
Automated Testing of Refactoring Engines

Brett Daniel Danny Dig Kely Garcia Darko Marinov
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{bdaniel3, dig, kgarcia2, marinov}@cs.uiuc.edu

ABSTRACT
Refactorings are behavior-preserving program transformations that
improve the design of a program. Refactoring engines are tools
that automate the application of refactorings: first the user chooses
a refactoring to apply, then the engine checks if the transformation
is safe, and if so, transforms the program. Refactoring engines are
a key component of modern IDEs, and programmers rely on them
to perform refactorings. A bug in the refactoring engine can have
severe consequences as it can erroneously change large bodies of
source code.

We present a technique for automated testing of refactoring en-
gines. Test inputs for refactoring engines are programs. The core of
our technique is a framework for iterative generation of structurally
complex test inputs. We instantiate the framework to generate ab-
stract syntax trees that represent Java programs. We also create
several kinds of oracles to automatically check that the refactoring
engine transformed the generated program correctly. We have ap-
plied our technique to testing Eclipse and NetBeans, two popular
open-source IDEs for Java, and we have exposed 21 new bugs in
Eclipse and 24 new bugs in NetBeans.
Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.2.3 [Software En-
gineering]: Coding Tools and Techniques—object-oriented pro-
gramming
General Terms: Verification
Keywords: Automated testing, bounded-exhaustive testing, imper-
ative generators, test data generation, refactoring engines

1. INTRODUCTION
Refactoring [9] is a disciplined technique of applying behavior-

preserving transformations to a program with the intent of improv-
ing its design. Examples of refactorings include renaming a pro-
gram element to better convey its meaning, replacing field refer-
ences with calls to accessor methods, splitting large classes, mov-
ing methods to different classes, or extracting duplicated code into
a new method. Each refactoring has a name, a set of preconditions,
and a set of specific transformations to perform [19].
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Refactoring engines are tools that automate the application of
refactorings. The programmer need only select which refactoring
to apply, and the engine will automatically check the precondi-
tions and apply the transformations across the entire program if
the preconditions are satisfied. Refactoring is gaining popular-
ity, as evidenced by the inclusion of refactoring engines in mod-
ern IDEs such as Eclipse (http://www.eclipse.org) or NetBeans
(http://www.netbeans.org) for Java. Refactoring is also a key
practice of agile software development methodologies, such as eX-
treme Programming [4], whose success prompts even more devel-
opers to use refactoring engines on a regular basis. Indeed, the
common wisdom views the use of refactoring engines as one of the
safest ways of transforming a program, since manual refactoring is
error-prone.

It is important that refactoring engines be reliable—a bug in a
refactoring engine can silently introduce bugs in the refactored pro-
gram and lead to difficult debugging sessions. If the original pro-
gram compiles but the refactored program does not, the refactoring
is obviously incorrect and can be easily undone. However, if the
refactoring engine erroneously produces a refactored program that
compiles but does not preserve the semantics of the original pro-
gram, this can have severe consequences.

Since refactoring engines are very complex and must be reliable,
developers of refactoring engines have invested heavily in testing.
For example, Eclipse version 3.2 has over 2,600 unit tests for refac-
torings (publicly available from the Eclipse CVS repository). Con-
ventionally, testing a refactoring engine involves creating input pro-
grams by hand along with their expected outputs, each of which
is either a refactored program or an expected precondition failure.
The developers then execute these tests automatically with a tool
such as JUnit [10]. Writing such tests manually is tedious and
results in incomplete test suites, potentially leaving many hidden
bugs in refactoring engines.

We present a technique that automates testing of refactoring en-
gines, both generation of test inputs and checking of test outputs.
The core of our technique is a general framework for iterative gen-
eration of structurally complex test inputs. We instantiate the gen-
eral framework in a library called ASTGen. ASTGen allows de-
velopers to write imperative generators whose executions produce
input programs for refactoring engines. More precisely, ASTGen
offers a library of generic, reusable, and composable generators
that produce abstract syntax trees (ASTs). Using ASTGen, a de-
veloper can focus on the creative aspects of testing rather than the
mechanical production of test inputs. Instead of manually writing
input programs, a developer writes a generator whose execution
produces thousands of programs with structural properties that are
relevant for the specific refactoring being tested. For example, to
test the RenameField refactoring, the input program should have a



class that declares fields and variables with potential name clashes.
Our generators systematically produce a large number of programs
that satisfy such constraints.

ASTGen follows the bounded-exhaustive approach [5,11,12,16,
22] for exhaustively testing all inputs within the given bound. This
approach covers all “corner cases” within the given bound. In con-
trast, manual testing requires identifying each corner case and cov-
ering it with a manually written test. Bounded-exhaustive testing
has not been used before for test inputs as complex as Java pro-
grams, and the approach of imperative generators introduced in this
paper differs from the previous techniques using declarative gener-
ators [5, 11, 12, 16, 22]. Section 7 further discusses related work.

An important problem in automated generation of test inputs is
automated checking of outputs, also known as the oracle prob-
lem. Our technique uses a variety of oracles. The simplest or-
acles check that the refactoring engine does not crash (i.e., does
not throw an uncaught exception) and that the refactored program
compiles. More advanced oracles take into account the semantics
of the refactoring and check specific properties such as invertibility,
e.g., renaming an entity from A to B and then back from B to A

produces the same starting input program. The oracles also check
structural properties, e.g., moving an entity should indeed create the
entity in the new location. Finally, we use differential testing [18]
in which one implementation serves as the oracle for another imple-
mentation. Specifically, we run the same input programs on Eclipse
and NetBeans and compare their refactored outputs or precondition
violations. Section 5.1 presents our oracles in detail.

This paper makes three main contributions.
Framework for imperative generators: We present a novel

framework for generation of structurally complex test inputs. Our
framework uses imperative generators that specify how the inputs
should be generated. Previous work [5, 11, 12, 16, 22] has mostly
used declarative generators that describe what the inputs look like
and thus require potentially expensive search to generate the actual
inputs.

Instantiation for generating ASTs: We instantiate the general
framework in ASTGen, a library that can generate abstract syntax
trees (ASTs) representing Java programs. Our instantiation pro-
vides basic generators that follow the structure of simple ASTs and
more complex generators that generate entire programs used as test
inputs for refactoring engines.

