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Lecture 1

Genetic Algorithms: Optimization,
Search and Learning

Francisco Herrera

Dept. of Computer Science and A.I., E.T.S. Ingeniería Informática
University of Granada, E-18071 Granada, Spain

E-mail: herrera@decsai.ugr.es

Abstract — Genetic algorithms play a significant role, as search techniques for
handling complex spaces, in many fields such as artificial intelligence, engineering,
robotics, etc. Genetic algorithms are based on the underlying genetic process in bi-
ological organisms and on the natural evolution principles of populations. A short
description is given in this lecture, introducing their use for machine learning.

Key words — genetic algorithms, evolutionary computation, learning.

1.1 Introduction

Evolutionary Computation (EC) uses computational models of evolutionary processes as key el-
ements in the design and implementation of computer-based problem solving systems. There are
a variety of evolutionary computational models that have been proposed and studied which are
referred asEvolutionary Algorithms(EAs). Shortly, this paradigm covers several variations, such
asEvolutionary Strategies, addressing continuous function optimization [72],Evolutionary Pro-
gramming, generating finite state automata that describe strategies or behaviors [26],Genetic
Algorithms, providing continuous and discrete function optimization and search [32, 46] andGe-
netic Programming, evolving computer programs to approximately solve problems [52].

In this lecture we will give a short introduction to the most widely studied EA, Genetic Algo-
rithms, and the use of them for Machine Learning.

1.2 Genetic Algorithms

Genetic algorithms(GAs) have had a great measure of success in search and optimization prob-
lems. The reason for a great part of their success is their ability to exploit the information accu-
mulated about an initially unknown search space in order to bias subsequent searches into useful
subspaces, i.e.,their adaptation. This is their key feature, particularly in large, complex, and
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6 Lecture 1. Genetic Algorithms: Optimization, Search and Learning

poorly understood search spaces, where classical search tools (enumerative, heuristic,..) are inap-
propriate, offering a valid approach to problems requiring efficient and effective search techniques.

GAs are general purpose search algorithms which use principles inspired by natural genetic
populations to evolve solutions to problems [46, 32]. The basic idea is to maintain a population
of chromosomes, which represent candidate solutions to the concrete problem, that evolves over
time through a process of competition and controlled variation. Each chromosome in the popula-
tion has an associatedfitnessto determine which chromosomes are used to form new ones in the
competition process, which is calledselection. The new ones are created using genetic operators
such ascrossoverandmutation.

A GA starts off with a population of randomly generatedchromosomes, and advances toward
betterchromosomesby applying genetic operators modeled on the genetic processes occurring
in nature. The population undergoes evolution in a form of natural selection. During successive
iterations, calledgenerations, chromosomes in the population are rated for their adaptation as so-
lutions, and on the basis of these evaluations, a new population of chromosomes is formed using a
selection mechanism and specific genetic operators such as crossover and mutation. Anevaluation
or fitness function(f ) must be devised for each problem to be solved. Given a particular chromo-
some, a possible solution, the fitness function returns a single numerical fitness, which is supposed
to be proportional to the utility or adaptation of the solution represented by that chromosome.

Although there are many possible variants of the basic GA, the fundamental underlying mech-
anism consists of three operations:

1. evaluation of individual fitness,

2. formation of a gene pool (intermediate population) through selection mechanism, and

3. recombination through crossover and mutation operators.

Next procedure shows the structure of a basic GA, whereP (t) denotes the population at gen-
erationt.

Procedure Genetic Algorithm
begin (1)

t = 0;
initialize P (t);
evaluateP (t);
While (Not termination-condition) do
begin (2)

t = t+ 1;
selectP (t) fromP (t− 1);
recombineP (t);
evaluateP (t);

end (2)
end (1)

The basic principles of GAs were first laid down rigorously by Holland ([46]), and are well
described in many books, such as [32, 60]. It is generally accepted that the application of a GA to
solve a problem must take into account the following five components:
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1. A genetic representation of solutions to the problem,

2. a way to create an initial population of solutions,

3. an evaluation function which gives the fitness of each chromosome,

4. genetic operators that alter the genetic composition of offspring during reproduction, and

5. values for the parameters that the GA uses (population size, probabilities of applying genetic
operators, etc.).

1.2.1 Applications of GAs

GAs may deal successfully with a wide range of problem areas. The main reasons for this success
are: 1) GAs can solve hard problems quickly and reliably, 2) GAs are easy to interface to existing
simulations and models, 3) GAs are extensible and 4) GAs are easy to hybridize. All these reasons
may be summed up in only one: GAs arerobust. GAs are more powerful in difficult environments
where the space is usually large, discontinuous, complex and poorly understood. They are not
guaranteed to find the global optimum solution to a problem, but they are generally good at finding
acceptably good solutions to problems acceptably quickly. These reasons have been behind the
fact that, during the last few years, GA applications have grown enormously in many fields.

The following references show monograph books of applications in different areas: engineer-
ing and computer science [22, 84], machine learning [38, 29], pattern recognition [63], neuronal
networks [83], robotics [21], investment strategies [5], management applications [6], and fuzzy
systems [43, 67, 70].

1.3 Learning with GAs

Although GAs are not learning algorithms, they may offer a powerful and domain-independent
search method for a variety of learning tasks. In fact, there has been a good deal of interest in
using GAs for machine learning problems ([23, 38, 31]).

Three alternative approaches, in which GAs have been applied to learning processes, have
been proposed, the Michigan ([48]), the Pittsburgh ([74]), and the Iterative Rule Learning (IRL)
approaches [33, 82]. In the first one, the chromosomes correspond to classifier rules which are
evolved as a whole, whereas in the Pittsburgh approach, each chromosome encodes a complete
set of classifiers. In the IRL approach each chromosome represents only one rule learning, but
contrary to the first, only the best individual is considered as the solution, discarding the remaining
chromosomes in the population. Below, we will describe them briefly.

Michigan approach. The chromosomes are individual rules and a rule set is represented by the
entire population. The collection of rules are modified over time via interaction with the environ-
ment. This model maintains the population of classifiers with credit assignment, rule discovery
and genetic operations applied at the level of the individual rule.

A genetic learning process based on the Michigan approach receives the name of Classifier
System. A complete description is to be found in [12].
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Pittsburgh approach. Each chromosome encodes a whole rule sets. Crossover serves to provide
a new combination of rules and mutation provides new rules. In some cases, variable-length rule
bases are used, employing modified genetic operators for dealing with these variable-length and
position independent genomes.

This model was initially proposed by Smith in 1980 [74]. Recent instances of this approach
may be found in [38].

Iterative Rule Learning approach. In this latter model, as in the Michigan one, each chromo-
some in the population represents a single rule, but contrary to the Michigan one, only the best
individual is considered to form part of the solution, discarding the remaining chromosomes in the
population. Therefore, in the iterative model, the GA provides a partial solution to the problem of
learning. In order to obtain a set of rules, which will be a true solution to the problem, the GA has
to be placed within an iterative scheme similar to the following:

1. Use a GA to obtain a rule for the system.

2. Incorporate the rule into the final set of rules.

3. Penalize this rule.

4. If the set of rules obtained till now is adequate to be a solution to the problem, the system
ends up returning the set of rules as the solution. Otherwise return to step 1.

The main difference with respect to the Michigan approach is that the fitness of each chro-
mosome is computed individually, without taking into account cooperation with other ones. This
substantially reduces the search space, because in each sequence of iterations only one rule is
searched.

A more detailed description of this approach may be found in [33].

1.3.1 Some Remarks

The Michigan approach will prove to be the most useful in an on-line process. It is more flex-
ible to handle incremental-mode learning (training instances arrive over time) and dynamically
changing domains, whereas the Pittsburgh and the IRL approaches seem to be better suited to
batch-mode learning, where all training instances are available before learning is initiated, and for
static domains.

The major problem in the Michigan approach is that of resolving the conflict between the
individual and collective interests of classifiers within the system. The ultimate aim of a learning
classifier system is to evolve a set of co-adapted rules which act together in solving some problems.
In a Michigan style system, with selection and replacement at the level of the individual rule, rules
which cooperate to effect good actions and receive payoff also compete with each other under the
action of the GA.

This conflict between individual and collective interests of individual classifiers does not arise
with Pittsburgh-style classifier systems, since reproductive competition occurs between complete
rule sets rather than individual rules. However, maintenance and evaluation of a population of
complete rule-sets in Pittsburgh-style systems can often lead to a much greater computational
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burden (in terms of both memory and processing time). Therefore, problems with the Pittsburgh
approach have proven to be, at least, equally as challenging. Although the approach avoids the
problem of explicit competition between classifiers, large amounts of computing resources are
required to evaluate a complete population of rule-sets.

When compared with the latter, the advantage of the IRL approach is that, in the first stage
space it considerably reduces the search because it looks for only one rule in each sequence of
iterations, although this approach also implies a great computational burden.

1.4 Concluding Remarks

A short introduction of GAs have been presented. Regarding to their use for machine learning, to
point out that GAs are also used for refining parameters in other learning approaches, as is done
using GAs for determining weights in a neural network.
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Lecture 2

Integrating Genetic Algorithms and
Fuzzy Logic

Francisco Herrera

Dept. of Computer Science and A.I., E.T.S. Ingeniería Informática
University of Granada, E-18071 Granada, Spain

E-mail: herrera@decsai.ugr.es

Abstract — In this lecture, an evaluation of the current situation regarding to the
combination of genetic algorithms and fuzzy logic is given. This is made by means
of a classification in areas, giving a short introduction to each one of them.

Key words — fuzzy logic, genetic algorithms.

2.1 Introduction

Recently, numerous papers and applications combining Fuzzy Logic (FL) and Genetic Algorithms
(GAs) have become known, and there is an increasing interest in the integration of these two topics.

In the following we explore this combination from the bidirectional integration:

the use of FL based techniques for either improving GA behaviour and modeling GA com-
ponents, the results obtained have been calledfuzzy genetic algorithms(FGAs), and

the application of GAs in various optimization and search problems involving fuzzy sys-
tems.

