
DRAM Energy Management Using Software and Hardware Directed
Power Mode Control

Appears in the Proceedings of the 7th International Symposium on High Performance Computer Architecture

V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin
Microsystems Design Lab. Pennsylvania State University

University Park, PA 16802

Abstract

While there have been several studies and proposals for
energy conservation for CPUs and peripherals, energy opti-
mization techniques for selective operating mode control of
DRAMs have not been fully explored. It has been shown that
as much as 90% of overall system energy (excluding I/O) is
consumed by the DRAM modules, serving as a good candi-
date for energy optimizations. Further, DRAM technology
has also matured to provide several low energy operating
modes (power modes), making it an opportunistic moment
to conduct studies exploring the potential benefits of mode
control techniques. This paper conducts an in-depth inves-
tigation of software and hardware techniques to avail of the
DRAM mode control capabilities at a module granularity
for energy savings.

Keywords: Memory Architecture, Low Power, Low
Power Compilation, Software-Directed Energy Manage-
ment.

1 Introduction

Computing devices for mobile and resource-constrained
(embedded) environments are becoming the fastest growing
market segment for the computer industry, even out-pacing
corporate desktop, small office, and home computer sales.
They are growing at a 20% annual rate and annual shipments
are expected to grow to 30 million units by 2001. These en-
vironments demand components that are optimized for low
cost,low energy, high performance, and small space. With
energy taking the center-stage together with performance
and packaging constraints, there has been a great deal of
interest recently in examining optimizations for energy re-
duction from the hardware and software viewpoints.

From the hardware viewpoint, we find two emerging en-
ergy saving trends. The first is the clustering of hardware
components into smaller and less energy consuming com-
ponents. The second trend is the support for differentoper-
ating modes(power modes/energy modes), each consuming

a different amount of energy. This provision is available
in processors (e.g., the mobile Pentium III has five power
management modes [17]), memory (e.g., the RDRAM tech-
nology [7] provides up to six power modes), disks [15], and
other peripherals [4]. While these energy saving modes are
extremely useful during idle periods, one has to pay a cost of
exit latency(resynchronization time) for these hardware en-
tities to transition back to the operational (active) state once
the idle period is over.

From the software viewpoint, the research directions
are on effective compiler, runtime, and application-directed
techniques to selectively utilize as few hardware compo-
nents as possible without paying performance penalties, and
transitioning the rest into an energy-conserving operating
mode [23]. Industry, recognizing the importance of support-
ing different energy modes, is attempting to standardize the
power management interface [2].

While there have been several forays into hardware and
software optimization techniques for energy savings in the
context of processors [23, 22, 5, 19], cache memories
[21, 12] and other peripherals [15], such issues in the con-
text of main memory (DRAMs) have mainly focussed on
circuit and architectural techniques [11] and data organiza-
tions [6]. It has been observed [23, 13, 6, 14] that memory
system is a dominant consumer of the overall system energy,
making this a ripe candidate for software and hardware op-
timizations, thus serving as a strong motivation for the re-
search presented in this paper. This is especially true for
mobile applications which are typically memory-intensive
(e.g., array-dominant signal and video processing). In addi-
tion, applications are gradually becoming more data-centric
with stringent memory requirements (both for storage and
speed), causing vendors to incorporate large storage capac-
ities into their offerings. Typically, a computer system con-
tains several DRAM chips (organized in rows/banks and
columns), with each of them consuming power even if it
is not being currently used. It would be extremely valu-
able to explore techniques for selectively transitioning the
unused memory modules into lower energy consumption
modes (operating modes) whenever possible.

With DRAM modules supporting multiple power
modes[18, 7] and the ability to initiate a transition from one
to the other, there are two main energy saving approaches
for effecting such transitions that we explore. The first is the
compiler/software-directed approach, where the application
behavior is statically analyzed to detect idleness of mem-
ory modules for selective power down. This approach can
be considered conservative since memory modules will not
be transitioned to low power modes unless one is absolutely
sure that a module will not be referenced for a while (at least
for the time that it takes to bring it back to an operational
state). However, its advantage is that there areno perfor-
mance overheads due to resynchronization (exit latencies to
active mode which consume not just time but also energy).
At the other end of the spectrum is a hardware-assisted run-
time approach (which we refer to as theself-monitored ap-
proachin this paper since the memory system automatically
attempts to detect module idleness and transitions itself ac-
cordingly). This can adapt to (cycle-level) idleness that a
compiler may not be able to detect, but there is a danger of
incurring the resynchronization overheads due to mispredic-
tions of the future idleness.

With the goal of minimizing energy consumption of
memory by power mode control at memory bank granular-
ity, this paper sets out to answer the following important
questions:
� What hardware and enabling technologies are impor-

tant for dynamically setting memory states? This may need
to be explicitly CPU-directed (by application, compiler, or
runtime system) or dynamically set based on memory refer-
ence behavior.
�What compiler-directed techniques can be developed to

exploit memory reference behavior for dynamically turning
off power? This depends on both how the data is allocated,
and on being able to detect the distance between successive
references and transition power modes accordingly without
incurring any overheads.
� Given that transitions back to operational mode are ex-

pensive, how do we develop runtime self-monitored heuris-
tics that can effect these transitions without incurring signif-
icant penalties?
�What are the pros and cons of the above two approaches

(compiler-directed and self-monitored), and when is one
preferable over the other?
�What is the impact of technology on the energy savings

obtained by these techniques? Specifically, how do the num-
ber of energy modes, memory module configurations, and
trends such as improved circuit techniques, newer technolo-
gies, and faster resynchronization times impact the energy
savings obtained by our techniques?

