and theoretical
problems can be formulated in the MPC framework.
Pursuing them will assure MPC of its stature as a
vibrant research area, where theory is seen to sup-
port practice more directly than in most other areas
of control research.

THE PAST

Though the ideas of receding horizon control and
model predictive control can be traced back to the
1960s (Garcia et al., 1989), interest in this field
started to surge only in the 1980s after publica-
tion of the first paper on Dynamic Matrix Control
(DMC) (Cutler and Ramaker, 1979; Cutler and Ra-
maker, 1980) and the first comprehensive exposition
of Generalized Predictive Control (GPC) (Clarke et
al., 1987a; Clarke et al., 1987b). At first sight, the
ideas underlying the two methods are similar.

The objectives behind the developments of DMC and
GPC were very different, however. DMC was con-
ceived to tackle the multivariable constrained control
problems typical for the oil and chemical industries.
In the pre-DMC era these problems were handled by
single loop controllers augmented by various selec-
tors, overrides, decouplers, time-delay compensators,
etc. For the DMC task a time-domain model (finite
impulse or step response model) was natural. GPC
was intended to offer a new adaptive control alterna-
tive. In the tradition of much of the work in adap-
tive control input/output (transfer function) models
were employed. Stochastic aspects played a key role
in GPC from the very beginning, while the original
DMC formulation was completely deterministic and
did not include any explicit disturbance model.

The GPC approach is not suitable or, at the very
least, awkward for multivariable constrained systems
which are much more commonly encountered in the
oil and chemical industries than situations where
adaptive control is needed. Essentially all vendors
have adopted a DMC-like approach (Qin and Badg-
well, 1996). Because of these reasons and because
of the type of applications of interest to the readers
of this journal GPC will not be discussed any fur-
ther. The interested reader is referred to several re-
cent books on this subject (Robert R. Bitmead and
Wertz, 1990; Soeterboek, 1992; Martin Sanchez and
Rodellar, 1996).

DMC had a tremendous impact on industry. There
is probably not a single major oil company in the
world, where DMC (or a functionally similar product
with a different trade name) is not employed in most
new installations or revamps. For Japan some statis-
tics are available (Ohshima et al., 1995). The initial
research on MPC is characterized by attempts to un-
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derstand DMC, which seemed to defy a traditional
theoretical analysis because it was formulated in a
nonconventional manner. One example was the de-
velopment of Internal Model Control (IMC) (Garcia
and Morari, 1982) which failed to shed light on the
constrained behavior of DMC but led to some insights
on robust control (Morari and Zafiriou, 1989)

THE PRESENT
LINEAR MPC
Nowadays in the research literature MPC is formu-
lated almost always in the state space. The system
to be controlled is described by a linear discrete time
model.

z(k+1) (1)

where z(k) € R" and u(k) € R™ denote the state and
control, respectively. A receding horizon implemen-
tation (Garcia et al., 1989) is typically formulated
by introducing the following open-loop optimization
problem.
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(p > m) where p denotes the length of the predic-
tion horizon or output horizon, and m denotes the
length of the control horizon or input horizon. (When
p = oo, we refer to this as the infinite horizon prob-
lem, and similarly, when p is finite, we refer to it as
a finite horizon problem.)

The expressions (1,2,3) define a quadratic program
for which many algorithms and commercial software
exist. Let uf, (\k) t=20,---,m—1 be the min-

imizing control sequence for J(p.m)(2(k)) subject to
the system dynamics (1). A receding horizon pol-
icy proceeds by implementing only the first control

m) (0[k) to obtain z(k+1) = Az(k)+ Bu(, ,, (0|k).
The rest of the control sequence u, ( \k) 1s dis-

carded and z(k+1) is used to update the optlmlzatlon
problem (2) as a new initial condition. This process
is repeated, each time using only the first control ac-
tion to obtain a new initial condition, then shifting
the cost ahead one time step and repeating, hence
the name receding horizon control. In the special
case when p = m = N, then J,,,,) = Jn as defined
in (2).

We note that as the control horizon and the pre-
diction horizon both approach infinity and when
there are no constraints we obtain the standard
Linear Quadratic Regulator (LQR) problem, which
was studied extensively in the 1960s and 1970s
(Kwakernaak and Sivan, 1972). The optimal control
sequence is generated by a static state feedback law
where the feedback gain matrix is found via the so-
lution of an Algebraic Riccati Equation (ARE). This
feedback law has some well known nice properties, in
particular, it guarantees closed-loop stability for any
positive (semi) definite choice of weighting matrices
Q@ and R.

With constraints an infinite dimensional optimization
problem results, which is — at least at first sight — not
a very practical proposition. On the other hand, by

choosing both the control and the output horizons to
be finite, the quadratic program is finite dimensional
and can be solved easily on-line at every time step.
Three practical questions are immediate: 1) When
is the problem formulated above feasible, so that
the algorithm yields a control action which can be
implemented? 2) When does the sequence of com-
puted control actions lead to a system which is closed-
loop stable? 3) What closed-loop performance results
from repeated solution of the specified open-loop op-
timal control problem?

Feasibility

The constraints stipulated in (3) may render the op-
timization problem infeasible. Input saturation con-
straints cannot be exceeded, while constraints involv-
ing outputs can be violated, albeit with undesirable
consequences for the controlled system. It may hap-
pen, for example, because of a disturbance, that the
optimization problem posed above becomes infeasi-
ble at a particular time step. Obviously a real-time
control algorithm must not fail in this trivial fash-
ion. Therefore in all commercial algorithms the hard
constraints are softened by introducing slack vari-
ables which are kept small by introducing a corre-
sponding penalty term in the objective (Zheng and
Morari, 1995b). There are many variations on this
theme to suit different tastes. At issue are magni-
tude of the violation versus duration and if the so-
lution of the problem with softened constraints may
lead to a constraint violation though a feasible solu-
tion without constraint violation exists (Scokaert and
Rawlings, 19965; Scokaert and Rawlings, 1996a).