The present lecture tries to give a short review of the combination of FL and GAs, introducing
a classification of the publications in fourteen areas, presenting briefly them.

Before to introduce the aforementioned areas, a few remarks seem to be necessary.

The first is regarding to the bibliography. It is collected in our technical reportO. Cordón,
F. Herrera, M. Lozano, "A Classified Review on the Combination Fuzzy Logic-Genetic
Algorithms Bibliography”, Dept. of Computer Science and A.I., University of Granada,
Tech.Report 95129, October 1995 (Last version December 1996). Available at the URL
address: http://decsai.ugr.es/˜herrera/fl-ga.html.It classifies and lists 562 references. This
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12 Lecture 2. Integrating Genetic Algorithms and Fuzzy Logic

report classifies the bibliography in 15 sections according to the following table. It con-
tains the keywords and the number of papers on each of them. These keywords covers the
application of FL based tools to GAs (with the name of fuzzy genetic algorithms) and the
different areas of FL and fuzzy set theory where GAs have been applied. The underlying
report is continuously being updated.

1 Fuzzy genetic algorithms 24
2 Fuzzy clustering 14
3 Fuzzy optimization 39
4 Fuzzy neural networks 34
5 Fuzzy relational equations 6
6 Fuzzy expert systems 8
7 Fuzzy classifier systems 33
8 Fuzzy information retrieval 6

and database querying
9 Fuzzy decision making, financial, 10

and economic models
10 Fuzzy regression analysis 6
11 Fuzzy pattern recognition and 24

image processing
12 Fuzzy classification - Concept 24

Learning
13 Fuzzy logic controllers (Design, 287

Learning, Tuning, Applications)
14 Fuzzy logic - Genetic algorithms framework13
15 Fuzzy logic miscellaneous 38

Table 1. Classification keywords

The second, is regarding to this lecture.It is a summary of the contribution:O. Cordón, F.
Herrera, M. Lozano, "On the Combination of Fuzzy Logic and Evolutionary Computation:
A Short Review and Bibliography", In: Fuzzy Evolutionary Computation. W. Pedrycz (Ed.),
Kluwer Academic Pub., 1997, pp. 33-56.

We consider fourteen areas, we join the table areas 7 and 13 in a global area with the name
Genetic fuzzy rule-based control systems. In the following we describe the classification areas.
The exhaustive bibliography is found in the aforementioned reference.

2.2 Classification Areas

In this section we introduce a description of every area and describe shortly theapplication of GAs
to them.
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Fuzzy genetic algorithms.A Fuzzy Genetic Algorithm (FGA) is considered as a GA that uses
fuzzy logic based techniques or fuzzy tools to improve the GA behaviour modeling different GA
components.

An FGA may be defined as an ordering sequence of instructions in which some of the in-
structions or algorithm components may be designed with fuzzy logic based tools, such as, fuzzy
operators and fuzzy connectives for designing genetic operators with different properties, fuzzy
logic control systems for controlling the GA parameters according to some performance measures,
fuzzy stop criteria, representation tasks, etc.

Fuzzy clustering. Clustering plays a key role in searching for structures in data. Given a finite
set of data,X, the problem of clustering inX is to find several cluster centers that can properly
characterize relevant classes ofX. In classical cluster analysis, these classes are required to form
a partition ofX such that the degree of association is strong for data within blocks of the partition
and weak for data in different blocks. However, this requirement is too strong in many practical
applications, and it is thus desirable to replace it with a weaker requirement. When the requirement
of a crisp partition ofX is replaced with a weaker requirement of afuzzy partitionor a fuzzy
pseudo-partitiononX, the emerged problem area is referred asfuzzy clustering.

GAs are used for a global search of the space of possible data partitions given a choice of the
number of clusters or classes in the data, for determining the number of clusters, etc.

Fuzzy optimization. Fuzzy optimization deals with how to find a best point under some fuzzy
goals and restrictions given as linguistic terms or fuzzy sets.

GAs are used for solving different fuzzy optimization problems. This is the case for instance
of fuzzy flowshop scheduling problems, vehicle routing problems with fuzzy due-time, fuzzy
mixed integer programming applied to resource distribution, interactive fuzzy satisfying method
for multi-objective 0-1, fuzzy optimal reliability design problems, job-shop scheduling problem
with fuzzy processing time, fuzzy optimization of distribution networks, etc.

Fuzzy neural networks. Neural networks have been recognized as an important tool for con-
structing membership functions, operations on membership functions, fuzzy inference rules, and
other context-dependent entities in fuzzy set theory.

On other hand, attempts have been made to develop alternative neural networks, more attuned
to the various procedures of approximate reasoning. These alternative neural networks are usually
referred to asfuzzy neural networks. The following features, or some of them, distinguish fuzzy
neural networks from their classical counterparts: inputs are fuzzy numbers, outputs are fuzzy
numbers, weights are fuzzy numbers, weighted inputs of each neuron are not aggregated by sum-
mation, but by some other aggregation operation. A deviation from classical neural networks in
any of these features requires a properly modified learning algorithm to be developed.

GAs are used for designing an overall good architecture of fuzzy neural networks and fuzzy
neural networks, for determining an optimal set of link weight, for participating in hybrid learning
algorithms, etc.

Fuzzy relational equations.The notion of fuzzy relational equations is associated with the con-
cept of composition of binary relations. This operation involves exactly the same combinations of
matrix entries as in the regular matrix multiplication. However, the multiplications and additions
that are applied to these combinations in the matrix multiplication are replaced with other oper-
ations. These alternative operations represent, in each given context, the appropriate operations
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of fuzzy set intersection and union, respectively. Fuzzy relational equations have been intensively
exploited in many areas of applications of fuzzy sets.

GAs may be used either for finding approximate solutions to a system of fuzzy relational
equations or for learning in relational structures.

Fuzzy expert systems.An expert system is a computer-based system that emulates the reasoning
process of a human expert within a specific domain of knowledge. In fuzzy expert systems, the
knowledge is usually represented by a set of fuzzy production rules, which connect antecedents
with consequent, premises with conclusions, or conditions with actions.

GAs can solve two basic problems of the knowledge base, the knowledge base building and
the knowledge filtering.

Fuzzy information retrieval Information retrieval may be defined as the problem of the selection
of documentary information from storage in response to search questions. The motivation of the
application of fuzzy set theory to the design of databases and information storage and retrieval
systems lies in the need to handle imprecise information. The database that can accommodate
imprecise information can store and manipulate not only precise facts, but also subjective expert
opinions, judgments, and values that can be specified in linguistic terms.

GAs are used for designing models for optimization of queries in a fuzzy information retrieval
system.

Fuzzy decision making, financial, and economic models.Decision making is the study of how
decisions are actually made and how they can be made better or more successfully. Fuzzy set
theory has been widely used in the field of decision making. For the most part, the application
consisted on fuzzifications of the classical theories of decision making. Also it is used for modeling
some financial and economic problems.

GAs are used for cooperating in the design and resolution of these models.

Fuzzy regression analysisRegression analysis is an area of statistics that deals with the investi-
gation of the dependence of a variable upon one or more other variables. Two distinct motivations,
fuzzy relation seems intuitively more realistic and the nature of data which in some applications
are inherently fuzzy, lead to two types of fuzzy regression analysis. One involves fuzzy parameters
and crisp data, while the other one involves crisp parameters and fuzzy data.

GAs are used for solving the underlying optimization problems.

Fuzzy pattern recognition and image processing.There are various aspects of image processing
and analysis problems where the theory of fuzzy sets has been applied: as generalizations of
classical membership-roster methods, generalizations of classical syntactic methods, providing
image ambiguity/information measures and quantitative evaluation, computing fuzzy geometrical
properties, etc.

In handling uncertainty in pattern analysis, GAs may be helpful in determining the appropriate
membership functions, rules and parameter space, and in providing a reasonably suitable solution.
For this purpose, a suitable fuzzy fitness function needs to be defined depending on the problem.

Fuzzy classification - Concept learning.

Fuzzy classification systems based on fuzzy logic are capable of dealing with cognitive un-
certainties such as the vagueness and ambiguity involved in classification problems. In a fuzzy
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classification system, a case or an object can be classified by applying (mainly) a set of fuzzy rules
based on the linguistic values of its attributes.

GAs are used in a fuzzy classification system for learning fuzzy rules, membership functions,
fuzzy partitions, etc.

Genetic fuzzy rule based control systems.Fuzzy rule based systems have been shown to be an
important tool for modeling complex systems in which, due to the complexity or the imprecision,
classical tools are unsuccessful.

GAs have demonstrated to be a powerful tool for automating the definition of the Knowledge
Base of a Fuzzy Controller since adaptive control, learning, and self-organization may be consid-
ered in a lot of cases as optimization or search processes. Their advantages have extended the
use of GAs in the development of a wide range of approaches for designing Fuzzy Controllers
over the last few years. In particular, the application to the design, learning and tuning of KBs
has produced quite promising results. These approaches can receive the general name ofGenetic
Fuzzy Systems(GFSs). On other hand, we also must understand the GFSs as the application of
GAs to any fuzzy system being the fuzzy rule based systems a particular case although the most
extended, this is the reason of calling this area asgenetic fuzzy rule based control systems.

2.3 Concluding Remarks

After the short description of areas, to point out that the use of fuzzy logic techniques permits GA
behaviour to be improved in different ways, as well as emphasize the potential of GAs in fuzzy
environments as a flexible tool for optimization and search.

Finally, to mention six references. Two of them are technical reports that collect bibliography
on the combination of GAs and FL [1, 19], the third reference is the paper basis for this summary
[20], and the last three references, the three edited books [43, 67, 70], present a collection of papers
dealing with the topic.
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Lecture 3

Genetic Fuzzy Rule Based Systems

Francisco Herrera

Dept. of Computer Science and A.I., E.T.S. Ingeniería Informática
University of Granada, E-18071 Granada, Spain

E-mail: herrera@decsai.ugr.es

Abstract — The search capabilities and ability for incorporating a priori knowledge
have extended the use of genetic algorithms in the development of a wide range of
methods for designing fuzzy systems over the last few years. Systems applying these
design approaches have received the general name of Genetic Fuzzy Systems.