The rest of this paper attempts to answer these questions
and is organized as follows. The next section explains the
memory model for energy optimization. The experimental

setup for the evaluations is given in Section 3. Section 4
presents the compilation techniques for energy optimization
and the corresponding results. The self-monitored technique
is discussed and evaluated in Section 5. Finally, Section
6 summarizes the contributions of this work and outlines
directions for future research.

2 Memory Model for Energy Optimizations

2.1 Memory Architecture

Since the goal of this study is to explore the benefits
of mode control at a DRAM module granularity, we use a
memory system that contains a number of modules orga-
nized into banks (rows) and columns as is shown pictorially
in Figure 1 for a4 � 4 memory module array. Accessing
a word of data would require activating the corresponding
bank and columns of the shown architecture. There are sev-
eral ways of saving power in such an organization. We can
either put the unused memory banks into a low power oper-
ating mode, or we could put the unused columns into a low
power operating mode, or we could do a combination of the
two. The savings with the latter two approaches (which can
be beneficial when narrow-width data operands [5] are used)
will depend largely on transfer unit sizes and the memory
configuration. In this paper, we focus on the first approach
only, and leave the other two for future research.

In addition, to keep the issue tractable, this paper bases
the experimental results on a single program environment
and does not consider the virtual memory system (i.e., we
assume that the compiler directly deals with physical ad-
dresses).

Self-Monitoring
& Prediction Hardware

Bank
Module

C
onfiguration

R
egisters Memory

Controller

To/From CPU

Figure 1. Memory system architecture.

2.2 Operating Modes

We assume the existence of five operating modes for a
memory module:active, standby, napping, power-down,
and disabled.1 Each mode is characterized by itspower

1Current DRAMs [7] support up to six energy modes of operation with
a few of them supporting only two modes. We collapse the read, write, and

consumptionand the time that it takes to transition back to
the active mode (resynchronization time). Typically, lower
the energy consumption, higher the resynchronization time
[7, 18]. These modes are characterized by varying degrees
of the module components being active.

When a module in standby, napping, or power-down
mode is requested to perform a memory transaction, it first
goes to the active mode and then performs the requested
transaction. Figure 2 shows possible transitions between
modes (the dynamic energy consumed in a cycle is given
for each node) in our model. The resynchronization times
in cycles (based on a cycle time of 2.5ns) are shown along
the arrows (we assume a negligible cost� for transitioning
to a lower powermode).

While one could employ all possible transitions given
in this figure (and maybe more), our compiler-directed ap-
proach only utilizes the transitions shown by solid arrows.
The self-monitored approaches, on the other hand, can ex-
ploit two additional transitions: fromstandbyto napping,
and fromnappingto power-down. The energy values shown
in this figure have been obtained from the measured cur-
rent values associated with memory modules documented in
memory data sheets (for a 3.3V, 2.5ns cycle time, 8MB mod-
ule) [7]. The resynchronization times are also obtained from
data sheets. These values define ourbase configuration, and
Section 4.5 investigates the impact of varying some of these
parameters.

standby disablednapping power-down

active

εε ε ε302 9,000

ε ε ε
0.83 nJ 0.32 nJ 0.005 nJ 0.00 nJ

3.57 nJ

Figure 2. Power modes utilized.

2.3 System Support for Power Mode Setting

Typically, several of the DRAM modules (that are shown
in Figure 1) are controlled by a memory controller which in-
terfaces with the memory bus. The interface is not only for
latching the data and addresses, but is also used to control
the configuration and operation of the individual modules as
well as their operating modes. For example, the operating
mode setting could be done by programming a specific con-
trol register in each memory module (as in RDRAM [7]).
Next is the issue of how the memory controller can be told
to transition the operating modes of the individual modules.

active without read or write modes into a single mode in our experimenta-
tion. However, one may choose to vary the number of modes based on the
target DRAM.

This is explored in two ways in this paper:self-monitored
andsoftware-directed.

In the self-monitored approach, there is aSelf-Moni-

toring and Prediction Hardware block (as shown in
Figure 1) which monitors ongoing memory transactions. It
contains some prediction hardware to estimate the time un-
til the next access to a memory bank and circuitry to ask the
memory controller to initiate mode transitions.2 The spe-
cific hardware depends on the prediction mechanism that is
employed and will be discussed later in the paper.

In the software-directed approach, the memory controller
is explicitly told to issue the control packets for a specific
module’s mode transitions. We assume the availability of
a set ofconfiguration registers in the memory con-
troller (see Figure 1) that are mapped into the address space
of the CPU (similar to the registers in the memory controller
in [9]). Programming these registers using one or more CPU
instructions (stores) would result in the desired power mode
setting. This brings up the issue of which CPU activity
needs to be able to issue such instructions. The memory
control registers could potentially be mapped into the user
address space directly, making it possible for the applica-
tion/compiler to directly initiate the transitions. However,
there are a couple of drawbacks with this approach. The
first being that powering down modules which are shared
with other applications brings up the protection issue. The
other problem could be that one program does not have
much knowledge of the memory activity of other programs,
and will thus not be able to accommodate more global opti-
mizations. With two or more applications sharing a memory
module, the operating system may be a better judge of deter-
mining the operating (power) modes. So, the other option is
to make the issuance of these instructions a privilege of the
operating system, with the compiler/application availing of
this service via a system call. We focus on a single pro-
gram environment and assume that the registers are directly
mapped into user space (so, they can be controlled by the
compiler).

