
Semantic Annotation as Design Recovery

Nadzeya Kiyavitskaya1, Nicola Zeni1, James R. Cordy2, Luisa Mich1 and John
Mylopoulos3

1 Department of Information and Communication Technology, University of Trento
via Sommarive, 14, I-38050 Povo, TN, Italy,

{nadzeya.kiyavitskaya, nicola.zeni, luisa.mich}@dit.unitn.it
2 School of Computing, Queens University, Kingston, Ontario, Canada K7L 3N6,

cordy@cs.queensu.ca
3 Bahen Centre for Information Technology, University of Toronto, Ontario, Canada

M5S 2E4,
jm@cs.toronto.edu

Abstract. Semantic annotations will play a crucial role in making the
vision of the Semantic Web a reality. In this work, we propose a general
domain-independent architecture for semantic markup adopting software
design recovery techniques, and demonstrate its feasibility in a limited
but realistic domain. The results of this experimentation are validated
using three stage evaluation schema.

1 Introduction

Semantic Annotation (SA) is the process of inserting tags in a document to
assign semantics to text fragments. SA is one way to create meaningful, main-
tainable, accessible documents for the Semantic Web. SA has many potential
applications in such fields as Information Extraction, Question Answering, Text
Summarization, Knowledge Management and Semantic Web.

SA is a challenging problem which is related to Natural Language Process-
ing (NLP) field. However, traditional NLP techniques need to be revised, to
take advantage of software engineering methods and technologies [Leidner2003]
[Boguraev1995]. Problematic issues in NLP applications for semantic annotation
from a software engineering perspective include:

– Accuracy. All NLP tools have so called incompleteness property, i.e. they
can never guarantee to provide all and only correct results.

– Flexibility. NLP systems need to be able to handle different data formats
(newspaper, e-mails, HTML, etc.).

– Robustness. This feature characterizes the viability of a system under ab-
normal conditions. In particular, in NLP, it means stability to different text
types or domains.

– Scalability. Space and run time limitations must be overcome.
– Data Sparseness. Many NLP systems rely on the availability of training

resources, which are typically expensive to develop.



– Complexity. Average complexity must be estimated. Long response time can
render a system unacceptable for human users.

– Multilinguality. Independence from character encodings, lexicographic sort-
ing orders, display of numbers, dates etc. needs to be ensured.

– Testing and evaluation. System performance must be estimated.

Depending on the resources and knowledge base embedded in an NLP tool, we
can classify such tools into two categories:

– Heavyweight tools: are capable of full text understanding with different NLP
modules, but require huge investments in resources and time, and are hardly
scalable to large quantities of documents;

– Lightweight tools: achieve good performance for a particular application with
small investment.

Both approaches have their strengths and weaknesses. Lightweight methods are
usually ad hoc and application-specific. On the opposite side, heavyweight sys-
tems are expensive and do not scale. Given the number and scope of documents
on the world-wide web, transition to the semantic web vision cannot be achieved
without large-scale efficient automation on semantic markup [Dill2003].

The objective of our project is to develop a methodology supported by a
set of lightweight tools for semi-automatic Semantic Annotation of text. In this
paper, we present our approach based on a design recovery technique which has
been already proven efficient and scalable in software analysis area. We describe
a preliminary experiment in applying the same technical solutions and the frame-
work to evaluate the quality of annotations.

The structure of the rest of the paper is as follows: section 2 introduces
text processing with TXL, section 3 provides the details of our approach to SA
process, section 4 describes the setup of experimentation, section 5 presents eval-
uation framework and results, section 6 reviews related projects in the SA field,
and the final section summarizes the work done so far and outlines directions
for future research.

2 Text Processing with TXL

In our approach the technique used for text analysis is the compiler parsing tech-
nology TXL1. TXL is a programming language for expressing solutions using
structural source transformation from input to output. The structure imposed
on input is specified by an ambiguous context free grammar. Transformation
rules are then applied, and transformed results returned to text. TXL uses full
backtracking with ordered alternatives and heuristic resolution which allows effi-
cient, flexible, general parsing. Grammars and transformation rules are specified
by example.