In this lecture we focus our presentation on genetic fuzzy rule-based systems.
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3.1 Introduction

In a very broad sense, a Fuzzy System (FS) is any Fuzzy Logic-Based System, where Fuzzy Logic
can be used either as the basis for the representation of different forms of system knowledge, or
to model the interactions and relationships among the system variables. FSs have proven to be an
important tool for modeling complex systems, in which, due to the complexity or the imprecision,
classical tools are unsuccessful ([66, 85]).

Recently, a great number of publications explore the use of Genetic Algorithms (GAs) for
designing fuzzy systems. These approaches receive the general name ofGenetic Fuzzy Systems
(GFSs).

The automatic definition of an FS can be considered in many cases as an optimization or search
process. GAs are the best known and most widely used global search technique with an ability to
explore and exploit a given operating space using available performance measures. GAs are known
to be capable of finding near optimal solutions in complex search spaces. A priori knowledge may
be in the form of linguistic variables, fuzzy membership function parameters, fuzzy rules, number
of rules, etc. The generic code structure and independent performance features of GAs make them
suitable candidates for incorporating a priori knowledge. These advantages have extended the use
of GAs in the development of a wide range of approaches for designing fuzzy systems over the
last few years.

We shall center this lecture on Fuzzy Rule Based Systems (FRBSs), [2], the most extended FS
model to which the most successful application of FSs belong, the fuzzy logic controllers (FLCs),
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18 Lecture 3. Genetic Fuzzy Rule Based Systems

which have been and are used in many real-world control problems ([24]). As is well known,
the Knowledge Base (KB) of an FRBS is comprised of two components, aData Base(DB),
containing the definitions of the scaling factors and the membership functions of the fuzzy sets
specifying the meaning of the linguistic terms, and aRule Base(RB), constituted by the collection
of fuzzy rules. GAs may be applied to adapting/learning the DB and/or the RB of an FRBS. This
tutorial will summarize and analyze the GFSs, paying a special attention to FRBSs incorporating
tuning/learning through GAs.

This lecture presents some characteristics of genetic fuzzy rule based systems.

3.2 Genetic Fuzzy Rule Based Systems

The idea of a Genetic FRBS is that of a genetic FRBS design process which incorporates genetic
techniques to achieve the automatic generation or modification of its KB (or a part of it). This
generation or modification usually involves a tuning/learning process, and consequently this pro-
cess plays a central role in GFSs. The objective of this tuning/learning process is optimization,
i.e., maximizing or minimizing a certain function representing or describing the behavior of the
system.

It is possible to define two different groups of optimization problems in FRBSs. The first group
contains those problems where optimization only involves the behavior of the FRBS, while the
second one refers to those problems where optimization involves the global behavior of the FRBS
and an additional system. The first group contains problems such as modeling, classification,
prediction and, in general, identification problems. In this case, the optimization process searches
for an FRBS able to reproduce the behavior of a certain target system. The most representative
problem in the second group is control, where the objective is to add an FRBS to a controlled
system in order to obtain a certain overall behavior. Next, we analyze some aspects of the Genetic
FRBSs.

3.2.1 Obtaining the Knowledge for an FRBS

As a first step, it is interesting to distinguish between tuning and learning problems. In tuning
problems, a predefined RB is used and the objective is to find a set of parameters defining the DB.
In learning problems, a more elaborate process including the modification of the RB is performed.
We can distinguish between three different groups of GFSs depending on the KB components
included in the genetic learning process.

For an extensive bibliography see [19] (section 3.13), some approaches may be found in [33].

Genetic tuning of the DB.The tuning of the scaling functions and fuzzy membership functions is
an important task in the design of fuzzy systems. It is possible to parameterize the scaling functions
or the membership functions and adapt them using GAs to deal with their parameters according
to a fitness function. As regards to the tuning of membership functions, several methods have
been proposed in order to define the DB using GAs. Each chromosome involved in the evolution
process represents different DB definitions, i.e., each chromosome contains a coding of the whole
set of membership functions giving meaning to the linguistic terms. Two possibilities can be
considered depending on whether the fuzzy model nature is descriptive or approximate, either to
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code the fuzzy partition maintaining a linguistic description of the system, or to code the rule
membership functions tuning the parameters of a label locally for every rule, thereby obtaining a
fuzzy approximate model.

Genetic learning of the RB.All the methods belonging to this family involve the existence of
a predefined collection of fuzzy membership functions giving meaning to the linguistic labels
contained in the rules, a DB. On this basis GAs are applied to obtain a suitable rule base, using
chromosomes that code single rules or complete rule bases.

Genetic learning of the KB. There are many approaches for the genetic learning of a complete
KB (RB and DB). We may find approaches presenting variable chromosome lengths, others cod-
ing a fixed number of rules and their membership functions, several working with chromosomes
encoding single control rules instead of a complete KBs, etc.

3.2.2 The Keys to the Tuning/Learning Process

Regardless of the kind of optimization problem, i.e., given a system to be modeled/controlled
(hereafter we use this notation), the involved tuning/learning process will be based on evolution.
Three points are the keys to an evolutionary based tuning/learning process. These three points are:
the population of potential solutions, the set of evolution operators and the performance index.

The population of potential solutions.The learning process works on a population of potential
solutions to the problem. In this case, the potential solution is an FRBS. From this point of view,
the learning process will work on a population of FRBSs, but considering that all the systems
use an identical processing structure, the individuals in the population will be reduced to DB/RB
or KBs. In some cases the process starts off with an initial population obtained from available
knowledge, while in other cases the initial population is randomly generated.

The set of evolution operators.The second question is the definition of a set of evolution oper-
ators that search for new and/or better potential solutions (KBs). The search reveals two different
aspects: the exploitation of the best solution and the exploration of the search space. The success of
evolutionary learning is specifically related to obtaining an adequate balance between exploration
and exploitation, that finally depends on the selected set of evolution operators. The new potential
solutions are obtained by applying the evolution operators to the members of the population of
knowledge bases, each one of these members is referred to as an individual in the population. The
evolution operators, that work with a code (called a chromosome) representing the KB, are basi-
cally three: selection, crossover and mutation. Since these evolution operators work in a coded
representation of the KBs, a certain compatibility between the operators and the structure of the
chromosomes is required. This compatibility is stated in two different ways: work with chro-
mosomes coded as binary strings (adapting the problem solutions to binary code) using a set of
classicalgenetic operators, or adapt the operators to obtain compatible evolution operators using
chromosomes with a non-binary code. Consequently, the question of defining a set of evolution
operators involves defining a compatible couple of evolution operators and chromosome coding.

The performance index.Finally, the third question is that of designing an evaluation system ca-
pable of generating an appropriate performance index related to each individual in the population,
in such a way that a better solution will obtain a higher performance index. This performance
index will drive the optimization process.
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In identification problems, the performance index will usually be based on error measures
that characterize the difference between the desired output and the actual output of the system.
In control problems there are two different sources of information to be used when defining the
performance index: information describing the desired behavior of the controlled system, or de-
scribing the desired behavior of the controller (FRBS) itself. The second situation is closely related
to identification problems. The definition of a performance index is usually more complex for the
first situation, where the objective is to find a controller that gives the desired behavior in the
controlled system.

The process.Summarizing the points that characterize a specific learning process, these are: the
initial population of solutions (obtained randomly or from some initial knowledge), the coding
scheme for KBs (chromosomes), the set of evolution operators and the evaluation function. The
initial population and the evaluation function are related to the specific problem while the cod-
ing scheme and the evolution operators could be generic. In addition to these four points, each
evolutionary learning process is characterized by a set of parameters such as the dimension of
the population (fixed or variable), the parameters regulating the activity of the operators or even
theirs effect, and the parameters or conditions defining the end of the process or the time when a
qualitative change in the process occurs.

3.2.3 The Cooperation vs. Competition Problem

A GFS combines the main aspects of the system to be obtained, an FS, and the design technique
used to obtain it, a GA, with the aim of improving as far as possible the accuracy of the final FS
generated.

One of the most interesting features of an FS is the interpolative reasoning it develops. This
characteristic plays a key role in the high performance of FSs and is a consequence of thecooper-
ation between the fuzzy rules composing the KB. As is known, the output obtained from an FS is
not usually due to a single fuzzy rule but to the cooperative action of several fuzzy rules that have
been fired because they match the input to the system to some degree.

On the other hand, the main feature of a GA is thecompetition between members of the popu-
lation representing possible solutions to the problembeing solved. In this case, this characteristic
is due to the mechanisms of natural selection on which the GA is based.

Therefore, since a GFS combines both aforementioned features, it works byinducing compe-
tition to get the best possible cooperation. This seems to be a very interesting way to solve the
problem of designing an FS, because the different members of the population compete with one
another to provide a final solution presenting the best cooperation between the fuzzy rules com-
posing it. The problem is to obtain the best possible way to put this way of working into effect.
This is referred to ascooperation vs. competition problem (CCP)([10]). The difficulty of solving
the introduced problem depends directly on the genetic learning approach followed by the GFS
(Michigan, Pittsburgh or IRL approaches). Below we briefly analyze them.

Michigan approach. It is difficult to solve the CCP when working with the Michigan approach.
In this case, the evolution is performed at the level of fuzzy rules instead of at the level of KBs and
it is not easy to obtain an adequate cooperation between fuzzy rules that are competing with one
another. To do this, we need a fitness function able to measure both the goodness of a single fuzzy
rule and the quality of its cooperation with the other fuzzy rules in the population to give the best
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action as output. As mentioned in [10], the design of a fitness function of this kind is not an easy
task.

Pittsburgh approach. This approach is able to solve adequately the CCP. When using this ap-
proach, the GFS evolves populations of KBs and the fitness function associated to each individual
is computed taking into account the real action that the FS encoded into the chromosome should
give as output when it receives a concrete input. Thus, each time an individual is evaluated, the
cooperation between the fuzzy rules composing the KB is measured, so the GFS is able to evolve
adequately the population to obtain the FS presenting the best possible cooperation between the
fuzzy rules composing its KB. Unfortunately, this approach presents the drawback of having to
deal with very large search spaces, which makes it difficult to find optimal solutions. This draw-
back is usual when designing GFSs belonging to the third family, i.e., when the generation of the
whole KB is considered in the genetic learning process. In this case, a large quantity of KB pa-
rameters have to be included in the genetic representation, which therefore becomes larger. This
fact will be more pronounced if an approximate fuzzy model is considered, the use of different
membership function definitions for each rule makes the number of KB parameters increase, and
then the search space becomes more complex, making the problem computationally hard.

