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Abstract

This paper presents a new use of safe Petri nets and its partial order semantics, in
the field of telecommunication network management. Petri nets are used to provide
both a model and an algorithm in fault management domain. First, a model of fault
and alarm propagation, based on 1-safe Petri nets, is defined. Then an algorithm,
based on net unfolding, is designed. This study leads to a generic supervisor, which
can be easily distributed on a set of sensors.

1 Introduction

The complexity of communication networks and the volume of information provided by
these networks have caused an increase in demand for network management systems. In
particular, the area of network fault management requires a lot of expertise and is known to
be difficult to handle. Most of the current proposals are build on an ad-hoc basis. They are
also much more involved in structuring the management system than in designing dedicated
algorithms. There is a real pressing need for establishing a theoretical foundation of network
fault management.

Our paper aims at contributing to this foundation in focusing on the treatment of causal
dependencies between alarms and faults. The main idea is to take into account the essential
distributed nature of the problem [3]. This will be done by the use of Petri nets and its
“true concurrency” semantics. We think it constitutes an original way to attack the usual
question of alarm correlation.

Petri nets are well known as powertul and useful model for concurrent systems. We de-
cided to found our approach on the explicit description of fault and alarm propagation using
1-safe Petri nets. It allows us to express and to deal with multiple faults, alarms interleaving,
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and causal dependencies between faults and alarms. The fault detection algorithm, intended
to be implemented in a supervisor, is based on an incremental unfolding of the Petri net.

Our investigation is supported by applying this approach to a specific network system:
the SDH network (Synchronous Data Hierarchy), in collaboration with CNET (the research
center of France-Telecom). The model and algorithm presented here serve also as a basis for
a probabilistic approach to fault detection. This study is conducted in an other team of our
laboratory [1].

The technical contribution can be announced in three points:

1. a new way of modeling alarm correlation by focusing on causal dependencies between
faults and alarms,

2. a dedicated detection algorithm based on an on-line unfolding of Petri nets,

3. making appear good properties of the model and algorithm which prepare the distri-
bution of the algorithm on network sensors.

The rest of the paper is divided into four parts. Section 2 presents the context and hypothesis
of the study, based on the real SDH example. Section 3 details the propagation model, its
syntax and semantics, which are illustrated. Section 4 presents the main principles of the
detection algorithm. We end by discussing some related works in Section 5, before conclusion.

2 Application Example

2.1 SDH Network

SDH (Synchronous Data Hierarchy) was developed to manage optical interconnections as
well as existing plesiochronous signals (see e.g. [10]). Advantages of this system are direct
access to lower rate channel without demultiplexing the entire signal, enhanced maintenance
facilities, simplified evolution to higher interfaces rates and the ability to carry new broad-
band channels.

This hierarchy is constructed on a basic unit frame, named STM-1 (Synchronous Trans-
port Module level 1). In STM-1 frame, some bytes are allocated to overhead functions
(regeneration section overhead, multiplexing section overhead (MS)), others are allocated to
administrative units pointers, and the rest of the available capacity carries the payload in
administrative units (AU). Higher interface rates, STM-n frames, are formed by byte inter-
leaving n STM-1 frames (n = 4, 16 or 64). STM-n frames have the same structure as STM-1
frames. The STM-n overhead sections are constructed by the multiplexer, independently of
the data in STM-1 frames.

The data transported are first encapsulated in containers of fixed size. Every container
is also associated to a path overhead, dedicated to network management. The container
and its overhead give the virtual container. The start of a virtual container in a frame is
indicated by an administrative unit pointer. There are three types of administrative units
defined. These allow different sizes of virtual containers, which are multiplexed into STM-n
frames.
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Figure 1: Example of SDH data network and its associated management network

The section overheads and the path overhead allow management of the SDH network at
different levels. The multiplexing section overhead is used to manage sections of network
between two multiplexers or optical cross connect. The path overhead carries end to end
management information about the corresponding container. The path overhead is managed
by terminal equipment (as illustrated by STM-16 elements in Fig. 1), which are high level
multiplexers.

