
Model Predictive Control:Past, Present and Future �Manfred Morari Jay H. LeeInstitut f�ur Automatik Department of Chemical EngineeringETH - Z/ETL Auburn UniversityCH-8092 Z�urich Switzerland Auburn, AL 36849-5127morari@aut.ee.ethz.ch jhl@eng.auburn.eduAbstractMore than 15 years after Model Predictive Control (MPC) appeared in industry as an e�ectivemeans to deal with multivariable constrained control problems, a theoretical basis for this technique hasstarted to emerge. The issues of feasibility of the on-line optimization, stability and performance arelargely understood for systems described by linear models. Much progress has been made on these issuesfor nonlinear systems but for practical applications many questions remain, including the reliabilityand e�ciency of the on-line computation scheme. To deal with model uncertainty \rigorously" aninvolved dynamic programming problem must be solved. The approximation techniques proposed forthis purpose are largely at a conceptual stage. Among the broader research needs the following areas areidenti�ed: multivariable system identi�cation, performance monitoring and diagnostics, nonlinear stateestimation, and batch system control. Many practical problems like control objective prioritization andsymptom-aided diagnosis can be integrated systematically and e�ectively into the MPC framework byexpanding the problem formulation to include integer variables yielding a Mixed-Integer Quadratic orLinear Program. Very e�cient techniques for solving these problems are becoming available.INTRODUCTIONThe intention of this paper is to give an overviewof the origins of Model Predictive Control and itsglorious present. No attempt is made to categorizeand comprehensively review the literature which in-cludes several books (Robert R. Bitmead and Wertz,1990; Soeterboek, 1992; Mart��n S�anchez and Rodel-lar, 1996; Clarke, 1994; Berber, 1995; Camacho andBordons, 1995) and hundreds of papers (Kwon, 1994).The review should give the novice reader an impres-sion which practical objectives have been pursued,which theoretical problems have been formulated andwhat progress has been made without undue mathe-matical complexity. All citations are only exemplaryand should point the reader in a direction where moredetails are available. There is more emphasis on thefuture of MPC than on its past. MPC brings outnew needs in related areas like system identi�cation,state estimation, monitoring and diagnostics, etc. Weshow that many important practical and theoreticalproblems can be formulated in the MPC framework.Pursuing them will assure MPC of its stature as avibrant research area, where theory is seen to sup-port practice more directly than in most other areasof control research.THE PASTThough the ideas of receding horizon control andmodel predictive control can be traced back to the1960s (Garc��a et al., 1989), interest in this �eldstarted to surge only in the 1980s after publica-tion of the �rst paper on Dynamic Matrix Control(DMC) (Cutler and Ramaker, 1979; Cutler and Ra-maker, 1980) and the �rst comprehensive expositionof Generalized Predictive Control (GPC) (Clarke etal., 1987a; Clarke et al., 1987b). At �rst sight, theideas underlying the two methods are similar.

The objectives behind the developments of DMC andGPC were very di�erent, however. DMC was con-ceived to tackle the multivariable constrained controlproblems typical for the oil and chemical industries.In the pre-DMC era these problems were handled bysingle loop controllers augmented by various selec-tors, overrides, decouplers, time-delay compensators,etc. For the DMC task a time-domain model (�niteimpulse or step response model) was natural. GPCwas intended to o�er a new adaptive control alterna-tive. In the tradition of much of the work in adap-tive control input/output (transfer function) modelswere employed. Stochastic aspects played a key rolein GPC from the very beginning, while the originalDMC formulation was completely deterministic anddid not include any explicit disturbance model.The GPC approach is not suitable or, at the veryleast, awkward for multivariable constrained systemswhich are much more commonly encountered in theoil and chemical industries than situations whereadaptive control is needed. Essentially all vendorshave adopted a DMC-like approach (Qin and Badg-well, 1996). Because of these reasons and becauseof the type of applications of interest to the readersof this journal GPC will not be discussed any fur-ther. The interested reader is referred to several re-cent books on this subject (Robert R. Bitmead andWertz, 1990; Soeterboek, 1992; Mart��n S�anchez andRodellar, 1996).DMC had a tremendous impact on industry. Thereis probably not a single major oil company in theworld, where DMC (or a functionally similar productwith a di�erent trade name) is not employed in mostnew installations or revamps. For Japan some statis-tics are available (Ohshima et al., 1995). The initialresearch on MPC is characterized by attempts to un-�This paper was presented at the Joint 6th International Symposium on Process Systems Engineering (PSE'97) and 30thEuropean Symposium on Computer Aided Process Engineering (ESCAPE-7), May 25 - 29 1997, Trondheim, Norway



derstand DMC, which seemed to defy a traditionaltheoretical analysis because it was formulated in anonconventional manner. One example was the de-velopment of Internal Model Control (IMC) (Garc��aand Morari, 1982) which failed to shed light on theconstrained behavior of DMC but led to some insightson robust control (Morari and Za�riou, 1989)THE PRESENTLINEAR MPCNowadays in the research literature MPC is formu-lated almost always in the state space. The systemto be controlled is described by a linear discrete timemodel.x(k + 1) = Ax(k) +Bu(k); x(0) = x0; (1)where x(k) 2 <n and u(k) 2 <m denote the state andcontrol, respectively. A receding horizon implemen-tation (Garc��a et al., 1989) is typically formulatedby introducing the following open-loop optimizationproblem.J(p;m)(x0) = infu(�) �xT (p)P0x(p)+ (2)Pp�1i=0 xT (i)Qx(i) +Pm�1i=0 uT (i)Ru(i)isubject to Ex+ Fu �  (3)(p � m) where p denotes the length of the predic-tion horizon or output horizon, and m denotes thelength of the control horizon or input horizon. (Whenp = 1, we refer to this as the in�nite horizon prob-lem, and similarly, when p is �nite, we refer to it asa �nite horizon problem.)The expressions (1,2,3) de�ne a quadratic programfor which many algorithms and commercial softwareexist. Let u�(p;m)(ijk); i = 0; � � � ;m � 1 be the min-imizing control sequence for J(p;m)(x(k)) subject tothe system dynamics (1). A receding horizon pol-icy proceeds by implementing only the �rst controlu�(p;m)(0jk) to obtain x(k+1) = Ax(k)+Bu�(p;m)(0jk).The rest of the control sequence u�(p;m)(ijk) is dis-carded and x(k+1) is used to update the optimizationproblem (2) as a new initial condition. This processis repeated, each time using only the �rst control ac-tion to obtain a new initial condition, then shiftingthe cost ahead one time step and repeating, hencethe name receding horizon control. In the specialcase when p = m = N , then J(p;m) = JN as de�nedin (2).We note that as the control horizon and the pre-diction horizon both approach in�nity and whenthere are no constraints we obtain the standardLinear Quadratic Regulator (LQR) problem, whichwas studied extensively in the 1960s and 1970s(Kwakernaak and Sivan, 1972). The optimal controlsequence is generated by a static state feedback lawwhere the feedback gain matrix is found via the so-lution of an Algebraic Riccati Equation (ARE). Thisfeedback law has some well known nice properties, inparticular, it guarantees closed-loop stability for anypositive (semi) de�nite choice of weighting matricesQ and R.With constraints an in�nite dimensional optimizationproblem results, which is { at least at �rst sight { nota very practical proposition. On the other hand, by