IRL approach. Finally, GFSs based on the IRL approach try to solve the CCP at the same time
reducing the search space by encoding a single fuzzy rule in each chromosome. To put this into
effect, these processes follow the usual problem partitioning working way and divide the genetic
learning process into, at least, two stages. Therefore, the CCP is solved in two steps acting at two
different levels, with the competition between fuzzy rules in the first one, the genetic generation
stage, and with the cooperation between these generated fuzzy rules in the second one, the post-
processing stage.

3.3 Concluding Remarks

In this lecture we have introduced the GFSs, presenting the basic keys to the tuning/learning
processes and the problem of the cooperation vs. competition in the different learning approaches.
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4.1 Introduction

The tuning of the scaling functions and fuzzy membership functions is an important task in the
design of fuzzy systems. It is possible to parameterize the scaling functions or the membership
functions and adapt them using Genetic Algorithms to deal with their parameters according to a
fitness function.

As regards to the tuning of membership functions, several methods have been proposed in
order to define the Data Base (DB) using GAs. Each chromosome involved in the evolution
process represents different DB definitions, i.e., each chromosome contains a coding of the whole
set of membership functions giving meaning to the linguistic terms. Two possibilities can be
considered depending on whether the fuzzy model nature is descriptive or approximate, either to
code the fuzzy partition maintaining a linguistic description of the system, or to code the rule
membership functions tuning the parameters of a label locally for every rule, thereby obtaining a
fuzzy approximate model.

In this lecture we analyze the use of GAs for the tuning of DBs according to the two mentioned
areas, the adaptation of contexts using scaling functions and the tuning of membership functions,
we shall present briefly them.
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4.2 Adapting the Context

The use of scaling functions that are applied to the input and output variables of an FRBS, allows
us to work with normalized universes of discourse where the fuzzy membership functions are
defined. These scaling functions could be interpreted as gains associated with the variables (from
a control engineering point of view) or as context information that translates relative semantics
into absolute ones (from a knowledge engineering point of view). If using scaling functions, it is
possible to fix them or to parameterize the scaling functions and adapt them. Linear and non-linear
contexts have been used.

Linear context. It is the simplest scaling. The parameterized function is defined by means of
two parameters (one, if used as a scaling factor). The effect of scaling is that of linearly mapping
the real interval [a,b] into a reference interval (e.g., [0,1]). The use of a scaling factor maps the
interval [-a,a] in a symmetrical reference interval (e.g., [-1,1]). This kind of context is the most
broadly applied one. Genetic techniques have been applied to adapting the parameters defining
the scaling factors ([62]) and linear scaling functions ([59]).

Nonlinear context. The main disadvantage of linear scaling is the fixed relative distribution of
the membership functions (uniformly distributed or not) once they have been generated. To solve
this problem nonlinear scaling is used allowing us to obtain a modified relative distribution and
a change in the shape of the membership functions. The definition of parameterized nonlinear
scaling functions is more complex than in the linear case and a larger number of parameters are
needed. The process actually requires two steps: previous scaling (linear) and nonlinear mapping.
Parameterized potential ([56]) and sigmoidal ([39]) functions have been used when applying GAs
to adapt the nonlinear context. Usually, the parameters (real numbers) constitute the genes of the
chromosomes without binary representation.

Figure 4.1 shows a normalized fuzzy partition (top), a nonlinear adaptation with lower gran-
ularity for middle or for extreme values (center) and lower granularity for lowest or for highest
values (bottom).

4.3 Tuning the Membership Functions

Another element of the KB is the set of membership functions. This is a second point where GAs
could be applied with a tuning purpose. As in the previous case of scaling functions, the main idea
is the definition of parameterized functions and the subsequent adaptation of parameters. Some
approaches are found to be in [8, 11, 41, 50, 76]. The different proposals differ in the coding
scheme and the management of the solutions (fitness functions, ...).

4.3.1 Shape of the Membership Functions

Two main groups of parameterized membership functions have been proposed and applied: piece-
wise linear functions and differentiable functions.
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Figure 4.2: Descriptive versus Approximate fuzzy models

Piecewise linear functions. The most broadly used parameterized membership functions in the
field of GFSs are triangles, in some cases these are isosceles ([14, 25, 49, 64]) and other times they
are irregular ([53]). A second possibility are trapezoidal membership functions ([51]).

Each parameter of the function constitutes a gene of the chromosome that may be a binary code
representing the parameter ([14, 49, 51, 53]) or a real number (the parameter itself, [25, 41, 64]).

Differentiable functions. Gaussian, bell and sigmoidal are examples of parameterized differen-
tiable functions. These membership functions have been broadly applied in different fuzzy-neural
systems ([57]) but radial functions ([27]) and Gaussian functions ([54, 71]) are used in GFSs
too. To translate the parameters of the function into genetic information a binary code is used in
[71, 27] and the coefficient itself in [54].

4.3.2 Scope of the Semantics

The genetic tuning process of membership functions is based on two variants, depending on the
fuzzy model nature, whether approximate ([41]) or descriptive ([18, 50]).

The descriptive fuzzy model is essentially a qualitative expression of the system. A KB in
which the fuzzy sets giving meaning (semantic) to the linguistic labels are uniformly defined for
all rules included in the RB. It constitutes a descriptive approach since the linguistic labels take
the same meaning for all the fuzzy rules contained in the RB. The system uses a global semantics.
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In the approximate fuzzy model a KB is considered for which each fuzzy rule presents its
own meaning, i. e., the linguistic variables involved in the rules do not take as their values any
linguistic label from a global term set. In this case, the linguistic variables become fuzzy variables.
The system applies local semantics.

Figure 4.2 and the examples described in the following paragraphs illustrate these two variants,
and their particular aspects reflected in the coding scheme.

4.3.3 The Approximate Genetic Tuning Process

As mentioned earlier, each chromosome forming the genetic population will encode a complete
KB. More concretely, all of them encode the RB,R, and the difference between them are the fuzzy
rule membership functions, i. e., the DB definition.

Taking into account a parametric representation with triangular-shaped membership functions
based on a 3-tuple of real values, each rule

Ri : IF x1 isAi1 and ... andxn isAin THEN y isBi,

of a certain KB (KBl), is encoded in a piece of chromosomeCli:

Cli = (ai1, bi1, ci1, . . . , ain, bin, cin, ai, bi, ci)

whereAij , Bi have the parametric representation(aij , bij , cij), (ai, bi, ci), i = 1, . . . ,m (m rep-
resents the number of rules),j = 1, . . . , n (n is the number of input variables).

Therefore the complete RB with its associated DB is represented by a complete chromosome
Cl:

Cl = Cl1 Cl2 ... Clm

This chromosome may be a binary or a real coded individual.

4.3.4 The Descriptive Genetic Tuning Process

In this second genetic tuning process each chromosome encodes a different DB definition based
on the fuzzy domain partitions. A primary fuzzy partition is represented as an array composed by
3 ·N real values, withN being the number of terms forming the linguistic variable term set. The
complete DB for a problem, in whichm linguistic variables are involved, is encoded into a fixed
length real coded chromosomeCj built up by joining the partial representations of each one of the
variable fuzzy partitions,

Cji = (ai1, bi1, ci1, . . . , aiNi , biNi , ciNi)

Cj = Cj1 Cj2 ... Cjm

whereCji represents the fuzzy partition corresponding to thei− th variable.

4.4 Concluding Remarks

This lecture have presented the use of GAs for tuning fuzzy systems. Finally, to point out that the
genetic tuning process may be combined with the fuzzy rule learning process for improving the
learning capabilities of them.
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Abstract — In this part, an application of genetic tuning of a fuzzy system is pre-
sented. First, a fuzzy method for a certain kind of pixel classification is introduced.
In the second part, genetic methods for tuning the membership functions of the clas-
sification system are discussed and compared with other probabilistic optimization
methods.
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5.1 Introduction

Pixel classification is an important preprocessing task in many image processing applications. In
this project, where the FLLL developed an inspection system for a silk-screen printing process,
it was necessary to extract regions from the print image which had to be checked by applying
different criteria:

1. Homogeneous area: uniformly colored area;

2. Edge area: pixels within or close to visually significant edges;

3. Halftone: area which looks rather homogeneous from a certain distance, although it is actu-
ally obtained by printing small raster dots of two or more colors;

4. Picture: rastered area with high, chaotic deviations, in particular small high-contrasted de-
tails.

The magnifications in Figure 5.1 show how these areas typically look like at the pixel level. Of
course, transitions between two or more of these areas are possible, hence a fuzzy model is rec-
ommendable.

If we plot one color extraction of the eight neighbor pixels with respect to a clockwise enumer-
ation of the eight neighbors, we typically get curves like those shown in Figure 5.2. Seemingly,
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Homogeneous Edge Halftone Picture

Figure 5.1: Magnifications of typical representatives of the four types
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Figure 5.2: Typical gray value curves

the size of the deviations, e.g., by computing the variance, can be used to distinguish between
homogeneous areas, halftones and the other two types. On the other hand, a method which judges
the width and connectedness of the peaks should be used in order to separate edge areas from
pictures. A simple but effective method for this purpose is the so-called discrepancy norm, for
which there are already other applications in pattern recognition (cf. [61]):

‖~x‖D = max
1≤α≤β≤n

∣∣∣∣∣
β∑
i=α

xi

∣∣∣∣∣ (5.1)

A more detailed analysis of the discrepancy norm, especially how it can be computed in linear
time, can be found in [3].