Regardless of whether a power mode transition is initi-
ated by a self-monitored or software-directed mechanism,
a graceful recovery to the operational mode is needed to
service a read/write operation. This can create a problem
because most current memory buses are synchronous, mak-
ing it necessary for the operation to be complete within a
specified number of bus cycles. However, transitions back
to operational modes (active) can be expensive. As a result,
the read/write operation can result in bus errors, making it
necessary for the operating system to handle them appro-
priately. The exception handler can examine status infor-

2Limited amount of such self-monitored power-down is already present
in current memory controllers (e.g., Intel 82443BX [9] and Intel 820 Chip
Set [10]). However, the number of power modes and prediction hardware
that we explore here are significantly more sophisticated.

mation in the memory controller to find out what state the
referenced module is currently in, and can appropriately idle
and re-issue the operation, or can use some latency tolerance
techniques. In fact, the compiler-directed strategy discussed
later in this paper uses the latter approach by issuing power
up (to active) transitionsahead of the useof the correspond-
ing modules. This is analogous to prefetching [16] to hide
memory latencies, and we can incorporate many of those
ideas here as well.

3 Experimental Setup

The compiler-directed approach presented in this paper
has been implemented within the SUIF compilation frame-
work [3]. Specifically, we have implemented two comple-
mentary techniques within SUIF. The first technique ana-
lyzes the input code and determines the points where oper-
ating mode instructions should be inserted. It also applies
necessary loop transformations [24] to make explicit the
program points where these mode instructions are to be in-
serted. The second technique implements clustering, which
basically places the data structures withsimilar life patterns
into the same memory modules whenever possible. Cluster-
ing is done bymodifying the order of array declarationsand
by inserting necessary paddings as needed (see Section 4.2).
Both techniques also use a commonPre-Processing pass
which analyzes the input code and converts it to a version
with as many independent loop nests as possible. Each in-
dependent nested loop is called aphasein this paper. In
the compiler-directed approach, this is the smallest program
unit for which we determine a power management strategy
using different operating modes. The cycle estimates for the
nests were obtained from actual executions of the programs
on an UltraSparc5 architecture (operating at 360 MHz with
Solaris 2.7) and these estimates were used forall our sim-
ulations. After the mode detection pass, the energy con-
sumed is determined by anEnergy Simulator based on
the number of cycles spent in each of the power modes using
the technology and memory configuration parameters.

In the self-monitored approach, the code after pre-
processing can either be clustered or not, before it goes to
Energy Simulator . The simulator computes the energy
using cycle-by-cycle simulation of the memory accesses for
the entire program execution. Note that in the compiler-
directed approach, the simulator uses a coarser level of sim-
ulation (phase granularity), while the self-monitored ap-
proach does a more detailed (cycle granularity) simulation.

Figure 3 gives the salient characteristics of the twelve
benchmarks used in this paper. Our suite contains three
image processing programs (full search (6), matvec(7),
and phods(9)) and nine codes manipulating large multi-
dimensional arrays. The fourth column of the figure shows
the total input sizes in megabytes. The fifth column gives

Number Name Source Data Base Compile
Size (MB) Energy (mJ) Time (s)

1 adi Livermore 48.0 3.38 0.053
2 dtdtz Perfect Club 61.8 2.55 0.046
3 bmcm Perfect Club 39.9 3.93 0.049
4 btrix Spec’92 47.7 2.49 0.193
5 eflux Perfect Club 33.6 413.23 0.099
6 full search IP Kernel 33.0 337.75 0.120
7 matvec IP Kernel 16.0 675.75 0.054
8 mxm Spec’92 48.0 10.70 0.029
9 phods IP Kernel 33.0 1,586.25 0.122
10 tomcatv Spec’95 56.0 119.80 0.093
11 vpenta Spec’92 44.0 506.68 0.130
12 amhmt Perfect Club 48.1 7.40 0.054

Figure 3. Benchmark codes used in the exper-
iments and their important characteristics. IP
refers to Image Processing.

the memory energy consumption (in milliJoules) when no
energy optimization is applied. The sixth column gives the
time (in seconds) spent in the implemented SUIF passes
(i.e., pre-processing, clustering, and mode detection) in the
compiler-directed mode (on a 360 MHz UltraSparc5 work-
station). As can be seen, the compilation overheads for
implementing our scheme are negligible. Unless explic-
itly stated otherwise, a8 � 1 memory module array (i.e.,
8 banks with 1 module per bank) with 8 MB modules is
used in our experiments. Consequently, module granularity
and bank granularity of mode control achieve the same pur-
pose. Thus, in the remainder of the paper, we use the words
moduleandbankinterchangeably.

4 Compiler-Directed Energy Management

4.1 Operating Mode Management

The goal of our compiler-directed mechanism is to de-
tect idle periods (inter-access times) for each memory mod-
ule, and to transition it into a lower power modewithout
paying any resynchronization costs. Consequently, if the
inter-access time isT , and the resynchronization time is
Tp (assuming less thanT), then the compiler would tran-
sition the module into a lower energy mode (with a unit
time energy ofEp) for the initial T � Tp period (which
would consume a total[T � Tp]Ep energy), activate the
module to bring it back to the active mode at the end of
this period following which the module will resynchronize
before it is accessed again (consumingTpEa energy dur-
ing transition assuming thatEa is the unit time energy for
active mode as well as during the transition period). As a
result, the total energy consumption with this transitioning
would be[T�Tp]Ep+TpEa without any resynchronization
overheads, while the consumption would have beenTEa if
there had been no transitioning (this calculation considers

only the idle period). The compiler can evaluate all possible
choices (low power modes) based on the mode energy, cor-
responding resynchronization times, and inter access time,
to select the best choice. Note that the compiler can select
different low power modes for different idle periods of the
same module depending on the duration of each idle period.
When the inter access time is1 (i.e., there isno next ac-
cess), the module can be put into disabled mode.

4.2 Compiler-Directed Clustering

Our objective in clustering is to group the related (simi-
lar lifetime access patterns) array variables together so that
they can be placed in the same memory modules. This in-
creases the likelihood of transitioning a memory module to
a lower energy mode. On the other hand, placing variables
that are accessed at different points of the execution in the
same module would result in its longer residence in the ac-
tive mode.