The transformation phase can be considered as term rewriting, but under

1 http://www.txl.ca



functional control. Functional programming control provides abstraction, para-
metrization and scoping. TXL allows grammar overrides to extend, replace and
modify existing specifications. Grammar overrides can be used to express ro-
bust parsing, technique to allow errors or exceptions in input not explained by
grammar. Overrides can also express island grammars. Island parsing recognizes
interesting structures, “islands”, embedded in a “sea” of uninteresting or un-
structured background. TXL also supports agile parsing - customization of the
parse to each individual transformation task. This is a simple example of TXL
program realizing island parsing paradigm:

% Input is a sequence of items
redefine program

[repeat item]
end redefine

% Items are either interesting or uninteresting
define item

[declaration_or_statement]
| [uninteresting]

end define

define uninteresting
[token] | [key] % TXL idiom for "any input item"

end define

% Transform aspect only; rest of input remains the same
rule main

replace $ [declaration_or_statement]
Code[declaration_or_statement]

by
Code [prettyFormat]

end rule

Originally, TXL was designed for experimenting with programming language
dialects, but soon it was realized useful for many other tasks, such as sta-
tic analysis (an important application is design recovery), interpreters, pre-
processors, theorem provers, source markup, XML, language translation, web
migration, etc. Moreover, TXL was successfully used for applications other than
programs: handwritten math recognition, document table structure recognition
[Zanibbi2002] [Zanibbi2004]; business card understanding [Oertel2004].

TXL has been already proven as an efficient instrument to help software en-
gineers in reverse engineering and in particular, in the design recovery task.

Software reverse engineering or program comprehension is the process of
identifying software components, their inter-relationships and representing these
entities at a higher level of abstraction [Nelson1996]. Software reverse engineer-
ing can be also combined with conceptual modeling of the source code. Design



recovery is a specialization of the reverse engineering and it entails the sta-
tic analysis of the source code of a (large) software system to identify entities
and relationships according to a software design model (entity-relationship (ER)
schema). The result is normally a design database, plus an annotated version of
the source code marked up with design relationships. Software design recovery
has been highly successful at both technical and business-level semantic markup
of large scale software systems written in a wide variety of programming lan-
guages.

We propose to use TXL as the basis of a new lightweight method for SA.
This choice is motivated by the fact that document analysis for the Semantic
Web has much in common with design recovery and it poses similar problems:

– the need for robust parsing techniques because real documents do not always
match the grammars of the languages they are written in;

– the need to understand the semantics of the source text according to a se-
mantic model;

– semantic clues drawn from a vocabulary of the semantic domain;
– contextual clues drawn from the syntactic structure of the source text;
– inferred semantics from exploring relationships between identified semantic

entities and their properties, contexts and related other entities.

TXL addresses such problems in a fast and flexible way and allows scalable
processing of large documents.

3 Semantic Annotation Methodology

Our methodology is grounded on the design recovery process which typically
contains three main passes:

1. Lightweight robust parse to get basic structure, transformation rules use
vocabulary and structural patterns to infer source markup of basic facts;

2. Facts are externalized to database for inference;
3. Transformation rules use inferences and structural patterns to infer semantic

markup of design facts, marked-up source is ready for design-aware trans-
formations.

We designed a tool that performs SA in similar manner (see fig. 1).
The input of the system consists of textual documents and a conceptual

schema. The conceptual schema can be a part of existing domain ontology. En-
tities of the schema are used to generate tags for annotation.

The workflow has two main phases:

1. First phase consists of lightweight parsing and semantic markup of basic facts
(semantic markup is based on semantic model of the domain in combination
with syntactic patterns);

2. Second phase is externalization of the facts to database, which can be then
used by search engine for queries.



Fig. 1. Workflow

The transformations of the last third stage are not yet implemented in our tool,
but we plan to apply them further to filter marked up facts according to the
constraints imposed by the conceptual schema.