5.2 The Fuzzy System

For each pixel(i, j) we consider its nearest eight neighbors enumerated as described above, which
yields three vectors of gray values with 8 entries — one for each color extraction. As already
mentioned, the sum of the variances of the three vectors can be taken as a measure for the size of
the deviations in the neighborhood of the pixel. Let us denote this value withv(i, j). On the other
hand, the sum of the discrepancy norms of the vectors, where we subtract each entry by the mean
value of all entries, can be used as a criterion whether the pixel is within or close to a visually
significant edge.

The fuzzy decision is then carried out for each pixel(i, j) independently: First of all, the
characteristic valuesv(i, j) ande(i, j) are computed. These values are taken as the input of a
small fuzzy system with two inputs and one output. Let us denote the linguistic variables on the
input side withv ande. Since the position of the pixel is of no relevance for the decision in this
concrete application, indices can be omitted here. The input space of the variablev is represented
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Figure 5.3: The linguistic variablesv ande

by three fuzzy sets which are labeled“low”, “med”, and“high”. Analogously, the input space of the
variablee is represented by two fuzzy sets, which are labeled“low” and“high”. Experiments have
shown that[0, 600] and [0, 200] are appropriate universes of discourse forv ande, respectively.
For the decomposition of the input domains simple Ruspini partitions (see [69]) consisting of
trapezoidal fuzzy subsets were chosen. Figure 5.3 shows how these partitions typically look like.

The output space is a set of linguistic labels, namely“Ho”, “Ed”, “Ha”, and “Pi”, which
are, of course, just abbreviations of the names of the four types. Let us denote the output vari-
able itself with t. Finally, the output of the system for each pixel(i, j) is a fuzzy subset of
{“Ho”, “Ed”, “Ha”, “Pi”}. This output set is computed by processing the valuesv(i, j) ande(i, j)
through a rule base with five rules, which cover all the possible combinations:

IF v is low THEN t = Ho
IF v is med AND e is high THEN t = Ed
IF v is high AND e is high THEN t = Ed
IF v is med AND e is low THEN t = Ha
IF v is high AND e is low THEN t = Pi

In this application, ordinary Mamdani min/max-inference is used. Finally, the degree to which
“Ho”, “Ed”, “Ha”, or “Pi” belong to the output set can be regarded as the degree to which the
particular pixel belongs to area Homogeneous, Edge, Halftone, or Picture, respectively.

For details on the integration of the classification algorithm into the printing process and in-
formation about the performance and robustness of the algorithm see [4].

5.3 The Optimization of the Classification System

The behavior of the fuzzy system depends on six parameters,v1, . . . , v4, e1, ande2, which deter-
mine the shape of the two fuzzy partitions. In the first step, these parameters were tuned manually.
Of course, we have also taken into consideration to use (semi)automatic methods for finding the
optimal parameters.

Our optimization procedure consists of a painting program which offers tools, such as a pencil,
a rubber, a filling algorithm, and many more, which can be used to make a classification of a
given representative image by hand. Then an optimization algorithm can be used to find that
configuration of parameters which yields the maximal degree of matching between the desired
result and the output actually obtained by the classification system.

Assume that we haveN sample pixels for which the input values(ṽk, ẽk)k∈{1,...,N} are com-
puted and that we already have a reference classification of these pixels

t̃(k) = (t̃Ho(k), t̃Ed(k), t̃Ha(k), t̃Pi(k)),
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wherek ∈ {1, . . . , N}. Since, as soon as the valuesṽ and ẽ are computed, the geometry of the
image plays no role anymore, we can switch to one-dimensional indices here. Then one possibility
to define the performance (fitness) of the fuzzy system would be

1
N

N∑
k=1

d(t(k), t̃(k)), (5.2)

wheret(k) = (tHo(k), tEd(k), tHa(k), tPi(k)) are the classifications actually obtained by the fuzzy
system for the input pairs(ṽk, ẽk) with respect to the parametersv1, v2, v3, v4, e1, ande2; d(., .)
is an arbitrary (pseudo-)metric on[0, 1]4. The problem of this brute force approach is that the
output of the fuzzy system has to be evaluated for each pair(vk, ek), even if many of these values
are similar or even equal. In order to keep the amount of computation low, we “simplified” the
procedure by a “clustering process” as follows:

We choose a partition(P1, . . . , PK) of the input space, where(n1, . . . , nK) are the numbers
of sample points{pi1, . . . , pini} each part contains. Then the desired classification of a certain part
(cluster) can be defined as

t̃X(Pi) =
1
ni

ni∑
j=1

t̃X(pij), (5.3)

whereX ∈ {Ho,Ed,Ha,Pi}.
If φ is a function which maps each cluster to a representative value (e.g., its center of gravity),

we can define the fitness (objective) function as

100
N

K∑
i=1

ni ·

1− 1
2
·

∑
X∈{Ho,Ed,Ha,Pi}

(
t̃X(Pi)− tX(φ(Pi))

)2 , (5.4)

If the number of parts is chosen moderately (e.g. a rectangular64×32 net which yieldsK = 2048)
the evaluation of the fitness function takes considerably less time than a direct application of
formula (5.2).

Note that in (5.4) the fitness is already transformed such that it can be regarded as a degree of
matching between the desired and the actually obtained classification measured in percent. This
value has then to be maximized.

In fact, fitness functions of this type are, in almost all cases, continuous but not differentiable
and have a lot of local maxima. Figure 5.4 shows cross sections of such functions. Therefore, it is
more reasonable rather to use probabilistic optimization algorithms than to apply continuous op-
timization methods, which make excessive use of derivatives. This, first of all, requires a (binary)
coding of the parameters. We decided to use a coding which maps the parametersv1, v2, v3, v4,
e1, ande2 to a string of six 8-bit integerss1, . . . , s6 which range from0 to 255. The following
table shows how the encoding and decoding is done:

s1 = v1 v1 = s1

s2 = v2 − v1 v2 = s1 + s2

s3 = v3 − v2 v3 = s1 + s2 + s3

s4 = v4 − v3 v4 = s1 + s2 + s3 + s4

s5 = e1 e1 = s5

s6 = e2 − e1 e2 = s5 + s6
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Figure 5.4: Cross sections of a function of type (5.4)

We first tried a standard GA (see [32] or [46]) with proportional (standard roulette wheel) se-
lection, one-point crossing over with uniform selection of the crossing point, and bitwise mutation.
The size of the populationm was constant, the length of the strings was, as shown above, 48.

In order to compare the performance of the GAs with other well-known probabilistic opti-
mization methods, we additionally considered the following methods:

Hill climbing: always moves to the best-fitted neighbor of the current string until a local maxi-
mum is reached; the initial string is generated randomly.

Simulated annealing: powerful, often used probabilistic method which is based on the imitation
of the solidification of a crystal under slowly decreasing temperature (see [81] for a detailed
description)

Each one of these methods requires only a few binary operations in each step. Most of the time
is consumed by the evaluation of the fitness function. So, it is near at hand to take the number of
evaluations as a measure for the speed of the algorithms.

Results All these algorithms are probabilistic methods, therefore their results are not well-
determined, they can differ randomly within certain boundaries. In order to get more information
about their average behavior, we tried out each one of them20 times for one certain problem.
For the given problem we found out that the maximal degree of matching between the reference
classification and the classification actually obtained by the fuzzy system was 94.3776%. In Ta-
ble 5.1,fmax is the fitness of the best andfmin is the fitness of the worst solution;̄f denotes the
average fitness of the 20 solutions,σf denotes the standard deviation of the fitness values of the
20 solutions, and # stands for the average number of evaluations of the fitness function which was
necessary to reach the solution.

The hill climbing method with a random selection of the initial string converged rather quickly.
Unfortunately, it was always trapped in a local maximum, but never reached the global solution
(at least in these20 trials).

The simulated annealing algorithm showed similar behavior at the very beginning. After tun-
ing the parameters involved, the performance improved remarkably.
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fmax fmin f̄ σf It

Hill Climbing 94.3659 89.6629 93.5536 1.106 862

Simulated Annealing 94.3648 89.6625 93.5639 1.390 1510

Improved Simulated
Annealing

94.3773 93.7056 94.2697 0.229 21968

GA 94.3760 93.5927 94.2485 0.218 9910

Hybrid GA (elite) 94.3760 93.6299 94.2775 0.207 7460

Hybrid GA (random) 94.3776 94.3362 94.3693 0.009 18631

Table 5.1: A comparison of results obtained by several different optimization methods.

The raw genetic algorithm was implemented with a population size of 20; the crossing over
probability was set to0.15, the mutation probability was0.005 for each byte. It behaved pretty
well from the beginning, but it seemed inferior to the improved simulated annealing.

Next, we tried a hybrid GA, where we kept the genetic operations and parameters of the raw
GA, but every 50th generation the best-fitted individual was taken as initial string for a hill climb-
ing method. Although the performance increased slightly, the hybrid method still seemed to be
worse than the improved simulated annealing algorithm. The reason that the effects of this mod-
ification were not so dramatic might be that the probability is rather high that the best individual
is already a local maximum. So we modified the procedure again. This time arandomly chosen
individual of every 25th generation was used as initial solution of the hill climbing method. The
result exceeded the expectations by far. The algorithm was, in all cases, nearer to the global so-
lution than the improved simulated annealing (compare with Table 5.1), but, surprisingly, sufficed
with less invocations of the fitness function. The graph in Figure 5.5 shows the results graphically.
Each line in this graph corresponds to one algorithm. The curve shows, for a given fitness valuex,
how many of the 20 different solutions had a fitness higher or equal tox. It can be seen easily from
this graph that the hybrid GA with random selection led to the best results. Note that thex-axis is
not a linear scale in this figure. It was transformed in order to make small differences visible.

5.4 Concluding Remarks

In this lecture we have investigated the suitability of genetic algorithms for finding the optimal
parameters of a fuzzy system, especially if the analytical properties of the objective function are
bad. Moreover, hybridization has been discovered as an enormous potential for improvements of
genetic algorithms.
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Figure 5.5: A graphical representation of the results.
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Abstract — In this lecture we shortly describe the use of genetic fuzzy systems
with the Pittsburgh learning approach for learning rule bases and knowledge bases for
fuzzy rule bases systems.

Key words — genetic algorithms, fuzzy rule based systems, learning, Pittsburgh
approach.

