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Abstract. The goal of this paper is to design experiments that confirm the evidence of cognitive responses in
functional near infrared spectroscopy and to establish relevant spectral subbands. Hemodynamic responses of brain
during single-event trials in an odd-ball experiment are measured by functional near infrared spectroscopy method.
The frequency axis is partitioned into subbands by clustering the time-frequency power spectrum profiles of the
brain responses. The predominant subbands are observed to confine the 0–30 mHz, 30–60 mHz, and 60–330 mHz
ranges. We identify the group of subbands that shows strong evidence of protocol-induced periodicity as well as
the bands where good correlation with an assumed hemodynamic response models is found.
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1. Introduction

Functional near infrared spectroscopy (fNIRS) has
been proposed as a non-invasive and rapid tool to
monitor the cerebrovascular changes during cognitive
tasks (for a review, see (Chance et al., 1998; Obrig
et al., 2000b; Villringer and Chance, 1997). Their
results have indeed confirmed that fNIRS shows
explicitly the response pattern of a deoxyhemoglobin
(Hb) decrease and an oxyhemoglobin (HbO2) increase
when monitored over the same area where the max-
imal blood oxygen level-dependent (BOLD) signal
increase has been observed in functional magnetic
resonance imaging (fMRI) studies. Similar to fMRI,
fNIRS measures any cognitive activity indirectly via
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the coupling of neuronal activation to blood flow
and oxygen delivery. However in contrast, fNIRS is
capable to monitor these activities on a millisecond
basis at the expense of lost spatial details. The fNIRS
systems use multi-wavelength illumination to extract
both Hb and HbO2 concentration changes (Boynton
et al., 1996; Obrig et al., 2000a, b).

In this paper, we aim to characterize the spectrum
of fNIRS signals during a cognitive task and identify
the relevant frequency bands. We define as relevant
frequency bands those intervals of frequency, which are
most correlated with neuronal activity associated with
cognitive tasks and where protocol-induced periodicity
can be observed.

Several researchers in the field of neuroimaging have
investigated oscillatory behavior of hemodynamic ac-
tivity. Efforts for characterizing the components in the
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spectra have concentrated on establishing a physiologi-
cal correspondence with the peaks or the energy bands.
Functional MRI and transcranial Doppler sonography
studies have proposed several association mechanisms
of vasomotor dynamics while emphasizing the fact that
a strong signal, the brain hemodynamic response, exists
and dominates the lower portion of the spectrum com-
puted from temporal neuroimaging data (Obrig et al.,
2000a; Franceschini et al., 2000; Prince et al., 2003;
Toronov et al., 2000).

In all these studies, the main goal has been to identify
the spectral peaks or bands related to a given task, hence
elucidate the underlying physiological dynamics and
their relation to performance. This provides a means
to investigate the coupling between cerebral energy
metabolism and cerebrovascular dynamics (namely,
neurovascular coupling). The common view is that
while some of the oscillatory dynamics occur indepen-
dently of any task and give rise to distinct spectral bands
uncorrelated with other physiological activities (e.g.
breathing, heart beat etc.), other bands are affected by
psychological or pathological conditions (or vice versa)
through which degradation of task performance can be
monitored (Kim and Uğurbil, 2002; Franceschini et al.,
2000; Obrig et al., 2000a; Toronov et al., 2000).

Several researchers used spectral estimation tech-
niques and transfer function analysis to relate the brain
hemodynamic response to various stimuli and physio-
logical events (Villringer and Chance, 1997; Svensen
et al., 2000; Wobst et al., 2001; Hu et al., 1999; Kuo
et al., 1998; Giller et al., 1999). Most studies that are
performed by transcranial Doppler sonography suggest
low frequency domination due to cerebral autoregula-
tion of hemodynamical activity where the increase in
acidity levels (increase on carbondioxide content) leads
to this very slow vasomotor activity forming the Mayer
waves or the V-signal (Obrig et al., 2000a).

Functional NIRS systems collect cerebrovascular
information by spectroscopic methods tuned to the
main chromophores in the near infrared range (Hb and
HbO2). The simplicity of measurement system allows
the fast sampling of such changes, an advantage over
fMRI systems. Moreover, the ease of application of
the probe and the freedom to move around are factors
that alleviate the discomfort felt by the subjects during
these studies. The increased level of comfort and non-
invasive nature of fNIRS studies can be considered as
minimization of the nuisance factors by suppressing
the disrupting effects of emotions, stress and physical
limitations on hemodynamic signals. Major limitation

of fNIRS systems when compared against fMRI, is the
low spatial resolution. Thus in any interpretation of the
fNIRS signals, the fact that these signals derive from a
much wider support must be taken into consideration.

To summarize, the goals of the paper are to (i)
Parse the fNIRS signal spectrum in an unsupervised
and serendipitous manner based on the time-frequency
spectrum, (ii) Identify the frequency bands that are
most informative with respect to stimulus, and (iii) De-
velop a framework for choosing the set of optodes that
carry relevant information on the single-event trial cog-
nitive task. Once these fNIRS bands are identified, we
believe that behavioral parameters can be better corre-
lated with these spectral bands.