choosing both the control and the output horizons tobe �nite, the quadratic program is �nite dimensionaland can be solved easily on-line at every time step.Three practical questions are immediate: 1) Whenis the problem formulated above feasible, so thatthe algorithm yields a control action which can beimplemented? 2) When does the sequence of com-puted control actions lead to a system which is closed-loop stable? 3) What closed-loop performance resultsfrom repeated solution of the speci�ed open-loop op-timal control problem?FeasibilityThe constraints stipulated in (3) may render the op-timization problem infeasible. Input saturation con-straints cannot be exceeded, while constraints involv-ing outputs can be violated, albeit with undesirableconsequences for the controlled system. It may hap-pen, for example, because of a disturbance, that theoptimization problem posed above becomes infeasi-ble at a particular time step. Obviously a real-timecontrol algorithm must not fail in this trivial fash-ion. Therefore in all commercial algorithms the hardconstraints are softened by introducing slack vari-ables which are kept small by introducing a corre-sponding penalty term in the objective (Zheng andMorari, 1995b). There are many variations on thistheme to suit di�erent tastes. At issue are magni-tude of the violation versus duration and if the so-lution of the problem with softened constraints maylead to a constraint violation though a feasible solu-tion without constraint violation exists (Scokaert andRawlings, 1996b; Scokaert and Rawlings, 1996a).If the system is unstable then, in general, the systemcannot be stabilized globally, when there are inputsaturation constraints. Algorithms for precalculatinga feasible region were proposed by Zheng and Morari(1995a) and Gilbert and Tan (1991).Finally, it may happen, that the algorithm whichminimizes an open-loop objective, inadvertentlydrives the closed-loop system outside the feasible re-gion. This di�erence between open-loop objectiveand closed-loop behavior is addressed below.Closed Loop StabilityIn either the in�nite or the �nite horizon constrainedcase it is not clear under what conditions the closedloop system is stable. Much recent research on linearMPC has focused on this problem. Two approacheshave been proposed to guarantee stability: one basedon the original problem (1), (2), and (3) and onewhere a \contraction constraint" is added (Polak andYang, 1993a; Polak and Yang, 1993b). With the con-traction constraint the norm of the state is forced todecrease with time and stability follows trivially in-dependent of the various parameters in the objectivefunction. Without the contraction constraint the sta-bility problem is more complicated. The most com-prehensive and also most compact analysis was pre-sented in Nevisti�c and Primbs (1997) and Primbs andNevisti�c (1997) whose arguments we will sketch here.To simplify the exposition we assume p = m = N ,then J(p;m) = JN as de�ned in (2). The key idea is touse the optimal �nite horizon cost JN , the value func-tion, as a Lyapunov function. One wishes to show2



that JN (x(k))� JN (x(k+1)) > 0 for x 6= 0. Rewrit-ing JN (x(k)) � JN (x(k + 1)) gives:JN (x(k))� JN (x(k+ 1)) = [xT (k)Qx(k)+u�TN (x(k))Ru�N (x(k))] + [JN�1(x(k + 1))� JN (x(k + 1))](4)If it can be shown that the right hand side of (4) ispositive, then stability is proven. Assuming Q > 0,the �rst term [xT (k)Qx(k)+u�N (x(k))Ru�N (x(k)))] ispositive. In general, it cannot be asserted that thesecond term [JN�1(x(k+1))� JN(x(k+1))] is non-negative.Several approaches have been presented to assurethat the right hand side of (4) is positive:� Primbs and Nevisti�c (1997) showed that thesecond term approaches zero as N ! 1 andthat there exists a �nite N� such that for N >N� the �rst term dominates over the second. Ingeneral, the solution of a non-convex min-maxproblem is necessary in order to determine N�.However, when the system is open-loop stableand when the constraints involve the control in-puts only, the solution of a somewhat conserva-tive version of this problem requires eigenvaluecomputations only, which is quite remarkable.� When an end constraint x(k +N) = 0 (Kwonand Pearson, 1977) is imposed it can be ar-gued in a straight forward manner that JN ismonotonically non{increasing as a function ofN , which trivially guarantees stability.� When P0 is chosen as the solution to the Lya-punov equation ATP0A + Q = P0 (Rawlingsand Muske, 1993), then JN is again monotoni-cally non{increasing and stability follows. Thischoice of P0 amounts to using an in�nite outputhorizon (with input horizon of N). The con-straint horizon, however, must be chosen largeenough so that satisfying the constraints withinthe �nite horizon imply the same for the in�nitehorizon. Such a choice of horizon can be deter-mined, for instance, using the concept of themaximal output admissible sets (Gilbert andTan, 1991).� In the special case when there are no con-straints and N is �nite, the FARE conditionsfor guaranteeing stability (Robert R. Bitmeadand Wertz, 1990) follow directly.Some remarks are in order. Despite the fact thatthere exist now techniques to test for stability of con-strained systems with �nite p, this choice is gener-ally not recommended. The system behavior is rela-tively insensitive to changes in both p and m over awide range of values, therefore Q and R are the typ-ical tuning parameter to a�ect performance. Soeter-boek (1992) has shown, however, that for a �nite pthe e�ect of the control weighting R may be \non-monotonic", i.e., increasing R may lead to instability,which is counter-intuitive. This type of behavior wasnot observed for the in�nite horizon case, though noproof exists.It is a common practice in the process industriesto add integrators to the model by expressing it interms of di�erenced inputs �u and outputs and re-integrating the di�erenced outputs. In this case the

