
proteins will inevitably prove refractory to
biochemical manipulation. Nonetheless, the
effort will be worthwhile if the many proteins
that are amenable can be assayed both simul-
taneously and repeatedly. By fabricating pro-
tein microarrays, we can fulfill both these
criteria, facilitating the in vitro study of pro-
tein function on a genome-wide level.
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The Global Spread of Malaria in
a Future, Warmer World

David J. Rogers1* and Sarah E. Randolph2

The frequent warnings that global climate change will allow falciparum malaria
to spread into northern latitudes, including Europe and large parts of the United
States, are based on biological transmission models driven principally by tem-
perature. These models were assessed for their value in predicting present, and
therefore future, malaria distribution. In an alternative statistical approach, the
recorded present-day global distribution of falciparum malaria was used to
establish the current multivariate climatic constraints. These results were ap-
plied to future climate scenarios to predict future distributions, which showed
remarkably few changes, even under the most extreme scenarios.

Predictions of global climate change have stim-
ulated forecasts that vector-borne diseases will
spread into regions that are at present too cool
for their persistence (1–5). For example, life-
threatening cerebral malaria, caused by Plas-
modium falciparum transmitted by anopheline
mosquitoes, is predicted to reach the central or
northern regions of Europe and large parts of
North America (2, 4). falciparum malaria is the
most severe form of the human disease, causing
most of the ;1 million deaths worldwide
among the ;273 million cases in 1998 (6).
Despite these figures, the epidemiology of ma-
laria, like many other vector-borne tropical dis-
eases, remains inadequately understood. Only
the most general of maps for its worldwide
distribution are available (7), and its global
transmission patterns cannot be modeled satis-
factorily because crucial parameters and their
relations with environmental factors have not
yet been quantified. Most importantly, absolute
mosquito abundance has not yet been related to
multivariate climate.

Nevertheless, the problem of malaria has led
to its being included in most predictions about
the impact of climate change on the future
distribution of vector-borne diseases (8). These
studies, which draw on the forecasts of future
climate from various global circulation models
(GCMs) (9, 10), generally use only one or at
most two climatic variables to make their pre-
dictions. Biological models for malaria distri-
bution are based principally on the temperature
dependence of mosquito blood-feeding inter-
vals and longevity and the development period
of the malaria parasite within the mosquito,
each of which affects the rate of transmission
(4, 11). Those models based on threshold val-
ues include a lower temperature threshold, be-
low which all development of the malaria par-
asite ceases, and an upper limit of mosquito

lethality (2). In addition, the suitability (or un-
suitability) of habitats for these vectors, which
require a minimum atmospheric moisture, is
defined by the ratio of rainfall to potential
evapotranspiration (2). The output of such mod-
els, therefore, represents predicted areas where
parasite development within the vector is fast
enough to be completed before the vector dies,
bounded by limits imposed by habitat suitabil-
ity (2). The fit of these predictions to the current
global malaria situation shows noticeable mis-
matches in certain places (12); false predictions
of presence (e.g., over the eastern half of the
United States) are accounted for by past control
measures or by “peculiar vector biogeography,”
whereas false predictions of absence are dis-
missed as model errors (2).

Refinements of these biological models (3–
5) are based on modifications of an equation
describing transmission potential, expressed as
the basic reproduction number R0, which must
equal at least 1 for disease persistence (13, 14).
For an estimation of the correct value of R0

from which to predict malaria distribution, ab-
solute, not relative, estimates of all quantities in
the equation are needed. Instead, by omitting
certain unquantified but important parameters
and rearranging the equation (15), a relative
measure of “epidemic potential” (EP) [now
“transmission potential” (5)] has been derived
as the reciprocal of the vector/host ratio re-
quired for disease persistence. This predicts a
more extensive present-day distribution of ma-
laria than is currently observed (12). The ratio
of future EP to present EP is then presented as
indicating the relative degree of the future risk
of malaria, but this is an inappropriate measure
of changing risk because a high ratio may still
leave R0 , 1.

Until such biological approaches can give
accurate descriptions of the current situation of
global malaria, they cannot be used to give
reliable predictions about the future. Instead, an
alternative two-step statistical approach to map-
ping vector-borne diseases gave a better de-
scription of the present global distribution of
falciparum malaria and predicted remarkably
few future changes, even under the most ex-
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treme scenarios of climate change. First, the
present-day distribution was used to establish
the climatic constraints currently operating on
malaria. Then, the results were applied to future
GCM scenarios to predict future distribution.
Simple maximum likelihood methods were
used (16) (Fig. 1A), based on the mean, max-
imum, and minimum of three climatic vari-
ables: temperature, precipitation, and saturation

vapor pressure. The match between prediction
and reality was significantly closer than that
achieved by previous models (12). Some false-
positive areas, in eastern South America and
Iran, were recorded as of “limited risk” on
earlier maps (17), whereas others, in the south-
ern United States and northern Australia, coin-
cided with successful vector control campaigns.
Because these predictions were based on

present-day malaria maps, the disappearance of
malaria in historical times from the edges of its
global distribution has effectively been incor-
porated (18). This itself is a reflection of cli-
matic conditions. In cooler regions, where mos-
quito life-spans barely exceed extrinsic incuba-
tion periods, transmission cycles are inherently
more fragile. Not only the range of each climat-
ic variable, but also the covariation between

