INTERPRETATION OF REGRESSIONS WITH MULTIPLE PROXIES
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Abstract—Multiple proxy variables are typically available for an unob-
served explanatory variable in a regression. We provide a procedure by
which the coefficient of interest can be estimated from a regression in
which all the proxies are included simultaneously. This estimator is
superior in large samples to the common practice of creating a summary
measure of the proxy variables. We examine the relationship between
parents’ income and children’s reading test scores in the United States, and
between parents’ assets and children’s school enrollment in India, and
demonstrate that the reduction in attenuation bias from a better use of
proxy variables can be significant.

I. Introduction

EASUREMENT error in an independent variable in a

regression model and the resulting attenuation bias in
the coefficient estimate is one of the most well-known
problems in empirical work. Although a great deal of
attention has been paid to the effects of a single mismea-
sured independent variable, much less is known about the
analytics and empirical strategies when more than one
measure or proxy of the variable is available. It stands to
reason that when more information is available, the problem
of attenuation should be reduced. The question is how to do
this in the best possible way.

In this paper we show that the way in which additional
measures are currently incorporated in applied work is
generally ad hoc and hardly ever optimal. Most commonly,
researchers enter in a regression a single summary measure
created from their set of proxy variables. We propose a
superior method in which the proxies are entered separately
in the regression and then a summary measure of their effect
is created by combining their coefficients. To motivate this
procedure, consider the following common empirical appli-
cations.

A. Permanent Income and Intergenerational Mobility

One example where the addition of more information
seems to make a clear-cut difference is in the estimation of
the effect of parents’ permanent income on the education,
health, and subsequent earnings of their children. The stron-
ger the association between parental permanent income and
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child outcomes, the greater the degree to which income
inequality is transmitted across generations. Estimating the
precise magnitude of this association has proved difficult
because permanent income is not observed. Instead, ob-
served income in any year includes transitory components
representing luck, measurement error, and other unantici-
pated shocks to income. A regression of children’s outcomes
on parents’ observed income will understate the relationship
between parental permanent income and child outcomes,
understating the degree to which economic success or fail-
ure is transmitted across generations. To address this esti-
mation problem, Solon (1992), Zimmerman (1992), and
more recently Mazumder (2001) average parents’ income
over several years to arrive at a more precise measure of
permanent income, and they show that the estimated regres-
sion coefficient increases markedly as more years of income
are included in the average, suggesting that the problem of
attenuation is reduced.

One potential problem with an average of annual income
as a measure of permanent income is it assumes that
incomes earned at different points in the life cycle are
equally good measures of permanent income. If income
earned earlier in life is a relatively noisier measure of
permanent income, then it would seem a weighted average,
with less weight given to income earned in earlier years,
might do even better than a simple average. We will show
below how such weights can be computed and that a better
use of annual earnings data increases the estimated effect of
parents’ permanent income on children’s reading test scores
by over 30%, compared to an estimate derived from a
simple average of annual earnings.

B. The Effect of Wealth on School Enrollment When Wealth
is Not Observed

A more problematic case occurs when the variable of
interest is simply not measured at all. For instance, the
Demographic and Health Surveys are large household data
sets with nearly identical questionnaires in over 40 devel-
oping countries, but they contain no information on re-
spondents’ income or wealth. To study many interesting
questions about the determinants of health, educational
attainment, or other household decisions requires income or
wealth to be proxied by a variety of asset variables, such as
whether or not the family owns a car or television, and the
source of its home drinking water. Filmer and Pritchett
(2001) suggest that the factor that accounts for the largest
fraction of the variance in ownership across the assets is
likely to be wealth and thus the first principal component of
21 such asset variables is a natural measure of household
wealth. One problem with this procedure is that if owner-
ship of each of the assets is a function of wealth and also of
tastes or other characteristics of the household, the first
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principal component will extract part of both wealth and
tastes. There is no reason to believe that this composite will
maximize the predictive power of the asset variables. We
show below that a considerably stronger signal can be
extracted, leading to an almost doubling of the regression
effect of wealth on the probability of school enrollment in
India, compared to that estimated by Filmer and Pritchett.

C. Other Approaches to Utilizing the Information in
Multiple Proxies

The two examples above show differing approaches to
the question of combining the information from different
variables. These are not the only ways of trying to extract a
stronger signal from various noisy sources of information,
however. Glaeser et al. (2000), for instance, create an index
of trust by standardizing (subtracting the mean and dividing
by the standard deviation) responses to several survey
questions and then adding them up. Mauro (1995) uses
indexes of political and labor stability, “red tape,” corrup-
tion, terrorism, and several other outcomes compiled by
Business International, a private consulting firm, to measure
institutional efficiency and corruption. Because he believes
many of these indexes measure the same underlying phe-
nomena, he averages the indexes together and uses the
average as a regressor in models of growth and investment
across countries. Herrnstein and Murray (1994) construct a
measure of family socioeconomic status by averaging stan-
dardized values of parents’ education, Duncan occupational
scores, and family income. Similar examples are common in
many fields of applied research.

Several considerations underlie the authors’ strategies to
summarize the proxies in a single, new variable. Firstly, the
measurement error problem may be reduced by taking some
linear combination of the proxies. As Mauro (1995) notes:

Part of the rationale for aggregating the indices into
composite subindices is that there may be measure-
ment error in each individual index, and averaging the
individual indices may yield a better estimate of the
determinants of investment and growth.

Secondly, researchers may be worried about multicol-
linearity. If the different proxies are in fact all measuring the
same underlying phenomenon, then there is only one struc-
tural coefficient to be estimated. Putting multiple proxies in
the regression may likely result in many insignificant indi-
vidual coefficients.

Thirdly, the coefficient on a single summary of the
proxies may be more readily interpretable. To continue the
example from the Demographic and Health Surveys, it is
not clear how to infer the effect of household wealth on
children’s education from the coefficients on variables in-
dicating ownership of a television or the availability of
running water in the home. In other cases, a researcher may
enter a summary measure of the proxies to compare its
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coefficient with the coefficient on another variable in the
model or with estimates from different models.

We propose a new estimation method and in doing so
show that these concerns are incorrect, but incorrect in
interesting ways. To use an index or summary measure
created from the proxies that extracts the largest possible
signal requires the researcher to know the relative degree of
noise contained in each proxy variable, as well as the
correlation in noise across variables. Without knowledge of
these magnitudes, it is impossible to create the optimal
summary measure from the proxy variables. Using the
proxies simultaneously in a multiple regression delivers this
information as part of the regression coefficients, and the
researcher then simply combines the coefficients in a known
way to obtain the estimate of the effect of the latent factor.

