Implementation of RSA algorithm Using Mersenne Prime

Shilpa M Pund, Chitra G Desai
Ph.D Student, Department of Computer Science, University of Pune. Maharashtra, India.
Professor and Head, MCA Department, MIT Aurangabad, India.

Abstract

Cryptographic algorithms are oftenly based on large prime numbers. It is a difficult task to generate large prime numbers and test it for primality. This requires overheads on first generating a large number which should be probably prime and second, testing its primality. This is because the generated large prime number using different algorithms may not necessarily pass the primality test. In order to generate an assured large prime number we can make use of Mersenne primes. Small primes are the used to generate large mersenne primes. This paper implements RSA based cryptographic algorithm using mersenne prime.

General Terms

Network security, RSA algorithm, Mersenne primes, Integer factorization.

Indexing terms

File encryption and decryption, Euclidean algorithm, Bézout's Identity.

I. INTRODUCTION

Encryption is one of the principal means to grantee the security of sensitive information. It not only provides the mechanisms in information confidentiality, but is also functioned with digital signature, authentication, secret sub-keeping, system security and etc. Therefore, the purpose of adopting encryption techniques is to ensure the information's confidentiality, integrity and certainty, prevent information from tampering, forgery and counterfeiting [1].The well-known and most widely used public key system is RSA, which was first proposed in a paper " A method for obtaining digital signatures and public-key cryptosystems" R.L. Rivest, A. Shamir and L. Adleman in 1976. It is the most influential public-key encryption algorithm, and has been recommended for ISO public key data encryption standard. RSA algorithm is an asymmetric cryptographic algorithm, meaning that the algorithm requires a key pair, one for encryption, another for decryption. Its security is based on the difficulty of the large number prime factorization, which is a wellknown mathematical problem that has no effective solution [1].This paper designed a complete and practical RSA encoding and decoding solution on *.txt file and provided the analysis on keys generated and the file size. The implementation is done in MuPAD 5.4 i.e. a Symbolic Math Toolbox provided by Matlab.

RSA algorithm can be simply described as

- <Generate keys >
- Take the prime numbers p, q, compute $n=p \times q$
- \quad Select an integer e which is coprime with $(\mathrm{p}-1) \times(\mathrm{q}-1)$
- Compute a private key d such that the equation: $\mathrm{d} \times \mathrm{e}=1(\bmod (\mathrm{p}-1) \times(\mathrm{q}-1))$.
- Pair (e, n) as a public key
- \quad Pair (d, n) as the private key
- < Encryption and decryption >
- $\quad \mathrm{b}=\mathrm{a}^{e} \bmod \mathrm{n}$, where a is plain text
- $\quad a=b^{d} \bmod n, \quad$ where b is cipher text.[2]

In RSA algorithm, it is recommended that each user must (privately) choose two large random prime numbers p and q to create encryption and decryption keys. These numbers must be large so that it is not computationally feasible for anyone to factor $\mathrm{n}=\mathrm{p} * \mathrm{q}$. Also it recommends use of 100 -digit (decimal) prime numbers p and q , so that n has 200 digits.[3]

II Mathematical Foundation For Public-key Cryptography

Integer factorization

Integer factorization is one of the most challenging problem of number theory and hardness of this problem is behind the security of RSA. In a public key cryptosystem, if one knows how to encrypt a message does not mean that it can be easily decrypted. So if anybody knows how a message is encrypted - that does not create any risk to the security of the system. The public key of RSA consists of $\mathrm{n}=\mathrm{p} * \mathrm{q}$, where p and q are large, distinct positive primes. Another positive integer is e which is inverse modulo of $\Phi(\mathrm{n})$, where $\Phi(n)$ is Euler totient function. For encryption we need n and a public key e. For Decryption we need n and a private key d. Here in RSA we are interested in factoring n which has exactly two prime divisors p and q of approximately equal size (where p and q are very large numbers.) Due to its relationship with RSA ,factoring has become one of the most important research problems. Hence the size of modulus in RSA algorithm determines how secure the RSA cryptosystem is.[4]

Number theory

Various number theory algorithms form the base of the cryptographic algorithms. The important and widely used modular arithmetic concepts and algorithms are:

Prime number : A prime number is defined as an integer greater than 1 which has no positive divisor other than 1 and the number itself.