If the system is unstable then, in general, the system
cannot be stabilized globally, when there are input
saturation constraints. Algorithms for precalculating
a feasible region were proposed by Zheng and Morari
(1995a) and Gilbert and Tan (1991).

Finally, it may happen, that the algorithm which
minimizes an open-loop objective, inadvertently
drives the closed-loop system outside the feasible re-
gion. This difference between open-loop objective
and closed-loop behavior is addressed below.

Closed Loop Stability

In either the infinite or the finite horizon constrained
case it is not clear under what conditions the closed
loop system is stable. Much recent research on linear
MPC has focused on this problem. Two approaches
have been proposed to guarantee stability: one based
on the original problem (1), (2), and (3) and one
where a “contraction constraint” is added (Polak and
Yang, 1993a; Polak and Yang, 19935). With the con-
traction constraint the norm of the state is forced to
decrease with time and stability follows trivially in-
dependent of the various parameters in the objective
function. Without the contraction constraint the sta-
bility problem is more complicated. The most com-
prehensive and also most compact analysis was pre-
sented in Nevisti¢ and Primbs (1997) and Primbs and
Nevisti¢ (1997) whose arguments we will sketch here.
To simplify the exposition we assume p = m = N,
then J(, ) = Jn as defined in (2). The key idea is to
use the optimal finite horizon cost Jy, the value func-
tion, as a Lyapunov function. One wishes to show



that Jy(z(k)) — Jn(z(k + 1)) > 0 for x # 0. Rewrit-
ing Jn(z(k)) — In(z(k + 1)) gives:

In(z(k)) = In(z(k + 1)) = [27 (k) Qz(k)+

objective function (2) includes a penalty term on du
rather than u which effectively adds integral action to
the controller. For p = oo and with the constraints
softened as discussed above, systems with integra-

uy (z(k))Ruy (z(k))] + [Jv-1(z(k + 1)) — Jn (z(k + 1))kors can be globally stabilized with MPC (Zheng and

(4)

If it can be shown that the right hand side of (4) is
positive, then stability is proven. Assuming @ > 0,
the first term [27 (k)Qx (k) +uk (v(k)) Ruk (z(k)))] is
positive. In general, it cannot be asserted that the
second term [Jy_i(xz(k +1)) — Jn(z(k +1))] is non-
negative.

Several approaches have been presented to assure
that the right hand side of (4) is positive:

e Primbs and Nevisti¢ (1997) showed that the
second term approaches zero as N — oo and
that there exists a finite N* such that for N >
N* the first term dominates over the second. In
general, the solution of a non-convex min-max
problem is necessary in order to determine N*.
However, when the system is open-loop stable
and when the constraints involve the control in-
puts only, the solution of a somewhat conserva-
tive version of this problem requires eigenvalue
computations only, which is quite remarkable.

e When an end constraint z(k + N) = 0 (Kwon
and Pearson, 1977) is imposed it can be ar-
gued in a straight forward manner that Jy is
monotonically non—-increasing as a function of
N, which trivially guarantees stability.

e When P, is chosen as the solution to the Lya-
punov equation ATPyA + Q = P, (Rawlings
and Muske, 1993), then Jy is again monotoni-
cally non—increasing and stability follows. This
choice of Py amounts to using an infinite output
horizon (with input horizon of N). The con-
straint horizon, however, must be chosen large
enough so that satisfying the constraints within
the finite horizon imply the same for the infinite
horizon. Such a choice of horizon can be deter-
mined, for instance, using the concept of the
maximal output admissible sets (Gilbert and
Tan, 1991).

e In the special case when there are no con-
straints and N is finite, the FARE conditions
for guaranteeing stability (Robert R. Bitmead
and Wertz, 1990) follow directly.

Some remarks are in order. Despite the fact that
there exist now techniques to test for stability of con-
strained systems with finite p, this choice is gener-
ally not recommended. The system behavior is rela-
tively insensitive to changes in both p and m over a
wide range of values, therefore () and R are the typ-
ical tuning parameter to affect performance. Soeter-
boek (1992) has shown, however, that for a finite p
the effect of the control weighting R may be “non-
monotonic”, i.e., increasing R may lead to instability,
which is counter-intuitive. This type of behavior was
not observed for the infinite horizon case, though no
proof exists.

It is a common practice in the process industries
to add integrators to the model by expressing it in
terms of differenced inputs du and outputs and re-
integrating the differenced outputs. In this case the

Morari, 1995b). For FIR systems, using an infinite
output horizon is equivalent to setting p = m + t,
and adding the constraint y(m + t;) = 0 (where y
represents the output of the FIR system and ¢, the
number of time steps it takes for the system to settle)
(Lee, 1996).

For general state-space systems, integrating modes
must be zeroed at the end of the control horizon in
order for the infinite horizon cost to be bounded. This
gives rise to some technical complications since zero-
ing of integrating modes is not always possible for two
reasons: First, the chosen control horizon may not be
sufficiently large. In other words, there may not be
enough degrees of freedom available to force the in-
tegrating modes to zero at the end of the horizon.
Second, one may have hard constraints on the input
u, which translate into constraints on the integrated
du. Both problems can be overcome by performing
a bi-level optimization, i.e., steady-state error mini-
mization followed by dynamic error minimization, as
suggested by Lee (1996). The asymptotic stability
is preserved, if the constraints on u are such that
returning the integrating modes to the origin is pos-
sible. It is interesting to note that a similar bi-level
optimization has been a standard feature in popular
commercial algorithms (in the name of “local opti-
mization” and “ideal input resting values” (Qin and
Badgwell, 1996)).