In the next section all the stages of processing are explained in detail on the
example of tourism domain application.

4 Experimentation

To demonstrate the work of our method we present the results of a preliminary
experimentation. Thus far experiments have been completed for only one domain
because the development of generic methodology, tuning of the tool and design
of the evaluation framework required more time than we expected. However, this
experiment is only the beginning and we plan to recover from this drawback in
future work.

We have been working in the domain of travel documents: descriptions of
accommodations in the popular tourist destinations. The goal is to provide rele-
vant information for the users reading these texts, such as, for example, location
and price of the accommodation, term of availability, and so on. For this purpose,
the accommodation advertisements must be marked up according to accommo-
dation ontology containing these items (see fig.3), which was further reduced by
hand to an entity-relationship schema in XML format for input to our system.

As input documents for SA task we considered accommodation advertise-
ments drawn from an existing Italian web site. Here is one example of an adver-
tisement (fig.4).

In order to make a realistic test of the generality of the method, we restricted
ourselves to some constraints: no proper nouns or location-dependent phrases in
our vocabulary, raw uncorrected text, and no formatting or structural cues. Fol-
lowing the methodology described in the previous section, for this experiment
we adopted the same multi-level process.

The architecture explicitly factors out reusable domain-independent knowl-
edge such as the structure of basic entities and language structures, shown on



Fig. 2. Methodology

the left hand side, while allowing for easy change of semantic domain, charac-
terized by vocabulary and conceptual schema, shown on the right. This way we
facilitate reusability of the tool over different domains and document formats.

First, text is parsed into sentences (can be any other text unit) and basic
objects are detected. These objects usually can be described by a small set of
patterns and then reused over different domains. So far our list of objects in-
cludes e-mail addresses, web addresses, phone numbers, dates and prices. For
instance, the grammar for phone numbers is represented in the following way:

% Part of price grammar
tokens

number "\d\d*"
end tokens

define money
[amount][opt hyphen_amount][space_currency]
|[currency][opt ’:][opt space][amount][repeat hyphen_amount]
|[repeat number_dot][anynumber][dot_zerozero][opt space_currency]

end define

The phrase grammar block carries structural information how to delimit text
units that we want to markup. This unit can be a short phrase, a sentence



Fig. 3. Conceptual schema

Fig. 4. Sample of advertisement

or whole paragraph depending on the required granularity of annotation. In our
experiments with accommodation advertisements we used sentence grammar be-
cause even if the text is short the user is interested in complete answer.

Then using the objects found on the previous stage and checking for the
presence of category keywords, the related phrases are identified and marked
up. XML grammar component used at the Markup phase is actually the gram-
mar of tags for inserting markup into documents (i.e. grammar for XML open
tag: ‘<[identifier]‘>, for XML closing tag ‘</[identifier]‘>). Category wordlist
is domain dependent component including set of categories and keyword lists
corresponding to each category. Keyword list consists of positive markers (sim-
ply one word or combination of words, as for example “Information System”)
and negative markers. If for a given category any of the positive markers are
detected within a text unit (sentence in current experiment), then the unit is
tagged under this category, unless any of negative markers is found.

Annotated documents are provided to the Mapping phase which is responsi-
ble for filling the database with annotations. This phase uses domain dependent
component - the database schema. Domain independent component of this stage
are schema grammar and XML grammar. Schema grammar is used for reading
the database schema from file, and XML grammar for extracting markups from



the output documents of the previous stage. Finally XML markups are mapped
into correspondent fields of the database. It is important to emphasize that
“complex” text processing (i.e. objects recognition, sentence delimiting) is made
only once at the first phase, and never repeated again. All the following phases
perform fast superficial processing using very simple grammars.

5 Evaluation Framework

The choice of evaluation method to verify the quality of automatic annotation
is an additional difficulty. For this purpose we specially designed a three steps
evaluation framework.

