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m Abstract Because of the evolutionary conservation of innate mechanisms of host
defense Drosophilahas emerged as an ideal animal in which to study the genetic
control of immune recognition and responses. The discovery that the Toll pathway is
required for defense against fungal infectiorDirosophilawas pivotal in studies of

both mammalian anBrosophilaimmunity. Subsequent genetic screenBinsophila

to isolate additional mutants unable to induce humoral responses to infection have
identified and ordered the function of components of two signaling cascades, the Toll
and Imd pathways, that activate responses to infecBmasophilablood cells also
contribute to host defense through phagocytosis and signaling, and may carry out a
form of self-nonself recognition that is independent of microbial pattern recognition.
Recent work suggests thatosophilawill be a useful model for dissecting virulence
mechanisms of several medically important pathogens.

INTRODUCTION

In 1989, Janeway proposed that innate immune mechanisms, those that rely on
detection of microbes by germline encoded receptors, are ancient and essential
for earliest detection of and defense against infection in mammals (1). In 1996,
Lemaitre and coworkers demonstrated that the Toll receptor, previously known
for its essential role durin@rosophilaembryonic development, is required for
antifungal defense iBrosophila(2). This finding stimulated the identification of

the mammalian Toll-like receptors (TLRs) and the demonstration of their impor-
tance in mammalian innate immunity. We now know that mice that lack TLRs are
susceptible to infection and are impaired in the ability to activate adaptive immune
mechanisms, supporting Janeway’s predictions (3-5).

Well before the power oDrosophilagenetics was harnessed to study regu-
lation of immune responses, insects were already known to have sophisticated
immune systems, involving phagocytic blood cells, serine proteolytic cascades,
and inducible humoral responses, thanks to decades of biochemical work with
larger insects. In particular, insects induce a number of antimicrobial peptides
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upon immune challenge that are effective against Gram-negative or Gram-positive
bacteria or fungi. Following the discovery of the immune functioaisophila

Toll, genetic screens were designed to isoltesophilamutants that could not
induce particular antimicrobial peptides in response to infection.

Genetic methods have identified about two dozen genes required for induction
ofthe antimicrobial peptides. Many of these genes encode proteins in two signaling
pathways that control the activation of MiB-like factors in response to infection,
the Toll and Imd pathways, both named for the first gene to be discovered in the
pathway. Immune signaling through Toll leads to the activation of twoxBF-
factors, Dif and Dorsal. Activation of the Imd signaling pathway culminates in
the activation and nuclear translocation of the tiirdsophilaNF-« B-like factor,

Relish.

The early finding thaloll mutants are impaired in survival to fungal infection
andimd mutants impaired in antibacterial responses suggested that distinct path-
ways are used to detect and induce responses against bacteria and fungi. However,
we now know that survival to Gram-positive bacterial infection also requires the
Toll pathway. In addition to its importance in activation of antifungal responses,
Toll is a central regulator of multiple aspectsfosophilaimmunity, including
resistance to bacterial infection, blood cell activation, and regulation of a melaniza-
tion cascade.

Genetic screens have also identified two peptidoglycan recognition proteins
(PGRPs) that bind bacterial components directly. One recognizes Gram-negative
bacteria and activates the Imd pathway, and the other detects Gram-positive bac-
teria and triggers Toll signaling. These findings fulfil Janeway’s prediction that
in innate immunity, pattern recognition receptors (PRRs) would recognize con-
served molecular features of microbes, or pathogen-associated molecular patterns
(PAMPs). What was not foreseen in 1989, and vibrasophilahas revealed, is that
innate immune systems can discriminate among PAMPs that are characteristic of
different microbial classes and activate the most appropriate defenses. Still under
intense scrutiny irbrosophilaare the mechanisms linking detection of microbes
to signaling through the Imd and Toll pathways.

Other aspects of thBrosophilaimmune response are not as well understood
as the signaling pathways that lead to the humoral responses, but are ripe for
genetic dissection. Blood cells are activated in response to infection, but our un-
derstanding of the mechanisms and consequences of blood cell activation are
fragmentary. Serine protease cascades, which also activate several aspects of the
mammalian immune response (6, 7), are required for activation of Toll signaling
and the melanization responseDrosophila

Drosophilacan also activate immune responses in the absence of microbial
PAMPs—both in response to infestation with parasites, and under autoimmune
conditions generated by a variety of mutations. Although the mechanisms of im-
mune activation under these circumstances are not known, insect blood cells are
able to discriminate between self and nonself, and both aberrant basement mem-
brane patterns and endogenous DNA may be immunostimulatory.
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Drosophilahas recently emerged as a suitable model organism to investigate
virulence mechanisms of a wide range of medically important pathogens, including
Pseudomonas$Serratiag Mycobacteriaand malaria parasites. Many of the bacterial
virulence mechanisms that are essential to establish infection in mammals also
contribute to pathogenesis in flies, including type three secretion systems (TTSS)
and ability to proliferate inside macrophages.

Major questions in innate immunity concern how germline encoded receptors
distinguish self from nonself and discriminate among various types of foreign in-
vaders in order to activate the most effective response. The striking commonalities
betweerDrosophilaand mammalian innate immunity, including Toll-NdB sig-
naling, phagocytosis, serine protease cascades, PGRPs, and autoimmune defect:
suggest that in the years to come studieBiiosophilawill continue to shed light
on immune mechanisms that are also important in humans.