Our procedure is best thought of as a method to interpret
the coefficients in a regression under the null hypothesis that
the variables are all generated by a common latent factor. A
virtue of the procedure is its transparency. If the null
hypothesis is not true, then the regression is not invalid,
only some of the inferences that can be drawn from it. By
contrast, data manipulations done before the regression can
obviously not be undone by a skeptical reader.

The plan of our discussion is as follows. In the following
section we will introduce the basic problem we wish to
investigate and the related literature. We do so by means of
a simplified case with two proxy variables for a single
unobserved factor. The main theoretical results are in sec-
tion III. We present our main theorem, in which we prove
the optimality of putting all the proxies into the regression,
and discuss the interpretation of the result. In section IV we
consider how our findings are affected by the introduction
of correctly measured covariates. Then in section V we
return to the examples described above and show that our
estimator performs considerably better than the approaches
previously used in the literature. We conclude by pointing to
a number of open questions; an appendix contains the
proofs of our main results.

II. The Basic Problem

The circumstances that we wish to investigate can be
highlighted by means of the following equations:

y = pBx* + g, (1a)
X, = x*+ uy, (1b)
Xy = pox* + uy, (1c)

where (3, relating y and x* in equation (1a), is the parameter
of interest. We assume that x* is unobserved, but that we
have the two observed proxies x; and x,. We further assume
that x* is uncorrelated with €, and u, and u, are uncorrelated
with x* and €. That is, the proxy variables do not have
independent effects on y. These assumptions are routinely
imposed when researchers assume they have classical
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measurement error. Finally, we allow the covariance be-
tween u; and u,, denoted by o,, to be unrestricted.

If we regress y on the first proxy, we have the well-known
case of classical measurement error with the attendant
attenuation bias. The OLS estimator b of  will converge
asymptotically to

o
b= BO')ZC + o¥ 2)
where ¢,> = var (x*) and o> = var («;). The parameter 3
is not identified. As Aigner et al. (1984) note, we may be
able to identify 3 from higher-order moments if the latent
variable x* is not normally distributed.

In order to identify the parameter, in general we need one
more restriction. If we set cov (u, u,) = 0, then we could use
X, as an instrument for x; in the regression of y on x;. A
different type of restriction is if we are able to measure o;. This
is possible, for instance, if the second proxy variable is actually
a repeat measurement, carried out for a subset of observations
under controlled conditions. In this case we can obviously also
retrieve o> and then correct the OLS estimates. This is the
errors-in-variables estimator (see Fuller, 1987).

We might consider whether the relationships between the
proxies allow us to identify the common factor x*. This is
the domain of factor analysis (see Aigner et al., 1984). In
general this requires us to make some additional assump-
tions. We need to impose orthogonality between the error
variances u; and u,, and also adopt a normalization on the
coefficients. The factors so isolated are only identified up to
multiplication by an orthogonal matrix.

Principal-components analysis achieves a unique decom-
position, but does so by the expedient of identifying the
common factor with the linear combination of proxies that
maximizes the explained variance. It is not clear why this
concept should correspond to the structural relationships
underlying equations (1a)—(1c). Indeed, if the assumption of
orthogonality between the error components fails, then this
procedure is guaranteed to produce a composite of the factor
x* and the commonality in the errors.

Other identification strategies involve adding equations
or specifying the process which generates the latent vari-
able. In the mmMIC (multiple indicators, multiple causes)
model, for example (see inter alia Aigner et al., 1984;
Goldberger, 1972; Joreskog and Goldberger, 1975), it is
assumed that at least one more relationship is available
between an indicator variable and the latent variable, par-
allel to that in equation (la). The latent variable itself is
written as a function of a set of observable variables, that is,
equations (1b) and (1c) are replaced by

x* = o X + Xy + Us,
and the proportionality relationships between the different

equations are exploited to achieve identification. A general-
ization of this approach is the LISREL model (see Bollen,
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1989). In this model the structural parameters are identified
by cross-equation restrictions.

We assume that these sorts of strategies are not available
for the cases under consideration. In particular, we assume
that the researcher is not willing to make additional assump-
tions beyond those already given for equations (1a) through
(1c), and the empirical problem is how best to use the proxy
variables to minimize the attenuation bias, if not eliminate
it. The issue therefore is how to make the best of a bad
situation. Throughout, however, we restrict attention to
models that are linear in the parameters.

Leamer (1983, pp. 314-315) has a discussion of “proxy
searches” in which he addresses precisely this issue. His
discussion is, however, exclusively about how to decide which
one of the two (or more) proxies to include in the regression.
His advice is to pick the variable which yields a high R? and
which has a low variance. He does not consider whether one
could do better by combining the information from the proxies.

In order to hone our intuition, let us consider the system
in equations (la)—(1c) with p, = 1. The covariance matrix
of x; and x, is given by

2 2 2
o, toy oitop

Exx =

’

2 2 2
g, to, o,to;

and the covariance matrix of u#; and u, by

2
(O 0'12:|
B

2
O, 03

Sw=|

with o, # 0. By our assumptions cov (y;, x;) = cov
(y1» x2) = PBo?, and hence the coefficients estimated from
regressing y on proxy 1 or proxy 2 are given asymptotically,
respectively, by

2 2

X

o
b'=B—5—— and b*= .
BO'Z‘FO'% Boz-i-ag

X

Because the denominator is just the variance of the proxy
variable, it is clear that the proxy with the smaller variance
will give the least biased results.

What were to happen if we were to take a simple average
of the two proxies? In this case

5(x1+x2)=)_c=x*+it

with var (1) = }‘ (07 + 03 + 20,). There clearly is no necessity
that this be smaller than the minimum of o} and o3. In
particular, if one proxy is a good one and the other much
worse, simply averaging them is unlikely to be the optimal
strategy. Other linear combinations of the variables are likely to
get a much better reduction in the error variance. Indeed, let
uy = d;u; + d,u, be a linear combination such that 8, + &, =
1; then it is straightforward to show that the choice of 9, that
will minimize the variance of the weighted average is given by
8 = (0 — oplo? 20y, + o3). The variance of the
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linear combination in this case will be (o307 a)/(o}
— 20y, + 03), so that the estimate of B is given asymptot-
ically by

2
X

(0

. ool
Y ot — 20, + 03
No other linear combination of x; and x, will produce an
estimate of [3 with less attenuation bias. Unfortunately, we do
not know the variances and covariance of u; and u,, and as it
stands cannot compute this optimally weighted average of the
proxies.