Case study: We have used ASTGen to test several refactorings
in Eclipse and NetBeans, two popular open-source IDEs for Java.
We have implemented automatic execution of refactoring engines
on the input programs that our generators produce. We have also
implemented several oracles to verify that refactorings complete as
expected. So far, our experiments have discovered 21 new bugs
in Eclipse and 24 new bugs in NetBeans. We have reported these
bugs in the bug-tracking systems of both IDEs, and the NetBeans
developers have already fixed 2 of these bugs, declared 2 reports as
duplicates, and confirmed 19 (all but 1) other reports as real bugs.
Eclipse developers confirmed 20 (all but 1) reports as real bugs.

Our ASTGen code, all experimental results, and the reported
bugs are publicly available online from the ASTGen web page at
http://mir.cs.uiuc.edu/astgen.

2. EXAMPLE
We use the EncapsulateField refactoring as an illustrative exam-

ple. This refactoring replaces all references to a field with accesses
through setter and getter methods. The EncapsulateField refactor-
ing takes as input the name of the field to encapsulate and the names
of the new getter and setter methods. It performs the following
transformations:

// before refactoring
class A {

public int f;
void m(int i) {

f = i * f;

}
}

// after refactoring
class A {

private int f;
void m(int i) {

setF(i * getF());

}

public int getF() {
return this.f;

}
public void setF(int f) {

this.f = f;

}
}

Figure 1: Example EncapsulateField refactoring

• creates a public getter method that returns the field’s value

• creates a public setter method that updates the field’s value
to a given parameter’s value

• replaces all field reads with calls to the getter method

• replaces all field writes with calls to the setter method

• changes the field’s access modifier to private.

The EncapsulateField refactoring checks several preconditions,
including that the code does not already contain accessor methods
and that these methods are applicable to the expressions in which
the field appears. Figure 1 shows a sample program before and after
encapsulating the field f into the getF and setF methods.

We next discuss three of the generators that we wrote to test En-
capsulateField. These generators illustrate how to generate simple
ASTs, how to generate ASTs that satisfy involved semantic con-
straints, and how to combine simpler generators into more complex
generators. We also present two bugs that these generators reveal,
one each in Eclipse and NetBeans.

ASTGen allows the tester to write generators that can exhaus-
tively generate programs containing field references. The tester has
an intuition for which programs to generate, but it is quite tedious
to manually write a large number of input programs that cover all
kinds of field references. Using ASTGen, the tester can write a
generator that produces many such programs, each of which is a
class that contains a field and a method that references the field in
all kinds of relevant expressions. Section 4.2.1 describes in detail
how to write this generator, effectively codifying the tester’s intu-
ition into automatic generation. This generator is not only useful
for testing EncapsulateField but can also be reused to test other
refactorings that operate on fields such as RenameField and Push-
DownField.

Our generator of programs with field references produces, among
others, the program in Figure 2 that reveals a bug in NetBeans.
In this case, the parentheses around the field reference cause the
refactoring engine to leave the field reference unencapsulated. This
omitted encapsulation could cause problems if the developer wishes
to add logic to the accessor methods, since the unencapsulated field
reference would not trigger this additional logic. Our Differential
Oracle (Section 5.1) caught this bug since NetBeans and Eclipse
produced different refactored programs. Note that the “refactored”
program from NetBeans compiles, so a simple oracle that only
checks compilation does not catch the bug.

Another generator produces two classes, say A and B, that exhibit
all possible relationships involving (1) class inheritance, (2) con-
tainment (i.e., inner or local class), or (3) class name reference.
This generator produces many pairs of classes, including the pair
shown in Figure 3, which illustrates all three relationship types:



// before refactoring
class A {

int f;
void m() {

(new A().f) = 0;

}
}

// after refactoring
class A {

private int f;
void m() {

(new A().f) = 0;

}

... getF ...

... setF ...

}

Figure 2: EncapsulateField bug in NetBeans: a field access re-
mains unencapsulated

class A {

class B extends A {
void m(A a) {}

}

}

Figure 3: Two classes illustrating all three relationship types

B inherits from A, B is an inner class of A, and B references A via
method parameter. One can reuse this generator to test several types
of refactorings that depend on class name or location, including Re-
nameClass, MemberToTop, and PushDownField.

The power of ASTGen appears when building more complex
generators from simpler ones. The developer can compose the pre-
vious two generators into a third generator that generates even more
expressive programs in which one class declares a field and the
other class references it in various ways. This generator outputs the
program in Figure 4 that reveals a bug in Eclipse. In this case, the
refactoring engine mistakenly identifies the super.f expression as
a field read. The DoesNotCompile Oracle quickly determines this
is a bug.

3. FRAMEWORK
This section describes our imperative approach to test data gen-

eration and presents some important design decisions of the general
framework that we built. We first provide motivation for imperative
generation, then describe basic generators, and finally show how to
compose them. We present only the parts of the framework neces-
sary to discuss ASTGen. Section 4 presents how we instantiate the
framework into ASTGen for generation of Java programs.

3.1 Why Imperative Generation?
Our framework for test data generation is imperative, iterative,

and bounded-exhaustive. It is imperative in that the tester defines
how to build input data; iterative in that it generates inputs lazily,
one at a time; and bounded-exhaustive in that it systematically ex-
plores the entire combinatorial space of a given set of generators.
We believe that this approach offers several benefits:

• Easy to understand: Testers intuitively grasp the idea of
looping over a set of generated inputs. It is a natural exten-
sion to the hand-written tests that testers usually write.

• Easy to compose: Testers can combine generators to create
complex data or to tailor data generation to a particular test-
ing domain. Our framework is abstract and generic, allowing
testers to combine generators in an arbitrary fashion.

• Scales well with data size: Testers can build very large and
complex data structures with a small number of generators.

• Scales well with amount of data: Generators produce in-
puts lazily, one at a time, so for generation of a large number

// before refactoring
class A {

int f;
}

class B extends A {
void m() {

super.f = 0;
}

}

// after refactoring
class A {

private int f;
... setF ...
... getF ...

}

class B extends A {
void m() {

getF() = 0;
}

}

Figure 4: EncapsulateField bug in Eclipse: a write access en-
capsulated into a getter method

of inputs, there is no time overhead for “pre-generation” of
all inputs or space overhead for storing them all.