In the first step we compared the system output directly with human anno-
tations (2 persons were involved). We assume that human performance is the
upper-bound for automatic language analysis. However, this type of evaluation
cannot be applied on the large scale, because obviously we cannot afford hu-
man annotators tagging gigabytes of text. Also in this case, we must take into
account annotators’ disagreement and in order to obtain realistic evaluation we
must “calibrate” system performance relative to human performance. For this
purpose we calculated not only the system performance against each manual an-
notation, but also the performance of each human annotator against the other.
Subtracting the difference between the performances we can conclude how much
of human work could be actually done by the tool.

In the second step, we check if the use of automatic tool increases the pro-
ductivity of human annotators. We noted the time used for manual annotation
of the original textual documents and compared it to the time used for manual
correction of the automatically annotated documents. The percentage difference
of these two measures shows how much time can be saved when the human an-
notator is assisted by the tool.

Our third step compares system results against the human corrections done
in the previous step. The distinction of this phase from the first one is that when
a human annotator works directly on the original document he/she can make
errors or miss some items because of the lack of attention; while working on the
document already annotated by the tool he/she can easily note the defects and
therefore produces a higher quality annotation.

5.1 Evaluation against Human Annotation

This evaluation involves comparison of system results against manually anno-
tated texts. It involved two annotators and so far is done for sentences (coarse-
grained annotation). We applied the following metrics: recall - R, precision - P,
fallout - F, accuracy - Acc, error - Err [Yang1999]:

R =
TP

TP + FN
(1)

P =
TP

TP + FP
(2)



F =
FP

FP + TN
(3)

Acc =
TP + TN

N
(4)

Err =
FP + FN

N
(5)

The total number of test items is N = TP + FP +FN +TN, where:

– TP is the number of items correctly assigned to this category (True Posi-
tives);

– FP is the number of items incorrectly assigned to this category (False Posi-
tives);

– FN is the number of items incorrectly rejected from this category (False
Negatives);

– TN is the number of items correctly rejected from this category (True Neg-
atives).

We also calculated F-measure which is harmonic mean of recall and precision:

F−measure =
2×R× P

R + P
(6)

Table 1 represents the results of system performance compared directly with
human annotation.

Table 1. System performance against human annotation

Measure Sys vs Human2 Sys vs Human1 Average

Recall 92.42% 92.19% 92.31%
Precision 76.25% 73.75% 75.00%
Fallout 7.54% 8.27% 7.90%
Accuracy 92.45% 91.82% 92.14%
Error 7.55% 8.18% 7.86%
F-Measure 83.56% 81.94% 82.76%

Tables 2 and 3 represent the results of system performance compared to rel-
ative human performance.

We can see that compared to humans, the system annotates more items, but
with less precision. This test shows that the tool has potential to assist a human
annotator in generating preliminary markup, leaving further correction to the
human.

In order to estimate the overall difference between human and system perfor-
mances we should observe the values of an aggregate characteristic F-measure.
The obtained differences are 5.67–7.29%, which shows that system was able to
complete approximately 92.71–94.33% of human work.



Table 2. Calibrating system performance against Human1

Measure Human2 vs Human1 Sys vs Human1 Difference

Recall 90.63% 92.19% -1.56%
Precision 87.88% 73.75% 14.13%
Fallout 3.15% 8.27% -5.12%
Accuracy 95.60% 91.82% 3.77%
Error 4.40% 8.18% -3.77%
F-Measure 89.23% 81.94% 7.29%

5.2 Productivity Measures

During this step of evaluation we compared the times spent by annotator to
perform annotation “from the blank page” and to correct system annotation.
The results showed that the tool saved about 78% of the annotator’s time on
our sample set of data. Thus with an appropriate interface for doing corrections
easily, the time savings would likely be significantly greater than we observed.

5.3 Evaluation against Human Annotation Correcting System

On this step system performance is calculated considering manual corrections of
automatic annotation as the Ground Truth (see Table 4).

Comparing the results on different test sets the performance decreases slightly,
only for the last test set Recall value changes significantly. This shortcoming can
be explained by the high dissimilarity of these documents to the training docu-
ments by content and structure. For example, in this case location names were
represented as a string with exact postal address before textual description of
the accommodation. This maid it difficult to detect location phrases, especially
because in our experiment for the sake of generality we did not use any gazetteer.