objective function (2) includes a penalty term on �urather than u which e�ectively adds integral action tothe controller. For p = 1 and with the constraintssoftened as discussed above, systems with integra-tors can be globally stabilized with MPC (Zheng andMorari, 1995b). For FIR systems, using an in�niteoutput horizon is equivalent to setting p = m + tsand adding the constraint y(m + ts) = 0 (where yrepresents the output of the FIR system and ts thenumber of time steps it takes for the system to settle)(Lee, 1996).For general state-space systems, integrating modesmust be zeroed at the end of the control horizon inorder for the in�nite horizon cost to be bounded. Thisgives rise to some technical complications since zero-ing of integrating modes is not always possible for tworeasons: First, the chosen control horizon may not besu�ciently large. In other words, there may not beenough degrees of freedom available to force the in-tegrating modes to zero at the end of the horizon.Second, one may have hard constraints on the inputu, which translate into constraints on the integrated�u. Both problems can be overcome by performinga bi-level optimization, i.e., steady-state error mini-mization followed by dynamic error minimization, assuggested by Lee (1996). The asymptotic stabilityis preserved, if the constraints on u are such thatreturning the integrating modes to the origin is pos-sible. It is interesting to note that a similar bi-leveloptimization has been a standard feature in popularcommercial algorithms (in the name of \local opti-mization" and \ideal input resting values" (Qin andBadgwell, 1996)).
Open-loop Performance Objective vs. ClosedLoop PerformanceIn receding horizon control only the �rst of the com-puted control moves is implemented; the remainingones are discarded. Therefore the sequence of ac-tually implemented control moves may di�er signi�-cantly from the sequence of control moves calculatedat a particular time step. Consequently the �nitehorizon objective which is minimized may have onlya tentative connection with the value of the objectivefunction as it is obtained when the control moves areimplemented. As mentioned above, it is even con-ceivable that the sequence of calculated control movesleads the system outside the feasible region. Whenboth input and output horizons are in�nite, there isno di�erence between the sequence determined at atime step and the implemented sequence. As the con-trol horizon is lengthened we should expect the di�er-ence to diminish. A measure introduced by Primbsand Nevisti�c (1997) quanti�es this di�erence and canbe used to decide on the horizon length.By choosing the output horizon long relative tothe input horizon short-sighted control policies areavoided but the mismatch criticized above is not elim-inated. Thus, it was proposed to set both horizonsto in�nity which also reduces the number of tun-ing parameters to be selected (Scokaert and Rawl-ings, 1997). The computational e�ort increases butapparently not unduly.3



Research IssuesA major problem is the stability analysis of con-strained �nite horizon systems. The computationssuggested by Primbs and Nevisti�c (1997) are ratherdi�cult except when the state dimension is low.It was proven (Scokaert et al., 1997) that if an expo-nentially converging observer is combined with a sta-ble MPC algorithmwhere access to all the states is as-sumed, then this observer-controller system is stable,though the controller is nonlinear and the separationprinciple obviously does not hold. A Kalman �ltercould serve as the observer. Guidelines for selectingthe noise/tuning parameters and e�cient implemen-tation schemes were discussed by Lee et al. (1994).In all these deterministic formulations \certaintyequivalence" was assumed tacitly. It has been argued(Rawlings and Muske, 1994) that performance gainscould be achieved by accounting more accurately forthe characteristics of this nonlinear stochastic system.It is unclear how much could be gained from tacklingthis di�cult theoretical problem.NONLINEAR MPCThe same receding horizon idea which we discussedin detail above is also the principle underlying non-linear MPC, with the exception that the model de-scribing the process dynamics is nonlinear. Variousmodel forms (di�erential equations, di�erential - alge-braic equations, discrete time algebraic descriptions,Wiener models, neural nets, etc.) have been tried andsome speci�c theoretical results for some of them areavailable (Patwardhan et al., 1990; Li and Biegler,1988; Bhat and McAvoy, 1990; Koulouris, 1995;Maner et al., 1996; Eskinat et al., 1991; Norquayet al., 1996; Hernandez, 1992; Tulleken, 1993). Alsosee Bequette (1991) for a review on nonlinear processcontrol, which includes an extensive list of di�erentmethods for solving nonlinear model predictive con-trol problems. Not to be led astray by these speci�cs,we will focus on general issues common to all nonlin-ear MPC algorithms independent of the model form.We will also not go into a discussion of continuousvs. discrete time which can bring up a wealth ofhairy technicalities but no new concepts.Contrary to the linear case, feasibility, closed-loopstability, and the possible mismatch between theopen-loop performance objective and the actualclosed loop performance are largely unresolved re-search issues in nonlinear MPC. An additional dif-�culty is that the optimization problems to be solvedon line are generally nonlinear programs without anyredeeming features, which implies that convergenceto a global optimum cannot be assured. For thequadratic programs arising in the linear case this isguaranteed. This may appear to be a technicality,but it is not: all stability proofs for the linear caserely critically on the fact that this global optimum isfound by the control algorithm.We will discuss some of the ideas in nonlinear MPCand their implications for the issues listed above. Theintention is to summarize, complement and updatethe excellent survey by Mayne (1995).In�nite horizon / terminal constraintThe idea of using in�nite prediction and control hori-zons or, alternatively, to set up the optimizationproblem to force the state to zero at the end of