Open-loop Performance Objective vs. Closed
Loop Performance

In receding horizon control only the first of the com-
puted control moves is implemented; the remaining
ones are discarded. Therefore the sequence of ac-
tually implemented control moves may differ signifi-
cantly from the sequence of control moves calculated
at a particular time step. Consequently the finite
horizon objective which is minimized may have only
a tentative connection with the value of the objective
function as it is obtained when the control moves are
implemented. As mentioned above, it is even con-
ceivable that the sequence of calculated control moves
leads the system outside the feasible region. When
both input and output horizons are infinite, there is
no difference between the sequence determined at a
time step and the implemented sequence. As the con-
trol horizon is lengthened we should expect the differ-
ence to diminish. A measure introduced by Primbs
and Nevisti¢ (1997) quantifies this difference and can
be used to decide on the horizon length.

By choosing the output horizon long relative to
the input horizon short-sighted control policies are
avoided but the mismatch criticized above is not elim-
inated. Thus, it was proposed to set both horizons
to infinity which also reduces the number of tun-
ing parameters to be selected (Scokaert and Rawl-
ings, 1997). The computational effort increases but
apparently not unduly.



Research Issues

A major problem is the stability analysis of con-
strained finite horizon systems. The computations
suggested by Primbs and Nevisti¢ (1997) are rather
difficult except when the state dimension is low.

It was proven (Scokaert et al., 1997) that if an expo-
nentially converging observer is combined with a sta-
ble MPC algorithm where access to all the states is as-
sumed, then this observer-controller system is stable,
though the controller is nonlinear and the separation
principle obviously does not hold. A Kalman filter
could serve as the observer. Guidelines for selecting
the noise/tuning parameters and efficient implemen-
tation schemes were discussed by Lee et al. (1994).
In all these deterministic formulations “certainty
equivalence” was assumed tacitly. It has been argued
(Rawlings and Muske, 1994) that performance gains
could be achieved by accounting more accurately for
the characteristics of this nonlinear stochastic system.
It is unclear how much could be gained from tackling
this difficult theoretical problem.

NONLINEAR MPC
The same receding horizon idea which we discussed
in detail above is also the principle underlying non-
linear MPC, with the exception that the model de-
scribing the process dynamics is nonlinear. Various
model forms (differential equations, differential - alge-
braic equations, discrete time algebraic descriptions,
Wiener models, neural nets, etc.) have been tried and
some specific theoretical results for some of them are
available (Patwardhan et al., 1990; Li and Biegler,
1988; Bhat and McAvoy, 1990; Koulouris, 1995;
Maner et al., 1996; Eskinat et al., 1991; Norquay
et al., 1996; Hernandez, 1992; Tulleken, 1993). Also
see Bequette (1991) for a review on nonlinear process
control, which includes an extensive list of different
methods for solving nonlinear model predictive con-
trol problems. Not to be led astray by these specifics,
we will focus on general issues common to all nonlin-
ear MPC algorithms independent of the model form.
We will also not go into a discussion of continuous
vs. discrete time which can bring up a wealth of
hairy technicalities but no new concepts.
Contrary to the linear case, feasibility, closed-loop
stability, and the possible mismatch between the
open-loop performance objective and the actual
closed loop performance are largely unresolved re-
search issues in nonlinear MPC. An additional dif-
ficulty is that the optimization problems to be solved
on line are generally nonlinear programs without any
redeeming features, which implies that convergence
to a global optimum cannot be assured. For the
quadratic programs arising in the linear case this is
guaranteed. This may appear to be a technicality,
but it is not: all stability proofs for the linear case
rely critically on the fact that this global optimum is
found by the control algorithm.
We will discuss some of the ideas in nonlinear MPC
and their implications for the issues listed above. The
intention is to summarize, complement and update
the excellent survey by Mayne (1995).

Infinite horizon / terminal constraint

The idea of using infinite prediction and control hori-
zons or, alternatively, to set up the optimization
problem to force the state to zero at the end of

the prediction horizon was analyzed by Keerthi and
Gilbert (1988) for the discrete time and by Mayne
and Michalska (1990) for the continuous time case.
Just as outlined for the linear case in the proof the
value function is employed as a Lyapunov function.
A global optimum must be found at each time step to
guarantee stability. When the horizon is infinity, fea-
sibility at a particular time step implies feasibility at
all future time steps. Unfortunately, contrary to the
linear case, the infinite horizon problem cannot be
solved numerically. The optimization problem with
terminal constraint can be solved in principle, but
equality constraints are computationally very expen-
sive and can only be met asymptotically. In addition,
one cannot guarantee convergence to a feasible solu-
tion even when a feasible solution exists, a discom-
forting fact. Furthermore, specifying a terminal con-
straint which is not met in actual operation is always
somewhat artificial. Finally, to reduce the complex-
ity of the optimization problem it is desirable to keep
the control horizon small. Thus there may be quite
a gap between the open-loop performance objective
and the actual closed loop performance.

Variable horizon / hybrid MPC

These techniques were proposed by Michalska and
Mayne (1993) to deal with both the global optimal-
ity and the feasibility problems, which plague nonlin-
ear MPC with a terminal constraint. Variable hori-
zon MPC also employs a terminal constraint, but the
time horizon at the end of which this constraint must
be satisfied is itself an optimization variable. In hy-
brid MPC the terminal constraint is replaced by a
“terminal region” which must be reached at the end
of a variable horizon. It is assumed that inside this
region another controller is employed for which it is
somehow known that it asymptotically stabilizes the
system. With these modifications a global optimum
is no longer needed and feasibility at a particular time
step implies feasibility at all future time steps. The
terminal constraint is somewhat less artificial here
because it may be met in actual operation. However,
a variable horizon is inconvenient to handle on-line,
an exact end constraint is difficult to satisfy, and the
exact determination of the terminal region is all but
impossible. In order to show that this region is in-
variant and that the system is asymptotically stable
in this region, usually a global optimization problem
needs to be solved.

Contractive MPC

The idea of contractive MPC was mentioned by Yang
and Polak (1993), the complete algorithm and stabil-
ity proof were developed by De Oliveira and Morari
(1997). In this approach a constraint is added to
the usual formulation which forces the actual and
not only the predicted state to contract at discrete
intervals in the future. From this requirement a Lya-
punov function can be constructed easily and stabil-
ity can be established. The stability is independent
of the objective function and the convergence of the
optimization algorithm as long as a solution is found
which satisfies the contraction constraint. Feasibil-
ity at future time steps is not necessarily guaranteed
unless further assumptions are made. Because the
contraction parameter implies a specific speed of con-



vergence, its choice comes natural to the operating
personnel.