We assume that the default allocation of variables is in
program declared order. Since the compiler is directly work-
ing with physical addresses, it is relatively straightforward
to determine the memory modules that different statically
declared variables reside in. It should be noted that (depend-
ing on size of the banks and arrays) a single array variable
can occupy multiple banks, and similarly, a single bank may
hold multiple array variables. Declaration order of array
variables may have nothing to do with their access profiles
and life times. Consequently, this order rarely leads to op-
portunities for effective use of low power operating modes.
Our strategy is to analyze the program and determine the ar-
rays with similar access behavior and use this information to
modify the declaration order of array variablesso that those
with similar behavior are declared consecutively (and hope-
fully will map into the same modules as arrays are allocated
in declaration order). Note that this approach requires min-
imum modifications to the source code. The disadvantage
is that depending on the array and bank sizes, the resulting
module assignments may not necessarily be energy efficient,
especially if the arrays are smaller and some banks contain a
large number of (and possibly unrelated) array variables, or
some large arrays are divided across several banks. To elim-
inate this effect, we implement a modified version of this
approach, which attempts to performbank alignment of ar-
raysas long as doing so does not increase the total number
of required banks.

Our compiler algorithm reorders the declaration of array
variables (i.e., clusters them) in six steps. The first step is a
program analysis that keeps for each array variable a record
of its name, size (in bytes), and life time. At the end of
this step, we obtain anarray access profileinformation that
is shown in Figure 4 forvpenta, a code from the Specfp
benchmark suite (arrays are labeled fromU1 to U8). Each

phase corresponds to a nested loop and a� indicates that
the array is accessed in the corresponding phase.

Phase Array Variables
Number U1 U2 U3 U4 U5 U6 U7 U8

1 � � � � �

2 � � � � �

3 � � � � �

4 � � � � � � � �

5 � � � � � �

6 � � � � � �

7 � � �

8 � � �

Figure 4. Array access profile for vpenta.

after the 2nd heuristic

after the 3rd heuristic

4th heuristic
(final order)

after the

1st heuristicafter the U2 U3 U8U4 U5 U1 U6 U7

U1 U6 U7U4 U5 U2 U8 U3

U2 U8 U3U7U1 U6U4 U5

U1 U2 U3 U4 U5 U6 U7 U8

U1 U6U5U4 U7 U2 U8 U3

initial order

Figure 5. Applying our heuristics to
vpenta.

Subsequently, the compiler goes through a sequence of
four heuristics (steps 2 through 5) that divide the array vari-
ables into groups. Each heuristic respects the grouping im-
posed by a previous heuristic.
� 1st heuristic—Array variables with the samelast usage

phase(LUP) are placed in the same group. The rationale is
that if two array variables have the same LUP, theybothcan
be assumed to be dead after that phase (and the correspond-
ing memory module holding them can be disabled if there
are no other live array variables in that module).
� 2nd heuristic—Within each LUP group, the array vari-

ables are divided into subgroups based on theirfirst usage
phase(FUP). This helps keep the bank holding the array
variables with the same FUPs in a low power mode until it
needs to be first accessed.
� 3rd heuristic—Array variables within the subgroup

from the previous heuristic are divided further into sub-
groups based on the� pattern of the corresponding columns
in the array access profile. If two or more columns have the
same� pattern (i.e., if they have� in the same phases),
they are kept in the same subgroup. This helps identify the
closely related variables for co-location on memory banks.
� 4th heuristic—This heuristic is used to reorder array

variables within the subgroups from the previous heuristic
so that the array at the boundary of one group has a rela-

tively close ‘� pattern’ with the array at the boundary of
its neighboring group. For example, if array variablesfV1,
V2, ...g and array variablesfW1, W2, ...g are neighboring
groups from the 3rd heuristic (with the former to the left of
the latter), we attempt to placeVi as the rightmost array in
the former group andWj as the leftmost array in the latter
group if they have the most similar� pattern (after compar-
ing all possible combinations).

Figure 5 shows the groupings after using the four heuris-
tics for the example array access profile shown in Figure 4.
(In this example, the fourth heuristic does not have any ef-
fect.) Finally, as a last step, we make a pass over the new
declaration order and (taking into account the number and
size of banks) try to modify the bank assignment (not the
declaration order) so that the large (multi-bank) arrays are
assigned into dedicated banks. This is currently done by
array padding.

4.3 Determining Bank Access Profiles and Modes

In order to perform mode control, it is necessary for the
compiler to find bank access times. This requires translating
array access profilesto bank access profiles(an example of
which is shown in Figure 6) taking into account the mem-
ory configuration (number of banks, modules per bank, and
module size). A� in the bank access profile indicates that
the corresponding bank needs to be active during the execu-
tion of the corresponding phase. In a given bank profile, the
entries without� represent opportunities for energy opti-
mization. As an example, the table in top portion of Figure 6
gives the bank access profile corresponding to the array ac-
cess profile in Figure 4, with a declaration orderU1, U2, U3,
U4, U5, U6, U7, U8, and assuming that all the arrays are of
equal size exceptU3 (which is four times larger than others)
and we have 8 banks, each capable of holding two of the ar-
rays other thanU3. In other words, the bank assignment is
[U1,U2], [U3,U3], [U3,U3], [U4,U5],[U6,U7], [U8,;], [;],
where each [] corresponds to a bank that contains (portions)
of arrays (; denotes empty space). Note that 35 out of 64
entries are active whereas the rest corresponds to idle state
(i.e., 29 idle states). In general, clustering attempts to in-
crease the number of idle states in the bank access profile.
The bank access profile of the clustered version of this ex-
ample is given in the table on the bottom of Figure 6. We
note that this has 11% better (more idle states) than the one
on the left. If we have only 4 banks (each capable of hold-
ing four arrays expectU3) instead of 8, the optimized order
and alignment determined by our approach results in a 21%
improvement.

