
Session T2D

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T2D-8

AN ANALYSIS OF THE GAP BETWEEN THE KNOWLEDGE AND SKILLS
LEARNED IN ACADEMIC SOFTWARE ENGINEERING COURSE PROJECTS

AND THOSE REQUIRED IN REAL PROJECTS

Stephanie Ludi1 and James Collofello 2

1 Stephanie Ludi, Arizona State University, Department of Computer Science and Engineering, Tempe, AZ 85287-5406 sludi@asu.edu
2 James Collofello, Arizona State University, Department of Computer Science and Engineering, Tempe, AZ 85287-5406, james.collofello@asu.edu

Abstract  This paper describes how the Software
Engineering Body of Knowledge (SWEBOK) can be used as
a guide to assess and improve software engineering courses.
A case study is presented in which the guide is applied to a
typical undergraduate software engineering course. The
lessons learned are presented which the authors believe are
generalizable to comparable courses taught at many
academic institutions. A novel approach involving large-
scale software project simulation is also presented a way to
overcome some of the course deficiencies identified by the
guide.

Index Terms  simulation, software engineering education,
software requirements, SWEBOK

INTRODUCTION

The creation of quality software by development
organizations is a complex process requiring effective
collaboration of many software engineers. The
responsibility of educating new software engineers lies
primarily in Computer Science departments and their
software engineering courses. In particular, the typical
undergraduate software engineering course provides an
introduction to software engineering principles and
techniques as well as the opportunity to work on a "realistic"
team project. Unfortunately the constraints of the academic
environment rarely provide an opportunity to replicate the
size and complexity of a typical industry project.

In an attempt to better understand the knowledge and
skills required of software engineers, the professional
societies are helping to define the Software Engineering
Body of Knowledge (SWEBOK). SWEBOK is intended as
a guide to the subset of generally accepted software
engineering knowledge. The guide does not dictate
curricula, but it can assist in the development of curricula as
each Knowledge Area is decomposed into topics and
associated with ratings from Bloom's taxonomy.

In an effort to prepare students for industry projects,
educators need to know how the knowledge and skills
acquired in the small team projects assigned in their
undergraduate Software Engineering courses compare to the
breakdown of SWEBOK's Knowledge Areas using Bloom's
taxonomy. To illustrate this, a typical undergraduate
Software Engineering course's content and project was

analyzed and mapped to SWEBOK using Bloom's
taxonomy. From this mapping, gaps were noticeable in the
nature of the course project that may leave students
unprepared for industry projects. This paper describes the
nature of these gaps as well as possible approaches for
bridging them. In particular, the strategy of student
participation in a simulated project environment is
presented.

SOFTWARE ENGINEERING BODY OF KNOWLEDGE

The Software Engineering Body of Knowledge Project
(SWEBOK) is a joint effort by the IEEE Computer Society
and the Association for Computing Machinery (ACM) to
develop a guide to the subset of generally accepted
knowledge that defines the Software Engineering profession.
The project's intent is not to define the body of knowledge or
to dictate the curricula for university programs. However
such the guide can assist in the development of curricula and
accreditation criteria. The overall goals of the Guide to the
Software Engineering Body of Knowledge are to:
• Characterize the contents of the Software Engineering

Body of Knowledge;
• Provide topical access to the Software Engineering

Body of Knowledge;
• Promote a consistent view of software engineering

worldwide;
• Clarify the place of and set the boundary of software

engineering with respect to other disciplines such as
Computer Science, Project Management, Computer
Engineering, and Mathematics;

• Provide a foundation for curriculum development and
individual certification and licensing material. [4]

The project consists of three phases: Strawman,

Stoneman, and Ironman. The Strawman phase has been
completed and has resulted in a guide presenting the
Knowledge Areas and Related Disciplines. This Strawman
phase intended to bring together the discipline in order to
move the project forward. As on this writing, the Stoneman
phase is near completion. The objective of the Stoneman
version of the guide is to organize the body of knowledge
into Knowledge Areas, a list of topics relevant to the
materials for each Knowledge Area (see Table 1) and a list
of Related Disciplines [2]. The ten Knowledge Areas, and

Session T2D

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T2D-9

the topics that comprise them, are considered to be the core
knowledge. The knowledge that software engineers need to
know from related disciplines is outside of the scope of the
Guide and will be left to the other working groups to define.
The Ironman phase will facilitate experimentation and trial
usage of the guide, the promotion of the guide, and the
development of "performance norms" for professionals [1].
The entire effort has been the result of the continuing
collaboration of individuals from industry, academia, and
standard setting bodies from all over the world.