Fundamental Theorem of Arithmetic : Fundamental Theorem of Arithmetic states that any natural number n can be written uniquely as a product of prime numbers.
e.g. $4200=2^{3} * 3^{*} 5^{2} * 7$.

Modular arithmetic

Congruences

Three integers a, b and m , we say that " a is congruent to b modulo m ". This relationship is written as $a \equiv b(\bmod m)$.
Two integers are congruent modulo m if and only if their
difference is divisible by $m . m$ is called the modulus of congruence.
Example: $11 \equiv 19(\bmod 8)$.

Modular Reduction

Modular arithmetic is based on a fixed integer $m>1$ called the modulus. The fundamental operation is reduction modulo m. To reduce an integer a modulo m, one divides a by m and takes the remainder r.

This operation is written as $r:=a \bmod m$.
The remainder must satisfy $0 \leq r<m$.
Examples: 3:= $15 \bmod 6$
$8:=-3 \bmod 11$

Congruence modulo m.

For fixed m , each equivalence class with respect to congruence modulo m has one and only one representative between 0 and $\mathrm{m}-1$.
The set of equivalent classes (called residue classes) will be denoted Z / mZ. Any set of representatives for the residue classes is called a complete set of residue modulo m represented as

$$
Z_{m}=\{0,1, \ldots, m-1\} .
$$

One performs addition, subtraction, and multiplication on the set Z_{m} by performing the corresponding integer operation and reducing the result modulo m. [5]

Multiplicative Inverse

The multiplicative inverse of a modulo m is the integer b modulo m such that $a b \equiv 1(\bmod m)$. The multiplicative inverse of a is commonly written as $a^{-1}(\bmod m)$. It exists and is unique if a is relatively prime to m and not otherwise.

If a and b are integers modulo m, and a is relatively prime to m, then the modular quotient a / b modulo m is the integer $a b^{-1}$ mod m.
If c is the modular quotient, then c satisfies $a \equiv b c(\bmod m)$.The process of finding the modular quotient is called modular division.

Euclidean algorithm

The Euclidean algorithm is an efficient method to compute the greatest common divisor (gcd) of two integers.
We write $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{d}$ to mean that d is the largest number that will divide both a and b . If $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$ then we can say that a and b are coprime or relatively prime. The gcd is sometimes called the highest common factor (hcf).[6]

Program : Developed in MuPAD 5.4 Environment for computing the greatest common divisor of two integers using Euclidean algorithm.

Input: Two non-negative integers a and b with $a \geq b$.
euclid_algo:= proc(a, b)
local r;
begin
while $\mathrm{b}>0$ do
$r:=a \bmod b ;$
$\mathrm{a}:=\mathrm{b}$;
$\mathrm{b}:=\mathrm{r}$;
end_while:
print(a)
end:
Program Execution :
euclid_algo(15618427, 24137569)
1419857
euclid_algo(1234678234657982123,134857857857384573845739875984758947584393)

1

The proof uses the division algorithm which states that for any two integers a and b with $\mathrm{b}>0$ there is a unique pair of integers q and r such that $a=q b+r$ and $0 \leq r<b$. Essentially, a get reduces with each step, and so, being a
positive integer, it must eventually converge to a solution (i.e. it cannot get smaller than 1).

Bézout's Identity

In number theory, Bézout's identity for two integers a, b is an expression $a x+b y=d$, where x and y are integers called Bézout coefficients for (a, b) such that d is a common divisor of a and b . If d is the greatest common divisor of a and b then Bézout's identity $\mathrm{ax}+\mathrm{by}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ can be solved using Extended Euclidean Algorithm.

Finding the Modular Inverse

The modular inverse of an integer e modulo n is defined as the number d such that $e d \equiv 1 \bmod n$. We write $d=e^{-1} \bmod n$ or $d=e^{-1}$ $\bmod \mathrm{n}$. The inverse exists if and only if $\operatorname{gcd}(\mathrm{n}, \mathrm{e})=1$. To find this value for large numbers we use the extended Euclidean algorithm, but there are simpler methods for smaller numbers.