• Catches corner cases: Bounded-exhaustive testing covers
all inputs within a given bound [5, 12, 22], including those
that random testing [7, 15] may miss or that testers are un-
aware of.

Additionally, we developed our framework in Java, so testers do
not have to learn any new languages or syntax, and they can exploit
the full power of a general-purpose language. The main disadvan-
tage of our approach is that testers have to write how to generate
test inputs instead of writing what the test inputs should look like.
We discuss more in Section 7.

3.2 Basic Generators
We define an iterative generator as an iterator that produces a

value of some type T every time a method next is called. The sim-
plified interface for a generator is the following:

interface IGenerator<T> {
T next();
T current();

boolean hasNext();
void reset();

boolean isReset();
}

The current method returns the previously-generated value with-
out advancing the generator. The hasNext method checks whether
the generator can output any more values; if it returns false, fu-
ture calls to next are undefined. The reset and isReset methods
allow repeating the sequence of values that the generator produces.
Our generators support Java’s Iterable interface, making it easy
to loop over all generated values using the following pattern:

IGenerator<T> valueGen = ...;

for (T value : valueGen) { doTest(value); }

We built several simple generators that implement the IGenera-

tor interface. The Literal class is the simplest example that pro-
duces a single value.

The Chain class takes a number of values or other generators and
produces all values in order, for example:

Literal<String> literal = new Literal<String>("a");

Chain<String> chain1 = new Chain<String>("b", "c", "d");

Chain<String> chain2 = new Chain<String>();

chain2.add(literal);
chain2.add(chain1);
chain2.add("e");

for (String s : chain2) { System.out.print(s + " "); }

// Outputs: a b c d e



3.3 Generator Composition
Literal, Chain, and other simple generators are useful, but our

framework’s true power appears when linking generators together.
When we build a more complex iterative generator from two or
more child generators, we need to address two concerns: generator
iteration, which determines how to iterate children when iterating
the main generator, and data composition, which determines how to
build the value for the main generator from the values of children.
We first present a simple example that combines two children using
the reset, isReset, and current methods. We then describe how
our actual implementation decouples the two concerns and revisit
the example.

Consider a composite generator that exhaustively produces pairs
of values given two children that produce left and right components
of the pairs. Let the left and right children be lg and rg, respec-
tively, and the composite generator cg. If lg produces two values
[m, n] and rg produces two values [x, y], then we want cg to itera-
tively produce their cross product: [(m, x), (n, x), (m, y), (n, y)].
Each time next is called on cg, cg iterates lg. When lg reaches the
“end” of its values, cg resets lg to the first value and iterates rg:

class NaivePairGenerator
implements IGenerator<Pair<L, R>> {

IGenerator<L> lg;

IGenerator<R> rg;
... constructors and accessors ...

Pair<L, R> next() {
if (!lg.hasNext()) {

lg.reset();
if (!rg.hasNext()) {

error();
}

rg.next();
}
lg.next();

if (rg.isReset()) {
rg.next();

}

return new Pair<L, R>(lg.current(), rg.current());

}
... other methods from IGenerator ...

}

This method next performs both generator iteration (on lg and
rg) and data composition (by creating a new Pair). Our imple-
mentation actually separates these two concerns. The abstract class
CompositeGenerator implements the generator iteration, basically
generalizing the method shown above to an arbitrary number of
children. This class delegates the data composition to its subclasses:

abstract class CompositeGenerator<T>
implements IGenerator<T> {

// return all children for generator iteration

abstract List<IGenerator> getChildren();
// perform the data composition

abstract T composeData();
... implemented IGenerator methods ...

}

This decoupling makes it easier to develop composite generators
since they need not reimplement iteration. The CompositeGener-

ator iterates the children returned from the getChildren method,
and the composeData method implements data composition. We
can now implement a generator for pairs simply by implementing
the two methods:

class PairGenerator<L, R>

extends CompositeGenerator<Pair<L, R>> {
IGenerator<L> lg;

IGenerator<R> rg;

... constructors and accessors ...

List<IGenerator> getChildren() {

return Arrays.asList(lg, rg);
}

Pair<L, R> composeData() {
return new Pair<L, R>(lg.current(), rg.current());

}
}

PairGenerator also illustrates the abstract and generic aspects of
our framework. It is common to declare child generators as IGen-

erator objects, allowing the caller to reuse a particular generator in
many contexts by simply supplying child generators that implement
the interface. Unlike grammars, which remain static once written,
this abstractness allows generators to be specialized for many dif-
ferent contexts.

Furthermore, the CompositeGenerator class is parametrized by
the type of values that the subclass generates. In the example, it
produces Pair objects that are further parametrized by the type of
the left and right values. These generic signatures, which we use
throughout the framework, allow one to compose generators more
easily and verify that the compositions are type-correct.

Putting it all together, one can instantiate and use a PairGenera-

tor in the following manner:
// child generators

Chain<String> leftGen = new Chain<String>("m", "n");
Chain<String> rightGen = new Chain<String>("x", "y");

// parent generator
PairGenerator<String, String> pairGen =

new PairGenerator<String, String>(leftGen, rightGen);

// generate values
for (Pair<String, String> pair : pairGen) {

System.out.print(pair);
}
// Outputs: (m,x) (n,x) (m,y) (n,y)

3.4 Dependent Composition
In the previous PairGenerator example, the values of child gen-

erators are independent of each other. We next describe how our
framework can handle dependent values.

As an illustrative example, suppose that we have two genera-
tors X and Y such that X produces integers [1, 2], and Y adds or
subtracts one from the current value of X . The cross product of
these two generators is [(1, 2), (2, 3), (1, 0), (2, 1)]. To implement
an imperative generator for such pairs, we can consider three op-
tions. First, we can “pass” the current value of X to Y , but this
would require iterating X and retrieving its value before iterating
Y . As discussed in the previous section, CompositeGenerator de-
couples generator iteration and data composition, so a subclass has
no control over which generator is iterated first. Second, Y can iter-
ate X directly, but this introduces unwanted coupling if we hope to
reuse X and Y elsewhere. Also, it might lead to iteration problems
if multiple generators iterate X . Third, we can have Y produce
objects that represent functions. We follow this approach.