Quasi-infinite horizon MPC

The technique recently introduced by Chen and
Allgéwer (1996) and Chen and Allgéwer (1997a) uses
an infinite horizon and overcomes both the global op-
timization and the feasibility problems without mak-
ing use of artificial terminal constraints, terminal re-
gions and controller switching. Because the infinite
horizon costs cannot be evaluated for nonlinear prob-
lems, an upper bound is employed, which can be cal-
culated relatively easily and which is minimized by
the control algorithm. The open-loop optimal con-
trol problem is formulated as

min 7 (2(2), ()

with

t+T,

J(‘r(t)aﬂ()) = t

(IZ(r: 2(®), 11 + [E() %) dr
+HZ(t + Tys (1), )15

subject to

Tt + Tyia(t). 1) € Q, (5)
where the penalty term on the final state Z(t + T},),
the second term in the objective function, is deter-
mined to bound the infinite horizon cost:

[IZ(t + Tp; z(t), )| > /:ZQW(T;IU)J)HZJ + a(r)||z) dr
T VBt +Thia),) € Q.

This bound is established by controlling the nonlin-
ear model fictitiously by linear optimal state feedback
within the region () after £+7,. The control sequence
computed at time k is feasible at all future times and
only “improvement” is necessary from time step to
time step to guarantee stability.

The method holds much promise. The main unre-
solved difficulty at this point is the determination
of the region Q) which appears to require that some
global test is satisfied which again may not be triv-
ial except for academic examples. Recently, a similar
technique that removes the need for inequality con-
straint (5) has been proposed for open-loop stable
systems (Chen and Allgower, 19975). The method
still requires the Q region to be defined, however, for
determining the terminal weighting matrix and pre-
diction horizon.

MPC with linearization

All the methods discussed so far require a nonlinear
program to be solved on-line at each time step. The
effort varies somewhat because some methods require
only that a feasible (and not necessarily optimal) so-
lution be found or that only an “improvement” be
achieved from time step to time step. Nevertheless
the effort is usually formidable when compared to
the linear case and stopping with a feasible rather
than optimal solution can have unpredictable con-
sequences for the performance. The computational

effort can be greatly reduced when the system is lin-
earized first in some manner and then the techniques
developed for linear systems are employed on-line.
Three different approaches have been proposed.

e Nevisti¢ and Morari (1995) apply first feedback
linearization and then use MPC in a cascade ar-
rangement for the resulting linear system. The
resulting optimization problem is “almost” a
Quadratic Program and conditions for global
stability can be established. The method is
limited to low order systems which fulfill the
conditions required for feedback linearization.

e In the first reported industrial approach to non-
linear MPC Garcia (1984) uses at each time
step a different linear model derived from a lo-
cal (Jacobian) linearization, and employs stan-
dard linear DMC. Lee and Ricker (1994) pro-
posed to add the extended Kalman filter to deal
with unstable dynamics and to improve distur-
bance estimation. De Oliveira (1996) devel-
ops this idea further, imposes contraction con-
straints and derives explicit stability conditions
which show the dependence on the quality of
the linear approximation and various tuning pa-
rameters like the contraction constant.

e Nevisti¢ (1997) shows excellent simulation re-
sults when a linear time varying (LTV) system
approximation is used which is calculated at
each time step over the predicted system trajec-
tory. The time-invariant MPC algorithm can be
easily modified to accommodate LTV systems.

Research Issues

This area is wide open for future research and all pro-
posed approaches are little more than initial steps in
more or less promising directions. Though the the-
oretical purists tend to stay away from linearization
approaches, linearization is the only method which
has found any use in industry beyond demonstration
projects. For industry there has to be clear justi-
fication for solving nonlinear programs on-line in a
dynamic setting and there are no examples to bear
that out in a convincing manner. In some sense and
with further development quasi-infinite MPC may be
“tunable” to use nonlinear MPC only when really
needed (far away from equilibrium) and linear MPC
otherwise, thus combining the best of the “exact” and
the “linearization” methods.

ROBUST MPC

When we say that a control system is robust we mean
that stability is maintained and that the performance
specifications are met for a specified range of model
variations (uncertainty range). To be meaningful,
any statement about “robustness” of a particular con-
trol algorithm must make reference to a specific un-
certainty range as well as specific stability and per-
formance criteria. Although a rich theory has been
developed for the robust control of linear systems,
very little is known about the robust control of linear
systems with constraints.

In the main stream robust control literature “robust
performance” is measured by determining the worst
performance over the specified uncertainty range. In
direct extension of this definition it is natural to set



up a new “robust” MPC objective where the con-
trol action is selected to minimize the worst value
the objective function can attain as a function of the
uncertain model parameters. This describes the first
attempt toward a robust MPC algorithm which was
proposed by Campo and Morari (1987). They showed
that for FIR models with uncertain coefficients and
an oo-norm objective function the optimization prob-
lem which must be solved on-line at each time step is
a Linear Program of moderate size. Unfortunately it
is well known now that robust stability is not guaran-
teed with this algorithm (Zheng and Morari, 1993).
Zafiriou (1990) used the contraction principle to de-
rive some necessary and some sufficient conditions
for robust stability. The conditions are conservative
and difficult to verify. Genceli and Nikolaou (1993)
showed how to determine weights such that robust
stability can be guaranteed for a set of FIR models.
However, weights may not exist even though robust
stabilization is possible for a set of FIR models. Also,
they assume independent uncertainty bounds on the
FIR coefficients which can be very conservative.
The Campo algorithm fails to address the fact that
only the first element of the optimal input trajectory
is implemented and the whole min-max optimization
is repeated at the next time step with a feedback up-
date. In the subsequent optimization, the worst-case
parameter values may change because of the feed-
back update. This is why robust stability cannot be
assured as can be easily demonstrated with a counter
example.