Figure 1 illustrates a part of an SDH network, with an associated management network.
The data network is made of some network elements (STM-16, optical cross connect). These
elements are connected via bi-directional connections. Each of these elements contains STM-
1 ports. For such a port, there are several components of different levels from management
point of view (synchronous physical interface level (SPI), multiplexage section level (MS),
administrative unit level (AU)).

A telecommunication network is so viewed as a set of network elements. These elements
are grouped into sites, each of them being associated with a sensor. Alarms go from network
elements through the sensors s; to the supervisor (S). In this example, three sites are
associated to sensors (si, sq, S3).

CNET lead a study to highlight propagation of management information in SDH equip-
ments. This study is based on official standards, mainly G774, G782 and G783 from ITU.
This study also took advantage of knowledge about real SDH equipments. Its concentrates on
fault management, in case of unprotected and bi-directional connections. Standards describe
possible faults, and alarm notifications emitted.

When a fault occurs, several alarm notifications are send by the element which detects the
fault. Other elements, not directly concerned by the considered fault, also emit notification,
because of propagation mechanism. This propagation mechanism uses alarm indication
signal (AIS). This signal is obtained by putting all bytes of concerned overhead to value 1.
Hence, there are two orthogonal ways of propagation. Firstly, between components of a single
network element (such as a port of optical cross connect), AIS is read through components
from lower level to higher level. Secondly, AIS goes through link connections and through
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Figure 2: Example of production of alarms and some faults states

cross connections, and is read by higher levels.

2.2 Modeling Fault and Alarm Propagations

In this study, modeling consists in describing expected manifestations from part of the su-
pervised network, like the “event model” described in [14]. It does not consists in describing
the whole behavior of the considered system. It appears that, in case of telecommunication
networks, dealing with observed manifestations does not lead to much more approximation
than abstracting behavior of each component and mix these representations. For example,
one should utilize finite state machine to represent, thus abstract, behavior of components.
Then a composition is chosen, followed by minimization, to reduce the size of the global
machine. This implies a choice for an equivalence. Here, the abstraction is done by the way
of choosing significants alarms and fault states.

As a matter of fact, knowledge about faults in telecommunication networks is more often
concerned with manifestations caused by faults than with all network elements specifications.
For example, standards concerning SDH describe a lot, and maybe too much notifications to
send in case of malfunctions. They are not always exhaustively implemented by constructors.
Furthermore, because of the size and complexity of networks, the knowledge of an operator
is more concerned with the daily received alarms than with the complete set of interactions
between all network elements.

The horizontal space-time diagram in Fig. 2 shows alarms (black dots), that are expected
in case of a loss of signal (LOS) of the STM-1 port P. Some other elements of the net are
involved, which are marked as D (for Distant port), F (for Forward port) and B (for Backward
port) in Fig. 1. An horizontal line is dedicated to each involved component. Alarm indication
signals are illustrated by oblique arrows in the diagram.

The dashed dots correspond to local states, which could be interesting for an operator
to understand what happened, which are fault states to be diagnosed.

In the general case, alarms are viewed as special events, signaling faults, by the way
of notifications. Alarms propagate, level by level of software components. In Fig. 2, for
example, SPI, MS and AU components of port P are involved. Alarm indication signals
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Figure 3: Some examples of alarm patterns

go from low level components (SPI) to higher level components (MS, AU). Alarms also
propagate, from a first defect, through physical connections. This is illustrated in the case
of LOS with the AIS mechanism. This implies dependencies between alarms. And a fault
generally manifest itself through several alarms, with dependency or concurrency between
these alarms.

Faults states are viewed as particular local states between alarms. They will constitute the
elements of diagnosis. Physically speaking, a fault can occur only once at a time. It makes no
sense to consider the same fault involving the same network elements twice at the same time
(although it can occur repeatedly). It is pointed out that in telecommunication networks
faults could appear simultaneously, i.e. multiple faults occur, which are then concurrent
(see e.g. [18]). Moreover, several faults could combine themselves to produce others faults
(And, Or dependencies in Fig. 4), and one single fault could result in several other faults
(Simultaneous, Exclusive dependencies in Fig. 4).

An alarm pattern could then be defined by a set of alarms (and their dependencies)
between two fault states.