2. Preprocessing of fNIRS Signals

2.1. Data Collection

For all tasks, participants (with written informed con-
sents) were seated in a comfortable chair in front of
a computer screen in a sound-attenuated, electrically
shielded room and were fitted for EEG and fNIR mon-
itoring. Functional NIRS measurements are taken by a
custom-built system developed at Dr. Britton Chance’s
lab at University of Pennsylvania. The system houses
four LED multi-wavelength light sources and twelve
photodetectors that when time and source-multiplexed
constitute four non-overlapping quadruples of pho-
todetectors (see Fig. 1). Hence in one scan of the fore-
head a total of sixteen measurements at each wave-
length can be acquired totaling to 48 optic signals. The
source and detectors are equidistantly placed on the
probe as seen in Fig. 1. The probe is positioned such
that the base of it aligns with the eyebrows of the sub-
ject and the middle with the Fz location from EEG
electrode placement and a sports bandage is used to
secure it on its place and eliminate background light
leakage. Taking into consideration Firbank and et al.’s
study (Firbank et al., 1998), a pre-determined source
detector separation of 2.5 cm was used to account for an
average adult cortex depth around 1.5 cm that allowed
us to probe the first couple of millimeters of the gray
matter (Firbank et al., 1998; Boas et al., 2001). Notice,
however, that only one fNIRS sequence results from
the processing of the recordings at three wavelengths.

It was argued that a modified version of the
Beer-Lambert law could be used to determine the
concentrations of hemoglobin agents from raw fNIRS
measurements (Villringer and Chance, 1997). We
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Figure 1. Source-detector configuration on the brain probe and nomenclature of photodetectors.

considered the oxyhemoglobin (HbO2) agent, based on
a recent study, where it was demonstrated that a strong
correlation exists between blood-oxygenation-level-
dependent fMRI data and diffuse optical HbO2 data
(Strangman et al., 2002). Thus, our measurement data
consist of the time series of the HbO2 signal samples.

Target categorization or “oddball task” is a simple
discrimination task in which subjects are presented
with two classes of stimuli in a Bernoulli sequence
in the center of the screen. The probability of one stim-
ulus is less than the other (e.g. 20% of trials for the
“target” or “oddball” stimulus, versus 80% of trials for
the “typical” or “context” stimulus); the participants
have to press a button when they see the less frequent
of the two events. Stimulus categories are varied, be-
ginning with the letters “XXXXX” versus the letters
“OOOOO”. 1024 stimuli are presented 1500 ms apart
(total time, 25 minutes); a target is presented on 64
trials, with a minimum of 12 context stimuli in be-
tween to allow for the hemodynamic response to settle.
Therefore the rest of the stimuli (960) are context cases.
Subjects are asked to press the left button on a mouse
when they see “OOOOO” and right button when they
see the target “XXXXX” (McCarthy et al., 1997). This
timing parameter is used as the behavioral reaction pa-
rameter tracking the performance of the subjects. Five
male subjects with an age range of 22–50 are recruited
for the preliminary test. Protocol is approved by IRB
of Drexel University and MCP Hahnemann Univer-
sity (now Drexel University College of Medicine). We
have the following additional specifications for target
stimuli:

(i) In a given experiment, overall 64 target stimuli
are presented. The stimuli follow a block periodic
temporal pattern, where in every block there are 8
stimuli with randomly jittered locations. However,
the same pattern is repeated in every one of the
eight blocks during the course of the 25-minute
experiment. In other words, the inter-arrival pat-
terns between the 1st and 8th target stimuli repeat
themselves successively between the 9th to 16th,
17th to 24th and so on up to 57th and 64th.

(ii) Inter-target interval is a random variable uniformly
distributed on the (30 to 50) sample interval, or
alternately on the (18 to 29) second interval.

Duration of stimuli of both context and target types
is 500 ms, hence there are blank intervals of 1 second.
Prior to digitization, analog optical density signals are
filtered by an RC filter with 330 mHz cut-off frequency.
Hence although recording is done at a sampling rate
of 1.7 Hz, (the Nyquist bandwidth is 850 mHz), we
consider that the 3-dB bandwidth is 330 mHz.

We had five human subjects for which the target cat-
egorization experiments were carried out. We observed
that some of the detector outputs were not usable, due
to either severe motion artifacts or occasional defects
of the sensor. Our rejection criteria were based on vi-
sual investigation: one sort of defect was clipping in the
signal amplitudes due to saturation of sensors; another
was the outliers due to head movements of subjects.
We also observed that, in some cases, sensors did not
give any measurement at all due to hair occlusions. Af-
ter eliminating the improper measurements, we ended



70 Akgül, Sankur and Akın

Figure 2. The effect of detrending on a typical HbO2 signal.

up in a collection of 72 fNIRS-HbO2 time series out
of the planned 5 × 16 = 80 recordings. These signals
were detrended, which effectively removed the very
low frequency components below 3 mHz. Simple mov-
ing average filtering and subtraction of the local aver-
age perform the trend removal: a frame of support 500
samples (corresponding to 4.9 minutes of data) is slid
continuously over the time-series and the mean value
of the samples inside the frame is subtracted from the
actual value at the frame position. The effect of such a
detrending scheme is illustrated in Fig. 2. In summary,
for signal characterization of the fNIRS signals we have
used the 72 detrended series, each consisting of approx-
imately 2700 samples, corresponding to duration of the
cognitive task experiment of about 25 minutes.

2.2. Signal Characterization

In this section, we discuss features that characterize
the fNIRS signals {s(t)}. Specifically, we search for in-
formative bands and then explore periodicities in these
bands corresponding to the target quasi-periodicity.