TABLE I

KNOWLEDGE AREAS
SWEBOK Knowledge Areas
Software Configuration Management
Software Construction
Software Design
Software Engineering Infrastruction
Software Engineering Management
Software Engineering Process
Software Evaluation and Maintenance
Software Quality Analysis
Software Requirements Analysis
Software Testing

The keys to the Guide are the Knowledge Areas and the

mapping of topics within these Knowledge Areas. Each
Knowledge Area is organized according to Figure 1,
consisting of a hierarchical breakdown of topics, reference
topics, a matrix of the topics and the reference materials.
The topics for each Knowledge Area are decomposed,
described, and classified according to Vincenti's taxonomy,
rated by Bloom's taxonomy, and referenced to related
disciplines [2].

FIGURE. 1
THE ORGANIZATION OF A KNOWLEDGE AREA DESCRIPTION.

As of the current public version of the Stoneman Guide
(version 0.7), the mapping of topics to the Knowledge Areas
is complete and available online [3].

The purpose of the guide is not to dictate curricula.
Instead, the guide inventories the topics and the depth of
knowledge for these topics based on Bloom's taxonomy for a
graduate with four years of experience [1]. The topics,
organized by Knowledge Area, and the classification
according to Bloom's taxonomy can be found at the end of
each Knowledge Area section [3].

This information can provide a base whereby a
curriculum can be designed for an undergraduate software
engineering program and existing undergraduate software
engineering courses assessed.

USING SWEBOK TO ASSESS AN EXISTING
UNDERGRADUATE SOFTWARE ENGINEERING

COURSE

To illustrate how SWEBOK might be used to assess and
improve an existing course, the authors applied the guide to
an existing Introduction to Software Engineering course
(CSE 360) at Arizona State University. This course is a
one-semester project course in which students work in teams
of 5-6 members to develop a software application. The
course project typically spans the entire semester starting
with the teams defining the projects' requirements and
ending with acceptance testing. The development of the
course project follows a defined and documented
methodology presented by the instructor. The teams are
organized as self-directed work teams and are responsible
for planning and tracking their activities. The course project
experience is not carried out exactly as an industry project
would be due to limitations of time and other factors, but an
approximate experience is provided to students. The course
content typically follows one of the leading texts such as
Pressman's "Software Engineering: A Practitioner's
Approach". The course at Arizona State University has
evolved over 20 years and is similar to courses offered in
many universities.

The first task the authors performed was capturing the
informal desription of the course's topics and objectives in
terms of Bloom's Taxonomy.

Subsequently a mapping of the CSE 360 course to
Bloom’s Taxonomy and the SWEBOK was created and
verified by the course instructors. The matrix containing
the SWEBOK topics and the CSE 360 curricula mapping
using Bloom’s Taxonomy is available from the authors. As
the breakdown is extensive, a sample of the topics from the
Software Requirements Analysis Knowledge Area is
presented in Table 2.

Session T2D

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T2D-10

TABLE 2
BLOOM'S TAXONOMY MATRIX FOR SWEBOK AND AN UNDERGRADUATE SOFTWARE ENGINEERING COURSE

Software Requirements Analysis SWEBOK CSE 360
I. Requirements Engineering Process

A. Process models Knowledge Knowledge
B. Process actors Knowledge Knowledge
C. Process support Knowledge Knowledge
D. Process quality and improvement Knowledge Not Applicable

II. Requirements Elicitation
A. Requirements Sources Comprehension Comprehension
B. Elicitation Techniques

1. Interviews Application Application
2. Scenarios Application Comprehension
3. Facilitated Meetings Application Comprehension
4. Observation Application Comprehension

III. Requirements Analysis
A. Requirements classification

1. Functional & Nonfunctional Comprehension Comprehension
2. Derived from 1+ high-level req. or imposed by a stakeholder/other source Comprehension Not Applicable
3. Product or Process Comprehension Knowledge
4. Prioritizing req. (mandatory, highly desirable, desirable, optional) Comprehension Knowledge
5. Scope Comprehension Knowledge
6. Volatility / Stability Comprehension Not Applicable

B. Conceptual modeling Comprehension Application
C. Architectural design & requirements allocation Analysis Application
D. Requirements negotiation Analysis Not Applicable

IV. Requirements Specification
A. The requirements definition document

1. For customer Application Application
2. For other stakeholders Application Not Applicable

B. The software requirements specification (SRS) Application Application
C. Document Structure Application Application
D. Document Quality

1. Selecting appropriate indicators Analysis Comprehension
2. Gathering and Analyzing Metrics from reviews. Analysis Comprehension

V. Requirements Validation
A. The conduct of requirements reviews

1. Group composition is appropriate (may include customer) Analysis Application
2. Use of guiding documents like checklists to guide review and to doc
findings

Analysis Comprehension as docs used for
recording only

3. Review process is at specified checkpoints and redone as appropriate Analysis Application but done once
B. Prototyping Application Comprehension
C. Model validation Analysis Comprehension
D. Acceptance tests Application Application

