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Abstract. 

Most P300 BCI approaches use the visual modality for stimulation. For use with ALS patients this 
might not be the preferable choice because of sight deterioration. Moreover, using a modality different 
from the visual  one minimizes interference  with possible  visual  feedback.  Therefore,  a  multi-class 
brain-computer  interface  paradigm  is  proposed  that  uses  spatially  distributed,  auditive  cues.  Ten 
subjects  participated  in  an  offline  oddball  task  with  the  spatial  location  of  the  stimuli  being  a 
discriminating cue. Different inter-stimulus intervals of 1000 ms, 300 ms and 175 ms were tested. With 
averaging over multiple classifier outputs, selection scores went over 90% for most conditions; two 
subjects reached a 100% correct score. Corresponding information transfer rates were high, up to an 
average optimal score of 20.99 bits/minute for the 175 ms condition (best subject 37.80 bits/minute). 
We conclude that the proposed paradigm is successful for healthy subjects and shows promising results 
that may lead to a fast BCI that solely relies on the auditory sense.
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1. Introduction
Brain-computer interfaces (BCI) are a direct connection between the brain and a computer, without 

using any of the brains natural output pathways [Wolpaw et al. 2002]. Most BCI research is aimed 
toward  developing  tools  for  patients  with  severe  motor  disabilities  and  paralyzes.  This  group  of 
potential users could particularly benefit from BCI technology, since output pathways that are normally 
employed by the brain can no longer be used. 

So far, the primary choice of interaction modality is vision. However, the patient's inability to direct 
gaze,  adjust  focus  or  perform  eye  blinks  may prove  its  use  in  BCI  applications  to  be  difficult. 
Therefore, other modalities are being explored such as audition [Furdea et al. 2009; Hill et al. 2005; 
Nijboer et al. 2008; Sellers and Donchin 2006] and touch [Cincotti et al. 2007; Müller-Putz et al. 2006] 
to make BCI vision independent.  Moreover,  when using such alternative methods for patients with 
residual  vision,  the  visual  modality  could  be  used  exclusively  for  feedback  thereby  preventing 
interaction between feedback and stimulation.

The  fastest,  non-invasive  state  of  the art  BCI  systems depend on  the  P300  response.  In  most 
humans it is present without training in response to an attended rare event (oddball paradigm). This 
attended stimulus elicits a positive deflection in the ongoing brain potential, which in general has the 
largest amplitude over parietal regions [Conroy and Polich 2007]. It  has primarily been used in the 
visual P300 speller [Farwell and Donchin 1988; Lenhardt et al. 2008; Sellers and Donchin 2006], but 
its amplitude has also been shown to be attention dependent in auditory mode [Furdea et al. 2009; Hill 
et al. 2005; Kanoh et al. 2008; Nijboer et al. 2008; Sellers and Donchin 2006]. 

An oddball paradigm requires the stimuli to differ on at least one physical property, be it pitch, 
loudness or something else. As the location in space is also a physical asset of sound, it could be used 
as the discriminating property. In fact [Teder-Sälejärvi and Hillyard 1998] used this spatial aspect to 
present a subject with seven different oddball streams. They did not use the spatial location to separate 
targets from non-targets but rather to simultaneously present seven separate oddball tasks. An oddball 
paradigm based purely on spatial location was used in [Rader et al. 2008], but merely as a training for 
detecting stimuli from different locations in a later task. No behavioral- or neurophysiological data for 
this condition is reported. 

We hypothesize that adding spatial information to the auditory stimuli is an intuitive way to realize 
a multi-class auditory BCI. The present study was conducted to confirm that classification of the P300 
deflection in response to this spatial  information is  possible with the required  accuracy.  The setup 
would be flexible in the number of classes used and could increase the speed of auditory BCI.



2. Material and Methods

2.1 Participants

Ten healthy subjects (six male, mean age 30.5, range 22-55) were tested. Five subjects participated 
in condition C1000, three in conditions C300 and C175 and two participated in all three conditions (see 
Table  1  for  condition descriptions).  Seven subjects  reported  to  have normal  hearing,  two reported 
having difficulty with spatial localization of sounds in natural situations and one reported a high-pitched 
tinnitus in the right ear.