We conjecture that the fNIRS time-frequency spec-
trum can be partitioned into characteristic subbands.

The feature that we use in characterizing these sub-
bands is the relative power time series for each band.
Similar time profiles of subband energies were used
in the analysis of epileptic seizure-induced EEG series
(Blanco et al., 1995).

We start by estimating the time-frequency represen-
tation (TFR) in terms of the short-time Fourier trans-
form (STFT), defined as

S(τ, f ) =
∫ ∞

−∞
s(t)wD(t − τ )e− j2π f t dt (1)

where s(t) denotes the fNIRS signal of interest and
wD(t) is a window of finite support D. The short-time
Fourier transform (STFT) in (1) is actually computed
using the discrete Fourier transform (DFT), so that the
TFR is discrete in both time and frequency, respec-
tively, with time resolution �t and frequency sam-
pling interval � f . A short-time transform is warranted
since the signals are nonstationary and also because we
want to capture and characterize local events, like brain
hemodynamic response in the course of the fNIRS pro-
cess. The windowing wD(t) guarantees the local nature
of the spectral analysis and its support is chosen so that
within that D interval the process can be considered
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Table 1. Parameters of TFR, sampling rate Fs = 1700 mHz.

Parameter Value Comment

Window type Rectangular Rectangular window has the
best frequency resolution

Window length
D

60 samples
≈ 35 s

This window size provides for
28.3 mHz frequency
resolution

Time resolution
�t

5 samples
≈ 3 s

The analysis is slid by steps of
5 samples, an adequate time
resolution.

Frequency
sampling � f

1 mHz Thus each 30 mHz subband has
30 representative samples.

to be at least wide-sense stationary. Table 1 gives the
parameters used in the TFR analysis.

We remark that the frequency resolution is given by
the effective window length, hence it is of the order of
Fs/D ≈ 28 mHz, while the 1 mHz frequency sampling
rate � f is obtained by interpolation, that is padding the
windowed time series with zeroes.

We consider the evolutionary power spectral density
within the nth frequency band at the instant t as

Bn(t, f ) = S∗(t, f )S(t, f ) in f ∈ ( fn,l , fn,h) (2)

where fn,l and fn ,h denote, respectively, the lower
and upper limits of the band and the superscript *
stands for complex conjugation. In our case we took
fn,h − fn,l = 30; ∀ n. Thus this initial partitioning of
the frequency spectrum has 11 bands of width 30 mHz,
which collectively cover the 330 mHz bandwidth. The
30 mHz initial width of the bands is dictated by the
achievable resolution after windowing the time-series
data. The window size of 60 samples provides fre-
quency resolution of 28 mHz.

The total power in a band as a function of time can
be calculated by

In(t) =
∫ fn,h

fn,l

Bn(t, f ) d f (3)

Similarly the total instantaneous power in the whole
signal bandwidth I (t) is defined as

I (t) =
∫ fh

fl

B(t, f ) d f (4)

where, in our case, the integration goes from 3 to
330 mHz. The lower limit is dictated by detrending,
while the upper limit by the cut-off frequency of the
RC filter which operates prior to digitization. Finally,

the relative power profile in the nth band as a function
of time becomes:

Rn(t) = In(t)

I (t)
(5)

The relative power profile per band reflects the tem-
poral evolution of the relative power in each band. Two
bands are considered to be distinct if the evolutions of
their relative power profiles are dissimilar. Conversely,
two bands are merged into one if their Rn(t) responses
are close to each other. Dissimilar bands that have dif-
ferent time evolution of the profiles,Rn(t) are consid-
ered to provide different information.

3. Selection of Relevant Frequency
Bands by Clustering

3.1. Band Selection Methodology

We adopt an agglomerative approach, by starting with
a fine partitioning of the frequency spectrum, and then
grouping bands similar in their evolutionary power
profiles, Rn(t), into wider bands that hopefully cap-
ture significant signal information. To express the rela-
tive power time-series from different bands and detec-
tors/subjects, let’s adopt the following notation:

Rm
n (t): time-series of relative power profile time-

series for the nth band of the mth fNIRS signal.

Thus the subscript n denotes the frequency band of
interest, where n = 1, . . . , 11, which covers the fre-
quency range [(n-1) × 30, n × 30)] mHz. The super-
script m points to one of the m = 1, . . . , M(M = 72)
time-series in the database. Recall that these time series
were obtained from the 16 detectors of the 5 subjects,
after some pruning. We will refer to the superscript
m as simply the mth measurement. The time index t
runs with the lags of �t = 5 samples, t = 1, . . . , T .
It will be convenient to express the whole time-series
Rm

n (t), t = 1, . . . , T in vector notation as Rm
n . Thus the

T -dimensional Rm
n vector denotes the time series of the

mth detector/subject in the n frequency band. Notice
that we have a total of N × M = 11 × 72 such Rm

n
vectors, each detector being expanded onto 11 bands,
and conversely, there are 72 representative time-series
for each band.

We search for the formation of the bands by a clus-
tering procedure. In fact, we use a scheme based on
agglomerative clustering and majority voting as de-
scribed below. We apply clustering to the N bands of
each measurement m so that the set of N subbands
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Rm = {Rm
n }n=1,...,N are clustered into C subbands

Qm = {Qm
c }c=1,...,C . Specifically the 11 initially cho-

sen subbands from any detector/subject are clustered
into C = 3 subbands. We have decided for this target
number of three clusters to allow for a possibly very low
frequency band, a high frequency band and potentially
a single “interesting” mid-band.