After determining the bank access profile and detecting
the idle slots (states), for each bank we can determine suit-
able operating modes. Note that the modes can be deter-
mined for each bank independently using the energy con-

Phase Bank Number
Number B0 B1 B2 B3 B4 B5 B6 B7

1 � � �

2 � � � �

3 � � � �

4 � � � � � �

5 � � � � �

6 � � � � �

7 � � � �

8 � � � �

Phase Bank Number
Number B0 B1 B2 B3 B4 B5 B6 B7

1 � �

2 � � �

3 � � �

4 � � � � � �

5 � � � �

6 � � � �

7 � � � �

8 � � � �

Figure 6. Example bank access profiles. Top:
original, Bottom: optimized.

sumption, resynchronization times and inter-access times by
the approach explained earlier in Section 4.1. Essentially,
the free slots in the profile are transitioned to an appropriate
lower energy mode.

4.4 Automatic Insertion of Mode Instructions

The last part of the compilation is to insert suitable (oper-
ating) mode transitioning instructions in the program code.
During processing of the source code, we do not actually
insert any instruction, but just place markers (as placehold-
ers). Later, during low-level optimization, we insert the ac-
tual mode transition instructions.

The time for issuing the mode transitions is very impor-
tant for energy saving and performance. If they are issued
too early, they will cause unnecessary power consumption
(by putting the module into the active mode long before
needed). On the other hand, if they are issued too late, the
module may not be in the active mode when it is needed,
leading to a performance loss. Since most of our optimiza-
tions are on array-based applications, it may be reasonable
to choose the number of loop iterations as the basic unit for
measuring time (i.e., the mode transition instructions will
be issued at the boundaries of iterations), requiring that all
times be converted to iteration counts. The algorithm to in-
sert the mode instructions in the code is similar to the tech-
nique employed in software prefetching [16].

4.5 Experimental Results

Evaluation of Compiler-Directed Mode Selection In all
our experimental results (given in form of graphs), the num-

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

A
A+S
A+N
A+P
ALL

Figure 7. Energy savings due to compiler-
directed mode control.

bers 1 through 12 represent our benchmarks (see Figure 3).
Figure 7 shows the savings in DRAM energy consumption
obtained from compiler-directed transitions between differ-
ent operating modes. Specifically, the bar forA+N denotes
the energy consumption if the compiler is to use only the
active and napping modes,A+P denotes the use of only ac-
tive and power-down modes, andALL denotes the option
for the compiler to use any of the five operating modes (i.e.,
active, standby, napping, power-down, and disabled). These
four cases for each of the twelve benchmarks arenormalized
with respect to their first barwhich denotes the power con-
sumption if there areno compiler-directed operating mode
transitions (i.e., the DRAMs are active at all times). As men-
tioned earlier, some implementations put DRAM modules
[7] in standby mode soon after a reference (a compiler is
not needed to perform this transition), and this is denoted by
theA+S bar.

It can be seen that a compiler can give significant savings
in DRAM energy consumption by selectively transitioning
the module between the different modes. The savings range
from around 12% for benchmarkadi (1) to as much as 75%
for benchmarksdtdtz (2) and full search(6) for the ALL
case. Even if one is to compare these improvements with
A+S which is supported in some memories, energy sav-
ings up to 45% (an average of 23% over all applications)
are achieved. Compiler-directed transitioning to much lower
energy consumption modes (napping, power-down and dis-
abled) is thus an effective way of reducing energy consump-
tion beyond what the current hardware does for this pur-
pose (simply transitioning to just the standby mode). There
are two main application-related factors governing the effec-
tiveness of compiler-directed transitions between operating
modes. The first issue is whether the application can be ana-
lyzed well enough at compile time for energy optimizations.
The second issue is whether the inherent application access
patterns (spatial and temporal) lends itself to these compiler-

directed transitions. While our benchmarks are well struc-
tured for compile-time analysis,adi (1) accesses arrays that
span nearly all the memory banks in both of its main loop
nests making the latter factor more significant in limiting
the energy savings. Applications likefull search(6), on the
other hand, have well-spaced reference patterns, increasing
the scope for turning off DRAM modules that are not in use
currently.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 M
em

or
y

S
ys

te
m

 E
ne

rg
y

A
A+S
A+N
A+P
ALL

Figure 8. Energy savings due to compiler-
directed mode control with clustering.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12

P
er

ce
nt

ag
e

en
er

gy
 r

ed
uc

tio
n

ov
er

 n
o

m
od

e
co

nt
ro

l

Mode Control
Clustering
Annotation

Figure 9. Impact of mode control, clus-
tering, and programmer-directed annota-
tions on energy savings.

Evaluation of Clustering It was mentioned earlier that
clustering (allocation) of data structures by the compiler to
co-locate those with similar lifetimes can boost the energy
savings of mode control techniques even further. Figure 9
shows this effect by giving the percentage of energy reduc-
tion (left bar in this figure) with both mode control (ALL)
and clustering compared to not effecting any transitions at
all (barA in Figure 7). This left bar is broken down into the
reduction due to just mode control (without any clustering)
and the extra reduction brought about by clustering. It can

be seen that clustering can provide as much as 50% savings
in energy over mode control (benchmarksadi (1) andph-
ods (9)), contributing to 8% of the overall energy savings
on the average over not performing any energy optimiza-
tions at all. Inadi (1) for instance, clustering helps space
out the data structures across memory modules in such a
manner that at any particular time fewer modules need to be
kept active than if they had not been spaced out. However,
clustering is not always a useful weapon, and this can been
seen with the negligible changes formatvec(7),vpenta(11),
amhmtm(12),bmcm(3), andbtrix (4). Examiningbtrix (4)
closely, we observe that it references one large array span-
ning several modules, with the remaining referenced arrays
being relatively small. Relocating the smaller arrays to dis-
joint memory modules can result in additional banks being
used; that is not necessarily beneficial.