A

 = 00 - 0.349

 = 0.50 - 0.549
 = 0.45 - 0.499

 = 0.65 - 1.0

 = 0.35 - 0.449

 = 0.55 - 0.649

 = Observed

 Probability

B

= presently suitable, becoming unsuitable by 2050

= presently unsuitable, becoming suitable by 2050
C

Fig. 1. (A) Current
global map of malaria
caused by P. falcipa-
rum [yellow hatching,
data from (7)] and
distribution predicted
with maximum likeli-
hood methods (red
through green poste-
rior probability scale
in key; light blue areas
indicate no prediction,
i.e., conditions very
different from those in
any of the sites used to
train the analysis).
These methods give
predictions that are
78% correct, with 14%
false-positives and 8%
false-negatives (12).
(B) Discriminating cri-
teria derived from the
current situation were
then applied to the
equivalent climate
surfaces from the
high scenario from
the HadCM2 experi-
ment (19) which pre-
dicts mean global
land surface changes
of 13.45°, 13.63°,
and 13.29°C in
mean, minimum, and
maximum tempera-
tures, respectively;
11.87 hPa for SVP;
and 10.127 mm/day
for precipitation by
the year 2050. The
yellow hatching and
the probability scale
are the same as in (A).
(C) The difference be-
tween the predicted
distributions given in
(A) and (B), showing
areas where malaria
is predicted to disap-
pear (i.e., probability
of occurrence de-
creases from .0.5 to
,0.5) (in red) or in-
vade (i.e., probability
of occurrence increas-
es from ,0.5 to
.0.5) (in green) by
the 2050s in relation
to the present situa-
tion. The gray hatch-
ing is the current
global malaria map
shown in yellow hatching in (A).
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variables proved to be important in setting dis-
tributional limits in this model. Biologically,
this implies that organisms can cope with ex-
tremes of some variables (e.g., temperature)
only if others (e.g., humidity) are at certain
levels.

The results from this first step were applied
to the most widely used GCM scenario of the
future, which envisages a 1% annual compound
increase in overall greenhouse gas concentra-
tions (9, 19) and a range of climate sensitivity to
this increase. Predictions show the future distri-
bution of habitats similar to those where falci-
parum malaria occurs today (Fig. 1B). If intro-
duced, by travel or trading activities, for exam-
ple, both vectors and parasites could survive in
such places. Only a relatively small extension
was predicted as compared to the present-day
situation: northward into the southern United
States and into Turkey, Turkmenistan, and
Uzbekistan; southward in Brazil; and westward
in China. In other areas, malaria was predicted
to diminish (Fig. 1, B and C). The net effect of
this on the potential exposure of humans to
malaria by the year 2050, compared with the
present as modeled in Fig. 1A (20), varied with
climate sensitivity to greenhouse gases; for ex-
ample, there was an increase in exposure of 23
million people (10.84%) under the HadCM2
“medium-high” scenario (19) or a decrease in
exposure of 25 million people (–0.92%) in the
HadCM2 “high” scenario (i.e., higher mean
temperatures) (Fig. 1C). These changes are
modest because covariates limit potential ex-
pansion along certain dimensions of environ-
mental space. For example, in the present exer-
cise, a univariate model driven by the minimum
of the mean temperature (the single most im-
portant predictor in the multivariate fit) would
predict more extensive malaria than at present
along the southern fringes of the Sahara Desert
and an expansion northward into the Sahara, as
global warming lifts the cold minimum (night-
time) temperature constraint on mosquito or
malaria development. Multivariate models gave
more accurate predictions of the present situa-
tion and do not predict this expansion, because
of the limitations imposed by the covarying
rainfall or moisture variables.

Whereas others have raised qualitative
doubts about the predicted impact of climate
change on malaria (18), the quantitative model
presented here contradicts prevailing forecasts
of global malaria expansion. It highlights the
use of multivariate rather than univariate con-
straints in such applications and the advantage
of statistical rather than biological approaches
in situations where biological knowledge is in-
complete. Whatever the method adopted, the
usefulness of GCMs as a basis for making
predictions about the future of biological sys-
tems needs further clarification. The current
low spatial resolution of such models hides
considerable local variation and represents
mean conditions across large geographical ar-

eas that may not occur in many places within
them. Furthermore, the accuracy of GCMs in
predicting the covariation of climatic variables,
to which biological systems are very sensitive,
is unknown.
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Cholera Dynamics and El
Niño–Southern Oscillation
Mercedes Pascual,1* Xavier Rodó,2 Stephen P. Ellner,3

Rita Colwell,4 Menno J. Bouma5

Analysis of a monthly 18-year cholera time series from Bangladesh shows that
the temporal variability of cholera exhibits an interannual component at the
dominant frequency of El Niño–Southern Oscillation (ENSO). Results from
nonlinear time series analysis support a role for both ENSO and previous disease
levels in the dynamics of cholera. Cholera patterns are linked to the previously
described changes in the atmospheric circulation of south Asia and, consistent
with these changes, to regional temperature anomalies.