What happens if we run the regression of y on both
proxies? The multiple regression coefficients will be given

asymptotically by 23y, where
Bo:
Bot]

It is straightforward to show that the coefficients on x; and
X, are

So=|

0')2:(0'% — 0

b, = (3a)
BO‘?O‘% + ¢lo5 — 2020, + 005 — 01,
2 2
by=B o (0] —012) (3b)
2 - .
olol + oo} — 2020, + olol — o3,
This does not look very promising, but note that
()-)26(()-% + 0'% —20,)
by +b,=B 55 2 2 2 2. 2 2
1
0,0] + 0,0, — 20,0, + 0705 — 01,
B .
= 2 2 2 4)
2 4 001 — 02
Oy 2 2
o] — 20, + 03
= b*,

so that adding up the coefficients of the two variables yields
an estimate that is precisely equal to the coefficient obtained
on the optimally weighted combination of the proxies. What
is even more remarkable is that we did not need to know
anything about the relative magnitudes of error variances
and covariances in order to achieve this result—the regres-
sion accomplished this by itself.

We will show in the next section that this result holds true more
generally—the attenuation bias can be minimized when all the
proxies are entered separately in a multiple regression. Without
additional assumptions or data, one cannot in general compute an
estimate of [3 that is guaranteed to be less biased than b*. We need
to proceed with some care, however, in the situation where p, #
1. In this case the two proxy variables are not equally correlated
with the latent factor. In general, then, we will want to take a
weighted sum of the regression coefficients.
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III. The General Case

This section considers the more complicated situation in
which there are an arbitrary number of available proxies for x*
and the proxies may have different degrees of correlation with
x*. We begin by demonstrating that although {3 is generally not
identified, attenuation bias is minimized by including the proxy
variables separately in a regression and then constructing a
weighted sum of the coefficients on each proxy variable, where
an estimate of p; is the weight given to coefficient j. We discuss
the interpretation of regressions with multiple proxies, relate
the new estimator to index construction, and conclude the
section with a discussion of an assessment of an alternative
instrumental variables estimation strategy.

We now assume that we have k proxies, with

X

%
P=Ppx*

forj =1, ..., k. We continue to assume that cov (u;, &) =
0, cov (u, x*) = 0 for all j, but now assume that the
covariance matrix of the u;’s is unrestricted; that is,

2
0y Opp Ok
2

, O, O -+ Oy
Zw=EWUU)=| . . T
2
Ok O -+ Oy

where U = [u; uy ... uyl.

A. Identification of p and Nonidentification of 3

We note that as it stands the coefficients p; are not identified.
The same observations of y and the x;s would be consistent with
appropriately rescaled vectors p and 3. Consequently we adopt the
normalization [already used in equation (1b)] that p; = 1. This
amounts to fixing the scale of the latent variable x* in terms of the
observable x;. Other normalizations are possible, such as [|p|| = 1.
None of our results depend on the precise normalization adopted.
Whichever scale is adopted, our procedure will lead to the small-
est attenuation bias in the estimates.

The scale is important, however, when comparing the mag-
nitude of estimates across models. In some applications there
may be a natural way to select the scale of the latent variable.
For example, in our permanent-income example below, we use
income earned when the child’s mother is 22 and 23 years old
as a scale for permanent income. Models that have appeared in
the literature tend to scale variables implicitly by the average of
income over the lifetime, which is a larger scale than our
choice. Consequently, we need to rescale our estimates to make
a valid comparison with those that have appeared in the
literature. In other applications there may not be a natural scale.
For example, in our example of household wealth and school
enrollment in India, we choose the number of rooms in a house
as a scale for wealth.

The available information is contained in the covariance
matrix



REGRESSIONS WITH MULTIPLE PROXIES

B0l + o7 Bo? Bpaos
Bo'?c U)zc + 0’% PzU)zc + o0
>, =EZZ) =| Bpoi p0oito, piort o
L Bpios PiOs T O paprO; T Oy

where Z = [y x| x5 ... Xz

There are altogether k(k+1)/2 unknown parameters in
S.uws k — 1 parameters in p, and the parameters B, o2, and
o2. Because there are altogether (k + 1)k + 2)/2 + 1
unknown parameters in 2, but only (k + 1)(k + 2)/2
pieces of observable information, we are short one restric-
tion in order to identify the parameter (3.

Observe, however, that the vector p is identified from the
covariances between the dependent variable y and the proxies:

_cov (y,x)
~ cov (y,x)

P; (3)

As noted above, there are several ways in which we could
achieve identification of (3: any restriction on the covariance
matrix of X = [x; x, ... x;] will do so in principle. Zero
restrictions on any of oy; would allow us to use x; as an
instrument for x;. More generally, a zero restriction on oy,
would allow us to use x;, as an instrument for x; but the
resulting estimate would need to be rescaled to take account
of the fact that x; is not on the same scale as the latent
variable x*. Because we have an estimator for p; this is
easily achieved. We have

_ cov (1) cov (y.)
~ cov (x;,x,) cov (y,x,)

The first factor is the instrumental variables estimator; the
second is the GMM estimator of p;.

If we know the magnitudes of o2 or of any of the error
variances or covariances, we could construct a generaliza-
tion of the errors-in-variables estimator. As in the previous
section, however, we will assume that we do not have any
plausible restrictions. In this case the issue is how to
optimally use the information contained in the proxies in
order to minimize the attenuation bias.

B.  Minimizing Attenuation Bias
We begin by introducing some additional notation. Let
x° = X3

be any linear combination of the proxy variables, where X =
[x; x5 ... x]. By construction

X =x*p' + U,

where p’ = [1 py ... pil. It follows that
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Bpkoi
Pko'i +t ou
Pzpko'i + oy |,
pios + o}
x> = x*p'd + U3, (6)

and hence the structural model in equation (la) can be
written as

B
p'd

X+ e — Us.

y = pra

Our two-variable example above assumed that p; = p, = 1
and 8; + 8, = I, which implies p'd = 1. In general there is
obviously no reason why one might expect that p'd = 1. One
could interpret a value of p'd = k # 1 as a rescaling of the
latent variable x* or equivalently of the parameter (3. In the
presence of attenuation bias this rescaling could exacerbate or
reduce the attenuation bias. In the absence of additional infor-
mation, however, the direction of the impact is unknowable.

Our main result—contained in the theorem below—is that
simply including the proxy variables separately in a regression
and then aggregating their coefficients produces the estimate
with the minimum attenuation bias among the class of com-
posite proxy variables in which p’d = 1.! Other combinations
of proxy variables in which p’d = k # 1 may do better or
worse, but it is not possible to characterize the bias without
additional assumptions. However, we can map all these com-
posites into the set where p’d = 1. In this case the direction of
bias becomes known and the condition of our theorem applies.
Formally, the generalization of the discovery we made in the
two proxy case is contained in the following theorem:

Theorem 1. Let 3 be the OLS estimate in the regression
of y on x°, let b be the OLS estimate in the regression of y
on X, and p be the GMM estimate of p. Then

Iplim B(p'3)| = [plim p'b| =< |B],
where

0’?:(8,9)2 + S,EUU d)
1)
| 2]
o2 Doupt+ 1)

! We thank one of our referees for sharpening our discussion on this
point.

plim B(p'd) = B(l

phn1ﬁ77==B(1 0
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and 2y is the covariance matrix of X. For every 8 # 0 we
have

1 33 d
S .
Uip,El_/z/P +1 0:8'p)+8' 2y d
Equality holds only if
5=cXup

for some ¢ # 0.