It was discussed earlier how the programmer-defined an-
notations could be used to further the energy savings by
providing specific array ranges (of the current working set)
explicitly to the compiler which can then transition mod-
ules holding other parts of the array. While this can be a
cumbersome task for a programmer (and compiler technol-
ogy may not be sophisticated enough to detect such patterns
for all programs), we have attempted such annotations for
the benchmarks wherever possible. The savings with such
annotations together with clustering and mode control are
shown as the right bar in Figure 9. We find some energy sav-
ings with such annotations for benchmarksadi (1), bmcm
(4), andvpenta(11). We believe that more sophisticated
annotations for energy optimization (whether programmer-
directed or compiler-determined) would be useful to explore
further. In the rest of the experiments, we do not assume the
availability of any annotations.

Figure 8 shows the energy savings due to compiler-
directed mode control with clustering. From this figure,
we observe that compiler support for clustering is not only
important for boosting the energy savings of the compiler-
directed mode control schemes (A+N, A+P and ALL de-
scribed earlier), but also to amplify the savings of theA+S
scheme which, as we mentioned, is done in some hardware
already. Overall, the average energy reduction due to clus-
tering and compiler-directed mode control over all twelve
benchmarks amounts to around 61% (37%) as compared to
employing only theA mode (A+S mode).

Impact of Technology It is interesting to find out how the
energy savings would change with technological advance-
ments/trends. To examine the impact of such trends, we
have considered five different hardware technologies:T1,
which is thebase configurationwith the parameters dis-
cussed in Section 2.2 on which most of the experiments in
this paper are based;T2, which is to account for improved
circuit technologies (e.g., dual threshold voltages can be

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

P
er

ce
nt

ag
e

E
ne

rg
y

S
av

in
gs

T1
T2
T3
T4
T5

Figure 10. Energy savings with techno-
logical trends.

used with the memory core operating at higher threshold
values to reduce leakage current and the peripherals operat-
ing at lower threshold for speed) resulting in lower energy
consumption (the active and standby power is set to 50%
and 80% of theT1 parameters);T3, which is to account
for increased leakage current with very low supply voltage,
hence lower threshold voltage (the energy consumptions in
the napping and power-down modes are increased by 50%
and 100% compared to theT1 parameters);T4, which is
to account for reduced synchronization times between in-
ternal and external clocks when transitioning back to active
from power-down (synchronization time from power-down
mode is cut by half compared to theT1 parameters); and
T5, which incorporates theT2, T3, andT4 parameters.

The energy savings due to compiler-directed mode con-
trol with clustering for these five technologies are plotted in
Figure 10 relative to the energy consumption in that partic-
ular technology without any mode control (only the active
mode). The savings are relatively independent of the antici-
pated changes. As mentioned earlier, most of the energy in
these enhanced executions is consumed in the active mode,
and any technological improvements to cut down the energy
in that mode proportionally increase energy savings with or
without mode control (thus not affecting the percentage ef-
fectiveness). The resynchronization cost from power-down
mode is not really an issue as well since the compiler is able
to detect the last access for memory references and is able to
transition modules to disabled mode instead (and such mod-
ules will not be turned back on).

5 Self-Monitored Energy Management

So far, we have only considered low power optimizations
without any negative impact on performance using compi-
lation techniques. However, this can be overly conservative

since not all access information may be available/analyzable
at compile time. Further, the source code for performing
high level optimizations may not even be available.

We next explore a runtime approach that is referred to
as the self-monitored technique since the memory system
automatically transitions the idle modules to an energy con-
serving state. The problem then is to detect/predict idleness,
and then to transition modes appropriately. However, mis-
prediction can lead to resynchronization overheads.

Use of idleness to transition an entity to a low energy
mode is an issue that has been researched in the context of
disks [15], and system events in general [4]. Some of these
studies [15] have used past history (to predict future behav-
ior) for effecting a transition. To our knowledge, no previous
study has looked at this issue in the context of transitioning
DRAM memory modules, where solution strategies cannot
afford to incur high software and/or hardware costs to make
intelligent predictions. In this paper, we explore three differ-
ent hardware mechanisms for predicting inter-access times
and transitioning to a low energy mode accordingly. We re-
fer to these three mechanisms as (a)adaptive threshold pre-
dictor (ATP), (b) constant threshold predictor (CTP), and
(c) history-based predictor (HBP).

5.1 Adaptive Threshold Predictor (ATP)

The rationale behind this predictor is that if a memory
module has not been accessed in a while, then it is not likely
to be needed in the near future (that is, inter-access times
are predicted to be long). A threshold is used to determine
the idleness of a module after which it is transitioned to a
lower energy mode. In ATP, the threshold is adaptive. This
mechanism starts with an initial threshold, and transitions to
the lower energy mode if the module is not accessed within
this period. If the next access is to come soon after that
(the resynchronization energy consumption is more domi-
nant than the savings due to the lower energy mode), mak-
ing the mode transition more energy consuming than if we
had not transitioned at all, the threshold is doubled for the
next interval. On the other hand, if we find that the next ac-
cess comes fairly late, and we were overly conservative in
the threshold value, then the threshold is reset to the initial
value (we could try more sophisticated techniques such as
halving the threshold as well).

This mechanism is employed for each degradation to a
lower energy mode. Initial threshold values of 2, 100, and
1,000,000 cycles are used for transitioning from active to
standby, from standby to napping, and from napping to pow-
erdown modes, respectively, for results shown in Figure 11.
It should be noted that the adaptive mechanism is used only
for the first transition (active to standby) in this set of results,
and a constant threshold is used for the other two transitions.
We observed a similar behavior while adapting the other

thresholds as well. Adaptivity for the first threshold results
in an average of 12% savings in energy across all bench-
marks compared to fixing the threshold at 2 cycles (denoted
as CTP).