The agglomerative clustering on data set Rm has the
following steps:

(i) Initialize: Assign each vector Rm
n to its own

cluster.
(ii) Compute all pairwise distances between clusters.

(iii) Merge the two clusters that are closest to each
other.

(iv) Return to step (ii) until there are only three
clusters left.

There are two important aspects in such a cluster-
ing algorithm: the metric used to compute distances
and the closeness criterion between vectors. In this
study we adopted the One-Minus-the-Normalized cor-
relation coefficient as the distance metric

d
(
Rm

p , Rm
q

) = 1 −
〈
Rm

p , Rm
q

〉
∥∥Rm

p

∥∥ · ∥∥Rm
q

∥∥ (6)

Figure 3. A typical dendrogram: The horizontal axis indexes the initial bands, vertical axis indicates with pairwise cluster distances.

where 〈·, ·〉 stands for the inner product of two vectors
and ‖·‖ for the Euclidean norm. The vectors involved
in the computation are made zero-mean by subtracting
their mean value. Furthermore, we adopt the single link-
age criterion as the closeness criterion. Accordingly,
the pair of adjacent bands (p, q) for which d(Rm

p , Rm
q )

is minimum are merged.
The end product of clustering the Rm set is a den-

drogram Dm , a hierarchical tree that helps us to vi-
sualize cluster relationships. An example is shown in
Fig. 3. The dendrogram for the mth measurement Dm

is pruned in order to get the clustered set Qm . This
is accomplished by simply obtaining the cutset of the
dendrogram that yields the target number of C clus-
ters. In other words, the dendrogram is cut, as shown in
Fig. 3 at a distance value, that is the ordinate, to yield
the desired number of clusters. Within each one of the
C clusters, the merged bands are similar to each other
according to the chosen correlation coefficient metric,
while across clusters they are dissimilar. The leaves of
the dendrogram, that is the singleton clusters, which
correspond to the initial bands, become thus grouped
into C = 3 larger bands.

Once the agglomerative clustering is accomplished
we obtain M dendrograms, one for each measurement.
To extract a single set of subbands from the M cluster-
ings we resort to a voting scheme. At this stage there
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are C × M = 3 × 72 = 216 candidate bands with pos-
sibly differing bandwidths, out of which we try to de-
termine the most frequently occurring ones. We there-
fore rank these band patterns based on their frequency
of occurrence. To make this point clear, let’s consider
again the sample dendrogram in Fig. 3, which results
in the following subbands: {0–30 mHz, 30–180 mHz,
180–330 mHz}. We determine how many times each
of these subband formations are generated by the clus-
tering of all the Rm measurements, each occurrence
counting as a vote. Selecting the subband patterns that
have received the highest number of votes (frequency
of occurrence), we achieve a partitioning of fNIRS fre-
quency spectrum, where the resulting bands are non-
overlapping and exhaustively cover the frequency in-
terval 0–330 mHz.

3.2. Results of Band Grouping

As a result of clustering and voting, we obtained
9 candidate bands that shared 216 votes, as shown in
Table 2.

Based on the results of Table 2, there are many al-
ternative ways to partition the spectrum. Nevertheless,
there is one obvious choice that exhibits the strongest
evidence with 186 votes (86.1% of the total): this par-
tition is 0–30 mHz, 30–60 mHz, 60–330 mHz. We be-
lieve that this partitioning is characteristic of fNIRS
power profiles. Hereafter we call them as “canonical
frequency bands” and denote them by letters A, B, C
as in Table 3. Similarly when we say that we used the
AB-band, BC band or ABC band, or that the signal
was prefiltered in the AB-band etc we mean the band
stretching, respectively, in the 0–60, 30–330, 0–330
ranges.

Table 2. Candidate bands (total number of
occurrences is 216).

Band (mHz) Votes Percentage (%)

0 30 72 33

30 60 57 26

30 90 11 5

30 180 3 1

30 120 1 0

60 330 57 26

90 330 11 5

120 330 1 0

180 330 3 1

Table 3. Canonical fNIRS spectrum bands.

Bands (mHz) 0–30 A 30–60 B 60–330 C

Votes 33% 26% 26%

4. Characteristics of the Canonical Band Signals

Once the canonical bands are determined, we set our-
selves three goals:

(i) To compare the cross-correlations of the relative
power profiles in different bands and to discuss
the physiological meaning of these bands.

(ii) To explore the existence of any periodicity in the
temporal patterns within the bands. This is rel-
evant because the stimuli are quasi-periodic and
in some of the bands, we expect that periodicity
subsists more heavily than in the others. The in-
tent of this periodicity search is to corroborate
the evidence that the fNIRS does indeed mea-
sure cognitive activity, as will be demonstrated
in Sections 4.2 and 4.3.

(iii) Finally, to correlate and to fit fNIRS waveform
excerpts collected right after target onsets and the
Gamma function, a model for brain hemodynamic
response function popular in fMRI studies.