Extended Euclidian Algorithm

The Extended Euclidean Algorithm is an extension to the Euclidean algorithm. Besides finding the greatest common divisor of integers a and b, as the Euclidean algorithm does, it also finds integers x and y (one of which is typically negative) that satisfy Bézout's identity ax + by $=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$.

The Extended Euclidean Algorithm is particularly useful when a and b are coprime, since x is the multiplicative inverse of a modulo b , and y is the multiplicative inverse of b modulo a .

Program : Developed in MuPAD 5.4 Environment for Extended Euclidean algorithm.

Input: Two non-negative integers a and b .

Output $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ and integers x and y satisfying $\mathrm{ax}+\mathrm{by}=\mathrm{d}$.
$\mathrm{ex} 2:=\operatorname{proc}(\mathrm{a}, \mathrm{b})$
local $\mathrm{x}, \mathrm{y}, \mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2, \mathrm{q}, \mathrm{r}, \mathrm{d}, \mathrm{z}$;
begin
$\mathrm{s}:=\mathrm{a}$;
$\mathrm{z}:=0$;
print(s);
if $b=0$ then
$\mathrm{d}:=\mathrm{a}$;
$\mathrm{x}:=1$;
$\mathrm{y}:=0$;
print(d,x,y);
end_if;
if $b>a$ then
temp:= a;
$\mathrm{a}:=\mathrm{b}$;
b:=temp;
print(a,b);
end_if;
$\mathrm{x} 2:=1$;
$\mathrm{x} 1:=0$;
y2:=0;
y1:=1;
while $b>0$ do
$\mathrm{q}:=\mathrm{a} \operatorname{div} \mathrm{b}$;
$\mathrm{r}:=\mathrm{a}-\mathrm{q}^{*} \mathrm{~b}$;
$\mathrm{x}:=\mathrm{x} 2-\mathrm{q} * \mathrm{x} 1$;
$y:=y 2-q * y 1 ;$
$\mathrm{a}:=\mathrm{b}$;
b :=r;
x2:=x1;
x1:=x;
$\mathrm{y} 2:=\mathrm{y} 1$;
y1:=y;
end_while;
d:= a;
$\mathrm{x}:=\mathrm{x} 2$;
$\mathrm{y}:=\mathrm{y} 2$;
print("y=",y);
if $\mathrm{y}<0$ then
z:= s + y;
else
z :=y;
end_if;
print("gcd=",d);
print("Coefficient of a",x);
print("Coefficient of b ", y);
print("The modular inverse is ",z);
end_proc:
Program Execution :
ex2 $(421,111)$
" $\mathrm{y}=\mathrm{=}, 110$
"gcd=", 1
"Coefficient of a", -29
"Coefficient of b", 110
"The modular inverse is ", 110
ex2(55280482152470586242544152596898475889286765965333392810309862444750712187201735723708865354024517010066 744899603060853772958959771820064211586163426935282813494246562728773440669159485273952703168505869112336308 651610057445561707661007273512300337374697712878708093175686533403126783272783062154193040168985858018407655 552304763232824932379980155586372593406587276191968799426936333273309811363127306350093653827982713992117718 425458049622547592537798314875843376263382220953801861575920385592490694009059160168391423623098650806390606 98305823011632172623869700472836,429392673709)
" $\mathrm{y}=$ ",
257959486022090474386811667380977933172360311716614312431100886295222073248022803685199813158947995430511453 902306035500248604204258556382107618069865938111301820856059913121443594108724153101814921669271017392882246 629502206679732736251070824312449506444111214575527711350923550812653995726677405782836686505980192575722265 617588355367664097621146419855273916932128980131903036655373391921802415276762010430074884112883110958681249 137642848174417725509810267238766981671958967147329590753298214398208694692579840338736633377029134068778407 3317438406676107645092265071
"gcd=", 1
"Coefficient of a", 200370744065
"Coefficient of b"
257959486022090474386811667380977933172360311716614312431100886295222073248022803685199813158947995430511453 902306035500248604204258556382107618069865938111301820856059913121443594108724153101814921669271017392882246 629502206679732736251070824312449506444111214575527711350923550812653995726677405782836686505980192575722265 617588355367664097621146419855273916932128980131903036655373391921802415276762010430074884112883110958681249 137642848174417725509810267238766981671958967147329590753298214398208694692579840338736633377029134068778407 3317438406676107645092265071
"The modular inverse is ",
294845335502615388038629858588006825720507347936719615671997738152285048623994553551888840381297174670155995 093724573037480985393459644260008243564403414716833121609567374612963097486128586425216763389420105970204269 471072248937343873821664298690924240533017572505404045514410480455178732103944136147565003352599991500833257 430043972881659702180409443870660148940632939556091232707959341176311215996301490506463395714256810218503005 442853377301507652473338491194995652150250570876168450557710508731395899021843575499597609478929837291423250 5573225496516224608207765.