Conceptually, Y should produce the values [λx.x+1, λx.x−1].
This approach allows the framework to iterate X and Y indepen-
dently and in any order. The data composition step passes X’s cur-
rent value to the function produced by Y and returns the resulting
pair of values. Since functions are not first-class entities in Java,
we use method objects [3] to implement the Y generator:
interface YFunc { int execute(int xVal); }

IGenerator<YFunc> yGen = new Chain<YFunc>(
new YFunc() { int execute(int xVal) { return xVal + 1; } },

new YFunc() { int execute(int xVal) { return xVal - 1; } });



The dependent pair generator then uses this Y generator and de-
fines the appropriate data composition:

class DependentPairGenerator

extends CompositeGenerator<Pair> {
IGenerator<Integer> x;

IGenerator<YFunc> y;
... constructors and accessors ...

Pair composeData() {
// get child values

int xVal = x.current();
YFunc yFunc = y.current();

// compute dependent values
int yVal = yFunc.execute(xVal);

return new Pair(xVal, yVal);

}
}

4. INSTANTIATION FOR ASTS
ASTGen in an instance of our general framework used to pro-

duce abstract syntax trees (ASTs) for testing refactorings. We first
show how to implement a generator for a simple syntax element.
We then show how to implement more complex AST generators
such as those described in Section 2.

4.1 Simple AST Generators
We first discuss AST generators that simply mirror the structure

of their corresponding AST nodes. As an illustrative example, we
use an AST node that represent a (much-simplified) field declara-
tion in Java:

class FieldDeclaration {
Modifier modifier;

Type type;
Identifier identifier;
... constructors and accessors ...

}

This node has three other AST nodes as children: modifier,
type, and identifier. Figure 5 shows FieldDeclarationGenera-

tor that contains a child generator for each of the three AST node
children. Like PairGenerator discussed in Section 3.3, FieldDec-
larationGenerator extends CompositeGenerator.

To use the generator, the tester can initialize it by setting each
child generator to an IGenerator of the correct type as illustrated
in Figure 6. For simplicity, we show the Java syntax elements (e.g.,
public, int) as if they were defined as variables, rather than show-
ing the code used to build the AST nodes for these elements. The
tester can use the initialized FieldDeclarationGenerator to pro-
duce test data or to construct larger AST generators that require
FieldDeclaration objects.

The specific instantiation of FieldDeclarationGenerator shown
in Figure 6 effectively corresponds to the following grammar for
declarations:

<FieldDeclaration> ::= <Modifier> <Type> <Identifier> ";"
<Modifier> ::= "public" | "private"

<Type> ::= "int" | "boolean"
<Identifier> ::= "someField" | "anotherField"

For simple generators, it is more succinct to write a grammar
than the corresponding Java code for generators. However, when
generated AST nodes should satisfy more complex constraints (the
simplest being, say, that an int field should always be private),
it is necessary to express these constraints in a language outside of
the grammar. ASTGen uses the same language, Java, to express
both the constraints and the generators.

class FieldDeclarationGenerator
extends CompositeGenerator<FieldDeclaration> {

IGenerator<Modifier> modifierGen;
IGenerator<Type> typeGen;
IGenerator<Identifier> idGen;

... constructors and accessors ...

List<IGenerator> getChildren() {
return Arrays.asList(modifierGen, typeGen, idGen);

}

FieldDeclaration composeData() {

FieldDeclaration generated = new FieldDeclaration();
generated.setModifier(modifierGen.current());

generated.setType(typeGen.current());
generated.setIdentifier(idGen.current());
return generated;

}
}

Figure 5: Field declaration generator

IGenerator<Modifier> modifierGen =

new Chain<Modifier>(public, private);
IGenerator<Type> typeGen =

new Chain<Type>(int, boolean);
IGenerator<Identifier> idGen =

new Chain<Identifier>(someField, anotherField);
FieldDeclarationGenerator fieldDeclGen =
new FieldDeclarationGenerator(modifierGen, typeGen, idGen);

Figure 6: Example initialization of FieldDeclarationGenerator

We have implemented basic generators for 29 common Java syn-
tax elements. These generators encapsulate AST generation and
thus increase reusability in that one does not need to define hard-
coded values for a Chain generator. For example, in Figure 6 we
could have used ModifierGenerator rather than a Chain containing
values public and private.

4.2 Complex AST Generators
We next show how our iterative approach can generate more

complex AST nodes. We use as examples the three generators dis-
cussed in Section 2.

4.2.1 Field Reference Generator
The FieldReferenceGenerator generates classes, each of which

contains a field and a method that references the field in some way.
It can produce several thousand classes, one of which is shown in
Figure 2. It has the following five child generators:

• An IGenerator<FieldDeclaration> (such as a FieldDec-

larationGenerator from Figure 5), provided by the caller.
This generator produced the int f; declaration in Figure 2.

• A FieldReferenceExpressionGenerator uses the field name
from the field declaration to build a simple expression that
references the field. If the field is f in class A, this expression
can be f, this.f, A.this.f, or, as in Figure 2, new A().f.

• A ParenthesizingExpressionGenerator optionally paren-
thesizes an expression. This generator parenthesized the ref-
erencing expression yielding (new A().f) in Figure 2.

• A NestedExpressionGenerator nests the optionally paren-
thesized expression in one of the many possible expressions
applicable to the field’s type. In Figure 2, the generated
expression is the assignment expression: (new A().f) = 0.
Since the field has type int, other applicable expressions in-
clude the binary arithmetic operators, unary operators, and
many others.



// Get method objects
FieldDeclaration fieldDecl = fieldDeclGen.current();

FieldReferenceExpressionMethObj fieldRefExprMO =
fieldRefExprGen.current();

ParenthesizingExpressionMethObj parenExprMO =

parenExprGen.current();
NestedExpressionMethObj nestedExprMO =

nestedExprGen.current();
ExpressionInStatementMethObj exprInStmtMO =

exprInStmtGen.current();

// Call method objects

Expression fieldRefExpr = fieldRefExprMO.fill(fieldDecl);
Expression parenExpr = parenExprMO.fill(fieldRefExpr);

Expression nestedExpr = nestedExprMO.fill(parenExpr);
Statement exprInStmt = exprInStmtMO.fill(nestedExpr);

// Build AST to return
MethodDeclaration methodDecl = makeMethod("m");

methodDecl.addStatement(exprInStmt);

TypeDeclaration typeDecl = makeClass("A");
typeDecl.addField(fieldDecl);
typeDecl.addMethod(methodDecl);

Figure 7: FieldReferenceGenerator generation

• An ExpressionInStatementGenerator nests the full expres-
sion in one of many types of statements. In Figure 2, the
statement simply contains the expression itself, but it can also
generate branching, looping, or other statements.