4.1. Interpretation of the Canonical Bands

In several other studies, three main frequency bands
of interest have been identified for cerebral hemody-
namics: a very low frequency VLF (8–33 mHz), a low
frequency LF (around 100 mHz) named as the Mayer
waves or V-signal (Mayhew et al., 1999; Obrig et al.,
2000a), and a high frequency component HF (around
250 mHz), the latter being definitely synchronous with
breathing rate (Kuo et al., 1998). Similarly, we con-
jecture that each of the canonical bands is associated
with one or more of the physiological activities re-
lated to hemoglobin concentrations. The lowest fre-
quency A band (0–0.03 Hz) is mainly responsible for
the slow baseline signal that is thought to be reflecting
the very slow vasomotor activity due to heart rate fluc-
tuations and thermoregulation (Toronov et al., 2000;
Francheschini et al., 2000; Giller et al., 1999). In fact,
reports on the frequency content of such fluctuations
have identified this signal as being the phasic dilation
and contractions of “the small regulating arteries, and
these vasomotor waves produce fluctuations in cerebral
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Figure 4. A family of Gamma waveforms with various time-constants (left) and their magnitude spectra (right). (The spectral sidelobes are an
artifact due to centering operation).

blood volume, which are eventually reflected in the in-
tracranial pressure” (Kuo et al., 1998). Similarly, in
many fMRI studies, the Gamma function model has
been used to parameterize the brain hemodynamic re-
sponse. In Fig. 4, we display a family of Gamma wave-
forms (see Eq. (13)) with different time-constants, their
magnitude spectra, on which we have superimposed
the limits of the B-band. Since the brain hemodynamic
model response, e.g. the “centered” Gamma function,
has its peak located within the 30–50 mHz range (see
Fig. 4), the narrow B-band should be related to task-
related cognitive activity of the subject (Cordes et al.,
2001; Toronov et al., 2000). The larger C-band is also
assumed to carry cognitive activity related information,
most probably due to the periodicity of the target stim-
uli sequence as we will explore more in detail in the
next section. Moreover, vasomotion and breathing rate
are two other physiological factors that are responsible
for the emergence of the C-band. The C-band in our
findings is compatible with the components of cere-
bral autoregulation identified by others (Cordes et al.,
2001; Zhang et al., 1998; Strik et al., 2002; Giller et al.,
1999).

When we consider the three bands found by our al-
gorithm and the spectra of the BHR model as in Fig. 4,
we observe that most of the energy of the Gamma wave-
form resides in the B band, followed, in order, by the
bands A and C . It is of interest to consider the cross-
correlations between the R-series within the bands. To
this end, we consider the relative power time series

Rm
n (t), t = 1, . . . , T , where m ranges over the M mea-

surements, but n now ranges over the 3 canonical bands
A, B, C ; hence for band A we will use the notation
Rm

A (t) and similarly for the others. Cross-correlations
between these series are given in matrix form below:




A B C

A 1 −0.65 −0.79

B −0.65 1 0.21

C −0.79 0.21 1




We can observe that there exists is a negative correla-
tion (correlation coefficient of minus 0.79) between the
A-band and C-band. This implies that an increase in
power in one band (say A) causes depletion of power
in the other band (C), and vice versa. In this sense
the time series Rm

A (t) and Rm
C (t) are almost “antipo-

dal”. A representative triad of R-series in these bands is
shown in Fig. 5, where the antipodality can be observed
when curves in the A and C bands are superposed.
The correlation coefficients between these time-series
suggest a negative feedback control between the cere-
bral autoregulatory activities (C-band) and the slow
frequency components (A-band). One conjectures that
the A-band signals are generated partly by the cogni-
tive activity and partly by oscillations of the cerebral
spinal fluid (CSF), which has been associated with in-
tracranial pressure oscillations in the 8–40 mHz band
and are dubbed as the B-waves (Strik et al., 2002).
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Figure 5. A representative set of R-series in the canonical bands.

Due to the probe geometry and physics of photon mi-
gration in tissues, it is most likely that the detectors
are picking up a weighted sum of all the hemodynamic
activities lying underneath each detector, namely the
skin dynamics, cranium and CSF dynamics, and lastly,
the cortex dynamics.

4.2. Search for Periodicities

Since the cognitive stimuli are quasi-periodic, whose
target presentation intervals are uniformly distributed
between 18–29 seconds, we can expect some sort of
periodic behavior in the cognitive activity signals.
The frequency bands in which such periodic response
emerges more distinctly can be thought to better
reflect cognitive activity or the “brain hemodynamic
response.” Recall that the brain displays continuous ac-
tivity (baseline activity) patterns even in the absence of
any cognitive task. The cognitive activity waveforms, if
any, will be in general immersed in the baseline activity.
In fact, cognitive activity responses are very difficult
to discern by simple observation of the waveforms. It
follows that classical Fourier spectrum, correlation and
peak picking techniques are not suitable for hunting
these responses and more sophisticated statistical

methods must be invoked to detect and estimate these
hidden periodicities (Toronov et al., 2000).