2.3 Using Petri Nets and Partial Orders

The previous example allows us to see what it is to be expressed.

It appears that partial orders are adequate to represent dependencies between alarms,
as well as concurrencies. Figure 3 illustrates possible dependencies between alarms, coming
from the SDH example. A means that a fault state may not manifest itself, this is the
case when fault propagates without notification. Such a partial order on alarms is called an
alarm pattern, that represents their dependencies. Alarm patterns are associated to fault
state manifestation (and so, to fault state propagation).

There are several kinds of dependencies between faults. Places, transitions, and their
relationship, appeared to be an adequate tool to express causal dependencies between faults,
and multiplicity, as shown in Fig. 4. This figure illustrates elementary cases of causal
dependencies between faults, using usual drawing of places and transitions of Petri nets.
Persistent faults, spontaneous faults occurrence and reabsorption are also mentioned. Some
of them are illustrated with SDH.

A set of dependencies between fault states is therefore represented by a bounded net
of capacity one. A fault manifests itself through one, or usually many alarms. So, alarm
patterns are associated with transitions of the net. Capacity one is required on places,
because of the nature of faults.



TF 71F LOS LOS TF TF

Simple sequence Spontaneous fault Reabsor ption
T1 P1
L oS LOS T1 P3
T2 P3 p2
Exclusiveness Simultaneity And

Figure 4: Different kinds of dependencies between faults states in telecommunication net-
works

st-ch (P)

AU-AIS (P)
I;S[:Ch ®)

MS (P) MS-AIS (P)

@ S-Ch(F)
|:|

AU (F) AU-AIS (F)
St-Ch (B)

s-Ch (D)

2 AU-AIS (D)
Tl LOS(P) T2 ﬁ;h () AU- AIS(B)
|:|—>O—-> St-Ch (D) MS(D) MS-AIS (D) |:|
T7
sech <P>I 5 I AU (B)
LOS(P)
TF (P)

[ ]
e LOS(D) T6

Figure 5: Example of fault net for a LOS (Loss Of Signal) of a STM-1 port

All these considerations lead to finite Petri net, of capacity one, with arc weight 1. Tran-
sitions are labeled with alarm patterns when needed. The resulting fault net for the LOS of
P is given in Fig. 5.

The so used Petri nets are here called fault nets. A 1-safe Petri net can be associated to
each fault net. This allows us to use the associated theory and the interesting properties of
these nets. All considered nets are finite.

An observation of produced alarms will be provided by the way of a partial order on these
alarms, as suggested in Fig. 2. The detection of fault will then consists in recognizing alarm
patterns in a given observation. Diagnosis will be provided by a backward simulation of the
fault net. The use of probabilities on transitions will allow to deal with approximation due
to lack of knowledge or due to inexact observation.

3 Propagation Model

This section gives the formal description of the propagation model. It details the syntax
of alarm pattern and fault net. The semantics of the model is then defined in terms of family
of finite partial orders on alarms.



3.1 Syntax

An alarm pattern is defined to describe a set of alarms and the expected dependencies
between them. An alarm pattern A; associated to a transition 7; is defined as (X;, <;, A;, ;)
, where:

1. X, as finite set of vertices, i.e. alarms,

2. <; as partial order relation on vertices (where <;C X;x X;), i.e. dependencies between
alarms,

3. and ; as a labeling function of alarms on A,;.

A vertex represents an occurrence of its labeling alarm. Edges indicate expected depen-
dencies between alarms, according to the knowledge about their possible propagation. In a
given alarm pattern, the label p;(x) = a of an alarm must contain also the sensor s(z) which
should observe it. The set of all alarm patterns is A = l#); A;, where 7 enumerates transitions
of the net. A is the alphabet of alarm patterns.

The covering relation, —<, on a partial order O = (X, <) is defined by a-—< b if, for all
z€ X,a<z<bimplies z = a or z = b. The set of minimal of O is Min(O), and the set of
its maximal is Maz(O).

O’ is a sub-order of O if X' C X and < in O’ is the restriction on X’ of < in O.