OVERVIEW OF THE DROSOPHILA IMMUNE RESPONSE

A Diversity of Infectious Threats

BecauseDrosophilais not an agricultural pest, there is not a long history of en-
tomological study of their pathogens. Much of our knowledg®afsophilaim-
munity thus concerns the responses to microbes that are not normally pathogenic
and do not infect wild-typ®rosophilaunless directly injected. Studying immune
responses to these opportunistic infections may be particularly relevant to mam-
malian immunity, as generalized immune defenses tend to be more evolutionarily
conserved than ones specific to individual virulent pathogens. Nevertheless, some
microorganisms and parasites are known that can naturally iDfesbphilg per-
mitting finer analysis of immune mechanisms without the complications that a
wound can introduce (8-10).

This review primarily address&rosophilaimmunity to extracellular bacteria
and fungi, as well as recognition of parasites, but a brief survey of a wider range
of pathogens is presented.

BACTERIA Drosophilaare very adept at eliminating invading bacteria: Larvae in-
jected with 500(. coliCFU clear the infection witl 6 h (11). Two Gram-negative
bacteria are known that can naturally infect larvae through the gut (9, 12). Other-
wise,Drosophilaantibacterial responses are assessed in the lab by directly injecting
Gram-negative and Gram-positive bacteria. Neither of two intracellular bacterial
types studied ibrosophila Mycobacteriapr the obligate intracellular rickettsial
symbiontWolbachia elicits a humoral antibacterial response (13, 14). Specific
immune defenses against intracellular pathogens are not kndawogophila

FUNGI Several fungal species, includigauveria bassianaan penetrate the
cuticle of Drosophilaand establish a lethal infection. Other fungi can be injected,
and are lethal only in immunocompromised mutants (2, 8).
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PARASITES Parasitoid wasps that lay their eggs in fly larvae represent a significant
threat to wildDrosophila In a successful infestation, the wasp egg hatches, the
larva eats the fly pupa from inside, and an adult wasp eventually emerges (10,
15). The host protective response includes the encapsulation of the wasp egg by
specialized lamellocyte blood cells (see below). Specific genetic I@tsophila
correlate with ability to resist wasp infestation, although the genes have not yet
been identified (16).

A flagellate protozoan can induce systemic antimicrobial expression from the
fly gut, and killsDrosophilawhen injected (17).

VIRUSES ~Several viruses that can infddtosophilahave been characterized, in-
cluding rhabdoviruses, picornaviruses, baculoviruses, retroviruses, and birnavi-
ruses (18-23). General insect antiviral strategies are not understood, although one
Drosophilagene required for resistance to a rhabdovirus encodes a protein that
may interfere with virus replication (24).

Overview of Innate Immune Responses

There is no evidence iDrosophilaor other insects for an adaptive immune system
like that of mammals: specific antisera are not produced, and no sign of somatic
gene rearrangement or a system resembling MHC antigen presentation has been
found (25) Drosophilaand most other invertebrates are thought to rely exclusively
on innate immune mechanisms.

Drosophilahas an open circulatory system that disseminates the mediators and
effectors of immune responses, most notably the blood cells and the antimicrobial
peptides. The blood, also called the hemolymph, circulates in the extracellular
space, or hemocoel, which is lined with a basement membrane (26). The fat body,
an analog of the mammalian liver, is an extensive monolayer sheet of cells and is
the source of most of the antimicrobial peptides produced in response to systemic
infection (27, 28).

ANTIMICROBIAL PEPTIDES Within hours of infection, transcription of a battery of
antimicrobial peptides is induced in the fat body and the peptides are secreted
into the blood. Insect antimicrobial peptides were originally isolated from larger
insects based on their activities against different types of microbes and are ac-
tive against fungi (Drosomycin, Metchnikowin, Cecropin), Gram-negative bacte-
ria (Attacin, Cecropin, Diptericin, Drosocin), or Gram-positive bacteria (Defensin,
Metchnikowin). Many of the peptides work by disrupting bacterial membranes (29,
30). Mutants impaired in the Imd and Toll signaling pathways that induce the an-
timicrobial peptide genes are severely immunocompromised (2). The ability of
these mutants to resist infection can be rescued by transgenic expression of the
appropriate peptides, attesting to the importance of the antimicrobial peptides in
fighting infection (31).
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CELLULAR RESPONSES Drosophilaalso relies on blood cells to protect against in-
fection. Plasmatocytes, phagocytic macrophage-like cells, comprise about 90%
of the blood cell population (26, 32). Crystal cells are a source of enzymes for
the melanization reaction (see below) (33). Lamellocytes are extremely flattened
cells that differentiate in response to certain immune challenges, and encapsu-
late large invaders such as parasite eggs (26, 32). The plasmatocytes may have
functionally distinct subgroups. Some are sessile while others circulate, and some
are more highly phagocytic than others (32). Several genes are differentially ex-
pressed among plasmatocytes, and efforts are under way to generate monoclonal
antibodies that can discriminate amdbgpsophilablood cells (34, 35).

Phagocytosis is a vital contribution of blood cells to immunity; most bacteria
injected into a fly are taken up by the blood cells within minutes (26, 36). Blood
cells are required for signaling to the fat body under some infection conditions
(9, 37). They also accumulate at wound sites and help form clots (33, 38). The
importance of blood cells in fighting infection is shown by sensitization to infection
seen when phagocytosis is blocked or in mutants that lack blood cells (36, 39).

Although it is beyond the scope of this review, there is significant homology
betweenDrosophilaand mammalian hematopoieisis. Both require the function
of genes in the GATA, NRB, Notch, Runt/AML1, JAK-STAT, Ras, and VEGF
families and pathways (40-48).