6.1 Introduction

Recently, there has been a growing interest in using Genetic Algorithms (GAs) for machine learn-
ing problems, appearing different genetic learning approaches. One of them, the Pittsburgh ap-
proach adopts the view that each individual in a population, each chromosome, encodes a whole
rule sets. Crossover serves to provide a new combination of rules and mutation provides new
rules. In some cases, variable-length rule bases are used, employing modified genetic operators
for dealing with these variable-length and position independent genomes. This model was initially
proposed by Smith in 1980 [74].

In this lecture we shortly describe the use of Genetic Fuzzy Systems (GFSs) with this learning
approach for learning Rule Bases (RB) and Knowledge Bases (KB) for Fuzzy Rule Bases Systems
(FRBSs).

6.2 Genetic Learning of RB

It is possible to represent the RB of an FRBS with three different representations. These repre-
sentations are: relational matrix, decision table and list or set of rules. The Pittsburgh approach
has been applied to learn rule bases in two different situations. The first situation refers to those
systems using a complete rule base represented by means of a decision table or a relational matrix.
The second situation is that of FRBSs, whose RB is represented using a list or set of fuzzy rules.
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6.2.1 Using a Complete RB

A tabular representation guarantees the completeness of the knowledge of the FRBS in the sense
that the coverage of the input space (the Cartesian product of universes of the input variables) is
only related to the level of coverage of each input variable (the corresponding fuzzy partitions),
and not to the rules.

Decision tables.A possible representation for the RB of an FS is a decision table. It is a classical
representation used in different GFSs. A chromosome is obtained from the decision table by going
row-wise and coding each output fuzzy set as an integer or any other kind of label. It is possible
to include the “no output” definition in a certain position, using a “null” label ([62, 78]).

Relational matrices. Occasionally GAs are used to modify the fuzzy relational matrix (R) of a
Fuzzy System with one input and one output. The chromosome is obtained by concatenating the
m × n elements of R, wherem andn are the number of fuzzy sets associated with the input and
output variables respectively. The elements of R that will make up the genes may be represented
by binary codes [68] or real numbers.

6.2.2 Using a Partial RB

Neither the relational nor the tabular representations are adaptable to systems with more than two
or three input variables because of the dimension of a complete RB for these situations. This fact
stimulated the idea of working with sets of rules. In aset of rulesrepresentation the absence of
applicable rules for a certain input that was perfectly covered by the fuzzy partitions of individual
input variables is possible. As a counterpart to the loss of completeness, this representation allows
compressingseveral rules with identical outputs into a singular rule and this is a really important
question as the dimension of the system grows.

There are many different methods for coding the rule base in this kind of evolutionary system.
The code of the rule base is usually obtained by concatenating rules codes.

Rules of fixed length. A first approach is to represent a rule with a code of fixed length and
position dependent meaning. The code will have as many elements as the number of variables in
the system. A possible content of these elements is: a label pointing to a certain fuzzy set in the
fuzzy partition of the variable or a binary string with a bit per fuzzy set in the fuzzy partition of
the variable coding the presence or absence of the fuzzy set in the rule [58].

Rules of variable length.Codes with position independent meaning and based on pairs {variable,
membership function} (the membership functions is described using a label) are used in [44].

6.3 Genetic Learning of KB

The simultaneous use as genetic material of the DB and the RB of an FRBS has produced different
and interesting results. The most general approach is the use of a set of parameterized membership
functions and a list of fuzzy rules that are jointly coded to generate a chromosome, then applying
a Pittsburgh-type GA to evolve a population of such chromosomes. This kind of GFSs use chro-
mosomes containing two sub-chromosomes that encode separately, but not independently, the DB
and the RB.
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It is possible to maintain, at this point, the same division that was stated when talking about
genetic learning of RBs with a Pittsburgh approach: learning complete rule bases or partial rule
bases.

6.3.1 Using a Complete RB

In [64] the rule base is represented as a fuzzy relation matrix (R), and the GA modifies R or
the fuzzy membership functions (triangular) or both of them simultaneously, on a Fuzzy Logic
Controller (FLC) with one input and one output variables. Each gene is a real number. When
generating the optimal fuzzy relation matrix this real number corresponds to a fuzzy relation de-
gree whose value is between 0 and 1. The genetic string is obtained by concatenating them × n
real numbers that constitute R. When finding simultaneously the optimal rule base and the fuzzy
membership functions, each chromosome allocates two sub-chromosomes: the genes of the rule
base and the genes of the fuzzy membership functions. Both sub-chromosomes are treated as in-
dependent entities as far as crossover and mutation are concerned but as a single entity as far as
reproduction is concerned.

A slightly different approach is to use a TSK-type rule base, structuring its genetic code as if
it came from a decision table. In this case, the contents of the code of a rule base is an ordered and
complete list containing the consequents of all possible rules, where the antecedents are implicitly
defined as a function of the position the consequent occupies in the list.

The fuzzy membership functions constitute a first sub-chromosome while the coefficients of
the consequents for a TSK fuzzy model constitute the second sub-chromosome. One gene is used
to code each coefficient of a TSK-type in [53], in [27] a single coefficient is considered for the
output.

6.3.2 Using a Partial RB

Liska and Melsheimer ([54]) use a rule base defined as a set of a fixed number of rules, and code
each rule with integer numbers that define the membership function related with a certain input or
output variable that is applied by the rule (membership functions for every variable are ordered).
The systems use radial membership functions coded through two real numbers (two genes). The
genetic string is obtained by concatenating the two genes in each membership function.

There are many different methods for coding the rule base in this kind of evolutionary system.
The code of the rule base is usually obtained by concatenating rule codes. To represent a single
rule, it is possible to use a position dependent code with as many elements as the number of
variables of the system. A possible content in these elements is: a label pointing to a certain fuzzy
set in the fuzzy partition of the variable ([71]) or a binary string with a bit per fuzzy set in the
fuzzy partition of the variable ([55]).

Using an approximate approach, [13, 14] include the definition of the membership functions
into the rules, coding each rule through the corresponding set of membership functions.
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6.4 A Learning Process of Fuzzy Logic Controllers

FLCs represent a particular and widely applied kind of FRBSs. A genetic process using a Pitts-
burgh approach and working on an FLC may be rewritten as follows in such a situation:

1. Start with an initial population of solutions that constitutes the first generation (P(0)).

2. EvaluateP(0):

(a) take each chromosome (KB) from the population and introduce it into the FLC,

(b) apply the FLC to the controlled system for an adequate evaluation period (a single
control cycle, several control cycles or even several times, starting out from different
initial conditions) and

(c) evaluate the behavior of the controlled system by producing a performance index re-
lated to the KB.

3. While the Termination Condition is not met, do

(a) create a new generation (P(t+1)) by applying the evolution operators to the individuals
in P(t),

(b) evaluateP(t+1) and

(c) t = t+ 1.

4. Stop.

6.5 An Example of GFS with Pittsburgh Approach

This section describe, in a few lines, one of the GFSs previously cited, specifically a GFS learning
RBs and representing the rule base with a decision table. This method was proposed by Philip
Thrift ([78]). This example will be analyzed according to the keys of the learning process, the
population of potential solutions, the set of evolution operators and the performance index.

Given a single output FRBS withn input variables, a fuzzy partition is defined for each variable
(n + 1 fuzzy partitions). In this case each fuzzy partition contains five or seven fuzzy sets. An
n-dimensional decision table is then made up by placing the consequents of each rule in the place
corresponding to its premise. Entries in the table can be either one of the labels representing
a fuzzy set of the output variable partition, or a blank representing no fuzzy set output for the
corresponding rule.

The population of potential solutions.The population of potential solutions will be made up of
RBs applied by a common processing structure to solve a specific problem. Because the learning
process is centered on rules and all the KBs will contain an identical DB, consequently the popu-
lation of solutions can be reduced to a population of RBs. Each RB is represented by a decision
table, and these decision tables must by coded to constitute suitable genetic material.

Each position in the decision table will represent a gene of the chromosome coded with an
integer in{0, 1, . . . , 5}, with its 6 possible values corresponding to the5 components of the fuzzy
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partition and the blank output. A chromosome is obtained by going row-wise through the table and
producing a string with the integers found at each place in it. For a system with two input variables
and five fuzzy sets per partition, the decision table will contain5× 5 places and consequently will
generate a chromosome with 25 genes.

The population where the genetic process will be applied is a number of chromosomes (31 in
the example described in the paper) coded as strings with 25 integers in{0, 1, . . . , 5}.
The set of evolution operators. The system uses a standard two point crossover ([60]) and a
mutation operator that changes a fuzzy code either up one level or down one level, or to the blank
code. When the mutation operator acts on a blank code, a non-blank code is generated at random.
An elite strategy allows the best solution at a given generation to be directly promoted to the next.

The performance index.The system described is applied to center a cart by applying a force on
it. The objective is to move the cart to the zero position and velocity in a minimum time. Each RB
is tested by applying the FRBS to control the cart starting at 25 equally spaced starting points and
over 500 steps (0.02 sc. for each step). The performance index assigned to an RB is 500-T where
T is the average time (number of steps) required to place the cart sufficiently close to the center
(max(|x|, |v|) < 0.5). If, for a certain starting point, more than 500 steps are required, the process
times out and 500 steps are recorded.

With this performance index the learning process becomes a minimization problem since the
best solution is the one with the lowest average time to center the cart (the highest performance
index).

6.6 Concluding Remarks

We have reviewed the GFS for learning FRBSs based on the Pittsburgh approach,. showing the
different proposal developed under this approach.
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7.1 Introduction

Since the beginning of the 80s there has been growing interest in applying methods based on
Genetic Algorithms (GAs) to automatic learning problems, especially the learning of production
rules on the basis of attribute-evaluated example sets. The main problem in these applications
consists of finding a "comfortable" representation in the sense that it might be capable both of
gathering the problem’s characteristics and representing the potential solutions.