We analyze the bands {A, B, C} and search for
periodicities. The admissible periods should be in the
vicinity of target exposition periods of the experimen-
tal protocol, that is, in the 18–29 seconds range or its
harmonic/subharmonic multiples. Recall that, any peri-
odicity in the time domain will emerge as discreteness
(line spectrum) in the frequency domain. Thus, if a
time-domain signal is periodic with P0 (18 to 29) sec-
onds, the corresponding spectrum should exhibit spec-
tral samples 1/P0 Hz (34 to 59 mHz) apart. Since the
B-band can at most accommodate one such spectral
line, we merge the two bands B and C , to cover the
30–330 mHz band range. Previous researchers (Kuo
et al., 1998; Giller et al., 1999; Hu et al., 1999) have
also excluded the A-band since it was mostly mir-
roring the fNIRS baseline activity. Another plausible
argument for excluding the A-band is that it is inher-
ently a nonstationary process, which obviates signal-
processing tools requiring stationarity. To this effect,
we used a zero-phase finite impulse response (FIR)
high-pass filter with unit gain and a 3 dB transition
bandwidth of 1 mHz at 30 mHz. We will denote the
corresponding band-pass filtered signals for simplicity
as x(t) = sBC (t).
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The periodicity measure we adopted is based on a
classical method to estimate the pitch period in speech
signals: the least-square periodicity estimation (LSPE)
(Friedman, 1977). It is simply based on the minimiza-
tion of the weighted mean-squared error (MSE) be-
tween the observed signal x(t) and an estimated signal
x0(t) that satisfies x0(t) = x0(t + k P0), t = 1, 2 . . . , T
and k = 0, 1, . . . , K = 	T/P0
 − 1 where 	·
 denotes
the floor operation. The optimal x0(t), for a given P0,
is

x0(t) =
∑

k x(t + k P0)w(t + k P0)∑
k x(t + k P0)

(7)

where w(t) is the weight sequence of length T . Observe
that (7) reduces to the following if all signal samples
are equally weighted, i.e. w(t) is a rectangular window,

x0(t) = 1

K

∑
k

x(t + k P0) (8)

It has been argued that the weight sequence should be
selected so that it has the maximum value of unity at the
center of its support and that it decays smoothly down
to zero towards the extremes since the period deviates
more heavily at the extremes than at the center. It has
been shown that P0 that minimizes the weighted MSE
is, equivalently, the one that maximizes the functional:

J1(P0) = I0 − I1

E − I1
(9)

where I0 stands for the weighted energy of the esti-
mate x0(t) and E for the weighted energy of the orig-
inal signal x(t), and where I1(P0) = ∑

t
x2(t)w2(t)∑
k w(t+k P0) .

Note that the LSPE with J1-index is also called as the
pseudo-maximum likelihood estimation of periodici-
ties (Friedman, 1977).

In (9), we search for the dominant period in the sig-
nal, P̂0, that maximizes the J1(P0) functional provided
the periodicity index J1(P0) is adequately high. In fact,
the index function can be interpreted as a confidence
score that becomes 1 only for a truly periodic sig-
nal. Since some maximizing value of P̂0 can always
be found, for this estimate to correspond to a genuine
periodicity, the confidence score should exceed a min-
imum threshold. Based on the protocol parameters we
allow P̂0 to take values between Pmin and Pmax. Since
the cognitive stimuli are not exactly periodic and since,
furthermore, the cognitive activity signals are heavily
embedded in baseline signals, we do not expect J1(P̂0)

scores to be high, and hence we avoid heavy threshold-
ing. A final confounding factor to be taken into account
is that the cognitive response may not be fired exactly
after the target presentation, but some variable delay
may occur.

In order to illustrate the viability of the LSPE algo-
rithm, we use a simulated data sequence that consists of
the superposition of a Gamma waveform train embed-
ded in white noise (the signal-to-noise ratio is 10 dB)
and of an actual signal copied from the A-band. The
average period of Gamma waveforms is 40 samples
with a uniform random jitter between (−10, 10) sam-
ples in order to simulate our experimental protocol (see
Fig. 6).

Figure 7 illustrates the advantage of filtering out the
A-band signal and to run the periodicity detector only
in the BC band. It can be seen that the index values
become higher when the band A is removed from the
signal.

The results of the periodicity estimation on real data
are presented in Fig. 8. In this particular case without
prefiltering (ABC bands), the periodicity could not even
be detected with any reasonable confidence, while in
the filtered case (BC bands) we observe that a period-
icity is detected in the expected range with acceptable
confidence (Fig. 8).

In order to prospect the actual fNIRS-HbO2 data
for periodicities, we run the LSPE algorithm session
by session, since the experimental protocol consists of
eight identical sessions in succession. That is, we con-
sider each of the eight sessions of the experiment sep-
arately and apply Eqs. (7)–(9). We use for each session
a superscript j = 1, . . . , 8, so that {x j (t)} denotes the
j th experimental session in the 30–330 mHz band-pass
filtered fNIRS signal from whatever subject/detector.
The session-wise processing of the fNIRS signal, to-
gether with prefiltering within the BC-band, helps also
to mitigate the nonstationarity of these signals. In fact,
we may view the signal portions in different sessions
as independent realizations of the target categorization
experiment if we neglect any correlation due to the
baseline signal, which is independent of the cognitive
activity. The hunting for periodicity maxima proceeds
as follows:

(i) The range in which we search for periodicities is
(20, 60) samples.

(ii) We look for local maxima of the J1(P̂0) functional;
furthermore, once a peak is found, no further peak
is searched within its neighborhood of (−3, 3)
samples.
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Figure 6. (a) Simulated quasi-periodic sequence of cognitive activity waveform; (b) white noise sequence (SNR = 10 dB; (c) an actual A-band
signal; (d) superposition of the signals in (a), (b) and (c); (e) Band-pass filtered version of (d) in the BC-band: this signal is then used for
periodicity detection.