It is interesting to note that the NestedExpressionGenerator can
accept another NestedExpressionGenerator, allowing one to cre-
ate expressions nested within each other to an arbitrary depth. In-
deed, our initial instantiation of the FieldReferenceGenerator in-
cluded a NestedExpressionGenerator in place of the Parenthe-

sizingExpressionGenerator, but we found that the resulting com-
binatorial explosion increased testing time substantially without
yielding any new bugs. This illustrates how the tester can (and also
that the tester should) tailor generators (by using different child
generators) to produce data applicable to a particular test target.

The last four child generators are examples of dependent gener-
ators (see Section 3.4). The parent FieldReferenceGenerator pro-
duces an AST by first retrieving the method objects from each of
its child generators. Then, it builds AST fragments by passing in-
termediate results down the sequence of method objects. Finally, it
creates a top-level node (TypeDeclaration) that represents a class.
Figure 7 lists the pseudocode for this procedure.

4.2.2 Class Relationship Generator
The ClassRelationshipGenerator produces combinations of in-

heritance, class name reference, or location-based (i.e., inner or lo-
cal class) relationships between two generated classes. Given two
literal class generators, this generator produces several hundred re-
lationship pairs, one of which is shown in Figure 3. It has the fol-
lowing child generators:

• Two IGenerator<TypeDeclaration> generators, provided by
the caller, that generate the classes to be related.

• An InheritanceGenerator determines whether one class in-
herits from the other.

• A ClassNameReferenceGenerator similar to the FieldRef-

erenceGenerator from Section 4.2.1. It generates many ex-
pressions, statements, and declarations that can contain a ref-
erence to the name of a class. In Figure 3, this generator
produced the method declaration with a parameter type A.

• A LocationGenerator determines where one class is located
in relation to the other. In Figure 3, this generator specified
that B is an inner class of A. Other possible locations are local
(in which a class is declared inside a method) and separate
(in which both classes are top-level elements).

• Three DirectionGenerator generators that determine the di-
rection in which the three relationships “point”. In Figure 3,
all relationships are in the B-to-A direction: B inherits from A,
B is an inner class of A, and B references A through a method
parameter.

The three generators for relationships (InheritanceGenerator,
ClassNameReferenceGenerator, and LocationGenerator) all gen-
erate method objects that consume two generated TypeDeclaration

nodes and a generated Direction, and return the same two nodes
related in a particular way. Note that these method objects need
to modify the nodes generated by other child generators. After ap-
plying all three generated method objects, the pair of classes is re-
turned to the caller.

Due to their exhaustive nature, generators often produce pro-
grams that do not compile. For example, depending on the com-
bination of direction and relationship, certain generated class rela-
tionships may be invalid. The following code illustrates one such
invalid relationship in which B is related to A by location, but A is
related to B by inheritance:
class A extends B {

class B {}
}

We can overcome this problem in three ways. First, we can filter
invalid data by testing the current values of all child generators. In
this example, we can “skip” the generated value if the Location-

Generator’s current value is “inner” in the B-to-A direction and the
InheritanceGenerator’s current value is “extends” in the A-to-B
direction. Second, the caller can limit the generation to only those
programs applicable to a particular task. We shall see in the next
section that the DoubleClassFieldReferenceGenerator generates
classes in all location and inheritance relationships in all directions,
but omits the class name reference relationship because it is irrel-
evant to testing field references. Finally, we can delegate to the
compiler to filter out any generated programs that do not compile.

4.2.3 Double-Class Field Reference Generator
The DoubleClassFieldReferenceGenerator produces all possi-

ble class relationships in which one class declares a field and the
other references it. When supplied the simplest possible class and
field generators, this generator produces over 14,000 programs, one
of which is shown in Figure 4.

This generator combines aspects of the other two complex gen-
erators that we have discussed. First, it uses the ClassRelation-

shipGenerator to generate the inheritance and location relation-
ships between the supplied classes. Then, it uses the SingleClass-

FieldReference to generate references to the field. Construction of
the AST proceeds similarly to the previous two cases. Note that for
this generator, like for ClassRelationshipGenerator, some child
generators need to use the nodes generated by other child genera-
tors.

5. TESTING REFACTORING ENGINES
We next present how we test the refactoring engines in Eclipse

and NetBeans with the input programs that ASTGen generates. We
describe the oracles that we use to verify whether a refactoring has
completed correctly. We also discuss briefly how to automatically
run Eclipse and NetBeans on the generated programs.



5.1 Oracles
An important problem in automated generation of test inputs is

automated checking of outputs, also known as the oracle prob-
lem. A seemingly ideal oracle for a refactoring engine would tell
whether an input program and its refactored version have the same
semantics. However, checking that two programs have the same
semantics is undecidable in general. Moreover, even if the two
programs have the same semantics, the refactoring engine might
not have performed the required changes on the program—a trivial
“identity” engine that does not change any program always pro-
duces semantically equivalent refactored programs but does not
implement refactoring correctly. (Recall the bug from Figure 2
where NetBeans left a field unencapsulated.) Fortunately, refac-
torings are program transformations that make well-defined struc-
tural changes, so we can still check several useful properties of a
refactored program. We have implemented six oracles.

DoesCrash Oracle: Our simplest oracle checks that the refac-
toring engine does not throw an uncaught exception. Such an oracle
is often used as a sanity check in “smoke testing”.

DoesNotCompile Oracle: Our next oracle checks that the refac-
tored program compiles. We filter all generated programs through
the compiler and pass to the refactoring engine only those input
programs that compile. A correct refactoring should thus always
produce output programs that compile.

WarningStatus Oracle: Refactoring engines should warn the
user when a refactoring might change the semantics of the program.
This oracle determines if the refactoring engine produces a warning
status message after checking the preconditions of a specific refac-
toring. This oracle is particularly useful with the generators that in-
tentionally create programs that do not meet the preconditions. For
example, for testing RenameField refactoring, our generators cre-
ate programs such that the new field name would clash with names
of other fields or variables. A refactoring engine should find that
such programs do not meet the preconditions of the refactoring.