In recent literature we may find different algorithms that use a new learning model based on
GAs, theIterative Rule Learning (IRL) approach[82, 33]. In the latter model, as in the Michigan
one, each chromosome in the population represents a single rule, but contrary to the latter, only
the best individual is considered as the solution, discarding the remaining chromosomes in the
population. This model has been used in papers such as [82, 37, 36, 34, 40, 42, 15, 16, 17].

This lecture describes the IRL approach for learning fuzzy rule based systems (FRBSs).

7.2 IRL Approach

In this approach the GA provides a partial solution to the problem of learning, and attempts to
reduce the search space for the possible solutions. In order to obtain a set of rules, which will be
a true solution to the problem, the GA has to be placed within an iterative scheme similar to the
following:

43



44 Lecture 7. Learning with Genetic Fuzzy Systems: Iterative Rule Learning Approach

1. Use a GA to obtain a rule for the system.

2. Incorporate the rule into the final set of rules.

3. Penalize this rule.

4. If the set of rules obtained is adequate to represent the examples in the training set, the
system ends up returning the set of rules as the solution. Otherwise return to step 1.

A very easy way to penalize the rules already obtained, and thus be able to learn new rules,
consists of eliminating from the training set all those examples that are covered by the set of rules
obtained previously.

This learning way is to allow "niches" and "species" formation. Species formation seems
particularly appealing for concept learning, considering the process as the learning of multimodal
concepts.

The main difference with respect to the Michigan approach is that the fitness of each chro-
mosome is computed individually, without taking into account cooperation with other ones. This
reduces substantially the search space, because in each sequence of iterations only one rule is
searched.

In the literature we can find some genetic learning processes that use this model such asSLAVE
[36], SIA [82] and thegenetic generation processproposed in [40]. These three genetic learning
processes use the IRL approach with light difference:

SLAVElaunches a new GA to find a new rule after having eliminated the examples cov-
ered by the last rule obtained. SLAVE was designed to work with or without linguistic
information.

SIAuses a single GA that goes on detecting rules and eliminating the examples covered by
the latter. SIA can only work with crisp data.

Thegenetic generation processruns a GA for obtaining the best rule according to different
features, assigns a relative covering value to every example, and removes the examples with
a covering value greater than a constant.

From the description above, we may see that in order to implement a learning algorithm based
on GAs using the IRL approach, we need, at least, the following:

1. a criterion for selecting the best rule in each iteration,

2. a penalty criterion, and

3. a criterion for determining when enough rules are available to represent the examples in the
training set.

The first criterion is normally associated with one or several characteristics that are desirable
so as to determine good rules. Usually criteria about the rule strength have been proposed (number
of examples covered), criteria of consistency of the rule or criteria of simplicity.
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The second criterion is often associated, although it is not necessary, with the elimination of
the examples covered by the previous rules.

Finally, the third criterion is associated with the completeness of the set of rules and must be
taken into account when we can say that all the examples in the training set are sufficiently covered
and no more rules are needed to represent them.

7.2.1 Multi-Stage Genetic Fuzzy System Based on the IRL Approach

Learning algorithms that use the IRL approach do not envisage any relationship between them
in the process for obtaining rules. Therefore, the final set of rules usually needs an a posteriori
process that will modify and/or fit the said set. The methodology that is presently applied includes
different processes that are not necessarily applied simultaneously. This methodology, which we
call multi-stage genetic fuzzy systemsand has been abbreviated as MSGFS, consists of three com-
ponent parts:

I A genetic generation stagefor generating fuzzy rules using the IRL approach.

II A post-processing stageworking on the rule set obtained in the previous stage in order to
either to refine rules or eliminate redundant rules.

III A genetic tuning stagethat tunes the membership functions of the fuzzy rules.

We describe these shortly below.

Genetic generation stage.In this stage the IRL approach is used for learning fuzzy rules capa-
ble of including the complete knowledge from the set of examples. A chromosome represents a
fuzzy rule, the generation method selects the best rule according to different features included in
the fitness function of the GA, features that include general properties of the KB and particular
requirements to the fuzzy rule. This features lead to the definition of the covering degree between
a rule and an example and the use of the concept of positive and negative examples. The IRL
approach uses a covering method of the set of examples. This covering method assigns a rela-
tive covering value to every example, and removes the examples with an adequate covering value,
according to a covering criterion.

As we have indicated, this model may be used for learning RB asSLAVE[37, 36] and for
learning KB as thegenetic generation processproposed in [40, 42].

Post-processing stage: selection and refinement.As we mentioned earlier, the IRL approach
does not analyze any relationship between the rules that it is obtaining. That is why, once the rule
base has been obtained, it may be improved either because there are rules that may be refined or
redundant rules if high degrees of coverage are used. Two possible post-processing methods have
been used , a refinement algorithm [35] and a selection or simplification algorithm [41].

Genetic tuning stage.At this stagethe genetic tuning processis applied over the KB for obtaining
a more accurate one. We can consider two possibilities, depending on the fuzzy model’s nature:

a) an approximative model based on a KB composed of a collection of fuzzy rules without a
fixed relationship between the fuzzy rules and some primary fuzzy partitions giving meaning
to them, or
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b) a descriptive model based on a linguistic description of the system with a fuzzy partition
that assigns a membership function to every linguistic label.

In both cases, each chromosome forming the genetic population will encode a complete DB,
but in the first case each piece of chromosome codes the membership functions associated to one
rule and in the second one each piece of chromosome codes the fuzzy partition of a variable. The
main difference between both processes is the coding scheme.

7.2.2 A Multi-stage Genetic Fuzzy Rule-Based System Structure

In the following we present a guideline structure for multi-stage GFRBSs used in [15, 16, 17, 42]:

a) A fuzzy rule generation process. This process will determine the type of the final FRBS
generated, so the generated fuzzy rules may present a descriptive, constrained approximative or
unconstrained approximative semantics. In all cases, it will present two components: afuzzy rule
generating methodcomposed of an inductive or evolutionary process which uses a niche criterion
for obtaining the best possible cooperation among the fuzzy rules generated when working with
the approximative approach, and aniterative covering methodof the system behaviour example
set, which penalizes each rule generated by the fuzzy rule generating method by considering its
covering over the examples in the training set and removes the ones yet covered from it. This
process allows us to obtain a set of fuzzy rules with a concrete semantics covering the training set
in an adequate form.

b) A genetic multi-simplification process for selecting rules, based on a binary coded GA with
a phenotypic sharing function and a measure of the FRBS accuracy in the problem being solved. It
will save the overlearning that the previous component may cause due to the existence of redundant
rules, with the aim of obtaining a simplified KB presenting the best possible cooperation among
the fuzzy rules composing it. This process will obtain different possibilities for this simplified KB
thanks to a genotypic niching scheme.

c) An evolutionary tuning process based on any kind of real coded EA and a measure of the
FRBS performance. It will give the final KB as output by adjusting the membership functions
for each fuzzy rule in each possible KB obtained from the genetic multi-simplification process.
The type of tuning performed will depend on the nature of the FRBS being generated, i.e., when
generating a descriptive FRBS, a global tuning of the fuzzy partition associated to each linguistic
variable will be performed, but when working with any of the approximative approaches, the mem-
bership functions involved in each fuzzy rule will be adjusted. The most accurate KB obtained in
this stage will constitute the final output of the whole learning process.

Properties required for the generated Knowledge Base. Several important static properties
have to be verified by the KB in order to obtain an accurate FRBS. The multi-stage GFRBSs
obtained from our methodology will consider two of them, thecompletenessandconsistency, by
including some criteria in the different stage fitness functions. These criteria will penalize those
solutions not verifying adequately both properties. For a wider description, refers to [16, 17].
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7.3 Concluding Remarks

In this paper, we have presented the IRL approach as an alternative model to the classical Michigan
and Pittsburgh approaches for the design of genetic learning processes, and we have described how
it can be applied within amulti-stage learning process.
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systems of the Michigan type. A simple variant will be discussed in detail — the
so-called Holland classifier system.

Key words — Holland classifier system, Michigan approach, online learning.

8.1 Introduction

Classifier systems of the Pittsburgh type have in common that (1) the genetic algorithms operate on
whole rule bases, they work with populations of rule bases, and (2) rule bases are judged globally,
i.e., the performance of whole rule bases is evaluated by the fitness function.

The other approach — the so-called Michigan approach — is to observe the behavior of the
system throughout a certain period of time adjusting the rules according to temporal payoff from
the environment. While in the Pittsburgh approach whole rule bases are considered in an offline
process, the Michigan approach operates on single rules in an online process or a simulated envi-
ronment. Obviously, in the Michigan approach, techniques for judging the performance of single
rules are necessary. In fact, this is, in most cases, a nontrivial task, since positive effects of some
rules are not always observable immediately. Consider, for instance, the game of chess, where
early moves can contribute to a late success.

Figure 8.1 shows the typical architecture of Michigan type system. The main components are:

1. A production system containing a rule base which processes incoming messages from the
environment and sends output messages to the environment

2. An apportionment of credit system which receives payoff from the environment and deter-
mines which rules had been responsible for that feedback.

3. A genetic algorithm which recombines existing rules and introduces new ones.
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Figure 8.1: A classifier system of the Michigan type

Obviously, the learning task is divided into two subtasks — the judgment of already existing and
the discovery of new rules.

8.2 The Holland Classifier System

A Holland classifier system is a classifier system of the Michigan type which processes binary
messages of a fixed length through a rule base whose rules are adapted according to the response
of the environment ([45, 46, 47, 29]).

8.2.1 The Production System

First of all, the communication of the production system with the environment is done via an
arbitrarily long list of messages. The detectors translate responses from the environment into
binary messages and place them on the message list which is then scanned and changed by the
rulebase. Finally, the effectors translate output messages into actions on the environment, such as
forces or movements.

Messages are binary strings of the same lengthk. More formally, a message belongs to{0, 1}k.
The rule base consists of a fixed numberm of rules (classifiers) which consist of a fixed number
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r of conditions and an action, where both conditions and actions are strings of lengthk over the
alphabet{0, 1, ∗}. The asterisk plays the role of a wildcard, a “don’t care” symbol.