At best what we can say is that the results of our small study is that there
is a real potential for a method based on the software design techniques. Even
without local knowledge and using a very small vocabulary, we have been able to
demonstrate accuracy comparable to the best heavyweight methods, albeit thus
far for a very limited domain. Performance of our as yet untuned experimental

Table 3. Calibrating system performance against Human2

Measure Human1 vs Human2 Sys vs Human2 Difference

Recall 87.88% 92.42% -4.55%
Precision 90.63% 76.25% 14.38%
Fallout 2.38% 7.54% -5.16%
Accuracy 95.60% 92.45% 3.14%
Error 4.40% 7.55% -3.14%
F-Measure 89.23% 83.56% 5.67%



Table 4. System performance against manually corrected annotations

Rome (10 ads) Rome (10 ads) Rome (100 ads) Venice(10 ads)
Measure Training set Test set-1 Test set-1 Test set-2

Recall 98.73% 94.20% 92.31% 86.08%
Precision 97.50% 97.01% 96.93% 95.77%
Fallout 0.84% 0.87% 0.93% 1.29%
Accuracy 99.06% 98.00% 97.43% 95.51%
Error 0.94% 2.00% 2.57% 4.49%
F-Measure 98.11% 95.59% 94.56% 90.67%

tool is also already very fast, handling 100 advertisements for example in about
1 second on a 1 GHz PC.

6 Related Work

The development of different Semantic Web applications became recently the
area of the intensive research work. In this review we list some of these tools and
consider the methodologies used.

One of the first attempts to realize SA was done with the SHOE system
[Sean97] which allowed Web page authors to manually annotate their Web
documents with machine-readable knowledge. Another pioneering tool assist-
ing to annotate documents manually was Ontobroker [Decker99]. AeroDAML
tool [Kogut2001] applied natural language information extraction techniques to
automatically generate DAML annotations from Web pages. Pankow a project
of Karlsruhe University [Cimiano04] proposes a methodology to fully automate
document annotation by using statistical and pattern-matching techniques to
automatically discover relevant concepts in the document. Among the variety of
projects we are going to note some of the most relevant to our approach.

SemTag [Dill2003] is an application that performs automated semantic tag-
ging of large corpora. It is based on the Seeker platform for large-scale text
analysis. It tags large numbers of pages with terms from a standard ontology.
As a centralized application it can use corpus statistics to improve the quality
of tags. So far, the TAP knowledge base has been used as a standard ontology.
TAP contains lexical and taxonomic information about: music, movies, authors,
sports, autos, health, and other popular objects. RDFS is used as a language
for representing the annotations. Current focus is detecting the occurrence of
particular entities in web pages. This task requires also disambiguation step.

– Methodology. SemTag flow consists of the following steps: 1) Spotting pass:
documents are retrieved, tokenized, and then processed to find instances of
approximately 72KB labels of TAP taxonomy. 2) Learning pass: sample of
data is scanned to determine distribution of terms. 3) Tagging pass: each
reference is disambiguated and a record is inserted into a database.



– Evaluation. Large scale evaluation: 264 million web pages, 550 million gen-
erated and automatically disambiguated semantic tags. Of these labels ap-
proximately 79% are judged to be on-topic. 750 human judgments are used
as a training set for the algorithm; other 378 human judgments are applied
to estimate the performance. The hardware requirements of the system are
extremely high. It consists of 128 dual processor 1GHz machines. I/O speed
is 3MB/sec on a single 1GHz processor. The total time taken to process the
web is 32 hours.

The KIM (Knowledge and Information Management) platform [Kiryakov2005]
was designed to demonstrate the implementation of the SA vision. KIM is an
application for automatic ontology-based named entities annotation, indexing
and retrieval. It is based on GATE (General Architecture for Text Engineering),
University of Sheffield 2. It uses lightweight upper-level ontology (KIMO) focused
on the named entity classes (consisting of about 250 classes and 100 properties)
encoded in RDF(S). Also KIM has a knowledge base of approximately 80,000
entities of general importance to allow information extraction (IE) on inter-
domain web-content.