A fault net is defined to describe a set of faults and the known dependencies between
them. In a fault net, a place represents a fault state, and transitions represent dependencies
between faults. Transitions are labeled by the corresponding alarm patterns, when some
manifestations are expected due to this fault state.

Let A be an alarm patterns alphabet. A fault net on A is a 4-tuple Np. = (P, T, F, )
where:

1. P is the finite set of places,
2. T is the finite set of transitions,

3. PNT =0,

N

. F C(PXT)U (TxP) is the flow relation,

o

[ : T — AU{A\} is the labeling function.

3.2 Semantics
3.2.1 Choice of Partial Order Semantics.

As pointed out by Vogler in [22], one needs partial order semantics when considering
non-atomic events on transitions. In some sense, this is the case for fault nets, because of
alarm patterns on transitions. In case of multiple faults (i.e. several places are active), one
must consider concurrency between the associated alarm patterns. The idea is then to work
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Figure 6: Illustration of partial order semantics

explicitly with the net structure through unfoldings. This will avoid the usual state explosion
due to concurrency.

Figure 6 shows two nets, that are indistinguishable with respect to their firing sequences.
This is not always true if concurrent firing of transitions is allowed. These nets are different
with respect to the set of partial orders on transitions they admit. The net on the left hand
admits two partial orders, that are totally ordered, i.e. without concurrency. On the other
hand, the second net admits one single partial order, that contains concurrency.

The fault net semantics is defined by the Set of partial Orders on Alarms it describes. Let
Se denote this semantics. Branching processes of Petri nets and associated event structures
are used to represent this semantics of fault net.

3.2.2 From Fault Net to 1-Safe System Net.

For the sake of convenience, a fault net is translated in a 1-safe system net. This is done
in two steps. First, alarm patterns on transitions are expanded onto capacity one nets, in a
hierarchical manner. Secondly, places are complemented to code explicitly the capacity one.

Asusual, Vo e PUT,let *x={ye PUT | (y,x) € F} be its pre-set and 2* = {y €
PUT | (x,y) € F} its post-set. The marking of a place p € P is M(p), with values 0 or 1.

To strictly limit the model to 1-safe Petri nets, alarm patterns are expanded onto causal
nets. Let A be an alarm pattern. The corresponding labeled net N(A) = (B, E, F,l) is
obtained using a construction similar to the construction proposed in [16]:

1. Firstly, create a transition for each vertex of the alarm pattern: for every a € X,
consider a unique transition #(a) = t € E. These transitions are labeled with the
corresponding alarms : [(t) = ¢;(a).

2. Secondly, put a place for every covering edge of the partial order relation. For every
r—< y create a unique p € B such that *p = t(z) and p* = t(y).

3. Finally, put a place under every minimal of the order, and similarly, on top of every
maximal of the order. For every a € Min(A) (b € Max(A)) create a unique p € B

with p* =t(a) ( *p = t(D)).
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Figure 7: An alarm pattern and its corresponding labeled causal net
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An alarm pattern is thus expanded onto a causal net, in which the expansion put for
every p € P, | *p| = 1 and | p*| = 1. The underlying partial order on transitions of such a
causal net is exactly the partial order underlying the considered alarm pattern. This implies
a bijection between alarms patterns and their corresponding labeled nets. To interface these
expanded alarm patterns with places in the 1-safe nets, a A-labeled transition is used as
pre-set for the minimal (another one as post-set of the maximal) of the corresponding causal
nets.

These A-labeled transitions do not influence the semantics of the original labeled 1-safe
net, because §,, is defined according to partial orders on alarms.

To translate a Petri net of capacity one into a 1-safe net, simply add a complement to
every place in the fault net. For a place p € P of the fault net, p is the complement of p if
*D=7p*, 70" = pand My(p) =1 as initial marking. As Reisig marked out in [20], this is a
convenient way to make the ability of a transition to fire dependent only on its pre-set. And
the behavior of the considered net is left unchanged.

Figure 7 illustrates the expansion of an alarm pattern. On top of the figure an alarm
pattern A is given, looking like one of the LOS fault net. A possible environment for a
transition labeled A in a fault net is also proposed. The bottom of the figure illustrates
the labeled net associated to this alarm pattern. In this example, complement of places are
forgotten, to avoid clumsiness. It is clear that complements can be forgotten, because they
do not influence either the behavior or the semantics of the fault net.