the prediction horizon was analyzed by Keerthi andGilbert (1988) for the discrete time and by Mayneand Michalska (1990) for the continuous time case.Just as outlined for the linear case in the proof thevalue function is employed as a Lyapunov function.A global optimum must be found at each time step toguarantee stability. When the horizon is in�nity, fea-sibility at a particular time step implies feasibility atall future time steps. Unfortunately, contrary to thelinear case, the in�nite horizon problem cannot besolved numerically. The optimization problem withterminal constraint can be solved in principle, butequality constraints are computationally very expen-sive and can only be met asymptotically. In addition,one cannot guarantee convergence to a feasible solu-tion even when a feasible solution exists, a discom-forting fact. Furthermore, specifying a terminal con-straint which is not met in actual operation is alwayssomewhat arti�cial. Finally, to reduce the complex-ity of the optimization problem it is desirable to keepthe control horizon small. Thus there may be quitea gap between the open-loop performance objectiveand the actual closed loop performance.Variable horizon / hybrid MPCThese techniques were proposed by Michalska andMayne (1993) to deal with both the global optimal-ity and the feasibility problems, which plague nonlin-ear MPC with a terminal constraint. Variable hori-zon MPC also employs a terminal constraint, but thetime horizon at the end of which this constraint mustbe satis�ed is itself an optimization variable. In hy-brid MPC the terminal constraint is replaced by a\terminal region" which must be reached at the endof a variable horizon. It is assumed that inside thisregion another controller is employed for which it issomehow known that it asymptotically stabilizes thesystem. With these modi�cations a global optimumis no longer needed and feasibility at a particular timestep implies feasibility at all future time steps. Theterminal constraint is somewhat less arti�cial herebecause it may be met in actual operation. However,a variable horizon is inconvenient to handle on-line,an exact end constraint is di�cult to satisfy, and theexact determination of the terminal region is all butimpossible. In order to show that this region is in-variant and that the system is asymptotically stablein this region, usually a global optimization problemneeds to be solved.Contractive MPCThe idea of contractive MPC was mentioned by Yangand Polak (1993), the complete algorithm and stabil-ity proof were developed by De Oliveira and Morari(1997). In this approach a constraint is added tothe usual formulation which forces the actual andnot only the predicted state to contract at discreteintervals in the future. From this requirement a Lya-punov function can be constructed easily and stabil-ity can be established. The stability is independentof the objective function and the convergence of theoptimization algorithm as long as a solution is foundwhich satis�es the contraction constraint. Feasibil-ity at future time steps is not necessarily guaranteedunless further assumptions are made. Because thecontraction parameter implies a speci�c speed of con-4



vergence, its choice comes natural to the operatingpersonnel.Quasi-in�nite horizon MPCThe technique recently introduced by Chen andAllg�ower (1996) and Chen and Allg�ower (1997a) usesan in�nite horizon and overcomes both the global op-timization and the feasibility problems without mak-ing use of arti�cial terminal constraints, terminal re-gions and controller switching. Because the in�nitehorizon costs cannot be evaluated for nonlinear prob-lems, an upper bound is employed, which can be cal-culated relatively easily and which is minimized bythe control algorithm. The open-loop optimal con-trol problem is formulated asminu J (x(t); u(�))withJ (x(t); u(�)) = R t+Tpt �kx(� ;x(t); t)k2Q + ku(�)k2R� d�+kx(t+ Tp;x(t); t)k2Psubject to x(t+ Tp;x(t); t) 2 
 ; (5)where the penalty term on the �nal state x(t + Tp),the second term in the objective function, is deter-mined to bound the in�nite horizon cost:kx(t+ Tp;x(t); t)k2P � Z 1t+Tp�kx(� ;x(t); t)k2Q + ku(�)k2R� d�8x(t+ Tp;x(t); t) 2 
:This bound is established by controlling the nonlin-ear model �ctitiously by linear optimal state feedbackwithin the region 
 after t+Tp. The control sequencecomputed at time k is feasible at all future times andonly \improvement" is necessary from time step totime step to guarantee stability.The method holds much promise. The main unre-solved di�culty at this point is the determinationof the region 
 which appears to require that someglobal test is satis�ed which again may not be triv-ial except for academic examples. Recently, a similartechnique that removes the need for inequality con-straint (5) has been proposed for open-loop stablesystems (Chen and Allgower, 1997b). The methodstill requires the 
 region to be de�ned, however, fordetermining the terminal weighting matrix and pre-diction horizon.MPC with linearizationAll the methods discussed so far require a nonlinearprogram to be solved on-line at each time step. Thee�ort varies somewhat because some methods requireonly that a feasible (and not necessarily optimal) so-lution be found or that only an \improvement" beachieved from time step to time step. Neverthelessthe e�ort is usually formidable when compared tothe linear case and stopping with a feasible ratherthan optimal solution can have unpredictable con-sequences for the performance. The computational

e�ort can be greatly reduced when the system is lin-earized �rst in some manner and then the techniquesdeveloped for linear systems are employed on-line.Three di�erent approaches have been proposed.� Nevisti�c and Morari (1995) apply �rst feedbacklinearization and then use MPC in a cascade ar-rangement for the resulting linear system. Theresulting optimization problem is \almost" aQuadratic Program and conditions for globalstability can be established. The method islimited to low order systems which ful�ll theconditions required for feedback linearization.� In the �rst reported industrial approach to non-linear MPC Garc��a (1984) uses at each timestep a di�erent linear model derived from a lo-cal (Jacobian) linearization, and employs stan-dard linear DMC. Lee and Ricker (1994) pro-posed to add the extended Kalman �lter to dealwith unstable dynamics and to improve distur-bance estimation. De Oliveira (1996) devel-ops this idea further, imposes contraction con-straints and derives explicit stability conditionswhich show the dependence on the quality ofthe linear approximation and various tuning pa-rameters like the contraction constant.� Nevisti�c (1997) shows excellent simulation re-sults when a linear time varying (LTV) systemapproximation is used which is calculated ateach time step over the predicted system trajec-tory. The time-invariant MPC algorithm can beeasily modi�ed to accommodate LTV systems.Research IssuesThis area is wide open for future research and all pro-posed approaches are little more than initial steps inmore or less promising directions. Though the the-oretical purists tend to stay away from linearizationapproaches, linearization is the only method whichhas found any use in industry beyond demonstrationprojects. For industry there has to be clear justi-�cation for solving nonlinear programs on-line in adynamic setting and there are no examples to bearthat out in a convincing manner. In some sense andwith further development quasi-in�nite MPC may be\tunable" to use nonlinear MPC only when reallyneeded (far away from equilibrium) and linear MPCotherwise, thus combining the best of the \exact" andthe \linearization" methods.ROBUST MPCWhen we say that a control system is robust we meanthat stability is maintained and that the performancespeci�cations are met for a speci�ed range of modelvariations (uncertainty range). To be meaningful,any statement about \robustness" of a particular con-trol algorithm must make reference to a speci�c un-certainty range as well as speci�c stability and per-formance criteria. Although a rich theory has beendeveloped for the robust control of linear systems,very little is known about the robust control of linearsystems with constraints.In the main stream robust control literature \robustperformance" is measured by determining the worstperformance over the speci�ed uncertainty range. Indirect extension of this de�nition it is natural to set5