The proof is contained in the appendix.

Three points follow from this theorem. First, if p'd = 1,
the researcher can do no better than including the proxies
simultaneously in the regression and then aggregating their
coefficients. Second, if p’d = k # 1 and no additional
information is available, one will get unpredictable results:
The point estimate 3 may be above or below the true value of
[, but one can say little more than that. However, one can
always rescale x® by dividing it by p’d (this rescaling is feasible
because p can be consistently estimated and & is chosen by the
researcher). Inspection of equation (6) reveals that this rescal-
ing turns an ad hoc combination of the proxy variables into a
case of classical measurement error. Because dividing x° by
p'd is equivalent to multiplying 3 by p’3, theorem 1 says that
rescaling an ad hoc combination of proxies into a case of
classical measurement error will lead to a coefficient estimate
that contains a larger attenuation bias than p'b.

Third, there is in principle always some rescaling that
eliminates the attenuation bias. For instance in our two-
variable example above with p; = p, = 1, if 8, = /(0> +
o?) and 8, = 0, then a regression of y on 8,x; will produce
an unbiased estimate of (3. This rescaling of the first proxy
variable is equivalent to the errors-in-variables rescaling of
the OLS estimator. This, however, requires additional infor-
mation, namely the value of o7 or o2,

The theorem therefore covers all of the procedures out-
lined in the introduction—averaging, standardizing, and
then adding—and construction of the first principal compo-
nent. In any particular empirical application, a researcher
using one of these traditional methods for dealing with
multiple proxy variables may compute an unbiased esti-
mate, or an estimate that is less biased than p’b. Unfortu-
nately, though, there is no way to know whether the estimate
is upward or downward biased relative to 3, or whether it is,
in fact, less biased than p’b. If, however, we rescale these
procedures so that the direction of bias becomes known,
they will have an attenuation bias that is strictly larger than
the attenuation bias from our procedure.

We reiterate that the appropriate way of aggregating up
the coefficients on the k proxy variables in the multiple
regression is given by

é cov(y,x)

cov(y,x;) by

)]

Jj=1
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where b; is the coefficient on x; in the multiple regression.

Another way to understand this result is to note that the
formula in equation (7) provides the natural generalization
of the errors-in-variables formula in equation (2), with the
generalized variances |2 yy| and [2xx| replacing o7 and o}
respectively (see Dhrymes, 1974, p. 56). As in the formula
for the bias resulting from a single mismeasured indepen-
dent variable, the size of the attenuation bias in the multiple-
proxy-variable case depends on the ratio of the variance in
the error components to the total variance in the proxy
variables.

C. Regression Inference and Index Construction

Our procedure obviously depends on the validity of the
underlying assumptions. If cov (u;, €) # 0 and the proxies
belong in the main regression [equation (1a)], then clearly
the process of aggregating up the coefficients will not
correspond to any parameter of interest. Nevertheless, the
procedure is more robust to departures from the validity of
the underlying assumptions than will be index construction
prior to estimating the regression.

An estimate of p can be reported with the regression
results, and the reader can then assess the plausibility of the
common-factor assumption. For example, if the latent vari-
able is wealth, it would be strange if the number of rooms
in one’s house did not load strongly onto it. Furthermore,
given p, it is possible to provide different estimates of 3,
depending on whether particular proxies are viewed as
having independent effects or not. The transparency of this
procedure is attractive.

Strictly speaking, our procedure should be viewed as
an interpretation procedure, rather than an estimation
procedure. By aggregating the k different regression
coefficients, our procedure gives a way to interpret how
changes in the underlying unobserved variable x* affect
the dependent variable y. The coefficients on the proxies
themselves have the less straightforward interpretation of
the effect of a unit change in the proxy holding all other
proxies constant.

Another way in which we can interpret the procedure is
as a particular way of constructing a composite index from
the separate proxies. Indeed, as theorem 1 shows, there will
always be one linear combination of the variables that will
provide exactly the same coefficient as the estimator in
equation (8). The multiple regression can therefore be
viewed as implicitly constructing an index from the separate
proxies. Our procedure provides the coefficient on this
index. Indeed, we can make this implicit index explicit:

k
E j’
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where b; is the j" regression coefficient. By construction this
index is on the same scale as x; and will reproduce b° as the
coefficient in the regression.”

This index is the common factor in the proxies that best
explains y. In a regression with a different dependent variable,
a different index would be selected by the procedure. One
should therefore be cautious in strictly identifying the index
with the underlying latent variable. At the same time a virtue of
the index is that it allows us to do various checks on the
plausibility of the procedure. For example, the correlation
structure between an index representing wealth and other
variables can be compared with a similar correlation structure
estimated from other data utilizing observed wealth.

If we view the regression as a procedure for implicitly
constructing an index, then the individual regression coef-
ficients have the interpretation as weights. From the final
equality condition in theorem 1 it is clear that this reweight-
ing must work so that the weight is proportional to the
correlation with x and (in a sense) inversely proportional to
the error variance. The multiple regression procedure must
therefore parcel out the overall regression coefficient b”
proportional to p and inversely proportional to the error
variance. We can show this somewhat more precisely.

Proposition 2. Let b; be the i regression coefficient in the
multiple regression of y on X, that is,

b, =el(X'X)"'Xy,
where ¢; is the unit vector with 1 in the i position. Then

2 p(i)|
X uu

plim b; = BTXX’

9

where 204 is the matrix obtained by deleting row i of 2y

and replacing it with the vector p’.