2.2 Task Procedure and Experimental Design

Subjects  sat  in a  comfortable  chair,  facing a screen 
with a fixation cross. They were surrounded by 8 speakers 
at ear height. The speakers were spaced evenly with 45° 
angle  between  them, at  approximately 1  meter  distance 
from  the  subjects  ear  (see  Fig.  1).  Speakers  were 
calibrated to a common stimulus intensity of ≈58 dB. At 
the  start  of  a  recording  session,  subjects  judged  the 
subjective  equality  of  the  loudness  from  different 
directions and alter these if necessary. Subjects were asked 
to minimize eye movements and other muscle contractions 
during the experiment.  The  PsychToolbox was used for 
stimulus presentation [Brainard 1997]. 

Three experimental  conditions were tested,  differing 
in  inter  stimulus  interval  (ISI),  the  amount  of  speakers 
used, the stimulus type and the number of repetitions (see 
Table 1). All conditions consisted of an oddball paradigm 
with the spatial location of the stimulus being either the 
only  discriminating  property  (C1000)  or  a  supportive  property  (C300  and  C175).  The  stimuli  in 
condition  C1000  consisted  of  band-pass  filtered  white  noise  and  were  equal  for  all  directions.  In 
conditions C300 and C175 each direction had a unique tone in addition to the noise, adding a second 
discriminative property. Prior to every trial, subjects were given a target direction from which they had 
to  count  the  number  of 
stimulus  occurrences. 
Presentation order  was pseudo 
random with the restriction that 
all  directions  were  stimulated 
in one block before continuing 
to  the  next.  Between  two 
stimuli from the same direction 
there  were  always  two  other 
stimuli to prevent target overlap.

2.3 Preprocessing

EEG was recorded monopolarly using a varying number of electrodes. The signals were filtered 
between 0.1 and 250 Hz with an analog bandpass before being digitized and stored at 1 kHz. For offline 
analysis  signals  were  low-pass  filtered  (below  42Hz  for  visual  inspection  and  below  10Hz  for 
classification) and subsampled at 100Hz. Data was epoched between 150 ms prior to and 800 ms after 
stimulus onset, using the first 150 ms as baseline. We refer to a single epoch as sub-trial All sub-trials 
belonging to one target presentation are collectively referred to as a trial. Sub-trials with a voltage 
deflection greater than 70 µVolt after linear detrending were rejected as artifacts. 

2.4 Analyses

All r2 values reported and used are signed r2 values (r2 value multiplied by sign of r value). Twenty 
channels were selected based on their  signed r2 difference between classes,  ten channels with high 
positive and ten channels with high negative values. Data from these channels was decimated by taking 
the mean of 5 samples, resulting in 16 post-baseline samples per channel. Each feature vector thus 
consisted of 320 dimensions. All dimensions were normalized to zero mean and unit variance based on 
the training set. The normalization vector was stored and used for normalization of the test set.

Classification was done using the Fisher Discriminant (FD) algorithm. Due to the dimensionality of 
the  features  (320  dimensions),  some form of  regularization was advisable.  We used  the  shrinkage 

Figure 1.Experimental setup.  Subjects are 
surrounded  by 8 speakers.  Numbered 
circles  indicate  the  different  speaker 
locations.

Table 1.Settings for the three experimental conditions. The speaker 
numbers correspond to those given in Fig. 1. One trial consists of a 
set amount of sub-trials given in the column “Sub-trials”

Condition ISI (ms) Speakers Stimulus Length (ms) Trials Subtrials
C1000 1000    1-8 noise 75 32 80
C300 300    7,8,1-3 noise + tone 40 50 75
C175 175    7,8,1-3 noise + tone 40 40 75



proposed in [Ledoit and Wolf 2004] which counterbalances the systematic error in the calculation of 
the empirical covariance matrix. A ten-fold cross validation was performed.