Cholera remains a major public health problem
in many areas of the world, including Bang-
ladesh and India. A climate influence on cholera
has long been debated (1), and it has been
suggested that ENSO, a major source of inter-
annual climate variability, drives the interannual
variation of the disease (2, 3). For example,
cholera reappeared in Peru with the El Niño
event of 1991–92 and seems to fluctuate season-
ally in Bangladesh with sea surface temperature
(SST) in the Bay of Bengal (2, 4). Recent
studies of time series for diarrhoeal diseases in
Peruvian children have shown an increase in
cases associated with warmer temperatures and
the 1997–98 El Niño (5, 6). Vibrio cholerae, the

bacterium that causes the disease, is now known
to inhabit brackish waters and estuarine systems
(2) and thus might be sensitive to climate pat-
terns. Here we examine the associations be-
tween cholera and ENSO and between cholera
and climate at interannual time scales, using an
18-year record from Bangladesh where the dis-
ease is endemic. A nonlinear time series ap-
proach allows us to consider different hypothe-
ses for the roles of environmental driving vari-
ables and the inherent disease dynamics in pro-
ducing the interannual variability of cholera.

The disease data consist of a monthly time
series for cholera incidence between January
1980 and March 1998 in Dhaka, Bangladesh
(Fig. 1A). Over the same time span, the month-
ly SST anomaly in a region of the equatorial
Pacific provides an index for ENSO (Fig. 1B).
The cholera time series displays the well-
known seasonal variation of the disease—typ-
ically described as bimodal, with a small peak
in the spring and a larger one in the fall or early
winter—but also shows a multiyear modulation
of the seasonal cycles. The interannual variabil-
ity of cholera cases has a dominant frequency of
1/3.7 years, as shown by singular spectrum
analysis (7, 8) (Fig. 2). The same dominant
frequency is found for the ENSO time series,
which suggests that climate variability acts as a
driver in the dynamics of the disease (Fig. 2).
Alternatively, however, this low-frequency
variability could arise solely from the seasonal

forcing of disease transmission (9). To investi-
gate the role of ENSO in light of this alternative
explanation, we consider a nonlinear time series
approach that allows us to compare specific
alternative hypotheses for the underlying fac-
tors in cholera dynamics. Because the null
(non-ENSO) hypothesis is a nonlinear interac-
tion between seasonality and cholera dynamics,
the use of standard linear time series models
would strongly bias the comparison in favor of
the ENSO alternative.

Lacking information that could be used to
specify a valid mechanistic model for the
ENSO effect, we use time series models that
are both nonlinear and nonparametric and are
effective at modeling high-dimensional rela-
tionships. The dynamics of a variable of in-
terest, Nt, a measure of cholera levels, are
modeled with a nonlinear equation of the
form

Nt 1 Tp 5 f SNt, Nt 2 t, Nt 2 2t, ... Nt 2 ~d 2 1!t,

sin
2p

12
t, cos

2p

12
t, Et 2 tfD 1 et (1)

where Tp is a prediction time, f is a nonlinear
function, and Et is the environmental forcing
under consideration (10, 11). The sin and cos
functions implement a seasonal clock and et

represents the IID random noise variables. The
parameters t, tf , and d denote, respectively,
two different time lags and the number of time
delay variables. Time delay coordinates are
used in the model as surrogates for unobserved
variables influencing the endogenous dynamics
of the disease, such as the fraction of suscepti-
ble individuals in the population (12, 13). The
functional form of f is not specified in a rigid
form. Instead, the shape of f is determined by
the data, using an objective model selection
criterion: generalized cross-validation (GCV)
(14). We used the GCV criterion to compare
models with and without seasonality and with
and without the environmental covariate Et

(Table 1). The selected model is low-dimen-
sional and incorporates both seasonality and
ENSO as external forcings (Fig. 3). The model
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ERRATUM

C O R R E C T I O N S A N D C L A R I F I C A T I O N S

REPORTS: “The global spread of malaria in a future, warmer world” by D. J. Rogers and S. E. Randolph (8 Sept. 2000, p.

1763). In Figure 1, panel A was printed as a duplicate image of panel B in an earlier version of the figure. The correct

panel A and final version of the figure are reproduced here. (Corrected in print, 29 Sept. 2000, p. 2283.)