This leads to finite, 1-safe labeled system nets. Let N = (P, T, F, M) such a net derived
from a fault net, referenced as a 1-safe system net. This net is also T-restricted, i.e. Vt €
T, *t # () # t*. To avoid problems due to labeling, places and transitions of the finite 1-safe
net are numbered to distinguish any of them.

3.2.3 Family of Partial Orders on Alarms.

Partial order semantics of Petri nets is defined through the notion of branching processes.
Branching processes are themselves based on a simple class of nets, occurrence nets.



Figure 9: A branching process of the previous 1-safe system net

An occurrence net ON is a finitary acyclic net such that, for every p € P, | *p| < 1
and My = Min(ON). Places are named conditions, and transitions are named events in
occurrence nets.

A branching process of a net N is a pair (N', h) where N’ is an occurrence net and h an
homomorphism defined by the following mapping from N’ to N, as in [6] for example.

Figure 8 gives an example of 1-safe system net. This example is chosen to illustrate
unfolding, because it appears to highlight the behavior of Petri nets. Figure 9 contains a
branching process of the previous 1-safe system net.

The unfolding of a Petri net is its unique maximal branching process [5].
A prefiz (N', ') of (N, h) is defined as in [6].
Every branching process of a 1-safe system net can be seen as a prefix of its unfolding.
Unfolding represents the infinite set of all these branching processes.

A forwards conflict appears when from the holding of b € B either ¢; € F or eg € FE,
but not both, may occur (cf. Exclusiveness in Fig. 4). A backwards conflict appears when
the holding of b € B may come from an occurrence of e; or ey, but not both (cf. Or in

10



Figure 10: Event structure associated the previous branching process

Fig. 4). Conflicts are inherited by the dependency relation. This defines a symmetrical and
irreflexive relation on E : #, called the conflict relation, which satisfies : for every ey, ey € E,
e1#tes < es implies e #es.

A configuration C' of an occurrence net is a set of events satisfying: (i) e € C = Ve' < e:
¢’ € C (C is closed for precedence), (ii) Ve, e’ € C,=(e#e') (C does not contains conflict).
Now, given a 1-safe system net, are taken into account prefizes of unfolding whose set of
events corresponds to a configuration.

As observations will be made of alarms and dependencies, only transitions have to be
considered. This is why event structures, as defined in [22], are taken into account. Each
occurrence net, and then branching process, defines an event structure [16].

The event structure associated to the unfolding of a 1-safe system net represents the set
of event structures associated to the prefixes of its unfolding. It contains the infinite set of
orders on events with conflicts.

The event structure associated to the branching process of Fig. 9 is provided by Fig. 10.
The partial order relation is represented with black arrows, and direct forward conflicts are
represented by vertical dashed lines.

The semantics of the fault net is the set of partial orders on alarms it described. Then, it
18 represented through the set of prefizes of the unfolding of the associated 1-safe system net.

Sy s the set of sub-orders underlying prefives of this unfolding that correspond to con-
figurations. It is contained in the event structure associated to the unfolding.

Figure 11 illustrates a partial order on alarms, given by the fault net of Fig. 5. In this case,
there is only a partial order on alarms corresponding to the fault net. The figure illustrates
one of its sub-orders.

Remark: Orders on alarms described by a fault net are decomposable by series and parallel
compositions on alarm patterns.

11
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4 Principle of Detection Algorithm

Typically, a manager receives lots of alarms, produced by elements of the data network,
and has to correlate them to deduce the original fault(s). This section shows how this model
is to be used to deal with this problem. It first details the hypothesis made about observation
of alarms.

4.1 Alarm Observation

Each sensor of the management network observes alarms and some dependencies. Mech-
anisms like time-stamps provide a coding of dependencies that each sensor could observe
between alarms ([8, 15]). Using this mechanism, it is easy to obtain, for each sensor, a
partial order on alarms, with immediate predecessors known by the sensor for every alarm
(causal observation [9] ).