MELANIZATION The deposition of melanin is a rapid, highly localized defense
triggered by wounding and the presence of foreign invaders. Melanization con-
tributes to wound clotting and encapsulation of wasp eggs, and produces toxic
intermediates including reactive oxygen species. Phenoloxidase, which catalyzes
melanin production, is maintained as an inactive zymogen and is activated by
a serine protease cascade (49). A mutant lacking hemolymph phenoloxidase is
sensitized to infection and is vulnerable to death from wounds (38, 39).

BARRIER EPITHELIA All the surface epithelia oDrosophilathat contact the en-
vironment, including the exterior, the gut, and the tracheae, induce antimicrobial
gene expression upon contact with microbes (50-52). The Imd pathway regulates
the induction of all peptides in the epithelia, including antifungal peptides (50—
52). In mammals, antimicrobial peptides also play key roles in epithelial defenses
against infection (53, 54).

The Question of Specificity

Can innate immune systems tailor responses to the type of immune challenge?
Some aspects of tizrosophilahumoral response are highly specific. For example,
fungal infection specifically induceédetchnikowirandDrosomycin the two anti-
fungal peptides (8). Infection with Gram-negative bacteria, on the other hand, in-
duces many antimicrobial peptides, even the antifuBgasomycin(9, 37). How-

ever, some specificity is apparent becaDsesomycinis induced only transiently

by Gram-negative bacterial infection, whereas the expression of antibacterial
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peptides is sustained (8, 55). Selective activation by different microbes of either
the Imd or the Toll pathway has been proposed to account for the specificity of
immune response iDrosophila However, there is evidence that the system is
more complex than this, which is discussed below.

Although there is no evidence in insects for a system of adaptive immunity
like that in mammals, the possibility of specific immunological memory has not
been excluded. Indeed, the recent finding that some arthropods are able to transfer
specific immunity to their offspring suggests that a system of inducible immuno-
logical memory could also exist in insects (55a). Recognition and memory of
evolved pathogens likely involves molecules that remain to be characterized.

THE IMD AND TOLL PATHWAYS CONTROL
THE HUMORAL RESPONSES

Signaling through the Imd and Toll pathways results in the translocation of distinct
NF-«B factors to the fat body nucleus and accounts for most of the transcrip-
tional induction of genes in response to fungal and bacterial infection (2, 56-59)
(Figure 1).

Toll Pathway

Adult Drosophilamutants lacking the function of Toll pathway elements are unable
to induceDrosomycinn response to fungi and are susceptible to fungal infection,

Figure 1 Imd and Toll signaling pathways activate humoral antimicrobial defenses

in the Drosophilafat body. Toll signaling is activated by fungal and Gram-positive
invaders by different mechanisms. By an unknown mechanism, fungi trigger a cascade
involving the serine protease Persephone, which results in the proteolytic activation of
Sptzle, a ligand for Toll. Gram-positive invaders are recognized by an independent
process that requires a circulating peptidoglycan recognition protein. Toll signaling
culminates in the translocation of the NiB-factor Dif to the nucleus where it activates
transcription of the antifung&®rosomycirand other genes. Gram-negative bacteria are
recognized by a transmembrane peptidoglycan receptor, PGRP-LC. In at least some
cases (see text), blood cells are required for induction of defenses against Gram-negative
bacteria, suggesting that the blood cells may signal to the fat body. Nitric oxide (NO) is
implicated in blood cell activation of antibacterial defenses in the fat body, although its
specific role is unknown. PGRP is upstream of the Imd pathway that culminates in the
phosphorylation and cleavage of the Relish AE-factor, which enters the nucleus and
activates many genes including the antibact®iptericin. Overexpression of Imd and
several other constituents of the Imd pathway causes constiiptericin expression.
Genetic epistasis between overexpressing transgenes and mutations in other genes
has tentatively ordered the pathway as shown. The dotted line indicates relationships
suggested by overexpression experiments or physical associations.
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yet they are able to indud@iptericin normally and resist most Gram-negative
bacterial infections (2, 59-62). Toll signaling was thus originally considered an
antifungal pathway. Interestingly, however, mutants lacking Toll pathway elements
are also susceptible to Gram-positive infection (59, 63) (see Figure 1).

Toll, first discovered irDrosophilg is a transmembrane protein with extracel-
lular leucine-rich repeats and an intracellular signaling domain similar to that of
the Interleukin-1 receptor (64). The ligand f@rosophilaToll is a circulating en-
dogenous protein, $rle, which is proteolytically activated by a serine protease
cascade in response to infection (65, 66). Ligand binding to Toll activates a cyto-
plasmic cascade involving dMyD88, the IRAK-like kinase Pelle, and the adaptor
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protein Tube. This results in the degradation of thB-like Cactus, permitting the
nuclear translocation of the NEB-like proteins Dif and Dorsal (2, 56, 57, 62, 67—
69). Most of the Toll pathway mutants were originally isolated for their maternal
effect embryonic patterning defects; the mutants are viable, but females produce
abnormally patterned embryos (7@if anddMyD88 mutants were isolated by
reverse genetic approaches (56, 60—62).

Although Drosophilahas 9 Toll receptors, they are not believed to provide
specificity by recognizing different PAMPs as they are in mammals. Toll does not
directly bind microbial components. None of the otBeosophilaTolls have been
identified in genetic screens for immunodeficient mutants or are upregulated by
immune challenge (71). An early report that 18Wheeler (the seBwosophila
Toll) had specific antibacterial defects has not been confirmed (72, 73). Several
of the otherDrosophilaTolls have morphogenetic and neural functions (74, 75).
Sequence comparisons suggest that the last common ancestor of mammals and
invertebrates may have had only one or a few Toll receptors that subsequently
duplicated and diverged under different selection pressures in the two lineages (76).
Some of the othebrosophilaTolls may have immune functions, but assessment
of their contributions awaits loss-of-function analysis (Table 1).