A true bound on the worst-case cost can be deter-
mined when the uncertain parameters are arbitrarily
time varying within specified bounds. For this case
Lee and Yu (1997) have defined a dynamic program-
ming problem (thus accounting for feedback) to de-
termine the control sequence minimizing the worst
case cost. They show that with the horizon set
to infinity this procedure guarantees robust stabil-
ity. However, the approach suffers from the “curse
of dimensionality” and the optimization problems at
each time step of the dynamic programming problem
are usually nonconvex. Thus, in its generality the
method is unsuitable for on-line (or even off-line) use
except for low order systems with simple uncertainty
descriptions.

Most, other papers in the literature aim at explic-
itly or implicitly approximating the problem above
by simplifying the objective and uncertainty descrip-
tion, and making the on-line effort more manageable,
but still guarantee at least robust stability. For exam-
ple, Lee and Yu (1997) use a 2-norm and Zheng and
Morari (1994) an co-norm open-loop objective func-
tion. Both assume FIR models with uncertain coef-
ficients. A similar technique has also been proposed
for state-space systems with bounded input matrix
(Lee and Cooley, 19975).

These formulations may be conservative for certain
problems leading to sluggish behavior because of two
reasons. First of all, arbitrarily time-varying uncer-
tain parameters are usually not a good description of
the model uncertainty encountered in practice, where
the parameters may be either constant or slowly vary-
ing but unknown. Second, the computationally sim-
ple open-loop formulations neglect the effect of feed-
back. Third, the worst-case error minimization
itself may be a conservative formulation for
most problems.

Zheng and Morari (1994) and Zheng (1995) propose
to optimize nominal rather than robust performance
and to achieve robust stability by enforcing a robust
contraction constraint, i.e., requiring the worst-case
prediction of the state to contract. With this for-
mulation robust global asymptotic stability can be
guaranteed for a set of linear time-invariant stable
systems. The optimization problem can be cast as a
quadratic program of moderate size for a broad class
of uncertainty descriptions.

To account for the effect of feedback Kothare and
Morari (1996) propose to calculate at each time step
not a sequence of control moves but a state feedback
gain matrix which is determined to minimize an up-
per bound on robust performance. For fairly general
uncertainty descriptions, the optimization problem
can be expressed as a set of Linear Matrix Inequali-
ties for which efficient solution techniques exist.
Lastly, it is possible to adopt a stochastic uncertainty
description (instead of a set-based description) and
develop an MPC algorithm that minimizes the ex-
pected value of a cost function. In general, the same
difficulties that plagued the set-based approach are
encountered here. One notable exception is that,
when the stochastic parameters are independent se-
quences, the true closed-loop optimal control problem
can be solved analytically using dynamic program-
ming (Lee and Cooley, 1997a). In many cases, the ex-
pected error may be a more meaningful performance
measure than the worst-case error. A contraction
constraint can be added to guarantee robust stability
for a model set corresponding to a given probability
level.

FUTURE - WHAT’S NEEDED?

As we saw in the previous section, the theory of MPC
has matured considerably. However, practitioners
contend (and rightly so) that what limits the perfor-
mance and applicability of MPC in practice are not
the deficiencies of the control algorithm, but issues
like modeling difficulties, lack of suitable sensors, in-
sufficient robustness to failures, etc. MPC points out
new needs in these areas and also suggest new ap-
proaches: For example, in the past, tasks like fault
detection were dealt with at the supervisory level in
the form of a “fuzzy” or “knowledge-based” decision
maker. As we will point out, there exist now new for-
mulations of MPC involving integer variables, which
hold promise for a combined approach to control and
diagnosis. Similarly, there is the possibility to include
qualitative knowledge in a systematic manner in the
control decision process.

IMPROVED IDENTIFICATION
Model development is by far the most critical and
time-consuming step in implementing a model pre-
dictive controller. It is estimated that, in a typical
commissioning project, modeling efforts can take up
to 90% of the cost and time (Andersen and Kum-
mel, 1992). Quite commonly MPC applications in
industry involve dozens of inputs and outputs. To
determine such a multivariable model from data puts
unprecedented demands on model identification tech-
niques. The conventional steps to arrive at models for
MPC applications are illustrated in Figure 1. Each of
the steps can be improved greatly, as discussed below:

e Test Protocol Design
Conventionally, models used in MPC applica-



tions are identified through a series of step tests.
In some cases, PRBS tests instead of step tests
are used and impulse response coefficients are
fitted through least squares or through ridge
regression (Cutler and Yocum, 1991). In most
cases, input channels are perturbed one at a
time, leading to SISO identification. While this
practice is simple and easy to implement, it em-
phasizes the accuracy of individual SISO mod-
els and may not yield a multivariable model of
required accuracy. One can easily construct an
example where the open-loop responses (either
step responses or frequency responses) for all
the SISO systems are fitted almost perfectly,
but the prediction of the multivariable model
when several inputs are changed simultaneously
is very poor (Li and Lee, 1996b). Implement-
ing a controller designed on the basis of such a
model can cause closed-loop instability.

One can experience the same problem with
MISO/MIMO identification, as long as pertur-
bations introduced to different input channels
are independently designed. This is because, in
a highly interactive process, gain directionality
of the process causes the responses of output
channels to exhibit strong correlations to the
point of near colinearity. This can lead to prob-
lems like poor signal-to-noise ratios (for low-
gain directions) and undesirable distribution of
model bias (Andersen and Kummel, 1992).