Figure 12 shows an example of observation provided by sensors for the case of loss of
signal of STM-1 port P. Horizontal lines represents the time for each network element, for
the sensors, and for the supervisor. The line of the supervisor illustrates the sequence of
alarms provided to a manager without any information of concurrency between them. On
the other hand, on the right hand of this figure, are the (Hasse) diagrams of observation
provided by the sensors with time-stamps mechanism.

To avoid overloading the data network, no further intrusion in the traffic is allowed to
observe dependencies. This would be too costly. For this reason, sensors do not exchange
information about alarms. It implies that some dependencies between alarms could not be
known: Inter-site dependencies are never observed by sensors. Each sensor only knows the
intra-site dependencies it observes between alarms produced by elements of its site.

An observation provided to the operator is supposed to be in accordance with the effective
order of production of alarms by the network elements, for each sensor.

Because of the non-observation of inter-site dependencies, alarms patterns can be simplified
and decomposed according to sensors. For every alarm pattern, each sensor only keeps
dependencies between alarms it observes. The transitive closure of the underlying partial

12
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Figure 12: Ideal observation by sensors of alarms issued from a LOS

order of the considered alarm pattern is taken into account for this decomposition, to keep
as much information as possible about dependencies from the original alarm pattern.

For a given alarm pattern A;, the decomposition is denoted {A;s} where s enumerates
sensors concerned with alarms of A;. For two alarms x,y of A;:

1. x <y (there is an expected dependency between x and y);
2. s(x) = s(y) (they are observed by the same sensor);

(a) if z—< y in A;, then x—< y in A;s;

(b) if there is at least an alarm z in A;, with s(z) # s(z), such that * < 2z < y
in A; but no other alarm a, with s(a) = s(x), such that + < a < 2z < y nor
r<z<a<ythen a—< yin A;s.

Only alarm patterns are decomposed. The whole structure of the net is to be known by
each sensor.

4.2 Incremental Construction of Unfoldings

The question of detection is : given partial orders on alarms provided by sensors, which
histories of faults did happened ? i.e., which are the partial orders of §,, that explain the
partial orders given by sensors 7

There are in general several solutions, because of non-observed dependencies, because
different alarm patterns can have similar alarms, and also because alarms can be lost.

In [17], the unfolding is shown to be equivalent to the union of the processes of a 1-safe
net, with conflicts between these processes. Solutions, i.e. elements of §,,, are thus obtained
through construction of processes. Furthermore, in case of 1-safe system nets, there is a
one-to-one correspondence between processes and orders on events. These good properties
of 1-safe system nets are useful to build diagnosis.

A causal net is a finite Petri net such that, for every p € P, | *p| <1 and | p*| < 1.

13
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The construction of processes is considered like a puzzle, with tiles extracted from the net.
To avoid clumsiness, we choose to use capacity one nets firing rules, instead of having double
number of places. So, each tile simulates the firing of a transition, according to capacity one
nets firing rules.

A tile is centered on a transition ¢ € 71" of the Petri net. It has a set of pre-conditions
corresponding to required value of tokens to enable the fire of ¢; and a set of post-conditions,
corresponding to value of tokens given by the firing of t. Tiles are directly extracted from the
structure of the given system net. Figure 13 illustrates these tiles used for the construction
of processes for system net of Fig. 8.

Remark: In this net, all places already have a complement.

4.3 Principles of Processes Construction

The considered way of construction of processes consists in the following. One enumerates
all possibilities for tiles to be put at a given step of the construction. Each possibility, after
having put the tiles, leads to a new unfolding.

To put a tile, one just has to superimpose its pre-conditions to existing post-conditions
in the already done unfolding. A tile can be put only if the unfolding preserves the observed
dependencies.

Detection Algorithm The recognition algorithm is like a construction of processes asso-
ciated to the net derived from the given fault net, but constrained by the observed alarms
and dependencies. It was first inspired from [2], and next from [6].