Despite these savings, the ATP mechanism requires the
calculation of energy values with the current information to
decide whether to double the threshold, keep it the same,
or reset it. This hardware (multipliers—for computing
energies—, comparators, and a set of registers) can get com-
plicated - consuming power as well - and, thus we do not ex-
plore this mechanism any further. Instead, one could use the
ATP mechanism to decide on a good threshold value, which
can then subsequently be fixed. We explore this as the next
option.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Clustered+CTP
Clustured+ATP

Figure 11. Energy savings with ATP.

5.2 Constant Threshold Predictor (CTP)

This is similar to the previous mechanism, except that
the threshold is never changed (doubled). We consider
this alternative mainly because of the high hardware costs
of implementing the adaptive threshold mechanism. After
10 cycles of idleness, the corresponding module is put in
standby mode. Subsequently, if the module is not referenced
for another 100 cycles, it is transitioned into the napping
mode. Finally, if the module is not referenced for a further
1,000,000 cycles, it is put into power-down mode. When-
ever the module is referenced, it is brought back into the
active mode incurring the corresponding resynchronization
costs (based on what mode it was in). It should be noted that
even if a single bank experiences a resynchronization cost,
the other banks will also incur the corresponding delay.

Implementing the CTP mechanism requires a set of coun-
ters (one for each bank) that are decremented at each cy-
cle, and set to a threshold value whenever they expire or the
module is accessed. A zero detector for a counter initiates
the memory controller to transmit the instructions for mode
transition to the memory modules. The energy cost of this

approach is significantly lower than that for the ATP mech-
anism.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Mode Control
CTP
Clustured+Mode Control
Clustered+CTP

Figure 12. Energy savings with CTP.

Figure 12 compares the energy consumption of the exe-
cutions with (a) only compiler-directed mode control, (b)
CTP, (c) compiler-directed mode control with clustering,
and (d) CTP with clustering. All the bars have been nor-
malized with respect to (a).

We find that the CTP approach gives better energy sav-
ings than the compiler-directed schemes whether the data is
clustered or not for five of the twelve benchmarks (adi (1),
btrix (4), matvec(7), tomcatv(10), andvpenta(11)). Inadi
(1),btrix (4), andvpenta(11), CTP is able to detect portions
of the arrays that are not currently being worked on, which
was not really possible with the compiler-directed approach
we employed. This is similar to the situation we observed
with respect to annotations where we had to explicitly in-
form the compiler as to what was currently being worked
on. Self-monitoring using constant thresholds is thus able
to automatically provide the annotated effect without be-
ing explicitly told by the programmer. As a result, it gives
better energy savings than the compiler-directed approach
which does not use annotations. In addition, CTP is also

Benchmark Resynchronization Time
Number Clustered Unclustered

1 0.07% 0.02%
2 0.13% 0.10%
3 0.02% 0.02%
4 18.16% 18.16%
5 5.42% 8.60%
6 0.22% 0.22%
7 0.53% 0.53%
8 0.01% 0.01%
9 0.11% 6.32%
10 1.07% 1.21%
11 0.05% 0.05%
12 0.01% 0.01%

Figure 13. Resynchronization time as a per-
centage of the execution time for CTP.

able to exploit the idleness between successive accesses to
the same bank within a single loop nest that would be diffi-
cult to be analyzed statically. For example,btrix (4) uses a
large array that spans across multiple banks. The accesses
to the different portions of the array (hence the banks) are
temporally staggered. Thus, banks that contain the parts of
the array not currently referenced are transitioned to a lower
power mode. Note that this, however, can be detrimental
to performance (see Figure 13) as it takes longer to exit a
lower power mode. Since, annotations only capture spatial
distribution and do not account for temporal locality, more
significant energy reductions are achieved using CTP as op-
posed to using just annotations for theadi (1), btrix (4), and
vpenta(11) benchmarks.

In contrast, benchmarksdtdtz (2), bmcm(3), mxm(8),
andamhmtm(12) perform marginally worse using CTP in
both clustered and non-clustered executions. We find that in
these applications the accesses are spatially and temporally
local and the more conservative transitions based on thresh-
olds employed in the compiler-directed scheme result in a
slightly better energy savings. In two of the benchmarks
(phods(9) andtomcatv(10)), self-monitoring gives much
better results than the compiler-directed mode control when
there is no clustering, and comparable performance other-
wise. This can again be explained by going back to Figure 9
where we find that annotated executions of these two bench-
marks give much better savings than just compiler-directed
mode control (and comparable if clustering is used). Sim-
ilarly, benchmarkseflux(5), full search(6), phods(9) and
tomcatv(10) do not provide much scope for more aggres-
sive mode-control than the compiler when clustering has
been employed. On an average, CTP with clustering pro-
vides 66% energy savings on the average as compared to
the unmanaged power mode operation of the memory (i.e.,
active mode).

5.3 History-based Predictor (HBP)

There are two main problems with both previous pre-
dictors, ATP and CTP. First, we gradually decay from one
mode to another (i.e., to get to power-down, we go through
standby and napping), though one could have directly tran-
sitioned to the final mode if we had a good estimate. Sec-
ond, we pay the cost of resynchronizing on a memory access
if the module has been transitioned. In the history-based
predictor (HBP), we estimate the inter-access time, directly
transition to the best energy mode, and activate (resynchro-
nize) the module so that it becomes ready by the time of the
next estimated access. While one could use sophisticated
history information to estimate inter-access time, we use
a very simple mechanism - the estimate for the next inter-
access time is set to the previous inter-access time - keeping
hardware implementation energy costs in mind.