The proof is contained in the appendix.
In the special case where Xy is the diagonal matrix, it
follows that

plimé _ Pin;eiO'/%
bj ijk#jO-l%

. pi(T]2

pjo-iz‘

Several additional points follow from this result. Firstly,
if B = 0, then plim b; = 0. This means the hypothesis that
B = 0 is testable as a joint hypothesis that the coefficients
on all the proxies are jointly 0. Because |plim p'b| < |B|, one
could also test whether p’b is statistically different from O.
Unfortunately, without knowing the degree of attenuation

2We have & = (1/b") b with b = (X'X)~' X"y. Consequently 8’ p = 1
(because b = b' p) and (3" X' X d)" ' 8'X'y = br.
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bias in p'b, the true significance level or the power of this
latter test cannot be determined. It bears pointing out that
even if the researcher is not concerned with the magnitude
of 3 and simply wants to test for statistical significance, it is
still preferable to obtain the least attenuated estimate as
possible to maximize the chance of rejecting a false null
hypothesis.
Secondly, it follows from our proof of theorem 1 that

k
|Exx| = |ZUU| + Epio-)zc E'l)](ll])

i=1

There are therefore & + 1 terms in the denominator of
equation (9). If the proxies are all of similar quality (that is,
if the p’s and error variances are not vastly dissimilar), then
the individual coefficients should be of the order of B/k. As
more proxies are added, the individual coefficients should
tend to 0. It is this feature that possibly accounts for
researchers’ apprehension in adding multiple noisy mea-
sures of the same variable into a regression. It should be
clear, however, that this is not the appropriate metric in
which to think about the size of the coefficient. It is not the
individual contributions that matter, but the aggregate one.

D. Biased Instrumental Variables Estimation

The results above indicate that including proxy variables
simultaneously in a regression is superior to the ad hoc
index construction approaches seen in the literature. Nev-
ertheless, it is not clear that it is the best approach possible.
For instance, if the error components in the proxies are
mutually independent, then instrumental variables will de-
liver an unbiased estimate of the structural parameter. One
might speculate, therefore, that biased IV estimation in
cases where the errors in the proxies are only weakly
correlated might still do better than our recommended
approach.

If two proxy variables are available—x; and x, defined as
above—then biased IV estimation may indeed have a
smaller asymptotic bias than our proposed estimator.
Whether the bias is larger or smaller in a particular situation
depends on the magnitude of the variances and covariances
of the error components u; and u,. If k > 2 proxy variables
are available, then the researchers must choose the optimal
linear combination of k — 1 proxies for which the error
component is least correlated with u;. The conventional
two-stage least squares estimate will definitely fare badly in
this regard, because it will seek to explain both the part of
x; which is correlated with x* and also the error term ;.
Without making additional assumptions, it is impossible to
construct the optimal instrument or ascertain whether the
resulting bias is larger or smaller than the bias from our
proposed estimator. Furthermore, the direction of the IV
bias is indeterminate. Consequently, reporting both the es-
timates derived from a least squares regression with all
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proxies included as well as any IV estimates is likely to be
a preferred strategy.’

4. The Effect of Covariates

It is well known that the attenuation bias in the OLS
coefficient on a mismeasured variable is increased when
correctly measured variables are also included in the model,
provided that these variables are not correlated with the
measurement error (Griliches, 1986). Furthermore the bias
is transmitted to the coefficients of the correctly measured
variables, generally with the opposite sign. These results
apply in our case as well, as is shown in the following
proposition:

Proposition 3. If the true model is given by

y=x*B +Zy+eg,

where Z is a matrix of correctly measured covariates, then the
estimator p’b provides an estimate of 3 that has lower attenu-
ation bias than any other linear combination of the proxies.
If Z is uncorrelated with any of the measurement error
components u;, the degree of attenuation bias is given by

’EUU’ - ’EUU’
|EMZXMZX| B |EXX

where 2y xy x is the covariance matrix of the residuals
when X is regressed on Z That is, attenuation bias is
increased in the presence of covariates. Furthermore, the
estimate of y will be biased.

If Z is correlated with any of the measurement error
components, then the presence of covariates may increase or
decrease the degree of attenuation bias, but the bias in y will
be exacerbated.

)

The proof of this result is based on repeated applications
of the Frisch-Waugh-Lovell theorem (Davidson & Mac-
Kinnon, 1993, pp. 19ff). The details are contained in the
appendix. Essentially, by regressing all variables on Z and
obtaining the residuals, we get a system of equations which
looks like the case considered in the previous section.
Indeed, our original model should be thought of as the
model obtained when all variables have been regressed on a
constant, so that all variables are expressed as deviations
from their mean. The only complicating factor when covari-
ates are present is that the estimator of p may need to be
adjusted if it is likely that the covariates are correlated with
the measurement error term. In this case p is estimated using
the residuals from a regression of the proxies and dependent
variable on the covariates, rather than the actual variables.

In short, our conclusion that it is better to include the proxy
variables separately in the regression and then aggregate the

3 Further details on biased instrumental variable estimation are contained
in a previous version of the paper. See Lubotsky and Wittenberg (2003).
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coefficients still holds when correctly measured covariates are
present in the model. However, in this situation our procedure
should not be taken as license to throw any and all possible
proxy variables into the regression. It is particularly important
to be concerned about the correlation between covariates and
the measurement error component in the proxy variables.
Adding proxies that absorb the effects of the covariates instead
of proxying for the latent variable will be particularly damag-
ing. An important tradeoff exists, therefore, in adding proxies
that may add little information about the underlying unob-
served variable, but affect the accuracy with which we measure
the coefficients on correctly measured variables in the model.
Ideally, the proxies should be correlated with x*, and their
measurement error components should be orthogonal to the
other explanatory variables in the regression. [See Bollinger
(2003) for further information on how the presence of proxy
variables affects the estimation of correctly measured variables
in a regression. ]

V. Applications to Existing Research

We illustrate the procedure with two empirical examples.
Though we do not know the true data-generating process and
cannot compare the alternative estimators against the true
parameter values, the use of actual data allows us to assess
whether the alternative estimators themselves produce qualita-
tively different results. In the first example we are interested in
estimating the relationship between parents’ permanent income
and children’s performance on a reading comprehension test.
Permanent income is not observed, and we instead have panel
data on annual family income. In the second example we use
data on assets and housing conditions from the Demographic
and Health Survey of India as proxies for household wealth in
a model linking wealth and school attendance. Filmer and
Pritchett (2001) use the first principal component of the asset
variables as their measure of wealth.

Economists and other social scientists have long been inter-
ested in determining the effect of parental income on measures
of child development and their eventual labor market earnings.
A greater association between parent and child outcomes
implies that a greater degree of economic success and failure is
transmitted across generations. Empirical attempts to measure
this association have recognized for some time that because
observed parental income is a noisy measure of their perma-
nent income, the association between observed income and
child outcomes will understate the association between perma-
nent income and child outcomes. This will lead to an under-
statement of the intergenerational correlation in economic
success. To circumvent this problem, a general practice in the
literature has been to average annual income over several years
to arrive at a less noisy measure of parental income. See, for
example, Blau (1999), Case, Lubotsky, and Paxson (2003),
Mayer (1997), Solon (1992), and Zimmerman (1992).