III. Mersenne Prime Numbers

37 | P a g e

In mathematics, a Mersenne number, named after Marin Mersenne (a French monk who began the study of these numbers in early 17th century), is a positive integer that is one less than a power of two. Mersenne Primes are of the form $2^{p}-1$, where \boldsymbol{p} is itself prime represented as $M_{p}=2^{p}-1$. Since 1997, all newly-found Mersenne primes have been discovered by the "Great Internet Mersenne Prime Search" (GIMPS), a distributed computing project on the Internet. The search was on when it was noticed that most of the early primes worked, but $2^{11}-1$ was not prime. The great Mersenne Prime race has been in progress now for over 600 years and shows no sign of ending. Some of the more reasonably sized prime numbers which generates mersenne primes are given in this list : 2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,4423,9689,9941,11213,19937,21701,23209,44497,86243,

110503 \qquad so on.

As of: Date: 2012/06/12 05:06:11 the last Mersenne prime shown above was the largest known prime. $\mathbf{2}^{\mathbf{4 3 1 1 2 6 0 9}} \mathbf{- 1 [7]}$.
So we can generate very large primes by using $\mathrm{Mp}=2^{\mathrm{p}}-1$ where Mp itself is a Mersenne Prime.

IV. RSA Algorithm Using Mersenne Primes

Declarations:
a) Ptext.txt : Plain text (source) file to be encrypted .
b) Ctext.txt : Cipher text file to be decrypted.
c) Array L : Used to store the contents of Ptext.txt for encryption.
d) Array S : Used to store the contents of Ctext.txt for decryption.

Algorithm :

1. Choose two large Prime numbers p , q .
2. Generate two very large mersenne prime numbers as: $m=2^{p}-1$ and $n=2^{q}-1$.
3. Calculate $\mathrm{c}=\mathrm{m}^{*} \mathrm{n}$.
4. Calculate the value of Φ using the formula: $\Phi(\mathrm{c})=(\mathrm{m}-1) *(\mathrm{n}-1)$.
5. Generate the public key 'e' such that it is coprime with $\Phi(\mathrm{c})$.
6. Find the value of private key $' \mathrm{~d}$ ' such that $\left(\mathrm{d}^{*} \mathrm{e}\right) \equiv 1 \bmod \Phi(\mathrm{c})$
7. Read plaintext in the form of binary data from the file Ptext.txt ,store it in an $\operatorname{array}(\mathbf{L})$.
8. Perform $L^{\mathrm{e}} \bmod \mathrm{c}$ (on each element of an array L) to get cipher text and store it in the file Ctext.txt.
9. For decryption, read the file Ctext.txt , store it in an array (S) .
10. Perform $S^{d} \bmod c(o n ~ e a c h ~ e l e m e n t ~ o f ~ a n ~ a r r a y ~ S) ~ t o ~ g e t ~ a ~ p l a i n ~ t e x t ~ . ~ . ~$