HBP requires a mode assignment table that contains the
maximum and minimum values of the estimated inter-access
time (IAT) for which a particular mode is optimum. This
table can easily be pre-constructed based on the energy val-
ues and resynchronization times for the different modes, and
needs to hold only as many entries as energy modes. Once
the power mode is determined, the corresponding resyn-
chronization time is subtracted from the IAT estimate, to
give the amount of time to spend in that mode.

From our experiments, we observe that while mode con-
trol by compiler consumes 48.5% more energy, on the aver-
age, than optimum (which denotes the optimum energy con-
sumption that any scheme can ever hope to achieve), and
CTP consumes, on the average, 27.4% more energy than
optimum, HBP consumes only 8.8% more energy, on the
average, than optimum. For nearly all but one benchmark
(btrix), HBP is very close to the optimum. Inbtrix, the inter-
access time prediction is not very successful due to highly
irregular bank accesses. We also observe that the perfor-
mance penalty in the HBP scheme is generally less than that
of the CTP scheme.

6 Concluding Remarks and Future Work

The paper has presented novel techniques for exploiting
the low power operating modes that current and future mem-
ory technology have to offer, by detecting idle periods and
transitioning the memory modules to an appropriate low en-
ergy mode without having to pay very high penalties. A set
of compilation techniques to co-locate (cluster) data with
similar lifetimes, and to detect idleness for mode control
have been proposed. In addition, a hardware-assisted run-
time approach, called self-monitoring, that can use different
heuristics to predict inter-access times for mode control has
also been proposed. Several prediction heuristics that can
be employed for the self-monitoring mechanism have been
identified. These include (a) a heuristic that uses a fixed
threshold for detecting idleness and transitioning (CTP), (b)
an adaptive version of this heuristic that automatically at-
tempts to adjust to the dynamics of the program (ATP), and
(c) a heuristic that uses past history to directly transition to
what it estimates to be the best energy saving mode and au-
tomatically attempts to resynchronize before the next ref-
erence (HBP). All these different mechanisms have been
extensively evaluated using a spectrum of a dozen array-
dominated benchmarks, to demonstrate their effectiveness.

We believe that this paper has opened a new area of ex-
citing research for the future. The success of the proposed
optimizations on array dominated benchmarks motivates the
evaluation of their impact on integer and pointer dominated
applications. Finally, we would like to look at the impact of
the virtual memory system and multi-programmed environ-
ments on the effectiveness of the proposed techniques.

References

[1] D. H. Albonesi. Selective cache ways: On-demand cache resource
allocation. In Proc.the 32nd International Symposium on Microar-
chitecture,pp. 248–259, November 1999.

[2] Advanced configuration and power interface specification. Intel, Mi-
crosoft, and Toshiba, Revision 1.0b, Feb 2, 1999.

[3] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng The
SUIF compiler for scalable parallel machines. In Proc.the Seventh
SIAM Conference on Parallel Processing for Scientific Computing,
February, 1995.

[4] L. Benini, R. Hodgson, and P. Siegel. System-level power estimation
and optimization. In Proc.ACM ISLPED’98, Monterey, CA, 1998.

[5] D. Brooks and M. Martonosi. Dynamically exploiting narrow width
operands to improve processor power and performance. In Proc.the
Fifth Intl. Symposium on High-Performance Computer Architecture,
Orlando, Jan. 1999.

[6] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle.Custom memory management methodology – ex-
ploration of memory organization for embedded multimedia system
design. Kluwer Academic Publishers, June 1998.

[7] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., May 1999.
[8] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The multicluster

architecture: Reducing cycle time through partitioning. In Proc.the
Annual International Symposium on Microarchitecture,December
1997.

[9] Intel 440BX AGPset: 82443BX Host Bridge/Controller Data Sheet,
April 1998.

[10] Intel 820 Chip Set. http://developer.intel.com/design/chipsets/820/
[11] K. Itoh, K. Sasaki, and Y. Nakagome. Trends in low-power RAM

circuit technologies.Proceedings of IEEE, pages 524 –543, Vol. 83.
No. 4, April 1995.

[12] M. B. Kamble and K. Ghose. Analytical energy dissipation models
for low power caches. In Proc.International Symposium on Low
Power Electronics and Design,1997.

[13] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence
of compiler optimizations on system power. In Proc.the Design Au-
tomation Conference (DAC),Los Angeles, California USA, June 5–
9, 2000.

[14] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page
allocation. In Proc.Ninth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
November 2000.

[15] K. Li, R. Kumpf, P. Horton, and T. Anderson. A quantitative analy-
sis of disk drive power management in portable computers. In Proc.
Winter Usenix,1994.

[16] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a
compiler algorithm for prefetching. In Proc.the Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems,October 1992.

[17] Pentium III Processor Mobile Module MMC-2, Datasheet 243356–
001, Intel Corporation.

[18] Rambus Inc. http://www.rambus.com/.
[19] K. Roy and M. Johnson. Software power optimization. InLow

Power Design in Deep Submicron Electronics,Kluwer Academic
Press, October 1996.

[20] Samsung Semiconductor DRAM Products.
http://www.usa.samsungsemi.com/products/family/browse/dram.htm.

[21] C. Su and A. Despain. Cache design trade-offs for power and perfor-
mance optimization: a case study. In Proc.International Symposium
on Low Power Electronics and Design,pp. 63–68, 1995.

[22] V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee. Instruction Level Power
Analysis and Optimization of Software, Journal of VLSI Signal Pro-
cessing Systems, Vol. 13, No. 2, August 1996.

[23] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Y. Kim, and W.
Ye. Energy-driven integrated hardware-software optimizations using
SimplePower. In Proc.the International Symposium on Computer
Architecture,Vancouver, British Columbia,June 2000.

[24] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Company, 1996.