Inverse Oracle: Refactorings are invertible program transfor-
mations: given a transformation done by one refactoring, we can
find another refactoring that “undoes” the transformation on the
program. For example, renaming a program entity from A to B

and then renaming again from B to A should produce the same
original program. Due to the implementation of refactoring en-
gines, these programs do not need to be exactly the same when
viewed as sequence of characters. We can compare the original
and twice-refactored programs by determining whether their ASTs
are equivalent.

We implemented an AST Comparator that performs an approxi-
mate comparison: it first normalizes two ASTs by sorting the meth-
ods and fields by name and then compares the method bodies and
field expressions of the appropriate pairs of methods/fields.

Custom Oracle: We implemented several refactoring-specific
oracles. These oracles are aware of the structural changes that their
corresponding refactorings should make and thus check that the
refactored program exhibits the expected changes. For example,
we can verify that RenameField leaves no occurrences of the old
field name anywhere in the AST.

Differential Oracle: The last oracle we implemented is used in
differential testing [18]. This oracle takes an input program and a
refactoring and feeds this pair to both Eclipse and NetBeans. It then
takes the output programs returned by the two engines and checks
whether their ASTs are equivalent using the AST Comparator de-
scribed above. If the two ASTs differ, a human inspects the two
output programs to check whether the difference is caused by a bug
in one of the refactoring engines.

String fieldName = "f";
FieldDeclarationGenerator fieldDeclGen =

new FieldDeclarationGenerator(fieldName);
IGenerator<Program> testGen = new ...(fieldDeclGen);
for (Program in : testGen) {

if (!in.compiles) { continue; }

Refactoring r = new EncapsulateFieldRefactoring();
r.setTargetField(fieldName);

Program out = r.performRefactoring(in);

checkOracles(out);

}

Figure 8: Pseudocode for testing EncapsulateField

5.2 Running Refactorings
We next illustrate how to run the Eclipse and NetBeans refactor-

ing engines on the input programs that ASTGen generates. We use
the EncapsulateField example. Figure 8 shows the pseudocode for
this process. It first creates a FieldDeclarationGenerator initial-
ized with the name of the field we expect to encapsulate. It then
passes this generator to a program generator like those described
in Section 4.2. For each program that the generator produces, the
code first tests if it compiles. If so, the code then instantiates a
refactoring provided by the IDE, initializes it with the field name,
and invokes the refactoring engine. The engine yields a refactored
program that the code passes to each of the oracles.

We implemented this process in Eclipse as a custom plug-in that
uses the platform’s built-in test harness. In NetBeans, we extended
the existing unit test suite.

6. CASE STUDY
We next present the results of using ASTGen to test refactoring

engines. Specifically, our goal is to find and report bugs in Eclipse
and NetBeans. We have tested several refactorings and found 21
bugs in Eclipse and 24 in NetBeans. We list the refactorings tested,
present the generators used for those refactorings, discuss the gen-
eration results, comment on the effort required to write some gener-
ators, discuss how well various oracles performed, and summarize
the reported bugs.

6.1 Refactorings Tested
We tested the following eight refactorings:

• Rename: Rename a class, method, or field and update all
references to it.

• EncapsulateField: Replace every reference of a field with
an accessor method.

• PushDownField: Move a field from a superclass to all sub-
classes.

• PullUpField: Move a field from a subclass to some super-
class.

• PushDownMethod: Move a method from a superclass to all
subclasses.

• PullUpMethod: Move a method from a subclass to some
superclass.

• ChangeSignature: Change a method signature by changing
its return type, adding parameters, or removing parameters.

• MemberToTop: Move an inner class out of its containing
class and declare it in a top level class.



Generation Oracles Bugs
Refactoring Generator TGI Time CI WS DNC C/I Diff. Reported

Ecl NB Ecl NB Ecl NB
Rename(Class) ClassRelationships 108 1:02 88 0 0 0 0 0 0 0 0

Rename(Method) MethodReference 9540 89:12 9540 0 0 0 0 0 0 0 0
Rename(Field) FieldReference 3960 28:20 1512 0 0 0 304 0 40 0 1
Rename(Field) DoubleClassFieldRef. 14850 76:55 3969 0 0 0 0 0 0 0 0

EncapsulateField

ClassArrayField 72 0:45 72 0 0 48 0 0 48 1 0
FieldReference 3960 15:19 1512 0 0 320 432 14 121 4 3

DoubleClassFieldRef. 14850 41:45 3969 0 0 187 256 100 511 1 2
SingleClassTwoFields 60 1:16 48 0 0 0 0 48 15 1 0

DoubleClassGetterSetter 576 8:45 417 216 0 162 162 18 216 3 3

PushDownField DoubleClassFieldRef. 4635 10:56 1064 760 380 152 228 0 380 2 3
DoubleClassParentField 360 6:50 270 246 168 18 90 0 78 1 1

PushDownMethod DoubleClassParentMethod 960 17:11 820 784 300 16 428 0 484 2 3

PullUpField DoubleClassChildField 60 1:14 44 0 18 10 6 0 44 1 1
TripleClassChildField 144 3:06 108 0 42 36 20 0 42 2 2

PullUpMethod DoubleClassChildMethod 576 14:38 448 0 176 0 48 0 224 0 1
TripleClassChildMethod 1152 29:08 864 0 336 160 160 0 336 2 2

CS(ChangeReturnType) MethodReference 3816 37:36 3816 1992 n/a 0 n/a 0 n/a 0 n/a
CS(RemoveParameter) MethodReference 5724 54:29 5724 1908 0 0 0 0 0 0 0
CS(RemoveParameter) MethodParamRef. 1680 7:11 772 772 772 0 0 0 0 0 0

MemberToTop ClassRelationships 70 0:36 51 0 0 0 2 0 2 0 1
DoubleClassFieldRef. 6600 29:04 2824 0 0 353 507 0 2824 1 1

Total Bugs: 21 24

Figure 9: Refactorings tested and bugs reported; CS = ChangeSignature, Ecl = Eclipse, NB = NetBeans;
Generation: TGI = Total Generated Inputs, Time is in min:sec, CI = Compilable Inputs;
Oracles: WS = WarningStatus, DNC = DoesNotCompile, C/I = Custom/Inverse, Diff. = Differential

We chose these refactorings because they demonstrate a variety
of refactoring targets, e.g., EncapsulateField and PushDownField
target field declarations, ChangeSignature targets method declara-
tions, and MemberToTop targets inner classes. Eclipse and Net-
Beans have many more refactorings, and we leave it as the future
work to test more of them. We expect our approach to be general
enough to test these other refactorings.