V. Output Details

1. Input : $p=127, q=2203$
"The value of m is", 170141183460469231731687303715884105727 (39-digits)
"The value of is $n "$
147597991521418023508489862273738173631206614533316977514777121647857029787807894937740733704938928938274850 753149648047728126483876025919181446336533026954049696120111343015690239609398909022625932693502528140961498 349938822283144859860183431853623092377264139020949023183644689960821079548296376309423663094541083279376990 539998245718632294472963641889062337217172374210563644036821845964963294853869690587265048691443463745750728 044182367681351785209934866084717257940842231667809767022401199028017047489448742692474210882353680848507250 224051945258754287534997655857267022963396257521263747789778550155264652260998886991401354048380986568125041 9497686697771007. (658 digits)
"The value of c is"
251124969538423661182637294754414080702862422776577909030622037049369192715957942055991268511835941434981523 894432472725127248132239970233236575911730577016827342038047536495339920542027799260848944425196370857532743 563759278213541981068577627095312529225040435517674341727662932474456642327811074164743965717415999751993075 836686182821338732584285099637490826385470175337435809108440856724217443479952636824528630813074529935285423 381910575675446921581118981357875789796473381494716292318114404384838613303149751102810234559977956137910156

156978156910602704364224308167783556174058204535995586144082235988042803063833945262508208237312456940436921 570938426906377507807828946209906269603142070423257089 . (702 digits)
"The value of is $\Phi(\mathrm{c})$ ",
251124969538423661182637294754414080701386442861363728795537138426631810979645875910658098736688170218502953 596554393775749840795190580943853827404199080536350060773208776236148106078662468991308447463995257427375841 167665289123315721741642601813902914241541047294842893129061098155920411404038432774534475485579552852384865 041203219058244495953339688804697056480070192880249486163711220305326820107780913082422994372706311475635790 433371878769574271094204546720418282516031557817902774466015055723991440723741328786132136889753944147629985 682083669483677962255400771359298483671817685083408043268732259429470132834199982687295570759414671438884275 048328438036463324126161675874993287496340667841380356.
"The value of public key is", 745580037409
"The value of private key is",
115447727343284758526739352721329870116224155381726540675703759429233421653770291616935757880618522977582498 311448309826779725183992327561863501923714367561190440935719174998970326900000834528020317704886410651550766 302574189300791413096283718754080149360919252169804096009771484634759220498691240772635373430442636796382203 050470817898924982418251021837871993862359717223668761776928329006892066376872837857160852460204467467457581 672002850847386252922823637532579964439194249272655749118781740594773694602553696317478097568391027655787265 052681806784839469584721942774754756087338039441102080842003260118885083496683414253556514510933760975111818 29688862003012179676389345548807890617964749052232677 . (689 digits)

VI. Implementation Details

Initially, we the algorithms were implemented using MatLab. But as it does not support large integer for computations, MuPAD has used. MuPAD can compute big numbers efficiently. The length of a number that can be computed is limited only by the available main storage [8]. So, MuPAD has provided preferable environment to develop this program. The algorithmic steps are as follows.

1. Choose two large prime numbers p and q.
2. Generate two very large mersenne prime numbers using the formula $m=2^{p}-1$ and $n=2^{q}-1$. As, a prime can generate a large mersenne using the above formula.
3. Calculate the value of $c=m * n$.
4. Calculate the value of $\Phi(\mathrm{c})$, Euler Totient function using the formula: $\Phi(\mathrm{c})=(\mathrm{m}-1)(\mathrm{n}-1)$.
5. Generate the public key 'e' randomly using random function such that it is coprime with $\Phi(\mathrm{c})$. Using gcd function based on Euclid's Algorithm. i.e. $\operatorname{gcd}(\mathrm{e}, \Phi(\mathrm{c}))=1$.
6. Find the value of private key 'd' by implementing Extended Euclidian Algorithm.
7. For Encryption, use readbytes function which reads plaintext and converts it into binary data ,store it in an array.(L) . Permissible values for binary data are Bytes, SignedBytes, Short, Signedshort,Float and Double.
8. Perform $L^{e} \bmod c$ (on each element of an array L) by using powermod (L,e,c) function provided by MuPAD. Map each element of array L with the powermod value using map function.
9. Open a new file say ctext.txt in write mode using fopen function.
10. Now L contains cipher text, write array L in the file ctext.txt using write function.
11. For decryption, read the file ctext.txt by using read function, store it in an array (S) .
 powermod value using map function.
12. Open a new file say ptext.txt in write mode using fopen function.
13. Use writebytes function to convert binary data into plain text and write it in the file ptext.txt. The above algorithm works for the mersenne primes greater than 17 .