Imd Pathway

The Imd signaling pathway mediates the inductiorDgbtericin and other an-
tibacterial peptide genes in the fat body in response to Gram-negative bacte-
rial infection, and bears some resemblance to the mammalianal pdthway
(Figure 1) (77—79). Although Imd itself was discovered serendipitously, most Imd
pathway components were identified in genetic screens for mutants unable to in-
duce reporters obiptericin expression in response to bacterial challenge, or to
survive infection (36, 80—83).

The Imd signaling pathway culminates in the activation of the<~family
member Relish. Relish, like mammalian p100 and p105, is a compound protein
with an N-terminal Rel domain and C-terminal ankyrin repeat domain and is pro-
teolytically processed in response to upstream signals to generate an N-terminal
Rel protein that enters the nucleus and activates transcription of target genes in-
cluding Diptericin (58, 84). Proteolytic activation of Relish differs from that of
p100 and p105 in that it is proteasome-independent and mediated directly by the
caspase Dredd (58, 85). Relish activation also requires phosphorylation/ig an |
kinase (IKK) complex (11, 83, 86). The genes encoding dTAK (a MAPKKK) and
the adaptor protein dFADD are also required for induction of antibacterial peptide
genes (87-90). All the Imd pathway mutants are unable to inBigericin and
are susceptible to bacterial infection (2, 36, 82—84, 88, 89, 91, 92), whereas in vivo
overexpression of Imd and other pathway elements causes constifiegicin
expression (87, 88, 91). Imd pathway mutants are often able to resist Gram-positive
infection almost as well as wild-type (59, 63, 92).

Negative regulators in the Imd pathway cannot be recovered in screens for
immunodeficient mutants, but a screen for mutants that overexpipgsricin
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TABLE 1 Proteins that may activate immune responses in response to microbial invasion. The
roles of these proteins have not been confirmed by mutant analysis

Gene(s) Type of protein encoded Evidence References
PGRP-LE PRR In vivo overexpression induces (117)
constitutiveDiptericin
and melanization
dSR-C1 Scavenger receptor RNAI in S2 blood cell line (118)
impairs ability to bind and
phagocytose bacteria
GNBPs Secreted; similar to bacterial Binds LIBSL,3 glucan; (116, 119)
B-1,3 glucanases and CD14  overexpression in S2 cells
(3 in Drosophilg increases ability to induce
antimicrobial peptides
TEPs Thiolester-containing; Upregulated upon infection; (99, 120)
complement factor C3-like;  RNAI of mosquito homolog
opsonin? impairs Gram-negative
phagocytosis
Masquerade “Inactive” serine protease Upregulated upon Gram-positive, (55, 121)
(null mutations lethal) fungal infection; crayfish
homolog is an opsonin
dToll5 Toll-like receptor Chimeric constitutively active (122, 123)
protein with dToll5 cytoplasmic
domain activates Drosomycin
in S2 cells; coreceptor with Toll?
dToll9 Toll-like receptor Wild-type protein constitutively (124)

activates Drosomycin in S2 cells
in absence of infection; through
canonical Toll pathway

identified a ubiquitin ligase complex which targets Relish for destruction in the

absence of infection (93).

Other Signaling Pathways

The JAK-STAT and JNK pathways are important in the mammalian immune re-
sponse (94, 95) and also signal during tsophilaimmune response. LPS
stimulation ofDrosophilablood cells activates INK within minutes (96). Microar-

ray analysis of RNAi-treated blood cells exposed to LPS indicates that the INK
pathway controls the rapid upregulation of cytoskeletal genes in response to infec-
tion (90). Although null INK pathway mutants die as embryos due to a requirement
for this pathway for early developmental events including epithelial fusion (97), a
hypomorphic allele of DFos, a transcriptional effector of INK signaling, impairs

wound healing (38).
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JAK-STAT signaling inDrosophilais required for the induction in the fat body
of a number of genes in response to infection, including the stress-induced gene
totA, as well asTepl, which encodes a thiolester-containing protein that may be
an opsonin (see Table 1) (90, 98, 99). Upd3 is a cytokine-like protein produced by
the blood cells upon infection, and it activates transcriptiototXin the fat body
by signalling through the receptor Domeless and the JAK-STAT pathway (98).
In general, dependence on JAK-STAT signaling correlates with delayed, transient
induction followingimmune challenge (90). In addition, constitutive JAK signaling
hyperactivates the blood cells (see below).

PATTERN RECOGNITION AND ACTIVATION
OF IMD AND TOLL SIGNALING

The Imd and Toll pathways can be activated through binding by specific PGRPs
of Gram-negative or Gram-positive bacterial molecules, respectively. It is not yet
clear how fungal recognition activates Toll signaling, nor have the functions of

other candidate PRRs been defined.

Recognition of Microbes

PGRPs were first identified in moths as infection-induced proteins that bind pepti-
doglycan, triggering the proteolytic melanization cascade (100, 101). The
Drosophilagenome encodes at least 13 PGRPs, some with multiple splice-forms,
and the human genome encodes 4 that also have splice variants (102—-104). PGRPs
share a 160 amino acid peptidoglycan recognition domain, and both mammals
andDrosophilahave genes that encode secreted (S) and transmembrane (L) forms
(101). InDrosophila a secreted PGRP is required for survival to Gram-positive
bacteria, whereas mutants lacking the function of a transmembrane PGRP are sus-
ceptible to Gram-negative bacterial infection (92, 105-107). In addition, at least
one of theDrosophila secreted PGRPs scavenges and degrades peptidoglycan
(108). A hydrophobic groove shared by both secreted and transmembrane PGRPs
may function to bring downstream effectors into proximity, promoting signaling
(109), while the cytoplasmic tails of transmembrane PGRPs may also contribute
to downstream signaling.