Although past work has made clear that using more years
of parental income leads to an increase in the measured
association between parental income and child outcomes,
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FIGURE 1.—THE EFFECT OF FAMILY INCOME ON CHILDREN’S READING COMPREHENSION SCORE
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Note: Data are from the NLSY-Children, 1979-1998. All models also include controls for the log family size; the child’s sex, age, and race: the mother’s age and education; whether the mother’s spouse is present,
and if so, his age and education; year effects; and the mother’s AFQT score. The estimates using the optimal p have been divided by the average of the p’s in order to put them on the same scale as the other two

estimators.

our estimation strategy can potentially do even better. A
standard model of log permanent income specifies observed
log income at age ¢ as being a function of unobserved
permanent income (y?), life cycle effects, and transitory or
luck components: y, = py? + u, where p, represents the
age-earnings profile, capturing the idea that younger work-
ers tend to earn below their level of permanent earnings; and
u, reflects deviations from age-adjusted permanent earnings,
which may be serially correlated and heteroskedastic across
time. Simply averaging y, across time ignores life cycle
variation in earnings, covariance between the measurement
error components over time, and differences in the variance
of the error component over time. Our procedure is designed
specifically to take these factors into account and arrive at a
less noisy measure of parental permanent income.

Using data from the National Longitudinal Survey of
Youth (NLSY), we examine the relationship between family
income and children’s percentile score on the Peabody
Individual Achievement Test in reading comprehension.
The NLSY began in 1979 with a sample of 12,686 individ-
uals aged 14 to 21. Interviews were conducted annually
between 1979 and 1994, and have been conducted bienni-
ally since then. In 1986 a separate biennial survey of the
children of the women from the 1979 cohort began (called
the NLSY-Children). Missing data pose a difficulty for
including annual incomes separately in the regression.
Therefore, we work with two-year averages of family in-
come taken when the mothers were between the ages of 22
and 39. Our sample uses data collected between 1979 and
1998 and contains 4,668 child-year observations of those

aged 6 to 14 and who have nonmissing family income
during this period. The model also includes controls for the
log of family size; the child’s sex, age, and race; the
mother’s age and education; whether the mother’s spouse is
present, and if so, his age and education; year effects; and
the mother’s age-adjusted AFQT score (a test of reading and
math skills that was administered to the mother in 1980).
We drop children who have missing data for any of these
controls.

Figure 1 plots the results from different models of chil-
dren’s test scores. Following the common practice in the
literature, our first measure of permanent income is the
average log income over several periods. The line in the
figure labeled “Using average income” indicates the coef-
ficients on this term when it contains income when the
mother was aged 22-23 to the age indicated on the x axis.
The coefficient rises from 0.5 when only income when the
mother is 22 and 23 is used, to 1.2 when income between
ages 22 and 31 is used, and finally to 1.6 when income
through age 39 is used. Clearly (as prior researchers have
found), more income data can reduce attenuation bias.

Next we include family income from different periods
separately in the regression and average the coefficients,
first with an unweighted average and then weighted by the
GMM estimate of p. The unweighted average of the income
coefficients produces a total effect that is in some cases 27%
larger than the effect of average income. This difference
indicates the importance of heteroskedasticity and serial
correlation in u, the transitory component in annual earn-
ings.
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The GMM estimates of p are given in the figure and show
a steady rise over the life cycle, consistent with the idea that
earlier income understates permanent income. We use these
estimates to optimally weight the separate income coeffi-
cients, and this leads to a substantial rise in the relationship
between children’s test scores and permanent income.* Us-
ing family income when the mother is aged 22 to 39, the
effect from using the optimally weighted coefficients is 2.2,
compared to only 1.6 when income is averaged prior to the
regression, an increase of 31%. Our optimal estimator
implies that an increase in permanent income of 0.8 (which
is approximately the standard deviation of log income
among 30-31-year-olds) is associated with a 1.76-percentile-
point rise in test scores. The key feature of this example is
that income earned later in life is a better measure of
permanent income, and our estimates incorporate this addi-
tional information better than does the simple average of
annual incomes. This leads us to estimate an intergenera-
tional elasticity that is less attenuated than what previous
researchers have found.

Our second empirical application reexamines Filmer and
Pritchett’s (2001) estimate of the effect of household wealth
on Indian children’s propensity to be enrolled in school,
using data from the 1992-1993 Demographic and Health
Survey of India. The difficulty is that the data do not contain
any information on income or wealth, but do contain many
questions on asset holdings and dwelling quality. Filmer and
Pritchett propose to use the first principal component of
these asset variables as their measure of wealth.

We use data on 109,973 children aged 4 to 16 with
nonmissing data for all variables. The dependent variable in
the regression is an indicator that the child is enrolled in
school. The asset variables are the number of rooms in the
house, and indicators for whether the household has a
refrigerator, clock or watch, sewing machine, VCR, radio,
television, fan, bicycle, car, motorcycle, electric lighting,
flush toilet or latrine, and livestock; whether the kitchen is
in a separate room in the house; whether the primary
cooking fuel is wood, cow dung, or coal; and whether the
drinking and nondrinking water comes from a pump or an
open source (as opposed to being piped into the home).

The first column of table 1 displays our estimates of p.
Each coefficient p; can be interpreted as a structural regres-
sion coefficient in the regression of the proxy on the latent
variable (wealth), rescaled so that one unit of wealth would
lead to one additional room. Looking at these coefficients, it
is clear that an increase in wealth will have a large impact
on the probability of owning a radio or a television, and lead
to a decrease in the probability of using wood or cow dung
as fuel. The relatively low increase in the probability of
owning a car or a VCR is due to the fact that ownership of
these assets is very rare in this population.

4 We divide the estimates using the optimally weighted coefficients by
the average of the ps in order to make them comparable in scale to the
previous two estimators.

THE REVIEW OF ECONOMICS AND STATISTICS

The next six columns show results when all or some of
the asset variables are entered separately into the regression.
The model also controls for the child’s sex and age, the head
of the household’s sex, age, and education, and the log
family size. Nearly all of the asset variables are statistically
significant, although some, such as refrigerator, car, and
VCR ownership and using wood, dung, or coal as cooking
fuel, have a different sign (the b;’s) than their raw correla-
tion with school enrollment and with their value of p;. One
might be tempted to drop these variables from the model,
thinking they are capturing something other than the effect
of wealth on school enrollment. As illustrated in equation
(3), a proxy that is highly correlated with another, better-
measured proxy may well have a different sign than the true
effect to be measured (3). Dropping the variables discards
useful information and is thus counterproductive.