¢ Identification Algorithm

In most cases, model fitting is done using SISO
or MISO methods. Because the model for each
output is fitted separately in these methods,
correlations that exist among different outputs
cannot be captured or exploited. A true MIMO
identification algorithm fits a single model for
all outputs simultaneously and accounts for ex-
isting correlations. Not only can this improve
identification of the deterministic part, but the
correlations captured in the form of a stochas-
tic model can also be used in prediction. This
can be particularly useful in designing a model
predictive control system for quality control, as
most quality variables cannot be measured on-
line and must be inferred from secondary pro-
cess measurements (see Amirthalingam and Lee
(1997) for an example application).

e Model Validation

Model validations in most cases amount to
examining the prediction errors of individual
SISO models with some additional data. As
we mentioned earlier, this can lead to mis-
leading conclusions about model quality. SISO
models that are very accurate can together
constitute a very poor MIMO model. What
is needed is a more rigorous model analysis
scheme that quantifies the achievable closed-
loop performance.

There are results in the literature that provide par-
tial solutions to the above discussed problems. For
instance, proposed remedies against the gain direc-
tionality problem include: correlated design based
on the SVD analysis (Koung and MacGregor, 1994),
closed-loop identification (Li and Lee, 1996q; Li and
Lee, 1996b; Jacobsen, 1994), and iterative / adaptive

input design (Cooley and Lee, 1996). The recently in-
troduced subspace identification method (Van Over-
schee and Moor, 1994) may fill the need for a practi-
cal MIMO identification algorithm. In addition, sev-
eral investigators have developed methods to obtain
frequency-domain uncertainty bounds, albeit mostly
in the SISO context (Goodwin et al., 1992; Wahlberg
and Ljung, 1992; Cooley and Lee, 1997). These tools
pave the way for integrated identification and control,
which is depicted in Figure 2 (Cooley and Lee, 1997).
The integrated methodology we envision includes: (1)
optimal test signal generation based on the collected
plant information, closed-loop objectives and plant
constraints, (2) quantification of model uncertainty,
and (3) rigorous analysis of stability and achievable
performance on the basis of the model and its uncer-
tainty. The tools and theories discussed above rep-
resent merely a few pieces of the whole puzzle. To
realize the concept, new ideas need to be carved out
and put together with the existing ones.

PERFORMANCE MONITORING AND
DIAGNOSIS

It has been noted by several practitioners that
many model predictive controllers perform well when
first commissioned, but their performance deteri-
orates over time leading to eventual shut-downs
(Studebaker, 1995). In an industrial setting, main-
tainability of control systems in the face of various
adversities like instrumentation malfunctioning, non-
linearity, parameter variations, etc. is key to long-
term success. In order to sustain the intended bene-
fits of model predictive controllers over a long period
of time, a mechanism to detect an abnormality and
diagnose its root cause is needed. The results can be
communicated to engineers and can also be used to
adapt control parameters.
Recent publicity of the maintenance problem for in-
dustrial control loops has stimulated the research
in the area of control system performance moni-
toring. Thus far, most researchers have concen-
trated on developing performance measures for ex-
isting loops (Stanfelj et al., 1993; Kozub, 1996; Tyler
and Morari, 1996a; Harris et al., 1995). Very few
researchers have examined the problem specifically
for model-based control systems. In the model-based
control system context, Kesavan and Lee (1997) pro-
posed to monitor the prediction error to detect an
abnormality and run a few simple diagnostic tests to
gain insights into the source of the abnormal trend.
The problem of fault diagnosis in the model-based
setting has been studied by researchers in many dis-
ciplines and there is a wealth of literature on the sub-
ject (Wilsky, 1976; Isermann, 1984). For instance,
with fault states created in the model, it can be
viewed as a state estimation problem. It is, however,
an unconventional kind in that joint-Gaussian statis-
tics poorly describe the characteristics of most fault
signals. Better statistics can be assigned to them us-
ing Gaussian-sum models, leading to multiple filter
estimation (Tugnait and Haddad, 1979; Kesavan and
Lee, 1997).
Some MPC vendors have recognized the impor-
tance of self-managing abnormal situations and have
launched major R & D efforts on the subject. The
next generation of commercial MPC algorithms is
sure to be equipped with self-diagnostic features and
schemes to manage abnormal situations in an au-



tonomous fashion. However, there is yet to be a con-
sensus on what specific approaches are to be taken.
Many believe that a synergistically combined variety
of tools (e.g., analytical redundancy, pattern recogni-
tion, hardware redundancy) will be needed.

PRACTICAL EXTENSIONS TO NONLINEAR
SYSTEMS

In most applications, it is neither technically nor eco-
nomically feasible to develop detailed first principles
models. One of the important factors for MPC’s suc-
cess in industries has been the ability of engineers
to construct required models from simple plant tests.
Unlike the linear case, however, there is no estab-
lished method to construct a nonlinear model from
input/output data. Recognition of the need has made
empirical modeling of nonlinear systems a focal re-
search topic within the research community. Many
model forms have been proposed and studied, includ-
ing simple extensions of a linear FIR model like the
Volterra kernel and novel connection structures like
the artificial neural networks.

In spite of vigorous research, many fundamental is-
sues remain unresolved in the nonlinear system iden-
tification area. One outstanding issue is the model
structure determination. The questions regarding the
structure determination include: (1) What are the
intrinsic differences between various structures like
NARX, NARMAX, NMA, Hammerstein, Wiener,
etc. and what prior knowledge and plant tests are
needed to determine the correct structure? (2) How
many delayed input and / or output terms should be
included in the model? (3) What basis functions and
connection structure should be used? Although gen-
eral solutions do not appear to be within reach any
time soon, there are some promising directions, for
example on item (2) (Rhodes and Morari, 1997).
Another difficult issue is the test signal design. Un-
like the linear case, conditions for parameter con-
vergence have not been established, except in some
special cases. In addition, the need to integrate the
closed-loop robustness considerations into the exper-
iment design is even more compelling than in the lin-
ear case, since nonlinear system dynamics are much
more general and the characteristics of the resulting
model are very much shaped by those of the data. A
similar approach to the one discussed earlier for linear
system identification can be envisioned for nonlinear
system identification as well.