– Methodology. IE is grounded on the GATE framework. The processing goes
through several steps, such as tokenization, splitting to sentences, part of
speech tagging. A Semantic Gazetteer uses the KB to generate lookup an-
notations. Ontology aware pattern-matching grammars allow precise class
information to be handled via rules at the optimal level of generality. The
grammars are used to recognize NE, with class and instance information
referring to the KIM ontology and KB. Recognition of identity relations
between the entities is used to unify their references to the KB. Based on
the recognized NE, template relation construction is performed via grammar
rules. As a result of the latter, the KB is being enriched with the recognized
relations between entities. At the final phase of the IE process, previously
unknown aliases and entities are being added to the KB with their specific
types.

– Evaluation. The evaluation [Popov2003] of the approach was performed only
for flat NE types (date, person, organization, location, percent, money).
The authors explain this drawback by the lack of test data and evaluation
metrics. However, the performances reported for this experiment are very
encouraging (for all entities average Recall is 84%, Precision is 86%). System
requirements [Popov2004]: enough to have Pentium 4 (2.53 GHz) PC to
acquire the following performance metrics: annotation - 8 kb/s; indexing -
27 kb/s; storage - 6 kb/s. The times growth has a logarithmic dependency
for bigger documents.

In KIM, as well as in SemTag, SA is considered as the process of assigning to
the entities in the test links to their semantic descriptions, provided by ontology.
This means that the focus of the analysis is mainly named entities recognition

2 http://gate.ac.uk



or detecting instances of the universals (concepts, classes, relations, attributes).

S-CREAM (Semi-automatic CREAtion of Metadata) provides an annota-
tion and authoring framework that integrates a learnable information extraction
component [Handschuh2002].

– Methodology. A domain ontology can be the basis for the annotation of dif-
ferent types of documents. The user have do define which part of the ontology
is relevant for the learning task. The user can perform a crawl to collect the
necessary documents. Then users have too manually annotate a corpus for
training the learner. Text is preprocessed using Annie, shallow IE system in-
cluded in Gate package (text tokenization, sentence splitting, part of speech
tagging, gazetteer lookup and named entity recognition). Each document of
the corpus is processed by learning plugin which generates extraction rules.
Then the induced rules are applied for semi-automatic annotation.

– Evaluation. No evaluation is provided in publications.

Our work differs from all of these approaches in three fundamental ways - first,
it uses an extremely lightweight but robust context-free parse in place of tok-
enization and part-of-speech recognition. Also our tool don’t have the learning
phase, instead it has to be tuned manually when being ported to a particular
application, substituting or extending domain dependent components. Second, it
does not require a gazetteer or knowledge base of known proper entities, rather
it infers their existence from their structural and vocabulary context, in the style
of software analyzers. And third, it has already been shown to handle not only
flat entities higher-level semantic markup for concepts above and depending on
entities rather than just the entities themselves.

7 Conclusions and Future Work

In this work we have demonstrated that applying software design recovery tech-
niques to semantic annotation of documents is feasible and has potential. It is
also clear that these techniques can retain their efficiency in new domain, ex-
hibiting very fast and linear performance even without tuning. We consider as
contribution of our work also the evaluation schema that we designed to measure
the quality of annotation.

The future work includes testing and validation of our method on large cor-
pora and richer conceptual spaces so that a more meaningful comparison with
the state of the art can be done. There are still a number of techniques used in
software analysis that we have not taken advantage of: alias resolution, unique
naming, architecture patterns, markup refinement and so on. In future we plan to
explore these other techniques to improve the quality our semantic annotation.