Figure 7. Periodicity index profiles for simulated data without prefiltering (solid line) and with prefiltering (dotted line), after local maxima
selection and thresholding.

(iii) We set a threshold of 0.1 on the periodicity belief
value J1(P̂0).

(iv) For each signal portion, we let the algorithm return
the periodicity estimate with largest J1-index.

Those P̂0 values that fall within the (30, 50) samples
interval are thought to belong to the single-trial cogni-
tive activity in the experiment. Those falling outside are
considered as fortuitous values, indicative of the fact

that that detector is not capturing properly any cog-
nitive activity signal during that session. Since there
are 8 session signals x j (t) per detector (each in turn
possessing 8 target stimuli), each {x(t)} signal returns
eight period estimates, P̂ j

0 , j = 1, . . . , 8 along with
their confidence scores. We accumulate separately the
scores of the periodicities falling, respectively, inside
and outside the expected range. We define the cumu-
lative score of inside periodicities Sin and the count of
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Figure 8. Periodicity index profiles with (dotted line) and without (solid line) prefiltering (top), after local maxima selection and thresholding
(bottom): thanks to prefiltering out band A, a periodicity with a good confidence emerges within the expected range.

inside periodicities Cin for a given detector and target
categorization experiment as:

Sin =
8∑

j=1

J1
(
P̂ j

0

)
δ
(
P̂ j

0

)
(10)

Cin =
8∑

j=1

δ
(
P̂ j

0

)
(11)

with

δ
(
P̂ j

0

) =
{

1 if P̂ j
0 is inside the expected range

0 if P̂ j
0 is outside the expected range

(12)

where j = 1, . . . , 8 is the session index. Similarly we
define corresponding expressions for the outside peri-
odicities Sout and Cout. Furthermore, in order to investi-
gate intersubject and interdetector variability of period-
icities, we compute two quantities: periodicities falling
in the proper range averaged over all subjects for a given
photodetector, denoted as P̄subject(k) k = 1, . . . , 16,
and inside periodicity averaged over all photodetectors
for a given subject, denoted as P̄detector(l), l = 1, . . . , 5.
The error bar plots corresponding to these two quan-
tities, P̄subject(k), k = 1, . . . , 16 and P̄detector(l), l =

1, . . . , 5, are displayed in Fig. 9. We also show the bar
plots of the scores and the scatter plots of the detected
periodicities with respect to the photodetector number
in Fig. 9.

Several conclusions can be drawn from these results:

(i) The averaged period estimates match the expected
value of P0, whether the average is computed over
detectors or subjects, as illustrated in Fig. 9.

(ii) For any detector or subject there is some disper-
sion of estimated periodicity values. The large
spread, of the order of 10% in each sense, may be
due to the jitter of target instances, to the presence
of context activity, and to the limited observation
interval containing, at most, eight target stimuli.

(iii) We have also a method to classify detectors
as responsive of BHR periodicity and the non-
responsive ones, that is, those detectors that do not
show any evidence of periodicity within the ex-
pected range. The discrimination method is based
on the not-in-the-range periodicity score, as illus-
trated in Fig. 10, over subjects 1 to 5. The reason
why some detectors do not yield conjectured peri-
odicity could be due to the lateralization effect for
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Figure 9. Plots of P̄subject (left) and P̄detector (right), the bars indicate the inter-quartile range of data, computed over admissible (that is,
within-range) cases.

that subject or simply to corrupted measurements.
One argument that supports lateralization conjec-
ture is that adjacent detectors all succeed or fail
in a group. For example, for Subject 1, detectors
3–12 are “good”, while detectors 1–2 and 13–16
are “bad” (see Table 4). One other reason could be
due to the location of the optodes with respect to
the light sources. Since the source-detector distri-
bution determines the volume of brain being sam-
pled, millimeter range shifts and alignments in the
probe will result in a significant change in the brain
volume being monitored. Finally, the corruption
observed could be due to the skin effects (larger
arteries on the skin surface right underneath the
optode) dominating the signal.

(iv) There are also marked differences between sub-
jects. For example, Subjects 1, 3 and 4 (especially
Subject 4) yield high periodicity scores consis-

Table 4. Photodetectors with Sin higher than Sout.

Photodetector quadruples

Subject Left (1–4) Mid-left (5–8) Mid-right (9–12) Right (13–16)

1 3 and 4 5 to 8 (all) 10, 11 and 12 16

2 -not any- 8 9, 11 and 12 13 to 16 (all)

3 4 5 to 8 (all) 9 to 12 (all) 15 and 16

4 1 to 4 (all) 5 to 8 (all) 9, 11 and 12 13 to 16 (all)

5 1 to 4 (all) 5 and 7 9, 11 and 12 13 to 16 (all)

tent across all their detectors, while Subjects 2
and 5 are dubious. Although inter-subject vari-
ability is always expected in such studies, there
is no standard procedure to isolate corrupted data
from statistical analysis for fNIRS signals. The
periodicity analysis method provided in this pa-
per might be used as a rule of thumb in identi-
fying the corrupted data or the patient that is not
cooperating.