PGRP-LC AND GRAM-NEGATIVE DETECTION Mutants in PGRP-LC fail to induce

the antibacterial peptides and are susceptible to Gram-negative but not Gram-
positive infection (92, 106, 107). The transmembrane PGRP-LC has two major
splice variants that share common transmembrane and cytoplasmic domains but
have very different extracellular peptidoglycan recognition domains (103, 106).
PGRP-LC acts upstream of the Imd pathway: Mutants are unable to proteolytically
activate Relish during infection, and constitutive expressioRipfericin caused

by PGRP-LC overexpression requires wild-type Imd function (92, 106).
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It was surprising to find a PGRP implicated in the recognition of Gram-negative
bacteria because Gram-negative peptidoglycan (PG) is in the inner cell wall layer,
which is covered by the outer membrane. In contrast, the PG of Gram-positive
bacteria is much more accessible on the cell wall surface. Lipopolysaccharide
(LPS), on the other hand, is an abundant constituent of the Gram-negative outer
membrane, and is an extremely immunogenic molecule in mammals (110). Be-
cause LPS is not found in Gram-positive bacteria, it was expected to be the
key to the discrimination between Gram-negative and Gram-positive bacteria by
Drosophila

HoweverDrosophilais able to discriminate between Gram-negative and Gram-
positive PG, which differin a single amino acid, whereas LPS is nota potentinducer
of the humoral response in vivo (111, 112). The PGRPs play an essential role in
the recognition of and disrimination between Gram-negative and Gram-positive
bacteria. Gram-negative PG, but not Gram-positive PG, is a potent inducer of
Diptericinin flies and cultured blood cells, and requires PGRP-LC function (103,
112, 113). PGRP-LC was also identified in a blood cell RNAi screen as a pro-
tein involved in Gram-negative, but not Gram-positive, binding and phagocytosis
(107).

PGRP-SA AND GRAM-POSITIVE DETECTION A mutant lacking the function of
PGRP-SA was identified in a screen for mutants unable to in@wosomycin
following a mixed bacterial infection (105). Althoudbrosomycinis an antifun-

gal peptide, itis induced through the Toll pathway by both fungi and Gram-positive
bacteriaPGRP-SAnutants are specifically susceptible to Gram-positive infection;
resistance to fungi and Gram-negative bacteria is normal (105). Consistent with
this, PGRP-SAmutants cannot indud@rosomycinin response to Gram-positive
infection or Gram-positive PG, although they indugeosomycinnormally in
response to fungal infectioBiptericin is induced normally in response to Gram-
negative PG or whole bacteria (105, 112).

PGRP-SA is a secreted PGRP consisting mainly in a single peptidoglycan
recognition domain, and binds Gram-positive PG with high affinity (102, 105).
The inability of the mutants to induderosomycinsuggests that PGRP-SA may
activate the Toll pathway, although this has not been tested genetically.

Some aspects of secreted PGRP function may be evolutionarily conserved.
A mouse mutant lacking the function of a secreted PGRP is also vulnerable to
Gram-positive infection (114).

OTHER POSSIBLE PATTERN RECOGNITION PROTEINS Other Drosophila proteins

may have roles in recognizing microbial invaders, but because no mutants have
yet been isolated, their requirements in immune function have not been directly
tested. Some of these are listed in Table 1. Currently, there are no genetic data
concerning host molecules involved in detection of fungi, although fusgaB-
D-glucans induce antimicrobial gene expression Drasophilablood cell line,

and ag-1,3-glucan-binding protein contributes to this response (115, 116).
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From Recognition to Fat Body Signaling

A major focus of current research is how pattern recognition events involving
PGRPs or other host receptors leads to activation of the fat bodyB\$tgnaling
pathways that induce the antimicrobial peptides. The importance of a circulating
PGRP for Gram-positive detection and a transmembrane PGRP for Gram-negative
detection suggests that the fly immune system detects these two classes of bacteria
rather differently. Gram-positive detection has more in common with fungal path-
ways in the dependence on the Toll pathway, and possibly also on serine proteolytic
cascades.

ACTIVATION OF THE IMD PATHWAY The fat body is the source of the majority

of the antimicrobial peptides produced in a systemic immune response. Relish
translocation can be visualized here, and Imd signaling presumably takes place
in fat body cells. However, the site of microbial detection by PGRP-LC may be
elsewhere. Whereas constitutive fat bddiptericin expression can be induced

by overexpressing PGRP-LC in the adult fat body, endogenous larval PGRP-LC
expression is higher in the blood cells than the fat body (92, 102, 106). Consistent
with this, in larvae, blood cells are required for the inductiogdtericin in the

fat body in response to a Gram-negative gut infection (9, 37). These data suggest
that blood cells might detect Gram-negative microbes and signal this information
to the fat body. Blood cells are not required for induction of fat bBijytericin

when Gram-negative bacteria are introduced through a wound (39), which may be
the result of a signal generated at the site of injury.

NO is implicated in the blood cell-dependent induction of fat bDgytericin.
Exogenous NO inducdiptericin, and a pharmacological inhibitor of nitric oxide
synthase (NOS) prevenBiptericin induction in response to a Gram-negative
infection (37, 125). The response to NO requires Imd, suggesting that NO acts
upstream of the Imd pathway. However, NO is unlikely to be the signal from blood
cells to the fat body, as exogenous NO does not stim@Dgitericin induction in
a mutant that lacks blood cells (37). NO appears to be important in some step in
blood cells downstream of microbial recognition and upstream of a signal that is
relayed to the fat body, possibly in blood cell activation.