Figure 9 shows the results of our experiments. The first col-
umn lists the specific refactorings performed. The last two columns
list the number of bugs reported for each. Note that even “trivial”
refactorings such as Rename are susceptible to bugs. The Chan-
geReturnType refactoring is not available in NetBeans, so we put
“n/a” in the corresponding cells.

6.2 Generators Used
The second column of Figure 9 lists the generators used to test

each refactoring. Full descriptions of all generators can be found on
the ASTGen website. We give a short description of five generators
that we discuss in the rest of the paper:

• FieldReference: Generates many classes. Each class con-
tains a field and a method that references the field in many
ways. See Section 4.2.1.

• ClassRelationship: Generates pairs of classes that are re-
lated in many ways. See Section 4.2.2.

• DoubleClassFieldReference: Generates pairs of classes re-
lated in many ways. One class declares a field and the other
references it in many ways. See Section 4.2.3.

• MethodReference: Generates many classes with two meth-
ods. One method calls the other and may overload it.

• MethodParamReference: Generates method declarations,
each of which has a parameter referenced.

6.3 Experimental Results
The third column lists the total number of programs generated.

This number is very sensitive to the way in which the tester ini-
tializes the generator. For example, a fully-exhaustive Double-
ClassFieldReferenceGenerator used for EncapsulateField produces
14,850 programs, whereas a version limited to producing inher-
itance relationships for PushDownField produces just 4,635 pro-
grams.

The fourth column shows execution time needed both to gen-
erate all input programs and to perform the refactoring on these
programs in Eclipse. We ran our tests on a dual-processor 1.8 GHz
Dell D820 laptop with 1 GB of RAM. Performing the refactoring
takes up the vast majority of the execution time. To illustrate, it
takes just 13 seconds for the DoubleClassFieldReference generator
to produce 14,850 programs, but executing the EncapsulateField
refactoring on 3,969 compilable inputs takes about 41 minutes. In
general, Eclipse executes refactorings on compilable inputs at a rate
of about 100 per minute, while ASTGen generates inputs at a rate
of about 1,000 per second.

The fifth column shows the number of compilable inputs. The
generators that we wrote do not always produce input programs
that compile, so we used filtering as described in Section 4.2.2. It is
possible to write generators that produce only compilable inputs—
indeed, we did so with the MethodReference generator—but it does
require additional effort. For our specific application of generators
to test refactoring engines, this effort was rarely justified: checking
whether a program compiles is faster than performing a refactoring
on it. However, this approach assumes that the compiler is correct
and would not be directly applicable for testing the compiler itself.
In the future, we plan to investigate improved approaches that pro-
duce only compilable inputs.

6.4 Effort to Write Generators
We next discuss our anecdotal experience with the effort required

to develop generators. Section 4.1 describes how one can build a



simple generator that produces AST nodes. Building such genera-
tors is fairly straightforward. We built a large library of such simple
generators, but we did not closely track our effort since we were
still experimenting with the design of our framework. Therefore,
we asked two colleagues to write a simple AST generator, simi-
lar to FieldDeclarationGenerator, after the design of the framework
had solidified. They had no experience with ASTGen but had lim-
ited experience with the AST data structures. It took them each
about an hour, including the time needed for us to briefly describe
the important classes in ASTGen.

Section 4.2 describes how one can build complex generators use-
ful for testing refactorings. We tracked the effort required to write
two complex generators: MethodReferenceGenerator and Method-
ParamReferenceGenerator. These two generators are fairly repre-
sentative because they were built on the existing generators after
we already had had some experience with ASTGen.

It took the first author about two workdays to write the two gen-
erators and the infrastructure needed to run the four refactorings
that they test. While we cannot precisely divide the time for de-
veloping generators and the infrastructure, we found the two to be
roughly equal across most complex generators. Together, these two
generators produce 20,760 input programs (of which 19,852 com-
pile). We believe that the number of inputs that the generators pro-
duce is larger than even the most talented tester could produce by
hand in the same amount of time. Note, however, that this does not
imply that ASTGen is better than manual testing. In the future, we
plan to conduct a larger empirical study to compare our approach
for imperative generation with other automated testing approaches
and manual testing.

6.5 Oracle Evaluation
Columns six through eleven of Figure 9 show the number of pro-

grams that each oracle flagged as potentially incorrect refactored
programs. The DoesNotCompile Oracle revealed the most bugs
in Eclipse, while the Differential Oracle revealed the most bugs in
NetBeans. The Custom Oracle revealed one bug for Encapsulate-
Field. We do not show a column for the DoesCrash Oracle since
neither refactoring engine crashed.

We use Custom Oracle, Inverse Oracle, and Differential Oracle
in sequence. We apply the first two oracles directly on the refac-
tored program in Eclipse since these oracles operate on the pro-
gram’s AST. (We do not apply these oracles on the output from
NetBeans.) If the two oracles flag the program, we definitely need
to inspect it. We then use the Differential Oracle to compare the
outputs from Eclipse and NetBeans. Whenever there is a differ-
ence, we need to manually inspect both outputs; based on whether
Custom/Inverse did or did not flag the Eclipse output, we expect the
bug to be in Eclipse or NetBeans, respectively. Finally, even if there
is no difference but Custom/Inverse flagged the Eclipse output, we
also need to inspect the NetBeans output.

The WarningStatus Oracle and Differential Oracle produce some
false positives. For WarningStatus, the reason is that some gener-
ators produce programs (1) for which the refactoring is expected
to find preconditions violations and (2) for which the refactoring
is expected to proceed and refactor the input program. One could
reduce this problem by writing generators that produce only one
or the other kind of program. For Differential, the reason is that
our AST Comparator (described in Section 5.1) sometimes finds
two programs different even though they are semantically equiva-
lent at the sub-method level. While the AST Comparator does not
compare the programs purely syntactically, it does not (and cannot)
compare their full semantics. Additionally, Differential Oracle can
be triggered by the different ways in which the two engines perform

refactorings. For example, when renaming a method m, one engine
may also rename all overloaded methods, while the other may not.
Neither approach is semantically incorrect, so there is no bug. In
the future, we plan to better account for semantics and engine dif-
ferences to reduce or eliminate the number of false positives.