Finally, since nonlinear models derived from input-
output data will inevitably contain significant bias
and variance, the uncertainties need to be quanti-
fied and used in the controller design and analysis.
The theory for doing this is still at the developmen-
tal stage, even for linear systems. However, the need
for systematic tools to deal with them is clear in the
nonlinear case as insights and heuristics developed
for linear controllers do not apply to nonlinear con-
trollers in general.

In terms of practical applications, two approaches
seem to be best developed or most in line with the
current industrial practice. The first is MPC based
on the Volterra kernel, which can be viewed as an im-
mediate high-order extension of the current commer-
cial algorithms. Identification of the Volterra kernel
has been well studied and conditions on the input
test signals for asymptotic convergence of the pa-
rameters under prediction error minimization have

been established (Koh and Powers, 1985; Pearson et
al., 1993; Pearson et al., 1996). MPC algorithms
using second-order Volterra models have also been
derived and the properties have been investigated
(Doyle III et al., 1995; Maner et al., 1996). A stum-
bling block for embracing this model type as the
choice for general nonlinear control problems is the
large number of parameters which explodes with the
system’s input dimension. Volterra models beyond
second order seem impractical. In addition, one must
address the problem of large parameter variances,
for instance, by quantifying them and accounting for
them in the control computation (Genceli and Niko-
lau, 1994; Chikkula et al., 1993).

The second is the scheduling of multiple linear models
within MPC algorithms. The model-scheduling can
be done either statically or dynamically, and can be
viewed as a form of the popular industrial practice of
gain-scheduling (In the model-based control context,
it is more appropriate to schedule the model param-
eters rather than the controller parameters). Model
development and scheduling can be performed in a
variety of ways, but one systematic way is to iden-
tify a piece-wise linear model from input output data,
for instance, by fitting so called hinging-hyperplanes
(Breiman, 1993). This model has a nice local linear
interpretation and is conducive to dynamic schedul-
ing of linear models (Chikkula and Lee, 1995). An
approach related to this is to linearly interpolate sev-
eral a priori constructed models in the state space
(Johansen and Foss, 1994; Arkun et al., 1995). The
interpolation parameters can be determined a pri-
ori on the basis of off-line data and prior knowledge
(Johansen and Foss, 1994) or can be estimated on-line
(Arkun et al., 1995). Kothare et al. (1997) “space”
the linear models to minimize some measure of mod-
eling error and show that scheduled MPC results
in much smoother behavior of the level of a steam
generator in a nuclear power plant than many other
schemes which have been tried over the years on this
problem. At this point, no theory exist, however,
which shows under what conditions such scheduled
schemes are stable.

CONTROL OF BATCH PROCESSES
Control problems in batch processes are usually posed
as tracking problems for time-varying reference tra-
jectories defined over a finite time interval. During
the course of a typical batch, process variables swing
over wide ranges and process dynamics go through
significant changes due to the nonlinearity, making
the task of finding an accurate process model very
difficult. Because of this, a conventional model-based
control system is likely to lead to significant tracking
errors. This may explain why there have been so few
applications of MPC to batch processes.

A unique aspect of batch operations that must be
exploited for tight control is that they are repeti-
tive. Hence, errors in one batch are likely to re-
peat in the subsequent batches. A framework to use
the past batch data along with the real-time data
is clearly needed. As a step toward this, Lee and
coworkers (Lee and Lee, 1995; Lee and Lee, 1997)
took the idea of iterative learning control (popular
in robot arm training) and developed an MPC algo-
rithm tailored to the specific needs and characteris-
tics of the batch process control problem. The model
used correlates the error trajectory of one batch to



the next and includes stochastic components. Previ-
ous batches are remembered through state estimation
and used in the predictive control computation. The
method can also be applied to processes that undergo
the same transitions repeatedly. It should be men-
tioned that the idea of run-to-run learning has also
be used in the context of batch optimization (Zafiriou
and Zhu, 1990; Zafiriou et al., 1995).

Another largely unexplored aspect of batch system
control is quality management. Quality variables can
be controlled in a cascade control fashion, i.e., by
adjusting the reference trajectories fed to the track-
ing controllers. However, feedback-based on-line ad-
justments are often infeasible as most quality vari-
ables cannot be measured on-line. The standard in-
dustrial practice is to use the statistical monitoring
charts (for off-line quality measurements available af-
ter the batches) to make adjustments only when sig-
nificant and prolonged deviations are observed. Not
only is this approach ineffective in reducing often-
significant batch-to-batch variations, it also results in
large amounts of off-spec products due to the delay.
A more promising approach is to build a statistical
model between the process variables and the quality
variables and control the quality variables in an in-
ferential manner. Such an approach has been found
to be extremely effective in quality control systems
for a pulp digester and a Nylon autoclave (Kesavan
et al., 1997).

The above-mentioned concepts and methods need to
be tested on practical problems. After some refine-
ments on the basis of practical trials, a separate gen-
eral software package could be built for batch sys-
tems.

MOVING HORIZON ESTIMATION

In most practical problems, states of the system are
not directly accessible and must be estimated. The
quality of state estimates has important bearings on
the overall performance of a model predictive con-
troller, especially of one based on a nonlinear model.
Unlike the linear case, however, there is no estab-
lished method for nonlinear state estimation. The
most popular method is the Extended Kalman filter,
which simply relinearizes the nonlinear model at each
time step and updates the gain matrix and the covari-
ance matrix on the basis of linear filtering theory.

Motivated by the success of MPC, a simi-
lar optimization-based state estimation technique
has been studied by several investigators recently
(Robertson et al., 1994; Michalska and Mayne, 1992).
The idea is to formulate the estimation problem
within a finite moving window and to find the val-
ues of the unknown sequences (e.g., initial condition,
state noise, measurement noise) in some least squares
sense. Once the unknowns are estimated, the states
can be reconstructed using the model. In the linear
case with no constraints, it can be shown that moving
horizon estimation is equivalent to the Kalman filter
for certain choices of weighting matrices (Robertson
et al., 1994). A statistical interpretation also exists
for the nonlinear case, which suggests the choice of
the weighting matrices. The advantage of the formu-
lation is two-fold: First, a nonlinear model can be
used directly, at least within the estimation window,
which should improve the estimation. Second, con-
straints can be imposed. Robertson (1996) shows how
the constraints can be used to alter the assumed dis-

tributions of the unknown sequences, when the strat-
egy is viewed as a Maximum Likelihood or Bayesian
estimation method. Michalska and Mayne (1992) es-
tablishes the stability of a very restrictive form of
moving horizon estimator. In the presence of con-
straints it appears that, in general, additional some-
what artificial assumptions need to be made to guar-
antee stability (Tyler and Morari, 1996¢).