ACTIVATION OF THE TOLL PATHWAY IntheDrosophilaembryo, the Toll pathway
is triggered by a cascade of four serine proteases that proteolytically activate the
endogenous ligand 8f¥le (126). Although Sgizle is also required forimmune re-
sponses, the embryonic proteases are not (2). Necrotic is a serine protease inhibitor
(serpin) that prevents constitutive activation of Toll-dependent immune responses
in the absence of immune challenge, suggesting that a distinct serine proteolytic
cascade activates &jle in immune responses (65).

Persephone, an immune response serine protease, was identified in a screen for
mutations that suppressed the abilitynefcroticmutants to constitutively activate
Toll signaling.persephonenutants are susceptible to fungal infection and unable
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to activate the Toll pathway in response to fungi (127). It is unclear how fungal in-
fection leads to Persephone activation, but the possession of a prodomain suggests
that Persephone may be activated by another serine protease (127). Necrotic may
directly inhibit Persephone; fungal infection is likely to shift the balance between
protease and serpin activities (127, 128). It is also not known whether Persephone
directly activates Satzle, or whether there are additional intervening proteases.

Activation of the Toll pathway by Gram-positive bacteria does notrequire Perse-
phone, suggesting that fungi and Gram-positive bacteria activate Toll signaling by
distinct mechanisms (127). Becausea&ge is required for responses to some
Gram-positive bacteria, PGRP-SA can likely activate a distinct serine protease
cascade that leads to &ple cleavage (59, 63, 105).

Do Imd and Toll Really Provide Specificity of Response?

The model that selective activation of the Imd or Toll pathways confers specificity
of response against Gram-negative bacteria or against Gram-positive bacteria and
fungi, respectively, is an oversimplification. For example, Imd Toll pathway double
mutants are more susceptible than single Imd pathway mutaBtEtdiinfection,

and Toll pathway mutants are susceptibl®teudomonaisfection, arguing that

Toll is important for resistance to Gram-negative infection (59, 129). On the other
hand, Imd signaling is important for resistance to some Gram-positive bacteria
such asMicrococcus luteug59, 82).

Another difficulty with the model that the Imd and Toll pathways confer speci-
ficity of response is the sharing of the Toll pathway by fungi and Gram-positive
bacteria. Despite the use of distinct mechanisms for detecting fungi and Gram-
positive bacteria, the signals apparently converge atZpand Toll. In fact, some
responses to Gram-positive bacteria and fungi are remarkably similar: Both types
of infection trigger the massive induction of Masquerade, a serine protease-like
protein, whereas Gram-negative infection does not (55). Another similarity be-
tween fungal and Gram-positive immune induction is the apparent reliance on
circulating, rather than cell-associated detection mechanisms. Why would an im-
mune system have one pathway dedicated to Gram-negative defense and another
for responses to microorganisms as disparate as fungi and Gram-positive bacteria?

It could be that the Toll pathway is the ancestral immune induction pathway
in insects (Figure 2), and that a blood cell-mediated system to recognize Gram-
negative bacteria evolved later, triggering a distinct pathway. The Imd pathway
may also have an apoptotic role, suggesting that its immune function may have
been co-opted secondarily (91). There may be features of Gram-negative bacte-
ria that selected for an additional immune detection and induction mechanism,
such as a higher growth rate or concealment of PG beneath the outer membrane.
Indeed, agenome-wide microarray analysis of the kinetics of induction ofimmune-
responsive genes in wild-type and mutant conditions found a correlation between
Imd regulation of early activated genes and Toll regulation of genes with a more de-
layed response (90). Specialization of Imd signaling for rapid responses would be
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Figure 2 Toll is a central regulator of th®rosophilaimmune response. In agreement
with the idea that Toll may represent the ancestral immune signaling pathway in insects,
Toll regulates many aspects of the immune response. In addition to activating antifungal
defenses, Toll is also required for survival to many Gram-positive and some Gram-negative
bacterial infections, for regulation of the melanization cascade and for regulation of blood
cell proliferation, and is implicated in blood cell differentiation and activation. Toll may
fulfill these roles in several tissues, such as the fat body and the blood celtzleSig the

only known ligand for Toll inDrosophilg however,Toll mutants are more impaired in the
induction of antimicrobial peptides than are nsitzle mutants (2), suggesting that there
may be additional Toll ligands.

consistent with the independence of Imd of bDtosomycirinduction, which has
slow kinetics, and survival to fungi, which are slower-growing microorganisms.

ACTIVATION OF MELANIZATION AND BLOOD CELL
RESPONSES

In addition to the well-characterized antimicrobial peptide induction, infection also
triggers blood cell activation and melanization, events that are less well understood
in Drosophila
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Activation of the Prophenoloxidase Pathway

Biochemical experiments in the silkworm and crayfish revealed that a serine pro-
tease cascade regulates the activation of prophenoloxidase (PPO), which catalyzes
melanin production (49, 130-132). An important regulator of the melanization
response is Serpin27A (Spn27A), which specifically inhibits the PPO-activating
enzyme (PPAE) (133, 134%pn27Amutants exhibit sporadic melanization in the
absence of immune challenge, and the entire animal becomes melanized after
septic injury (133, 134).

The inhibitory effect of Spn27A on melanization appears to be overcome in
two ways under conditions of immune challenge. The melanization cascade can
be rapidly triggered by microbial products, by mechanisms that involve PGRPs
(100, 117, 131) and that likely activate an upstream protease that leads to hyper-
production of PPAE, depleting Spn27A. An additional uncharacterized inhibitor
of Spn27A may be transcriptionally induced byagge-Toll signaling (134). It
appears that rapid activation of a protease cascade, triggered by pattern recogni-
tion, initiates an immediate melanization response, and that sustained activation is
ensured by local Toll-mediated depletion of Spn27A.