up a new \robust" MPC objective where the con-trol action is selected to minimize the worst valuethe objective function can attain as a function of theuncertain model parameters. This describes the �rstattempt toward a robust MPC algorithm which wasproposed by Campo and Morari (1987). They showedthat for FIR models with uncertain coe�cients andan1-norm objective function the optimization prob-lem which must be solved on-line at each time step isa Linear Program of moderate size. Unfortunately itis well known now that robust stability is not guaran-teed with this algorithm (Zheng and Morari, 1993).Za�riou (1990) used the contraction principle to de-rive some necessary and some su�cient conditionsfor robust stability. The conditions are conservativeand di�cult to verify. Genceli and Nikolaou (1993)showed how to determine weights such that robuststability can be guaranteed for a set of FIR models.However, weights may not exist even though robuststabilization is possible for a set of FIR models. Also,they assume independent uncertainty bounds on theFIR coe�cients which can be very conservative.The Campo algorithm fails to address the fact thatonly the �rst element of the optimal input trajectoryis implemented and the whole min-max optimizationis repeated at the next time step with a feedback up-date. In the subsequent optimization, the worst-caseparameter values may change because of the feed-back update. This is why robust stability cannot beassured as can be easily demonstrated with a counterexample.A true bound on the worst-case cost can be deter-mined when the uncertain parameters are arbitrarilytime varying within speci�ed bounds. For this caseLee and Yu (1997) have de�ned a dynamic program-ming problem (thus accounting for feedback) to de-termine the control sequence minimizing the worstcase cost. They show that with the horizon setto in�nity this procedure guarantees robust stabil-ity. However, the approach su�ers from the \curseof dimensionality" and the optimization problems ateach time step of the dynamic programming problemare usually nonconvex. Thus, in its generality themethod is unsuitable for on-line (or even o�-line) useexcept for low order systems with simple uncertaintydescriptions.Most other papers in the literature aim at explic-itly or implicitly approximating the problem aboveby simplifying the objective and uncertainty descrip-tion, and making the on-line e�ort more manageable,but still guarantee at least robust stability. For exam-ple, Lee and Yu (1997) use a 2-norm and Zheng andMorari (1994) an 1-norm open-loop objective func-tion. Both assume FIR models with uncertain coef-�cients. A similar technique has also been proposedfor state-space systems with bounded input matrix(Lee and Cooley, 1997b).These formulations may be conservative for certainproblems leading to sluggish behavior because of tworeasons. First of all, arbitrarily time-varying uncer-tain parameters are usually not a good description ofthe model uncertainty encountered in practice, wherethe parameters may be either constant or slowly vary-ing but unknown. Second, the computationally sim-ple open-loop formulations neglect the e�ect of feed-back. Third, the worst-case error minimizationitself may be a conservative formulation formost problems.

Zheng and Morari (1994) and Zheng (1995) proposeto optimize nominal rather than robust performanceand to achieve robust stability by enforcing a robustcontraction constraint, i.e., requiring the worst-caseprediction of the state to contract. With this for-mulation robust global asymptotic stability can beguaranteed for a set of linear time-invariant stablesystems. The optimization problem can be cast as aquadratic program of moderate size for a broad classof uncertainty descriptions.To account for the e�ect of feedback Kothare andMorari (1996) propose to calculate at each time stepnot a sequence of control moves but a state feedbackgain matrix which is determined to minimize an up-per bound on robust performance. For fairly generaluncertainty descriptions, the optimization problemcan be expressed as a set of Linear Matrix Inequali-ties for which e�cient solution techniques exist.Lastly, it is possible to adopt a stochastic uncertaintydescription (instead of a set-based description) anddevelop an MPC algorithm that minimizes the ex-pected value of a cost function. In general, the samedi�culties that plagued the set-based approach areencountered here. One notable exception is that,when the stochastic parameters are independent se-quences, the true closed-loop optimal control problemcan be solved analytically using dynamic program-ming (Lee and Cooley, 1997a). In many cases, the ex-pected error may be a more meaningful performancemeasure than the worst-case error. A contractionconstraint can be added to guarantee robust stabilityfor a model set corresponding to a given probabilitylevel. FUTURE { WHAT'S NEEDED?As we saw in the previous section, the theory of MPChas matured considerably. However, practitionerscontend (and rightly so) that what limits the perfor-mance and applicability of MPC in practice are notthe de�ciencies of the control algorithm, but issueslike modeling di�culties, lack of suitable sensors, in-su�cient robustness to failures, etc. MPC points outnew needs in these areas and also suggest new ap-proaches: For example, in the past, tasks like faultdetection were dealt with at the supervisory level inthe form of a \fuzzy" or \knowledge-based" decisionmaker. As we will point out, there exist now new for-mulations of MPC involving integer variables, whichhold promise for a combined approach to control anddiagnosis. Similarly, there is the possibility to includequalitative knowledge in a systematic manner in thecontrol decision process.IMPROVED IDENTIFICATIONModel development is by far the most critical andtime-consuming step in implementing a model pre-dictive controller. It is estimated that, in a typicalcommissioning project, modeling e�orts can take upto 90% of the cost and time (Andersen and Kum-mel, 1992). Quite commonly MPC applications inindustry involve dozens of inputs and outputs. Todetermine such a multivariable model from data putsunprecedented demands on model identi�cation tech-niques. The conventional steps to arrive at models forMPC applications are illustrated in Figure 1. Each ofthe steps can be improved greatly, as discussed below:� Test Protocol DesignConventionally, models used in MPC applica-6