When all 18 asset variables are used, the estimated effect
of the assets is 0.170.° We bootstrapped the estimation
procedure and estimate a standard error of 0.003.° To see
how sensitive the estimate is to using fewer proxies and to
different groups of proxies, in the next five columns we
break the 18 proxies into two groups of nine and then three
groups of six. When nine are used, the effects are 0.136 and
0.132; when six are used the effects are 0.129, 0.105, and
0.116. The attenuation bias in the estimates clearly increases
as fewer proxies are used. The estimates that utilize the
same number of proxies are remarkably close to each other,
suggesting the assumption of a single unobserved factor is
plausible. All estimates are statistically different from zero.

The last column of table 1 displays the scoring vector
used to weight the asset variables for the first principal
component. These have been divided by the weight for the
number of rooms in the house, so their magnitudes are
comparable to the ps reported above. The coefficient on the
principal-component asset index is 0.050. We rescale this
coefficient by multiplying it by p’d to make it comparable to
the estimates where the assets are entered separately. In this
formula p is the ratio of the bivariate correlations and 8 is
the vector of weights, with 8j = scorej/a;, where score; is the
scoring factor for variable j, and o; is the standard deviation
of that variable. The adjusted coefficient on the asset index
is 0.098, which is over 40% smaller than the effect esti-
mated when all the proxies are entered separately and their
coefficients recombined. Indeed, the estimate of the first
principal component from all 18 asset variables has more
attenuation bias than each of our estimates that use only six
of the asset variables.

Finally, we check to see whether our results are affected
by the presence of covariates in the model. We estimate the
covariate-adjusted estimator of p discussed in section IV,

5> Although there are 21 separate variables, we label the two indicating
toilet types and the two sources of drinking and nondrinking water as each
being one, rather than two, proxies.

¢ The bootstrap procedure used 200 replications with 109,973 observa-
tions in each. The seed for the random number generator was set to
3,334,295.
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TABLE 1.—MEASURING THE EFFECT OF WEALTH ON CHILDREN’S SCHOOL ATTENDANCE IN INDIA
Principal
Proxy Set Components’
Relative
p 1 2 3 4 5 6 Weights
No. of rooms in  1.000 0.009 (0.001) 0.011 (0.001) 0.013 (0.001) 1.000
house
Refrigerator 0.121  —0.035 (0.006)  —0.035 (0.006) —0.029 (0.005) 0.546
Clock or watch 0.452 0.089 (0.003) 0.123 (0.003) 0.132 (0.003) 0.429
Type of toilet:
Flush 0.275 0.046 (0.004) 0.074 (0.004) 0.113 (0.004) 0.077
Latrine 0.091 0.052 (0.004) 0.069 (0.004) 0.094 (0.004) 1.007
Sewing machine  0.291 0.039 (0.003) 0.067 (0.003) 0.098 (0.003) 0.922
VCR 0.038 —0.014 (0.008)  —0.033 (0.008) —0.025 (0.008) 0.662
Radio 0.353 0.034 (0.003) 0.054 (0.003) 0.084 (0.003) 1.249
Drinking water
from:
Pump —0.226 0.002 (0.011)  —0.032 (0.004) —0.028 (0.004) —0.154
Open source  —0.001 0.023 (0.012) 0.010 (0.005) 0.025 (0.005) —0.694
Cooking fuel is —0.243 0.004 (0.004)  —0.008 (0.004) —0.017 (0.004) —1.097
wood,
dung, or
coal
Television 0.332 0.005 (0.004) 0.034 (0.004) 0.038 (0.004) 0.962
Nondrinking
water from:
Pump —0.203 —0.014 (0.011) —0.023 (0.004)  —0.038 (0.004) —0.283
Open source  —0.028 0.021 (0.012) 0.029 (0.005) 0.007 (0.005) 1.099
Fan 0.414 0.022 (0.004) 0.053 (0.004) 0.097 (0.003) 1.216
Bicycle 0.188 0.019 (0.003) 0.036 (0.003) 0.046 (0.003) 0.934
Car 0.019  —0.062 (0.010) —0.064 (0.010) —0.062 (0.010) —0.839
Kitchen in 0.311 0.064 (0.003) 0.085 (0.003) 0.097 (0.003) 0.666
separate
room
Motorcycle 0.129  —0.004 (0.005) 0.000 (0.005) 0.013 (0.005) 1.055
Electric lighting ~ 0.447 0.114 (0.003) 0.137 (0.003) 0.162 (0.003) 0.616
Livestock —0.179  —0.007 (0.003) —0.009 (0.003) —0.006 (0.003) —0.573
Number of 18 9 9 6 6 6 18
proxies
Estimated Unadjusted
“wealth” 0.170 (0.003) 0.136 (0.003) 0.132 (0.003) 0.129 (0.003) 0.105 (0.002) 0.116 (0.003) 0.050 (0.001)
effect Rescaled

0.098 (0.001)

Note: Data are from the Demographic and Health Survey of India. Sample size is 109,973. The dependent variable is an indicator that the child is enrolled in school. The model also controls for the child’s sex
and age, the head of household’s sex, age, and education, and the log family size. Standard errors are in parentheses. Construction of estimated wealth effects is described in the text.

using the residuals from regressions of the proxies and
school enrollment indicator on all of the covariates. This
procedure delivers an estimate of 0.194 (with a standard
error of 0.006), which is even larger than our original
estimate of 0.170. The covariate-adjusted estimate of p in
our permanent-income example also leads to a larger esti-
mate than that reported in figure 1, but in this case the
adjusted estimate is quite imprecise and not statistically
different from the unadjusted estimate.

VI. Conclusion

We have proposed a new estimator for the case where
a researcher has multiple proxies for a single, unobserved
independent variable. Numerous previous studies have
dealt with the problem either by using the proxies one at
a time, or by averaging or otherwise aggregating the
proxies together and using that single measure as an
independent variable. We show that attenuation bias is

maximally reduced when the proxies are entered simul-
taneously in a multiple regression and the coefficients on
them optimally combined after the fact to yield an esti-
mate of the effect of the unobserved variable. To opti-
mally weight the proxies prior to the regression requires
knowing the variances and covariances between the error
components in the proxies, information that is simply
unavailable to the researcher. The improved performance
of the estimator is due to the fact that the regression
coefficients on the proxies precisely reflect this unknown
information. This method is also more transparent than ad
hoc index construction, because a reader who believes
some proxies have independent effects on the dependent
variable has the information available to create alterna-
tive estimates based on a subset of the proxies.

We have put off discussion of the asymptotic or finite-
sample distribution of the our estimator. The need to esti-
mate p introduces additional noise into the estimates that is
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not present in an ad hoc index variable. Unreported
Monte Carlo simulations suggest that this source of
variance may not be particularly large and is probably
outweighed by the large reduction in bias in the estimates
themselves (see Lubotsky & Wittenberg, 2003). More
generally, the analytic distribution of the estimators is
quite difficult to compute, and researchers are probably
better off using bootstrap methods to calculate the stan-
dard error of their estimates.
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APPENDIX

Proofs

Lemma A.1.