6.6 Bugs Reported
The last two columns of Figure 9 show the (likely) unique bugs

that we found with ASTGen and reported: 21 bugs in Eclipse and
24 bugs in NetBeans. ASTGen found even more bugs, but these
were either already reported or fixed in the latest versions of the
IDEs (Eclipse version 3.3 and NetBeans version 6.0; our testing
infrastructure ran on slightly older versions).

Since ASTGen generates a large number of input programs, in
a bounded-exhaustive fashion, the oracles can report many failures
for each unique bug. For example, for RenameField, we reported
only one unique bug in NetBeans for the 40 variations caught by
the Differential Oracle.

7. RELATED WORK
There is a large body of work in the area of test-input genera-

tion. The most closely related to ASTGen are grammar-based and
bounded-exhaustive testing approaches.

Grammar-based testing [13, 14, 17, 20, 21] requires the user to
describe test inputs with a grammar, and the tools then generate
a set of strings that belong to the grammar (or sometimes a set
of strings that intentionally do not belong to the grammar). In
1972, Purdom [20] pioneered the algorithms for selecting a min-
imal set strings that achieve certain coverage criteria for grammars,
e.g., strings that cover all terminals, all non-terminals, or all pro-
ductions. More recently, Maurer [17], Sirer and Bershad [21], and
Malloy and Power [14] developed tools for grammar-based gen-
eration that were used to find bugs in several applications. We
can view grammar-based approaches as effectively using first-order
functional programs to specify the generation. The tools interpret
these programs typically to generate random strings that belong to
the grammar.

In contrast to random generation, the approach of Lämmel and
Schulte [13] and our approach systematically generate input data,
which can often catch “corner cases” that random testing misses.
Lämmel and Schulte base their approach on grammars and provide
several parameters with which testers can control the “exhaustive-
ness” of generation of strings from the grammar. Our approach
allows testers to use the full expressive power of a familiar pro-
gramming language such as Java to write imperative generators
that produce test inputs.

With our approach, testers can freely compose more basic gen-
erators into more advanced generators. Achieving such reusabil-
ity with grammars is fairly hard. For example, it is not obvious
how, in a grammar-based approach, one could combine the first
two generators from Section 2 to obtain the third. In addition, de-
pendent composition, discussed in Section 3.4, becomes difficult or
impossible with grammars. It has been long realized that even the
simplest cases require extensions to the grammar, e.g., the use of
attributed grammars [8], and to generate valid programs as inputs
(e.g., to test compilers) requires even further extensions to context-
free grammars [2, 6].

Our general framework for imperative generation was inspired
by QuickCheck [7], a Haskell library for random generation of test
data. QuickCheck provides a set of basic generators (each of which
is a Haskell monad) and combinators for building complex gener-
ators from simpler ones. Our framework uses Java classes instead
of Haskell monads and provides bounded-exhaustive generation.



In our framework, both generators and their composition are ex-
pressed in Java, but we plan to consider other approaches for com-
position such as GenVoca [1].

Bounded-exhaustive testing [5, 11, 12, 16, 22] is an approach for
testing code exhaustively on all inputs within the given bound. We
previously developed two approaches, TestEra [12] and Korat [5],
that can in principle be used for bounded-exhaustive generation of
complex test inputs such as Java programs. These two approaches
are declarative: they require the user to specify the constraints that
describe what the test inputs look like (as well as the bound on
the size of test inputs), and the tools then automatically search the
(bounded) input space to generate all inputs that satisfy the con-
straints. TestEra requires the user to specify the constraints in a
declarative language, while Korat requires the users to specify the
constraints in an imperative language. In both previous approaches,
the user just specifies the constraints.

The approach presented in this paper differs in that it is impera-
tive: the programmer specifies how the test generation should pro-
ceed. The imperative approach makes the generation faster since no
search is necessary. Also, the imperative approach gives the pro-
grammer more control over the generation, for example over the or-
der of generation. Finally, the two previous declarative approaches
have not been applied to generate inputs as complex as Java pro-
grams, whereas we have applied our new imperative approach to
generate Java programs to test refactoring engines in Eclipse and
NetBeans.

Nevertheless, the imperative approach has some disadvantages
compared to the declarative approach. The declarative approach
may be more appealing when the testers are not willing to write
generators or the constraints are fairly simple. Also, the declarative
approach always generates valid inputs, whereas most of our im-
perative generators rely on the compiler to filter valid inputs, which
can reduce performance of generation for larger ASTs. We plan to
investigate whether the two approaches can be combined such that
testers can use, for various parts of the same generation, a declara-
tive or imperative approach, depending on which one appears more
appropriate for which part.

8. CONCLUSIONS
Refactoring engines have become popular because they allow

programmers to quickly and (for the most part) safely change large
programs. These tools also influence the culture of software de-
velopment: programmers who use refactoring engines are more
inclined to change large programs. Despite the high quality and
widespread use of existing refactoring engines, they still contain
bugs. Our goal is to help the developers of refactoring engines to
find bugs and reduce their number.

We have presented a practical approach that automates testing of
refactoring engines. The key part of our approach is ASTGen, a li-
brary for generating abstract syntax trees (ASTs) of Java programs.
With ASTGen, testers can quickly write generators that mirror the
AST nodes of Java programs. The generators can be also be com-
posed and reused to generate complex programs. Our approach
found 45 previously unreported bugs in Eclipse and NetBeans, two
of the most popular refactoring engines for Java.

In the future, we plan to test more refactorings. We also plan to
apply ASTGen in new domains; we believe that ASTGen can help
in generating test inputs for a variety of applications that operate
on ASTs, including compilers, code editors and IDEs, and pro-
gram analyzers. Although we have presented generation of Java
programs, the ideas behind ASTGen directly translate to languages
other than Java. Finally, we plan to investigate further the ap-
proaches for generation of structurally complex inputs.
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