tions are identi�ed through a series of step tests.In some cases, PRBS tests instead of step testsare used and impulse response coe�cients are�tted through least squares or through ridgeregression (Cutler and Yocum, 1991). In mostcases, input channels are perturbed one at atime, leading to SISO identi�cation. While thispractice is simple and easy to implement, it em-phasizes the accuracy of individual SISO mod-els and may not yield a multivariable model ofrequired accuracy. One can easily construct anexample where the open-loop responses (eitherstep responses or frequency responses) for allthe SISO systems are �tted almost perfectly,but the prediction of the multivariable modelwhen several inputs are changed simultaneouslyis very poor (Li and Lee, 1996b). Implement-ing a controller designed on the basis of such amodel can cause closed-loop instability.One can experience the same problem withMISO/MIMO identi�cation, as long as pertur-bations introduced to di�erent input channelsare independently designed. This is because, ina highly interactive process, gain directionalityof the process causes the responses of outputchannels to exhibit strong correlations to thepoint of near colinearity. This can lead to prob-lems like poor signal-to-noise ratios (for low-gain directions) and undesirable distribution ofmodel bias (Andersen and Kummel, 1992).� Identi�cation AlgorithmIn most cases, model �tting is done using SISOor MISO methods. Because the model for eachoutput is �tted separately in these methods,correlations that exist among di�erent outputscannot be captured or exploited. A true MIMOidenti�cation algorithm �ts a single model forall outputs simultaneously and accounts for ex-isting correlations. Not only can this improveidenti�cation of the deterministic part, but thecorrelations captured in the form of a stochas-tic model can also be used in prediction. Thiscan be particularly useful in designing a modelpredictive control system for quality control, asmost quality variables cannot be measured on-line and must be inferred from secondary pro-cess measurements (see Amirthalingam and Lee(1997) for an example application).� Model ValidationModel validations in most cases amount toexamining the prediction errors of individualSISO models with some additional data. Aswe mentioned earlier, this can lead to mis-leading conclusions about model quality. SISOmodels that are very accurate can togetherconstitute a very poor MIMO model. Whatis needed is a more rigorous model analysisscheme that quanti�es the achievable closed-loop performance.There are results in the literature that provide par-tial solutions to the above discussed problems. Forinstance, proposed remedies against the gain direc-tionality problem include: correlated design basedon the SVD analysis (Koung and MacGregor, 1994),closed-loop identi�cation (Li and Lee, 1996a; Li andLee, 1996b; Jacobsen, 1994), and iterative / adaptive

input design (Cooley and Lee, 1996). The recently in-troduced subspace identi�cation method (Van Over-schee and Moor, 1994) may �ll the need for a practi-cal MIMO identi�cation algorithm. In addition, sev-eral investigators have developed methods to obtainfrequency-domain uncertainty bounds, albeit mostlyin the SISO context (Goodwin et al., 1992; Wahlbergand Ljung, 1992; Cooley and Lee, 1997). These toolspave the way for integrated identi�cation and control,which is depicted in Figure 2 (Cooley and Lee, 1997).The integrated methodology we envision includes: (1)optimal test signal generation based on the collectedplant information, closed-loop objectives and plantconstraints, (2) quanti�cation of model uncertainty,and (3) rigorous analysis of stability and achievableperformance on the basis of the model and its uncer-tainty. The tools and theories discussed above rep-resent merely a few pieces of the whole puzzle. Torealize the concept, new ideas need to be carved outand put together with the existing ones.PERFORMANCE MONITORING ANDDIAGNOSISIt has been noted by several practitioners thatmany model predictive controllers perform well when�rst commissioned, but their performance deteri-orates over time leading to eventual shut-downs(Studebaker, 1995). In an industrial setting, main-tainability of control systems in the face of variousadversities like instrumentation malfunctioning, non-linearity, parameter variations, etc. is key to long-term success. In order to sustain the intended bene-�ts of model predictive controllers over a long periodof time, a mechanism to detect an abnormality anddiagnose its root cause is needed. The results can becommunicated to engineers and can also be used toadapt control parameters.Recent publicity of the maintenance problem for in-dustrial control loops has stimulated the researchin the area of control system performance moni-toring. Thus far, most researchers have concen-trated on developing performance measures for ex-isting loops (Stanfelj et al., 1993; Kozub, 1996; Tylerand Morari, 1996a; Harris et al., 1995). Very fewresearchers have examined the problem speci�callyfor model-based control systems. In the model-basedcontrol system context, Kesavan and Lee (1997) pro-posed to monitor the prediction error to detect anabnormality and run a few simple diagnostic tests togain insights into the source of the abnormal trend.The problem of fault diagnosis in the model-basedsetting has been studied by researchers in many dis-ciplines and there is a wealth of literature on the sub-ject (Wilsky, 1976; Isermann, 1984). For instance,with fault states created in the model, it can beviewed as a state estimation problem. It is, however,an unconventional kind in that joint-Gaussian statis-tics poorly describe the characteristics of most faultsignals. Better statistics can be assigned to them us-ing Gaussian-sum models, leading to multiple �lterestimation (Tugnait and Haddad, 1979; Kesavan andLee, 1997).Some MPC vendors have recognized the impor-tance of self-managing abnormal situations and havelaunched major R & D e�orts on the subject. Thenext generation of commercial MPC algorithms issure to be equipped with self-diagnostic features andschemes to manage abnormal situations in an au-7