Activation of Blood Cells

PHAGOCYTOSIS Phagocytic uptake of invaders by blood cells is a vital defense
strategy in both flies and mammals (36, 13%osophilaand mammalian phago-
cytosis are homologous actin-mediated processes (118). Critical unanswered ques-
tions in both mammalian anBrosophila phagocytosis include how ingested
particles are trafficked and the role of phagocytosis in stimulating other immune
responses (135).

The ability of a blood cell to phagocytose a particular particle is influenced by
the affinity of host receptors for surface molecules on the patrticle. For example, a
Drosophilascavenger receptor-like protein, dSR-C1, confers the ability to phago-
cytose bacteria but not yeast on a heterologous cell line (118). Hovaesgphila
blood cells are able to phagocytose abiotic particles such as polystyrene beads, so
pattern recognition of microbial PAMPs is not an absolute requirement (36).

FewDrosophilamutants are detectably impaired in phagocytosis, possibly re-
flecting redundancy of mechanisms promoting particle uptake and requirements
for cytoskeletal proteins for viability. An RNAI screen in cultured blood cells
tested the requirements for 1000 randomly selected genes in phagocytosis of dif-
ferent microbes, and defined roles for proteins involved in cytoskeletal function
and vesicle formation and transport (107). In addition, the removal of PGRP-LC
function impaired the binding and phagocytosis of Gram-negative bacteria by ap-
proximately 30% (107). NulPGRP-LCmutants are not detectably impaired in
phagocytosis, suggesting either that a 30% reduction in phagocytic ability is not
detectable in vivo or that additional mechanisms compensate in vivo for the loss
of this receptor (106). Sever8lrosophilaproteins have been proposed to bind
microbes and promote their uptake by blood cells (Table 1).
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OTHER ASPECTS OF BLOOD CELL ACTIVATION Wasp parasitization triggers blood
cell proliferation, the differentiation of the lamellocyte blood cell type, and an
encapsulation response (see below) (32, 35, 136). Although the regulation of these
dramatic events is not understood, they are mimicked in mutants with hyperacti-
vated Toll and JAK-STAT signaling (42, 137, 138) (Figure 3). Toll also regulates
steady-state hemocyte numbers: There are fewer blood cells in loss-of-function
mutants (42). In addition, blood cells accumulate at wound sites (38); because
blood cells with overactivated Toll signaling also aggregate, Toll could also be
involved in this type of activation (42). In short, Toll signaling is implicated in
several aspects of blood cell activationDnosophilg but the regulation of blood

cell activation in response to actual immune challenge is not understood.

IMMUNE RESPONSES IN THE ABSENCE
OF MICROBIAL PATHOGENS

PAMPs are most clearly defined for bacteria and fungi, microorganisms from
entirely different kingdoms than animals. However, like mamniatssophilais

able to mount immune responses in the absence of PAMPSs, for example during
parasite infestation and under autoimmune conditions. Deviations from the normal
basement membrane pattern as well as presence of endogenous DNA in the blood
are both associated with immune activation.

Basement Membrane

PARASITES A parasitic wasp egg in Brosophilalarva triggers an encapsulation
immune response designed to seal off and kill the wasp embryo before it can hatch
and kill the larva. Circulating plasmatocytes appear to recognize the wasp as for-
eign, and attach to it. Lamellocytes then adhere in layers, and the entire capsule is
melanized (32, 139). This protective response has some similarities to granuloma
formation by mammalian macrophages and T cells (140). Because wasps are also
insects, they are not expected to have obligate molecular signatures, or PAMPs,
that allow them to be recognized as invaders. How, then, are wasp eggs recognized
as foreign?

Transplantation experiments suggest thatsophilablood cells may recog-
nize the absence of endogenous or presence of foreign basement membrane on
invaders as nonselrosophiladoes not encapsulate fat bodies of within-species
transplants, but fat bodies transplanted from other species are encapsulated (141).

MELANOTIC CAPSULES Insome mutantfrosophilablood cells aberrantly encap-
sulate the fly’s own tissue, representing a kind of autoimmune defect (Figure 3).
The resulting melanotic capsules resemble encapsulated parasitoid eggs, with lay-
ers of melanized lamellocytes. Although melanotic capsules can appear in mutants
with constitutively activated blood cells (Figure 3), they also occur in mutants in
which damaged or aberrant tissues trigger an immune response (142).
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Several melanotic capsule mutants show disruption of the basement mem-
brane surrounding various tissues and the subsequent encapsulation of the exposec
tissues. For example, ifu-Sz[tsjmutants, disruption of the basement membrane
over part of the fat body precedes the adhesion of lamellocytes and formation of
melanotic capsules there (26). Transplameasophilafat bodies whose basement
membranes have been damaged are encapsulated, whereas intact fat bodies are no
supporting the notion that disruptions to the endogenous basement membrane can
trigger immune responses (141).

BLOOD CELLS AND BASEMENT MEMBRANE The blood cells are implicated in the
recognition of basement membrane abnormalities in parasite infestation and au-
toimmune activation. The notion of blood cells constantly surveying the basement
membrane lining the hemocoel is consistent with their roles in basement mem-
brane secretion, repair, and degradation (26, 33, 143). Blood cells seem to be able
to distinguish the basement membrane of healthy self from that of damaged self,
as well as absence of basement membrane on abiotic material, and possibly pres-
ence of foreign basement membrane on parasites. The basement membrane is a
proteoglycan-rich matrix, and experiments in other insects, in which beads coated
with different materials were transplanted, suggest that the self characteristics may
be related to carbohydrate composition (33, 144).