4.3. Correlation Analysis

We have seen in Section 4.2 that fNIRS possesses ev-
idence of cognitive activity as reflected in the period-
ical patterns of target stimuli. We can further explore
such activity by correlating with our data a brain hemo-
dynamic response model, as borrowed from fMRI



80 Akgül, Sankur and Akın

Figure 10. Bar plots of the scores and the scatter plots of the detected periodicities with respect to photodetectors. On the left, the bars indicate
standard deviation of data. On the right, thick black bars enclose the expected range of periodicities. In the presented cases, good periodicity is
observed in Subject 4 while lesser periodicity exists in Subject 5.

analysis. One popular model is the Gamma function
expressed as

h(t) =
{

A(t − T )2e−(t−T )/τ for t ≥ T

0 for t < T
(13)

where τ is the time-constant that characterizes the
response, A is the strength, and T is the delay of
the response to the target stimulus. Let’s denote the
sampled Gamma waveform by the m-dimensional
vector h (where m = 40) sampled at the instants

t = 0, Ts, . . . , (m − 1)Ts, Ts being the sampling
period (1.7 Hz in the experiment). Implicit in each
h vector is the set of parameters τ and T , where τ

is the time-constant that characterizes the response,
A is the strength, and T is the delay of the response
to the target stimulus. Let’s denote the sampled
Gamma waveform by the m-dimensional vector h,
constituted of the samples of h(t) in (13) at the instants
t = 0, Ts, . . . , (m − 1)Ts and m = 40. Consider the
fNIRS signal x(t), detrended and, in addition, possibly
prefiltered to leave the BC-band, i.e., 30–330 mHz.
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Figure 11. Plots of percentage improvements in the correlation scores with Gamma response model (clockwise): (a) Improvement averaged
over all sessions and detectors; (b) Improvements averaged over all sessions and subjects, and (c) Improvement for Subject 4 averaged over all
sessions.

(i) Put into a vector form the 40 samples after each
target presentation instant to form one of the zk

vectors. Recall that there are 64 stimuli per ex-
periment, hence the vector index runs as k =
1, . . . , 64.

(ii) Constrain the time-constant τ of the Gamma
waveform in the 1.5–3.5 second range, and the
response delay T in the range 0–10 samples. We

search exhaustively for the best match in this pa-
rameter space.

(iii) For each x(k), find the best match that maxi-
mizes the normalized correlation coefficient be-
tween x(k) and h, i.e.,

ρ(k) = max
τ,T

〈h, zk〉
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where the samples of zk that precede the delay T
are set to zero.

(iv) If any prefiltering is used, say we focus on bands
B and C , then we denote the correlation as ρ(k) ≡
ρBC (k), and similarly for other band choices.

(v) The ρ(k), k = 1, . . . , 64 series for all detectors
and subjects are pruned out, by deleting low-
correlation sessions, such that we keep only those
correlations that exceed the threshold of 0.7. Fur-
thermore we calculate the mean of the correlations
per detector, mρ(l), where the detector index runs
over l = 1, . . . , 16.

We have computed the mean correlation profiles for
the original signals (no prefiltering) and for signals pre-
filtered in the BC (30–330 mHz) and C (60–330 mHz)
bands. The prefiltering of the AB band (0–60 mHz)
was specifically avoided to preclude any resonance ef-
fect with the Gamma response model. In Fig. 10, we
display some of these mean correlation profiles and bar
plots for cases where correlations exceed the threshold
of 0.7. As to be expected in the light of the assumed
Gamma response, we observe that:

Prefiltering helps in general to improve the corre-
lation scores. In fact, the scores have definitely in-
creased in the BC band, whether considered over sub-
jects or detectors. On the other hand, excluding the
B band, that is considering only the C band, we find
much lower scores. Another useful note is that the
inter-detector variability in the number of encountered
Gamma matches decreases in the BC-band. These ob-
servations point to the fact that the cognitive activity
is mainly localized above 0.03 Hz, that is, in the 30–
300 mHz range (Toronov et al., 2000; Prince et al.,
2003). The results are illustrated in Fig. 11, where we
contrast the percentage change in the number of ses-
sions exceeding the correlation threshold of 0.7 when
30–330 mHz BC-band is considered vis-à-vis the 60–
330 C-band or the full ABC-band. One can observe
that the correlation scores improve whether observed
over subjects or detectors by 10 to 50%.

5. Conclusions

Identification of fNIRS frequency bands where cog-
nitive activity predominates in single-event trials is an
important problem. Based on the clustering tendency of
time-frequency power spectra, we have determined that
there exist three bands of interest: A-band (0–30 mHz),
B-band (30–60 mHz) and C-band (60–330 mHz). The

A-band is conjectured to represent the context activity
and some cognitive activity. The B-band is predomi-
nantly cognitive-activity related, while the C-band ac-
counts for various physiological activities as well as
protocol-induced periodicity. Our analysis has covered
up to 330 mHz range since this was the cut-off fre-
quency of the built-in RC-filter in the fNIRS device.
These bands are found to be very similar to those in
related studies (Hu et al., 1999; Kuo et al., 1998; Obrig
et al., 2000a; Franceschini et al., 2000; Toronov et al.,
2000).

Correlation between the response model waveforms
(Gamma waveform) and the fNIRS signals becomes
maximum in the joint AB-band (0–60 mHz). On the
other hand, protocol-induced periodicity is best ob-
served in the BC-band (60–330 mHz). Since each sub-
ject was tested only once, we cannot comment on intra
subject variability. We believe that evidence of peri-
odicity in detectors provides a guideline for selecting
responsive photodetectors and subjects and discarding
non-responsive ones.
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