1. |JA + aa'|=|A|(1 + a’A~'a) if A is nonsingular.
A~lab'A™!
if 1 + b'A~la # 0.

"nN=1 —= -1 —
2. A+ab) ' =A b A

ProOF: Part 1 is Theorem A.16(x) in Rao and Toutenburg (1995, p.
358). Part 2 is Theorem A.18(iv) of Rao and Toutenburg (1995, p. 358).

We have

. A7£<1 85 d )
PR B =5\ T ey + 95,00/

Proof of Theorem 1:

that is,

li 8) = (1 ,M>
pHim () =BT~ gy + 55,0

By contrast,
plim b = Bo(Zx) " 'p.

Because Xy = 3, +02pp’, we can apply lemma A.1 It follows that

QP

-1
D= m- (A-1)
Hence
plim pb = B(l - l,)
1+ UﬁP’EUU p
Observe that we can apply lemma A.1 again to show that
! | 2wl
AN . (A-2)
Lo De | Dy
We want to compare l/oip’ 3, p+1 and 8’3y, 0/

[02(8'p)2+d" 2y 8], so we need to show that
, —1 (B’P)2
p ZUU p= ,
8 Dy d
for any nonzero choices of p and 8.

Because X, is a nonsingular covariance matrix, by the spectral
theorem for symmetric matrices it can be decomposed as

> vu = PDP’
where P is an orthogonal matrix of eigenvectors

P=[pipy---pil

and D=diag (\i,. . .,\;) is the matrix of eigenvalues, with \; > 0 V. This
is equivalent to writing

EUU=

and it follows that
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Hence

1
o' Do p = N (i p)’,

i

3’ ZUU S = E}\i(P/S)Z

Now let pjp = w; and pjd = v;. Correspondingly define the vectors w and

v as
w=P'p, v=P3.
Note that
3'p=7v'w

(because P is orthogonal), that is,

(3'p)2 = (Do)’
" )

1
= (2 }\,-v?)( z NW?) (Cauchy-Schwarz inequality)

+(3

=" 2 ud)p’ Doy p)-

Equality holds only if

for some real number ¢, that is,
v, = cw;
3=cPD 'P'p
= e ubp-
PROOF OF PROPOSITION 2:  We have
plim b, = ¢/ X1 Bpor,

and by using equations (A-1) and (A-2),
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Now
Sll SIZ Slk
SZI S22 SZk
So-rsal 5
Skl Skl Skk

where S;; is the ij" cofactor of ;. Consequently

e = LSn S .. Sl
uu |EUU| 1 k.

that is,

e p == Sipi

IEUUI

The summation 3; S;p, however, is identical to the value of the
determinant if row i of the matrix X, were replaced by p’, that is,

ESUP/': |ZPU('U)|
J

Consequently

p(l)

B(r
‘EXX|

PROOF OF PROPOSITION 3:

e;(zxx)ilpﬁ

Assume that the true model is given by
y=x*B +Zy+eg,

where Z is a matrix of covariates. According to the FWL theorem
(Davidson & MacKinnon, 1993, p. 19ff.), the regression coefficients in
this multiple regression are numerically identical to the coefficients in the
regression

My = Mx*pB + Mg,

where My is the matrix I — Z (Z'Z)"" Z, that is, the matrix that generates
the residuals in the regression of any n-vector on Z. If we rewrite this latter
regression as

e, = e*B + v, (A-3)
where e, is the vector of residuals M7y, e,* is the vector of the unobserv-
able residuals M x*, and v is a vector of error terms, we can apply the
results of the previous sections directly to this regression. In particular, the
matrix ey of observable residual proxies M,X will serve as proxies for the
unobservable e*. Note that

Myx; = pMx* + Myu,,
(A-4)
e;=pie* +w;,

so that the our estimator applied to the regression (A-4) is just p’b, where
b is the OLS coefficient in the regression of e, on M,X. This, however, is
numerically equal to the OLS coefficient in the regression of y on the
matrix of proxies X and the matrix of covariates Z, that is,

y=Xb+ Zy te.

Furthermore, p; = cov (y,x;))/cov (y,x,) is still a consistent estimator of p;
provided that Z is uncorrelated with u; and u,. In other words, our
estimator p’b will again provide the attenuation bias minimizing combi-
nation of the proxies on condition that Z is uncorrelated with the mea-
surement error in the proxies.

One difference, however, is that the attenuation bias in this case is not
given by the formula

IEUUI>
plim g'b = B(] - ,
" 12

but by

oim =812

where EMZXMZX is the covariance matrix of M X. This result is obvious on
applying Theorem 1 to equation (A-3), bearing in mind the formula for the
proxies given in equation (A-4) and noting that Myu; = u; by the
assumption that Z is uncorrelated with the errors. In this case therefore the
numerator of the original attenuation term |2 ,|/|2 x| is not affected, while
the denominator is reduced. That is, attenuation bias increases.
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If Z is correlated with any of the measurement error terms, then a
consistent estimator of p can still be obtained, using the approach of the
previous section applied to equations (A-3) and (A-4). In this case p; =
cov (ey,eplcov (eye;) is a consistent estimate; that is, the correlation
between y and the proxies that works through the measurement error term
would first have to be removed. Note that the original formula still applies
in the special case where the covariate is a constant.

The attenuation bias formula would now be given by

|EM7UM/U )
limp'b =Bl 1 -1
pme B( ‘EMzXMzX

where EMZUM v is the covariance matrix of M,U. In this case attenuation
may, in fact, ﬁe reduced at the cost of increasing the bias on the coefficient
of the correctly measured variable. Furthermore, the estimator of p is
likely to be noisier.

To show the effect of the proxies on the correctly measured covariates,
we can apply the FWL theorem in reverse. The coefficient y in the
multiple regression is identical to the coefficient of <y in the regression of
the residuals M, *y on the residuals M *Z. In our case, however, due to
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attenuation bias, the residuals Myy would not have been entirely purged of
the effect of x*, due to the measurement error. Similarly, the residuals MyxZ
would still contain some of the effect of x*. Consequently the estimate of
v would represent not only the direct effect of Z on y but also some of the
residual effect of x* on y that has not adequately been controlled for by the
proxies.

Another way of viewing this case is to simply note that the regression
results in the full proxy variable regression

y=Xb+Zy+e¢

are numerically identical to the results obtained if we ran the regression on
our index, that is,

y=xb"+ Zy + €.

Because this regression fits into the mold of the classical measurement
error literature, the results for y follow.

If Z is correlated with any of the measurement error terms, then the
residuals MyZ would remove some of the direct effects of Z, so that the
bias on y would be exacerbated. ®