References

[Boguraev1995] Boguraev, B.K., Garigliano, R., Tait, J.I.: Editorial, Natural Language
Engineering 1(1) 1–7, 1995, ISSN: 1351-3249(199503)1:1;1-F



[Cimiano04] Cimiano, P., Handschuh, S., and Staab, S.: Towards the self-annotating
web. In Proceedings of the 13th international conference on World Wide Web,
462–471, ACM Press, 2004

[Decker99] Decker, S., Erdmann,M., Fensel,D., and Studer, R.: Ontobroker: Ontology
based access to distributed and semi-structured unformation. In DS-8: Data-
base Semantics - Semantic Issues in Multimedia Systems, IFIP TC2/WG2.6
Eighth Working Conference on Database Semantics, 351–369, Rotorua, New
Zealand, 1999

[Dill2003] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo,
T., McCurley, K. S., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J. Y.:
A Case for Automated Large-Scale Semantic Annotation. Journal of Web
Semantics, 1(1) 115–132, 2003

[Handschuh2002] Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM Semi-automatic
CREAtion of Metadata. The 13th International Conference on Knowledge En-
gineering and Management (EKAW2002), ed. Gomez-Perez, A., Springer Ver-
lag, 2002

[Cordy2004] Cordy, J.: A Language for Programming Language Tools and Applica-
tions. Proc. of LDTA 2004 ACM 4th Int. Workshop on Language Description,
Tools and Applications, Barcelona, April, 2004

[Kiryakov2005] Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Seman-
tic Annotation, Indexing, and Retrieval. Elsevier’s Journal of Web Sematics,
2(1), 2005

[Kiyavitskaya 2004] Kiyavitskaya, N., Zeni, N., Mich, L. and Mylopoulos, J.: Experi-
menting with Linguistic Tools for Conceptual Modelling: Quality of the models
and critical features. Proc. of the NLDB2004, 3136 135–146, 2004

[Leidner2003] Leidner, J. L.: Current Issues in Software Engineering for Natural Lan-
guage Processing. Proc. of the Workshop on Software Engineering and Archi-
tecture of Language Technology Systems (SEALTS), the Joint Conf. for Human
Language Technology and the Annual Meeting of the Noth American Chapter
of the Association for Computational Linguistics (HLT/NAACL’03), Edmon-
ton, Alberta, Canada, 45–50

[Kogut2001] Kogut, P. and Holmes, W.: AeroDAML: Applying Information Extraction
to Generate DAML Annotations from Web Pages. First International Confer-
ence on Knowledge Capture (K-CAP 2001). Workshop on Knowledge Markup
and Semantic Annotation, Victoria, B.C., Canada, October 2001.

[Nelson1996] Nelson, M.L.: A Survey of Reverse Engineering and Program Compre-
hension, 1996

[Oertel2004] Oertel, C., O’Shea, S., Bodnar, A. and Blostein, D.: Using the Web to
Validate Document Recognition Results: Experiments with Business Cards.
Proc. of the SPIE, 5676 17–27, 2004

[Popov2003] Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A., Gora-
nov, M.: Towards Semantic Web Information Extraction. Human Language
Technologies Workshop at the 2nd International Semantic Web Conference
(ISWC2003), 20 October 2003, Florida, USA

[Popov2004] Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: KIM -
a semantic platform for information extaction and retrieval. Journal of Web
Semantics, 10(3-4), 2004, 375–392, Cambridge University Press

[Sean97] Sean, L., Lee, S., Rager, D., and Handler, J.: Ontology-based web agents.
Proceedings of the First International Conference on Autonomous Agents
(Agents’97), eds. Johnson, W.L., and Hayes-Roth, B., 59–68, Marina del Rey,
CA, USA, 1997, ACM Press



[Yang1999] Yang, Y.: An evaluation of statistical approaches to text categorization.
Journal of Information Retrieval, 1999, 1(1-2), 67–88

[Zanibbi2002] Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing Mathematical Ex-
pressions Using Tree Transformation, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24 (11), 1455–1467, 2002

[Zanibbi2004] Zanibbi, R., Blostein, D., Cordy, J.R.: A Survey of Table Recognition:
Models, Observations, Transformations, and Inferences. International Journal
of Document Analysis and Recognition, 7(1), 1–16, Sept. 2004