Two  types  of  classification  scores  can  be  distinguished:  binary  classification-  and  selection 
accuracy  [Furdea  et  al.].  (1) The  term  (binary)  classification  accuracy  is  used  for  the  binary 
classification of a single sub-trial It is defined as the percentage of sub-trials that is correctly scored to 
be a target or non-target.  (2) The term selection accuracy is used for the percentage of trials in which 
the target direction is correctly designated. 

After cross validation the classifier labels for all sub-trials were used to predict the outcome of the 
multi-class paradigm, i.e. to estimate the target direction. Taking a block of consecutive sub-trials, one 
for  each  direction,  the sub-trial  with the  most  negative classifier  output  was designated  the target 
direction.  To  increase  sensitivity,  classifier  outcomes for  multiple  sub-trials for  the same direction 
(within one trial) were averaged. This way, the influence of single sub-trials is decreased. Increased 
accuracy can be necessary in some applications, where errors are expensive. Because artifacts were 
rejected classifier labels for some directions were missing. Only the remaining valid sub-trials where 
used, therefore the averaging for those directions was done over less then the stated number of sub-
trials This is a realistic approach for future online settings, were artifacts may occur at any moment. 
Various amounts of sub-trials were averaged to evaluate the influence on the outcome. 

3. Results

3.1 Physiological response

Averaged ERP responses for one subject for all three experimental conditions are given in Fig. 2. 
For each condition the channel with the highest positive signed r2 value between 300-650ms is given. 
For this subject  the largest  difference is found over the PCP1, Cz and FC2 electrode for condition 
C1000, C300 and C175 respectively;  i.e. with faster stimulus rates the maximal difference between 
targets and non-targets shifts to more frontal areas. This trend is observed in most subjects.

(a) C1000 (b) C300 (c) C175

For condition C1000, all subjects showed an attention dependent positive deflection, albeit with 
different amplitudes, timing, r2 values and distributions. For the faster conditions, the positive deflection 
is  superimposed  on  the  rhythmic  responses  to  the  ongoing  stimuli.  Therefore,  no  typical  P300 
deflection is observed, but rather a discontinuation of the periodical wave pattern. This is especially 
true for the fastest condition (see Fig. 2c).

3.3 Classification

Binary classification scores for all experimental conditions and subjects were 70% or higher. For 
our unbalanced data set with ratios 1 to 7 and 1 to 4 (target to non-target), a classification score of 
87,5% and 80%, respectively,  could be obtained by assigning all  sub-trials to the non-target  class. 
However, the percentage of correctly classified target and non-target sub-trials was comparable, thus 
blind labeling of all sub-trials as non-target was not the case.

In the light of BCI,  the selection accuracy is of main interest.  Chance levels for the selections 
accuracy are 12,5% and 20% for an eight and five class setup, respectively. When using only a single 
set of sub-trials all selection accuracies were above change level (range 21,9 – 60). In order to increase 
accuracy, averaging of classifier outcomes was applied for an increasing number of sub-trials Selection 
accuracy quickly rose above 70% for most subjects. The per-condition average selection scores are 

Figure 2.Grand average traces for the different experimental condition for subject VPzq. For each condition,  
the  channel  with  the  highest  positive  signed  r2 value  in  the  300-650ms  interval  is  represented.  The  
horizontal color bar indicates the signed r2 difference between the classes. With the long ISI of 1000 ms 
(a),  a  prominent  P300  peak  is  visible  for  the  target  condition  that  peaks around 400  ms.  A  positive  
deflection is still observable with the faster stimulus presentations of 300 ms (b) and 175 ms (c), although  
these are lower in amplitude and r2 difference. Black bars indicate stimulus presentation.



presented in Fig. 3a. Generally, the selection scores are highest for condition C1000, although with an 
increasing number of repetitions the accuracies of all conditions converge. Only one subject did not 
reach  the 70% threshold  on  any number of  repetitions;  all  subjects  in  conditions  C300  and  C175 
eventually reached a selection score of 90% or higher.