VII. Comparison

The size of the encrypted file depends on the size of keys generated, which further depends on the values of p and q . As we increase the values of p and q , the size of the encrypted file also increases. As the size of private key increases the execution time and memory requirement are also increased.

Table 1. Comparison of the original , encrypted and decrypted file sizes with respect to the value of p and q.

Value of \mathbf{p}	Value of \mathbf{q}	Private Key Size(In digits)	File name	Original file size	Encrypted File Size	Decrypted File size	Execution Time	Memory Used
521	607	340	conversion.txt	3.14 KB	1.08 MB	3.14 KB	13 sec	7 MB
127	521	195	conversion.txt	3.14 KB	644 KB	3.14 KB	3 sec	8 MB
127	2203	689	modrsa.txt	2.27 KB	1.62 MB	2.27 KB	69 sec	8 MB
607	1279	568	rsa.txt	1.01 KB	599 KB	2 KB	17 sec	7 MB
3217	4253	2249	rsa.txt	1.01 KB	230 MB	1.01 KB	823 sec	7 MB
4253	4423	2562	rsa.txt	1.01 KB	2.68 MB	1.01 KB	1220 sec	8 MB
9689	9941	5910	T1.txt	27 Bytes	161 KB	27 Bytes	262 sec	7 MB
9689	9941	5909	x25.txt	172 Bytes	1 MB	172 Bytes	1656 sec	7 MB
11213	19937	9378	T1.txt	27 Bytes	256 KB	27 Bytes	879 sec	6 MB

In this paper we have implemented RSA algorithm using mersenne primes. The real challenge in case of RSA is the selection of public key and generation of private key. Here public key is generated randomly. The use of merssene prime has been made to generate large primes to enhance the security. This algorithm can generate a private key in the range of 15 to 5000 digits. We have executed this program for the primes greater than 9000 on $\operatorname{Intel}(\mathrm{R})$ Core i5 -2410 M CPU with 6144 MB RAMS, it generates the private and public key. The system is able to do encryption and decryption for the file size up to 180 bytes. If the file size is too large and the primes are beyond 9000 then MuPAD does not respond because of the main storage limitation. The above algorithm will not give proper result for the primes less than 17.

The future work intends to reduce the size of encrypted file which is the limitation of the present system.

Acknowledgment

First author would like to thank Dr. Nivedita H Mahajan for her valuable guidance in Mathematical concepts.

References

[1] Xin Zhou and Xiaofei Tang," Research and Implementation of RSA Algorithm for Encryption and Decryption" 2011 The 6th International Forum on Strategic Technology. IEEE.
[2] Suli Wang, Ganlai Liu, "File encryption and decryption system based on RSA algorithm" 2011 International Conference on Computational and Information Sciences. IEEE.
[3] L. Adleman, R. Rivestand, A. Shamir "A Method for Obtaining Digital Signatures and Public Key Cryptosystems" Comm. ACM 21, 1978, pp120-126
[4] Prashant Sharma, Amit Kumar Gupta, Ashish Vijay, "Modified Integer Factorization Algorithm using V-Factor Method ", 2012 Second International Conference on Advanced Computing \& Communication Technologies. IEEE
[5] "A course in Number Theory and Cryptography" Second Edition By Neal Koblitz.
[6] http://www.dimgt.com.au/euclidean.html\#KNU298
[7] http://en.wikipedia.org/wiki/Mersenne_prime.
[8] Symbolic Math Toolbox ${ }^{\text {TM }} 5 \mathrm{MuPAD®}$ ®utorial by The Mathworks.
[9] http://en.wikipedia.org/wiki/Integer_factorization.