tonomous fashion. However, there is yet to be a con-sensus on what speci�c approaches are to be taken.Many believe that a synergistically combined varietyof tools (e.g., analytical redundancy, pattern recogni-tion, hardware redundancy) will be needed.PRACTICAL EXTENSIONS TO NONLINEARSYSTEMSIn most applications, it is neither technically nor eco-nomically feasible to develop detailed �rst principlesmodels. One of the important factors for MPC's suc-cess in industries has been the ability of engineersto construct required models from simple plant tests.Unlike the linear case, however, there is no estab-lished method to construct a nonlinear model frominput/output data. Recognition of the need has madeempirical modeling of nonlinear systems a focal re-search topic within the research community. Manymodel forms have been proposed and studied, includ-ing simple extensions of a linear FIR model like theVolterra kernel and novel connection structures likethe arti�cial neural networks.In spite of vigorous research, many fundamental is-sues remain unresolved in the nonlinear system iden-ti�cation area. One outstanding issue is the modelstructure determination. The questions regarding thestructure determination include: (1) What are theintrinsic di�erences between various structures likeNARX, NARMAX, NMA, Hammerstein, Wiener,etc. and what prior knowledge and plant tests areneeded to determine the correct structure? (2) Howmany delayed input and / or output terms should beincluded in the model? (3) What basis functions andconnection structure should be used? Although gen-eral solutions do not appear to be within reach anytime soon, there are some promising directions, forexample on item (2) (Rhodes and Morari, 1997).Another di�cult issue is the test signal design. Un-like the linear case, conditions for parameter con-vergence have not been established, except in somespecial cases. In addition, the need to integrate theclosed-loop robustness considerations into the exper-iment design is even more compelling than in the lin-ear case, since nonlinear system dynamics are muchmore general and the characteristics of the resultingmodel are very much shaped by those of the data. Asimilar approach to the one discussed earlier for linearsystem identi�cation can be envisioned for nonlinearsystem identi�cation as well.Finally, since nonlinear models derived from input-output data will inevitably contain signi�cant biasand variance, the uncertainties need to be quanti-�ed and used in the controller design and analysis.The theory for doing this is still at the developmen-tal stage, even for linear systems. However, the needfor systematic tools to deal with them is clear in thenonlinear case as insights and heuristics developedfor linear controllers do not apply to nonlinear con-trollers in general.In terms of practical applications, two approachesseem to be best developed or most in line with thecurrent industrial practice. The �rst is MPC basedon the Volterra kernel, which can be viewed as an im-mediate high-order extension of the current commer-cial algorithms. Identi�cation of the Volterra kernelhas been well studied and conditions on the inputtest signals for asymptotic convergence of the pa-rameters under prediction error minimization have

been established (Koh and Powers, 1985; Pearson etal., 1993; Pearson et al., 1996). MPC algorithmsusing second-order Volterra models have also beenderived and the properties have been investigated(Doyle III et al., 1995; Maner et al., 1996). A stum-bling block for embracing this model type as thechoice for general nonlinear control problems is thelarge number of parameters which explodes with thesystem's input dimension. Volterra models beyondsecond order seem impractical. In addition, one mustaddress the problem of large parameter variances,for instance, by quantifying them and accounting forthem in the control computation (Genceli and Niko-lau, 1994; Chikkula et al., 1993).The second is the scheduling of multiple linear modelswithin MPC algorithms. The model-scheduling canbe done either statically or dynamically, and can beviewed as a form of the popular industrial practice ofgain-scheduling (In the model-based control context,it is more appropriate to schedule the model param-eters rather than the controller parameters). Modeldevelopment and scheduling can be performed in avariety of ways, but one systematic way is to iden-tify a piece-wise linear model from input output data,for instance, by �tting so called hinging-hyperplanes(Breiman, 1993). This model has a nice local linearinterpretation and is conducive to dynamic schedul-ing of linear models (Chikkula and Lee, 1995). Anapproach related to this is to linearly interpolate sev-eral a priori constructed models in the state space(Johansen and Foss, 1994; Arkun et al., 1995). Theinterpolation parameters can be determined a pri-ori on the basis of o�-line data and prior knowledge(Johansen and Foss, 1994) or can be estimated on-line(Arkun et al., 1995). Kothare et al. (1997) \space"the linear models to minimize some measure of mod-eling error and show that scheduled MPC resultsin much smoother behavior of the level of a steamgenerator in a nuclear power plant than many otherschemes which have been tried over the years on thisproblem. At this point, no theory exist, however,which shows under what conditions such scheduledschemes are stable.CONTROL OF BATCH PROCESSESControl problems in batch processes are usually posedas tracking problems for time-varying reference tra-jectories de�ned over a �nite time interval. Duringthe course of a typical batch, process variables swingover wide ranges and process dynamics go throughsigni�cant changes due to the nonlinearity, makingthe task of �nding an accurate process model verydi�cult. Because of this, a conventional model-basedcontrol system is likely to lead to signi�cant trackingerrors. This may explain why there have been so fewapplications of MPC to batch processes.A unique aspect of batch operations that must beexploited for tight control is that they are repeti-tive. Hence, errors in one batch are likely to re-peat in the subsequent batches. A framework to usethe past batch data along with the real-time datais clearly needed. As a step toward this, Lee andcoworkers (Lee and Lee, 1995; Lee and Lee, 1997)took the idea of iterative learning control (popularin robot arm training) and developed an MPC algo-rithm tailored to the speci�c needs and characteris-tics of the batch process control problem. The modelused correlates the error trajectory of one batch to8



the next and includes stochastic components. Previ-ous batches are remembered through state estimationand used in the predictive control computation. Themethod can also be applied to processes that undergothe same transitions repeatedly. It should be men-tioned that the idea of run-to-run learning has alsobe used in the context of batch optimization (Za�riouand Zhu, 1990; Za�riou et al., 1995).Another largely unexplored aspect of batch systemcontrol is quality management. Quality variables canbe controlled in a cascade control fashion, i.e., byadjusting the reference trajectories fed to the track-ing controllers. However, feedback-based on-line ad-justments are often infeasible as most quality vari-ables cannot be measured on-line. The standard in-dustrial practice is to use the statistical monitoringcharts (for o�-line quality measurements available af-ter the batches) to make adjustments only when sig-ni�cant and prolonged deviations are observed. Notonly is this approach ine�ective in reducing often-signi�cant batch-to-batch variations, it also results inlarge amounts of o�-spec products due to the delay.A more promising approach is to build a statisticalmodel between the process variables and the qualityvariables and control the quality variables in an in-ferential manner. Such an approach has been foundto be extremely e�ective in quality control systemsfor a pulp digester and a Nylon autoclave (Kesavanet al., 1997).The above-mentioned concepts and methods need tobe tested on practical problems. After some re�ne-ments on the basis of practical trials, a separate gen-eral software package could be built for batch sys-tems. MOVING HORIZON ESTIMATIONIn most practical problems, states of the system arenot directly accessible and must be estimated. Thequality of state estimates has important bearings onthe overall performance of a model predictive con-troller, especially of one based on a nonlinear model.Unlike the linear case, however, there is no estab-lished method for nonlinear state estimation. Themost popular method is the Extended Kalman �lter,which simply relinearizes the nonlinear model at eachtime step and updates the gain matrix and the covari-ance matrix on the basis of linear �ltering theory.Motivated by the success of MPC, a simi-lar optimization-based state estimation techniquehas been studied by several investigators recently(Robertson et al., 1994; Michalska and Mayne, 1992).The idea is to formulate the estimation problemwithin a �nite moving window and to �nd the val-ues of the unknown sequences (e.g., initial condition,state noise, measurement noise) in some least squaressense. Once the unknowns are estimated, the statescan be reconstructed using the model. In the linearcase with no constraints, it can be shown that movinghorizon estimation is equivalent to the Kalman �lterfor certain choices of weighting matrices (Robertsonet al., 1994). A statistical interpretation also existsfor the nonlinear case, which suggests the choice ofthe weighting matrices. The advantage of the formu-lation is two-fold: First, a nonlinear model can beused directly, at least within the estimation window,which should improve the estimation. Second, con-straints can be imposed. Robertson (1996) shows howthe constraints can be used to alter the assumed dis-