Closely related  to the selection score is  the information transfer  rate  (ITR).  Fig.  3b shows the 
evolution of the average ITR corresponding to the average selection accuracies in Fig. 3a. As average 
selection accuracies were comparable for all three conditions, the ITR increased with decreasing ISI. 
ITR for condition C175 is the highest, followed by condition C300. Condition C1000 is initially only 
slightly worse then condition C300, despite of a more than tripled ISI. It is important to note here that 
for condition C1000 eight speaker directions were used, in contrast to the five used in the other two 
conditions. More classes means more information in a single selection.

The optimal number of repetitions varied for all subjects and conditions. Therefore, the lines in 
Fig.  3b  underestimate  the  optimal  outcome.  When considering the best  outcome for  each  subject, 
average best ITR scores were 5.31, 9.47 and 20.99 (best subject 37.80) for conditions C1000, C300 and 
C175, respectively (see Fig. 3c). Even when only selection accuracies of over 90% are considered the 
corresponding optimal ITR scores are high: 3.35, 7.05 and 14.41 (best subject 20.60) for conditions 
C1000, C300 and C175, respectively. 

(a) Average selection accuracy (b) ITR for different numbers of repetitions
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4. Discussion
We discuss here  a  new experimental  paradigm for  an auditory BCI.  In  contrast  to  most other 

auditory BCI setups, our setup involves an intuitive multi-class paradigm that can readily vary in the 
number of classes.  From condition C1000 it  is  evident that  the spatial  location of a  sound can be 
enough to trigger a P300 response, as it was the only discriminative stimulus property.

The  average  optimal  ITR  for  condition  C175  was 20.99.  This  is  a  competitive  bit  rate  when 
comparing to state of the art auditory BCI systems. [Kanoh et al. 2008] reported an average ITR of 
around 5 bits/min on their binary BCI, but only when they used all data for training and testing, thereby 
applying the classifier to data it had already seen. In the binary auditory setup by [Hill et al. 2005], an 
ITR of 4-7 bits/minute is reported. Our system owes its high ITR to its genuinely multi-class nature. 
Another multi-class, auditory BCI is reported in [Furdea et al. 2009]. They used spoken numbers as the 
stimulus for eliciting an ERP. For their 5x6 and 5x5 spelling matrices an average classification accuracy 
of respectively 40.65% and 60.36% was reported. These are essentially 30- and 25 class BCIs, allowing 
for high ITRs even when more time is needed for each selection. However, a fair comparison can not be 
made, as they only report the classification accuracy after using 20 stimulations, which took over 3 
minutes to achieve. 

The  average  ITR  for  condition  C175  went  down  to  14.41  when  only  90%  correct  selection 
accuracies were considered (best subject 20.60). Although this is a drop in ITR of about 32%, it is a 
score that is still competitive with other auditory BCI systems and has a much higher accuracy barrier. 
This high accuracy and corresponding ITR encourage the further development of this paradigm. Several 
subjects reported that the shorter ISI actually improves their ability to focus on the task.

Visual  P300 BCI systems are  known for their fast  operation and corresponding high ITR.  For 
instance, in a recent online visual speller study [Lenhardt et al. 2008] reported average ITR values of 
32.15 bits/minute. For this they used four repetitions with an average classification score of over 80%. 

Figure 3.Selection  accuracy  averaged  per  experimental  condition  (a)  and  the  corresponding  information  
transfer rate (b). Selections accuracy is generally higher for condition C1000 when compared to the C300 
and C175. However, the much faster stimulus presentation in the latter two conditions results in higher  
average ITR values.  When considering  the per-subject  optimal  number or repetitions,  the average ITR  
increases. The distribution of these optimal ITR accuracy for the different conditions is given in (c).



Maximum ITR for a single subject was as high as 92.32 bits/minute using two repetitions. It  can be 
assumed that the reported ITR will go up, when the optimal number of repetitions is determined for 
each subject  individually.  Already in the original  application of the visual  spelling system in 1988 
[Farwell and Donchin 1988], ITR values of 12.0 bits/minute (or 10.68 according to [Wolpaw et al. 
2000]) were reported. In a direct comparison auditory BCI systems lag behind in their performance. 
However, the setup proposed in this work takes a step in closing the gap between visual and auditory 
performance.
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