VI. Requirements Management
A. Change management

1. Understanding the role of Change Management throughout lifecycle Analysis Analysis
2. Have procedure in place Analysis Comprehension
3. Analyze proposed changes Analysis Comprehension

B. Requirements activities Comprehension Comprehension
C. Requirements tracing Comprehension Comprehension

The mapping of Bloom's Taxonomy to the SWEBOK

topics and to the material currently covered in CSE 360 was
used to identify areas where improvement is needed. While
the course addresses most of the topics to some extent,
several gaps exist between the level of knowledge expected
from SWEBOK (and large projects) and the current course.
For example, the topics relating to Requirements Analysis in
Table 2 shows that students generally only have minimal
knowledge of the skills and knowledge needed to work with
stakeholders from their perspectives. Under the sub-topic of
Elicitation Techniques, students gather requirements via
interviews. However the use of observation, scenario-based

techniques, and facilitated meetings is non-existant due to
the current structure and timeline of the class.

Besides gathering requirements, the ongoing tasks
involved in monitoring quality and maintaining the
requirements documents are also not addressed in the current
course. Metrics gathering is discussed, but gathering data
and assessing the quality of the requirements documentation
is not accomplished. Also formal inspections are performed,
but not to the degree of rigor that occurs in mature
organizations. As such the inspection-related entries in the
matrix have a special note associated with them.

Session T2D

0-7803-6669-7/01/$10.00 © 2001 IEEE October 10 - 13, 2001 Reno, NV
31st ASEE/IEEE Frontiers in Education Conference

T2D-11

Beyond the tasks carried out in the Requirements phase,
the need to address the management of change in
requirements is clear. Due to the nature of a college course,
project requirements are provided to students during the
initial phase, with only a minor amount of change occuring
later in the project. Industry projects deal with requirements
changes throughout the lifecycle. As a result, students only
have basic knowledge regarding managing change, but the
application of the knowledge to the project is absent.

CURRICULUM IMPROVEMENT USING SWEBOK

An analysis of the gaps in the matrix in Table 2 suggests that
CSE 360 needs improvement. The authors feel, however,
that these gaps are not unique to CSE 360 but typical of
academic courses with time and size constraints on course
projects. There are several possibilities to bridging the gap
including teaching multiple semester courses with a project
spanning the courses, more focus on case study analysis of
large projects or the utilization of industry internships
integrated with the classes. Another approach under
investigation by the authors is the utilization of simulation
technology to create a large project learning environment.

 A research project to develop a large project simulator
is under development to address some of the gaps between
academic courses and SWEBOK guidelines. Although
simulating an entire project's lifecycle would be an
overwhelming task, a portion of the lifecycle, Requirements
Analysis, is being approached initially. Typical courses
such as CSE 360 do not address requirements issues
regarding areas such as requirements management for a
large project. This includes requirements negotiation,
requirements allocation, and the roles that stakeholders play
in development. As a result of not presenting these issues
adequately the students may not appreciate the tasks and
activities required to produce a set of requirements necessary
to will lay the foundation for a large project.

Addressing these topics in a simulator will allow
students to apply the concepts learned in class to a
simulated, large software project in a more realistic context
than if applied to a small student project alone. During the
course of the simulation, the selected topics will also build

upon one another as the simulation progresses. Students will
see the consequences of their choices.

The immediate planned use of the simulator is for use as
a supplemental aid to lecture material. While the importance
of conducting requirements analysis and specification
activities is discussed in class and students are required to
traverse through a variety of activities during the course of
their small group project, the simulator will provide
opportunities that can be more realistic than the project -
such as the industry experience that SWEBOK reflects. The
simulator will reinforce the role that the activities play in a
large project in industry in ways the lecture and a small
group project cannot present.

This project will take the Guide to SWEBOK into
consideration so that the course can best take advantage of
the Guide and provide a more useful experience for students
using the simulator as part of instruction.

FUTURE WORK

The next step is the design and implementation of the
simulator. Upon completion, the simulator will be tested in
the undergraduate Software Engineering course in order to
assess the extent of the effectiveness of large project
simulation in the instruction. Lecture and the small team
project will not be eliminated. Instead the large project
simulator will supplement the course in order to fill in some
of the gaps between the knowledge outlined in SWEBOK
and the course.

REFERENCES
[1] Abran, A., and Moore, J. (eds.) "Guide to the Software Engineering

Body of Knowledge", A Stone Man Version (version .6). Available at
http://www.swebok.org/ironman/ Guide to SWEBOK

[2] Bourque, P., Dupuis, R., et al. "The Guide to the Software
Engineering Body of Knowledge". IEEE Software. Vol. 16, No 6,
November/December 1999, pp. 35-44.

[3] IEEE Computer Society, Guide to the SWEBOK Web Site:
Documents, Available at http://www.swebok.org/documents/

[4] IEEE Computer Society, Guide to the SWEBOK Web Site. Overview,
Available at http://www.swebok.org/overview/