In many nonlinear systems, the conventional cer-
tainty equivalence control approach delivers only lim-
ited performance. In this sense, it is desirable to com-
pute the probability distribution of the states, albeit
approximately, and not just the best estimate. This
information should be useful in computing the con-
trol input, even though the computation of an op-
timal input may be intractable. In general, the in-
teraction between estimation and control cannot be
ignored and hence the two must be viewed as one
problem.

IMPROVED OPTIMIZATION

A demanding feature of most model predictive con-
trollers is that an optimization must be solved on-
line. Depending on the nature of the model and the
performance specification, this may be an LP, QP or
NLP. Though LPs and QPs are thought to be easy
to solve, they can still be computationally demanding
for large-scale problems. The NLP is solved in most
cases using the Sequential Quadratic Programming
(SQP) technique, which is computationally very ex-
pensive and comes with no guarantee of convergence
to global optimum. For efficiently, many vendors cur-
rently solve the QP and LP in a heuristic manner, for
example, by using dynamic weighting matrices.
Recently, the so called interior-point methods for
solving LPs have been drawing much attention. Orig-
inally developed about 15 years ago, reliable public-
domain and commercial codes are becoming available
nowadays. A remarkable feature of these methods is
that, though not proven, they all seem to converge
within 5-50 Newton iterations regardless of the prob-
lem size (Boyd, 1997), a very attractive feature for
on-line use. Moreover, these methods are readily ex-
tendible to QPs and SQPs (Wright, 1996; Biegler,
1997). These developments are expected to have ma-
jor bearings on the future practice of MPC since they
will enable the user to solve large-scale problems very
efficiently and reliably (without resorting to heuris-
tics and fudge factors which may or may not work).
Another way to increase the efficiency and reliabil-
ity is to exploit the structure of the problem. The
Hessian and gradient of the QPs are highly struc-
tured and exploiting this fact has been shown to
speed up the computation by orders of magnitude
(Biegler, 1997). This may be the key to solving NLPs
and large-scale QPs reliably and efficiently. Similar
efforts are also under way for highly structured, large-
scale LPs (Doyle III et al., 1997).

IMPROVED INTERFACE WITH DIFFERENT
LAYERS OF AUTOMATION HIERARCHY
Model predictive controllers are intended to work
within the plant operation hierarchy which includes
the plant optimizer, low-level PID loops and moni-
toring schemes. Although the individual components
may be well developed, issues regarding their inter-
face have not been investigated much. For instance,
in implementing a model predictive controller, one is
faced with the option of breaking the low-level loops



(and manipulating the valves directly) or retaining
them (and manipulating their set points). Both have
merits and drawbacks. In addition, the previously
discussed performance monitoring / diagnosis scheme
must be coordinated with the model-based control
system and the process identification scheme to ob-
tain a truly self-sustaining (“adaptive”) control sys-
tem. Finally, there are many issues regarding the in-
terface between the model predictive controller and
the plant optimizer. For example, what information
from the MPC layer is needed by the optimizer? How
(in what form and how often) should the results from
the plant optimization be passed onto the MPC layer?
Some standards need to be established first, however,
before meaningful research can take place in this area.

NEW OPPORTUNITIES BY INCLUDING
INTEGER DECISION VARIABLES IN MPC
Integer variables and linear constraints can be used to
represent heuristic process knowledge. Any relation-
ship which can be expressed as propositional logic
can be translated into this framework (Raman and
Grossman, 1992). Apparently, it was not recognized
that many possible applications of this approach ex-
ist in the area of control and detection (Tyler and

Morari, 1996b).

In the area of control, by including integer variables
representing logic propositions, it is possible to com-
bine logic based control decisions within the MPC
framework. This allows innovative control strategies
which are capable of prioritizing constraints as well
as altering the control objective depending upon the
positions of control inputs. By implementing such
a strategy, controller performance can be improved.
For example, for multivariable systems wherein sat-
uration of one of the manipulated variables prevents
all objectives from being met, integer constraints can
be used to improve performance and prioritize the
objectives.

Integer variables can be used in detection problems
to represent the occurrence of symptoms which are
indicative of classes of failures. In applications where
uncertain models must be used, false alarms due to
uncertainty can be reduced by combining quantita-
tive fault estimation with symptom based fault esti-
mation. When residuals are primarily due to model-
ing uncertainty, the use of logic variables correspond-
ing to symptoms will prevent erroneous fault alarms.

CONCLUSIONS
Over the last decade a mathematically clean formu-
lation of MPC emerged which allows researchers to
address problems like feasibility, stability and perfor-
mance in a rigorous manner. In the nonlinear area a
variety of issues remain which are technically complex
but have potentially significant practical implications
for stability and performance and the computational
complexity necessary to achieve them. There have
been several innovative proposals how to achieve ro-
bustness guarantees but no procedure suitable for an
industrial implementation has emerged. While a res-
olution of the aforementioned issues will undoubtedly
change our understanding of MPC and be of high sci-
entific and educational value, it is doubtful that it
will have more than a minor effect on the practice of
MPC. Seemingly peripheral issues like model identifi-
cation and monitoring and diagnostics will be decisive
factors if MPC will or will not be used for a certain
application. By generalizing the on-line MPC prob-
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lem to include integer variables it will be possible to
address a number of practical engineering problems
directly which may lead to a qualitative change in the
type of problems for which MPC is used in industry.
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Figure 2: Integrated identification and control methodology
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