Initialize a process with initially marked places of the net
For each observed event e
For each tile T, centered on a transition labeled e
For each current process S
enumerate(T,,S) /*set of possible places o in S */
end /*S*/
end /*T.*/
For each current process S

14



if there is one ¢ for in S
S = put(c,S)

else for each possible o
S" =S /*duplicate S */
S" .= put(c,5")
S" is inserted in the set of processes

end /*if*/

end /*S*/
end /*e*/

enumerate(F,,5):

This enumeration is done according to the capacity one net firing rules. This proce-
dure takes into account A-labeled transitions whose pre-conditions are in S (as immediately
recognized events).

put(P.,0,5):

This procedure takes into account immediate predecessors of e in the given observation,
and ensure that they correspond to predecessors (not A-labeled) in S.

The more subtle part of this algorithm is to deal with A-labeled transitions.

Figure 14 give a possible labeling of transitions of the net of Fig. 8. Alarms labeling
transitions are in parenthesis for labeled transition (1,2,5). On top of Fig. 15 is an example
of observed alarms, with their dependencies. Below is the process constructed to recognized
this order with the labeled net. The process is represented with an horizontal line for tokens
of each place. Tiles are put with transitions on bottom of the figure. Labels of transitions
are given when existing, otherwise the name of the transition is reported. Transitions are
linked to their pre- and post-conditions by oblique arrows.

This example is chosen to show the influence of both the constraint on predecessors and
A-labeled transitions. Suppose that a1 is recognized, i.e. tile centered on «al is already put.
Now, suppose b is to be recognized.

It seems to be a solution to build a new process by putting the tile centered on transition
4 and then the tile centered on transition 5, that is labeled b. Unfortunately, this process
does not preserve the observed dependency between al and b. It would be a solution if al
and b were independent.

Here, the A-labeled transition 3 must be fired to ensure that al precedes b in the con-
structed process. And for tile centered on b to be put, place 4 must be marked, and place 2
unmarked. But this example exhibits that there are no hypothesis about marking of other
places, 1 and 3. So, it is necessary to enumerate all markings of the net that contain require
conditions to fire transition 5, they are named here final markings.

This implies then a backward searching on possible A-labeled transitions to be fired. This
backward searching begin with final markings, and goes back to reach the current max of
already constructed process(es). It stops when no A-labeled transition allows to go backward
any more or when a cycle appear. While going backwards through A-labeled transitions,
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Figure 14: Labeled 1-safe vs. capacity-one system net
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Figure 15: Observed alarms and their dependencies, and process constructed to recognize
this order

direct backwards conflicts can not be resolved. Those conflicts generate as many solutions
as the number of choices they imply.

And, in final, this has to be done in such a way that predecessors agrees to put the tile.
So, only processes whose order on labeled transitions agree with the observed dependencies
are kept, and others are discarded.

4.4 Implementation

This algorithm is implemented in Eiffel language, which is object oriented. It takes about
three to four months to develop this algorithm. The commented code takes approximatively
10 000 lines for 22 000 words.

In this algorithm, there are two types of non-determinism. Alarms could be ambiguous.
For example, suppose that transitions 1 and 2 of the previous labeled net where both labeled
with a, instead of having different labels a1 and ¢2. And now, suppose we want to recognized
the observed order with two a, instead of observed al and a2. There would be four solutions
instead of only one, because, for every observed a, tiles centered on transitions 1 and 2 are
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possible.

And A-labeled transitions introduce non-determinism that can not be reduced only by
the given observation, as explained above.

However, in practice, these non-determinism should be limited. The case of ambiguous
alarms should not be too frequent, even if we did not want to impose an hypothesis such that
a unique naming of alarms. Next, there must not be too much fault states chosen without
any alarm manifestation, even if this allows more acuteness in fault states dependencies.
A-labeled transitions may appear in major party because of alarms patterns expansion. This
could introduce backwards direct conflicts between A-labeled transitions, but these conflicts
are quickly resolved with alarms of patterns.

The algorithm is to be distributed and sensors, and parallelized in supervisor.

Every sensor, as designed in Fig. 1, should know the entire structure of the fault net, and
the part of alarm patterns it is concerned with. Thus, each sensor could compute separately
the enumeration of possible tiles for an alarm it observes, in every current process.

In the scheme of the algorithm, it is easy to see that the step “ For each current process
“ could be parallelized inside the supervisor. Thus a supervisor can build in parallel different
solutions, by putting tiles. Then, the supervisor gives to the sensors the new built processes.