tributions of the unknown sequences, when the strat-egy is viewed as a Maximum Likelihood or Bayesianestimation method. Michalska and Mayne (1992) es-tablishes the stability of a very restrictive form ofmoving horizon estimator. In the presence of con-straints it appears that, in general, additional some-what arti�cial assumptions need to be made to guar-antee stability (Tyler and Morari, 1996c).In many nonlinear systems, the conventional cer-tainty equivalence control approach delivers only lim-ited performance. In this sense, it is desirable to com-pute the probability distribution of the states, albeitapproximately, and not just the best estimate. Thisinformation should be useful in computing the con-trol input, even though the computation of an op-timal input may be intractable. In general, the in-teraction between estimation and control cannot beignored and hence the two must be viewed as oneproblem. IMPROVED OPTIMIZATIONA demanding feature of most model predictive con-trollers is that an optimization must be solved on-line. Depending on the nature of the model and theperformance speci�cation, this may be an LP, QP orNLP. Though LPs and QPs are thought to be easyto solve, they can still be computationally demandingfor large-scale problems. The NLP is solved in mostcases using the Sequential Quadratic Programming(SQP) technique, which is computationally very ex-pensive and comes with no guarantee of convergenceto global optimum. For e�ciently, many vendors cur-rently solve the QP and LP in a heuristic manner, forexample, by using dynamic weighting matrices.Recently, the so called interior-point methods forsolving LPs have been drawing much attention. Orig-inally developed about 15 years ago, reliable public-domain and commercial codes are becoming availablenowadays. A remarkable feature of these methods isthat, though not proven, they all seem to convergewithin 5{50 Newton iterations regardless of the prob-lem size (Boyd, 1997), a very attractive feature foron-line use. Moreover, these methods are readily ex-tendible to QPs and SQPs (Wright, 1996; Biegler,1997). These developments are expected to have ma-jor bearings on the future practice of MPC since theywill enable the user to solve large-scale problems verye�ciently and reliably (without resorting to heuris-tics and fudge factors which may or may not work).Another way to increase the e�ciency and reliabil-ity is to exploit the structure of the problem. TheHessian and gradient of the QPs are highly struc-tured and exploiting this fact has been shown tospeed up the computation by orders of magnitude(Biegler, 1997). This may be the key to solving NLPsand large-scale QPs reliably and e�ciently. Similare�orts are also under way for highly structured, large-scale LPs (Doyle III et al., 1997).IMPROVED INTERFACE WITH DIFFERENTLAYERS OF AUTOMATION HIERARCHYModel predictive controllers are intended to workwithin the plant operation hierarchy which includesthe plant optimizer, low-level PID loops and moni-toring schemes. Although the individual componentsmay be well developed, issues regarding their inter-face have not been investigated much. For instance,in implementing a model predictive controller, one isfaced with the option of breaking the low-level loops9



(and manipulating the valves directly) or retainingthem (and manipulating their set points). Both havemerits and drawbacks. In addition, the previouslydiscussed performance monitoring / diagnosis schememust be coordinated with the model-based controlsystem and the process identi�cation scheme to ob-tain a truly self-sustaining (\adaptive") control sys-tem. Finally, there are many issues regarding the in-terface between the model predictive controller andthe plant optimizer. For example, what informationfrom the MPC layer is needed by the optimizer? How(in what form and how often) should the results fromthe plant optimization be passed onto the MPC layer?Some standards need to be established �rst, however,before meaningful research can take place in this area.NEW OPPORTUNITIES BY INCLUDINGINTEGER DECISION VARIABLES IN MPCInteger variables and linear constraints can be used torepresent heuristic process knowledge. Any relation-ship which can be expressed as propositional logiccan be translated into this framework (Raman andGrossman, 1992). Apparently, it was not recognizedthat many possible applications of this approach ex-ist in the area of control and detection (Tyler andMorari, 1996b).In the area of control, by including integer variablesrepresenting logic propositions, it is possible to com-bine logic based control decisions within the MPCframework. This allows innovative control strategieswhich are capable of prioritizing constraints as wellas altering the control objective depending upon thepositions of control inputs. By implementing sucha strategy, controller performance can be improved.For example, for multivariable systems wherein sat-uration of one of the manipulated variables preventsall objectives from being met, integer constraints canbe used to improve performance and prioritize theobjectives.Integer variables can be used in detection problemsto represent the occurrence of symptoms which areindicative of classes of failures. In applications whereuncertain models must be used, false alarms due touncertainty can be reduced by combining quantita-tive fault estimation with symptom based fault esti-mation. When residuals are primarily due to model-ing uncertainty, the use of logic variables correspond-ing to symptoms will prevent erroneous fault alarms.CONCLUSIONSOver the last decade a mathematically clean formu-lation of MPC emerged which allows researchers toaddress problems like feasibility, stability and perfor-mance in a rigorous manner. In the nonlinear area avariety of issues remain which are technically complexbut have potentially signi�cant practical implicationsfor stability and performance and the computationalcomplexity necessary to achieve them. There havebeen several innovative proposals how to achieve ro-bustness guarantees but no procedure suitable for anindustrial implementation has emerged. While a res-olution of the aforementioned issues will undoubtedlychange our understanding of MPC and be of high sci-enti�c and educational value, it is doubtful that itwill have more than a minor e�ect on the practice ofMPC. Seemingly peripheral issues like model identi�-cation and monitoring and diagnostics will be decisivefactors if MPC will or will not be used for a certainapplication. By generalizing the on-line MPC prob-
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Figure 2: Integrated identi�cation and control methodology
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