Endogenous DNA

In addition to those with basement membrane defects, some other mutants with
melanotic capsules have defects in apoptosis. Mutants lacking the function of the
fly proapoptotic homologs of Ced-3 caspase and Ced-4/Apaf-1 develop melanaotic
capsules (145, 146prosophilablood cells do normally recognize and phagocy-
tose apoptotic cells through a CD36-like receptor called Croquemort (147). It is
possible that cells failing to undergo proper apoptosis are recognized as abnormal,
triggering encapsulation. Alternatively, cells undergoing aberrant apoptosis might
release immunostimulatory molecules. Ced-3 protein is able to fragment DNA,;
perhaps DNA in the blood of Ced-3 caspase mutants triggers an immune response
resulting in encapsulation of self tissue (145).

Fly mutants lacking the function of two other DNAses required for the degrada-
tion of apoptotic cell DNA show constitutive expressiorDnptericin (148). This
further suggests that endogenous DNA may stimulate the innate immune system
of Drosophilaas it does in mammals (149).

STUDYING MEDICALLY IMPORTANT PATHOGENS
IN DROSOPHILA

Drosophilahas recently emerged as a very promising system in which to study the
virulence of a variety of medically important pathogens. Several microbes have
been shown to infect flies with similar mechanisms to those known from mammals.
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BecauséDrosophilais a genetically tractable animal with a sophisticated, blood-
cell-dependent innate immune system, the possibilities for increasing our under-
standing of pathogenesis are tremendous.

Pseudomonas aeroginogaa ubiquitous Gram-negative bacterium that is re-
sponsible for opportunistic infections in wounds and in immunocompromised pa-
tients. Remarkably, some of the mechanisms used by this bacterium to infect and
kill the host are common to mammals, insects, nematodes, and plants (150). All 11
virulence factors required for maximal pathogenicity in mammals are also required
for maximum virulence in flies (129). The TTSS, which contributes to virulence
in both mammals and insects, is activated upon entryDmtsophila(151). This
is one of the first reports of activation of the TTSS of any bacterial species in a
whole animal, suggesting th&rosophilamay be a suitable in vivo alternative
to simulating combinations of signals in vitro. A screen Rraeroginosamu-
tants impaired iDrosophilakilling led to the identification of a gene cluster that
regulates motility factors important for virulence in flies and mammals (152).

Serratia marcesceris a Gram-negative insect pathogen responsible for oppor-
tunistic infections in humans. Sevef&l marcescensutants impaired ifDroso-
phila killing are also attenuated in mammalian infection models (153).

Like Mycobacterium tuberculosiM. marinumcan proliferate inside vertebrate
macrophages in which phagosome acidification has been blobkegharinum
can also infecDrosophilablood cells by a similar mechanism, killing the fly.

M. marinumupregulates some of the same genes in vertebrate and insect phago-
somes, and at least one bacterial virulence factor contributes to pathogenesis in
both systems (13).

A Gram-negative plant pathogeBrwinia carotovora that may be spread by
Drosophila has also provided tools for the study of mammalian disease. A novel
virulence factor was identified from a genetic screenHorcarotovoramutants
unable to infectDrosophilalarvae. This gene is sufficient to confer ability to
infect Drosophilanot only on noninfectiou€. carotovorastrains, but also on
other Enterobacteriasuch astE. coli and Salmonella typhimuriuni154). These
new strains of medically important bacteria that are infectiou3rosophilamay
prove to be powerful tools to investigate virulence mechanisms.

In addition to serving as lab models for medically important bacterial diseases,
insects are also the natural vectors for many pathogens that infect mammals. Al-
though malaria-causinglasmodiaare transmitted by mosquitoddasmodiaare
able to infecDrosophilain the lab and progress through several steps of their com-
plex life cycle (155). In addition, knowledge of insect immunity tBabsophila
studies have yielded is being applied to studies of mosdriismodiuninfections
with the goal of developing antimalaria strategies (156).

FUTURE DIRECTIONS

In the eight years sincoll andimd mutants were found to be differentially sus-
ceptible to fungal and bacterial infection (2), and the six years since the first genetic
screen forimmune defects was reported (57), genetic analysis has revealed many of



DROSOPHILA IMMUNITY 475

the essential aspects of these two signaling pathways. Continued forward genetic
screens, as well as reverse genetic analysis of genes regulated by infection, will
identify more components required for diverse aspects of the immune response.
We can anticipate that future researctDrosophilaimmunity is likely to iden-

tify more novel pattern recognition mechanisms, define mechanisms of blood cell
activation, illuminate interactions between MB-and other signaling pathways,
define mechanisms that allow recognition of intracellular bacterial and viral in-
fections, provide perspectives on autoimmunity, and define specific responses to
pathogenic organisms.
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Figure 3 Drosophila blood cellsin normal and autoimmune conditions. (A) Two plasma
tocytes stained with phalloidin, showing filamentous actin. (B) Phase contrast images of
two blood cellsfrom alarvawith again-of-function allele of Toll, Toll19b, Constitutive Toll
signaling causes the differentiation of lamellocytes, the large flat cells. The arrow indicates
a plasmatocyte. (C) The blood cells of a Toll10° |arva carrying an enhancer trap that
expresses lacZ in lamellocytes. Here the lamellocytes are beginning to encapsul ate self-tis-
sue, but melanization has not yet begun. Scale bars in (A), (B), and (C) are al 10 um.
Melanotic capsules (arrows) are visible through the cuticle of Toll1% |arvae (D), and adults
(E) and (F).