5 Related Works

As far as we know, some other works have common aspects with the work presented in this
article.

Petri nets has already been used for diagnostic, see e.g. [7] in the field of automation.
They establish a linear logic associated to Petri net. The linear negation is used to diagnose
faults. Petri nets are also used for automatic diagnosis in the field of artificial intelligence.
As mentioned in [19], we use Petri nets to exploit the parallelism of concurrent evolutions.
But we do not represent the whole behavior of the system to be diagnosed. And we take
advantages of the partial order semantics of 1-safe Petri nets, rather than using reachability
or T-invariant analysis.

In [21] alarm correlation is considered by the way of database operations. Events are
represented by data-patterns, and data patterns are continuously retrieved from the network
database. Events are correlated through combination of events. By correlation rules: dis-
junctions, conjunctions; by temporal relationships: temporal order, by the way of an acyclic
directed graph, and temporal constraint, using occurrences dates. In our approach, we do
not want to use real time, in order to avoid problems due to clock synchronization. We think
that most of aspects dealing with real time mask causal dependencies and concurrency, which
we explicit, both at the model level (fault net) and at the observation level (time-stamps).

In [11], alarm correlation is a conceptual interpretation of multiple alarms, such that a new
meaning is assigned to these alarms. Their approach is based on the principles of model-based
reasoning. Dependencies between faults are represented by logical fault propagation rules:
causal implication, and, or. In [12] they concentrate on time-dependent events management.
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In our model, a great variety of dependencies between faults and alarms can be expressed.
In particular, because they are managed in a uniform manner, we take into account the
problem of fault inter-dependencies due to alarm propagation.

In [4], two finite states machines are used. One models the whole behavior of the consid-
ered system, that is partially observed by the second. Faults are considered as changes and
additions of arcs in the finite state machine of the system. Therefore, the detection problem
is expressed in terms of sequences generated (or not) by the system. The focus of their work
is in the design of the simplest observer for a given finite state machine. Our propagation
model does not describe the whole behavior of the system, but rather its manifestations in
case of malfunctions.

In [14], problems are viewed as messages encoded in the set of alarms they cause. By
pruning, a bipartite correlation graph is obtained. It provides for each problem a code by
the way of a vector of alarm. Then the alarm correlation problem is that of finding problems
whose code optimally match an observed alarm vector. The way to perform matching is left
open. For a more general class of models, this is what our algorithm does.

In [13] probabilistic methods are also used, but without model of concurrency bhetween
events.

6 Concluding Remarks and Future Works

This paper takes advantages of results in the theory of Petri nets to deal with fault
management in telecommunication network. It takes explicitly into account multiplicity and
different causal dependencies between faults. And it allows to express dependencies and
concurrencies between alarms.

As far as we know, this model is a new approach to fault detection through alarm corre-
lation. The choice of partial order semantics of Petri nets prevents from the combinatorial
explosion of interleaving when dealing with concurrency. The use of time-stamp mechanism
prevents from noise due to physical clock distortion of observation.

This model is illustrated with an example of SDH network. The detection algorithm is
programmed with the Eiffel language, and we plan real experiments.

A joined work with the use of probabilities [1] completes this approach, in order to
propose a new complete way to diagnose faults in telecommunication network.

A short term research is to define precisely the way to provide diagnosis (i.e. explanation)
and to be able to distribute the supervising activity on sensors:

1. A diagnostic could be provided to the operator like a backward simulation of the fault
net according to the results given by the recognition. This allows the operator to go
back to the original fault through the fault net. The idea of prefix used to define §,,
is linked to the notion of correlation window. Its size has to be determined by the
network operator, according to a number of alarms, or to a number of fault states, or
maybe to a delay.

2. All this work is done keeping in mind the aim of distributed detection. This detection
algorithm can be distributed over sensors. Those sensors are able to process part of the
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recognition, with the set of alarms and their dependencies they observe respectively.
The decomposition of alarm patterns on sensors is then very useful. Then, the task of
the supervisor is to synchronize results from sensors to compute a diagnosis. The su-
pervisor could also give global trends indications to sensors, and compute the different
solutions in parallel.
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