A condition is matched, if there is a message in the list which matches the condition in all
non-wildcard positions. Moreover, conditions, except the first one, may be negated by adding a
“–” prefix. Such a prefixed condition is satisfied if there isno message in the list which matches
the string associated with the condition. Finally, a rule fires if all the conditions are satisfied, i.e.,
the conditions are connected with AND. Such “firing” rules compete to put their action messages
on the message list (see 8.2.2).

In the action parts, the wildcard symbols have a different meaning. They take the role of “pass
through” element. The output message of a firing rule, whose action part contains a wildcard, is
composed from the non-wildcard positions of the action and the message which satisfies the first
condition of the classifier (this is actually the reason why negations of the first conditions are not
allowed). More formally, the outgoing messagem̃ is defined as

m̃[i] :=
{
a[i] if a[i] 6= ∗
m[i] if a[i] = ∗ i = 1, . . . , k, (8.1)

wherea is the action part of the classifier andm is the message which matches the first condition.
Formally, a classifier is a string of the form

Cond1, [“–” ]Cond2, . . . , [“–” ]Condr/Action, (8.2)

where the brackets should express the optionality of the “–” prefixes.

Moreover, it can be of advantage to supply the messages with prefixes, so-called tags, which
identify the origin of the message. Consequently, these prefixes must also be appended to the
conditions and actions of the classifiers. In this case, we must take special care that no action
specifies the prefix reserved for the input interface. Tagging offers new opportunities to transfer
information about the current step into the next step. This can be accomplished by placing tagged
messages on the list which are not interpreted by the output interface. These messages, which,
obviously, contain information about the previous step, can support the decisions in the next step.
So, appropriate use of tags permits rules to be coupled to act sequentially. In some sense, such
messages are the memory of the system.

To summarize this, a single execution cycle of the production system consists of the following
steps:

1. Messages from the environment are appended to the message list.

2. All the conditions of all classifiers are checked against the message list to obtain the set of
firing rules.

3. The message list is erased.

4. The firing classifiers participate in a competition to place their messages on the list (see
below).

5. The winning classifiers place their actions on the list.

6. The messages directed to the effectors are executed.
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This procedure is repeated iteratively.

How (6) is done, if these messages are deleted or not, and so on, depends on the concrete
implementation. It is, on the one hand, possible to choose a representation such that every output
message can be interpreted by the effectors. On the other hand, it is possible to direct messages
explicitly to the effectors with a special tag. In this case, if no messages are directed to the
effectors, the system is in a thinking phase.

If a classifierR1 produces a messagem′, which is not directed to the effectors, but tagged as
an internal message, andm′ satisfies a condition of a classifierR2 in the next time step,R2 is
called a consumer ofR1. Conversely,R1 is called a supplier ofR2.

8.2.2 Credit Assignment — The Bucket Brigade Algorithm

The purpose of the credit assignment system is to assign a strength value to each classifier. This
strength value represents the correctness and importance of a classifier. On the one hand, the
strength value influences the chance of a classifier to place its action on the output list. On the
other hand, the strength values are used by the rule discovery system. Let us denote the strength
value of classifierRi in time stepT with ui,t.

The competition for having the right to post an action and the adaptation of the strength values
depending on the feedback (payoff) from the environment is calledBucket Brigade Algorithm. It
can be regarded as a simulated economic system in which various agents, in our case classifiers,
participate in an auction, where the chance to buy the right to post the action depends on the
strength of the agents.

In one of its simplest forms, the bid of a classifier is defined as

bi,t := cL · ui,t · si, (8.3)

wherecL ∈ [0, 1] is a learning parameter, similar to learning rates in artificial neural nets, andsi
is the specifity, the number of non-wildcard symbols in the condition part of the classifier. IfcL is
chosen small, the system adapts slowly. If it is chosen too high, the strengths can tend to oscillate
chaotically.

Then, depending on the bids, the rules, which are allowed to place their output messages on
the list, the so-called winning agents, are selected. In the simplest case, this can be done by a
random experiment. For each bidding classifier it is decided randomly, if it wins or not, where the
probability that it wins is proportional to its bid:

P[ri wins] :=
bi,t∑

j∈Satt

bj,t
, (8.4)

whereSatt is the set of indices which belong to satisfied classifiers at timet.

Obviously, in this approach, more than one winning classifiers are allowed. Of course, other
selection schemes are reasonable, for instance the highest bidding agent wins alone. This can be
necessary to avoid that two winning classifiers direct mutually excluding actions to the effectors.

Now let us discuss how payment from the environment is distributed and how the strengths
are adapted. For this purpose, let us denote the set of classifiers, which have supplied a winning
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agentRi in stept, with Si,t. Then the new strength of a winning agent is reduced by its bid and
increased by its portion of the payoffPt received from the environment:

ui,t+1 := ui,t +
Pt
wt
− bi,t, (8.5)

wherewt is the number of winning agents in the actual time step. A winning agent pays its bid to
its suppliers, which share the bid among each other, equally in the simplest case:

ul,t+1 := ul,t +
bi,t
|Si,t|

∀rl ∈ Si,t (8.6)

If a winning agent has also been active in the previous step and supplies another winning agent,
the value above is additionally increased by one portion of the bid the consumer offers. In the
extreme case, that two winning agents have supplied each other mutually, the portions of the bids
are exchanged in the manner as presented above. The strengths of all other classifiersrn, which
are neither winning agents nor suppliers of winning agents, are reduced by a certain factor (they
pay a tax):

un,t+1 := un,t · (1− T ), (8.7)

whereT ∈ [0, 1] is a small value. The intention of taxation is to punish classifiers which never
contribute anything to the output of the system. With this concept redundant classifiers, which
never become active, can be filtered out.

The idea behind credit assignment in general and bucket brigade in particular is to increase the
strengths of rules which have set the stage for later successful actions. The problem of determining
such classifiers, which were responsible for conditions under which it was later on possible to
receive a high payoff, can be very difficult. However, the bucket brigade algorithm can solve this
problem, although, obviously, strength is only transferred to the suppliers which were active in the
previous step. Each time the same sequence is activated, a little bit of the payoff is transferred one
step back in the sequence. It is easy to see, that repeated successful execution of a sequence can
increase the strengths of all coupled classifiers involved.

Figure 8.2 shows a simple example how the bucket brigade algorithm works. For simplicity,
we consider a sequence of five classifiers which always bid20 percent of their strength. Only
after the fifth step, after the activation of the fifth classifier, a payoff of 60 is received. The further
future of this sequence would be the one shown in Table 8.1. It is easy to see from this example
that the reinforcement of the strengths is slow at the beginning but it accelerates later. Exactly
this property contributes much to the robustness of classifier systems — they tend to be cautious
at the beginning, trying not to rush conclusions, but, after a certain number of similar situations,
the system adopts the rules more and more. Figure 8.3 also shows a graphical visualization of this
fact interpreting the table as a two-dimensional surface.

8.2.3 Rule Generation

While the apportionment of credit system just judges the rules, the purpose of the rule discovery
system is to eliminate low-fitted rules and to replace them by hopefully better performing ones.
The fitness of a rule is given by its strength. Since the classifiers of a Holland classifier system
themselves are strings, the adaptation of a genetic algorithm to the problem of rule induction is
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Figure 8.2: The bucket brigade principle

straightforward, though many variants are reasonable. Almost all variants have in common that
the GA is not invoked in each time step, but only everyn-th step, wheren has to be set such that
enough information about the performance of new classifiers can be obtained in the meantime.

Furthermore, this process of acquiring new rules has an interesting side effect. It is more than
only the exchange of parts of conditions and actions. Since we have not stated restrictions for
manipulating tags, the genetic algorithm can recombine parts of established tags to invent new
tags. In the following, tags spawn related tags establishing new couplings. These new tags survive
if they contribute to useful interactions. In this sense, the GA additionally creates experience-based
internal structures.

8.3 Concluding Remarks

In this part, the Michigan approach has been introduced. As one of the most important represen-
tatives, the Holland classifier system has been studied in detail. We have seen that the main idea
is that single rules are manipulated in an online process, which requires a profound analysis of the
performance of every rule. It is important to point out that there is no explicit distinction between
learning and regular work of the system. Hence, such a system can adapt to varying environmen-
tal circumstances automatically. However, one should not forget that the random modification of
rules, which is done by a genetic algorithm, can be a risk in some applications where security is
of special importance. Moreover, the Michigan approach is subject to fail if the environment is so
complex that there is only a low probability that important state sequences are observed repeatedly.
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Strength after the
3rd 100.00 100.00 101.60 120.80 172.00
4th 100.00 100.32 105.44 136.16 197.60
5th 100.06 101.34 111.58 152.54 234.46
6th 100.32 103.39 119.78 168.93 247.57

...
10th 106.56 124.17 164.44 224.84 278.52

...
25th 215.86 253.20 280.36 294.52 299.24

...
execution of the
sequence

Table 8.1: An example for repeated propagation of payoffs
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Figure 8.3: A graphical representation of Table 8.1
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9.1 Introduction

While classifier systems of the Michigan type had been introduced by J. H. Holland in 1976, their
fuzzification awaited discovery many years. The first fuzzy classifier system of the Michigan
type was introduced by M. Valenzuela-Rendón ([79, 80]) and is, more or less, a straightforward
fuzzification of a Holland classifier system. An alternative approach has been developed by A.
Bonarini ([9, 10]), who applies a different scheme of competetion between classifiers. These two
approaches have in common that they operate only on the rules — the shape of the membership
functions is fixed. A third method, which was introduced by P. Bonelli and A. Parodi ([65]), tries
to optimize even the membership functions and the output weights in accordance to payoff from
the environment.

9.2 Fuzzifying Holland Classifier Systems

9.2.1 The Production System

We consider a fuzzy controller with real-valued input and output. The system has, unlike ordinary
fuzzy controllers, three different types of variables — input, output, and internal variables. As
we will see later, internal variables are for the purpose of storing information about the near past.
They correspond to the internally tagged messages in Holland classifier systems. For the sake
of generality and simplicity, all the universes of discourse, are transformed to the unit interval
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Figure 9.1: Matching a fuzzy condition

[0, 1]. For each variable the same number of membership functionsn is assumed. These member-
ship functions are fixed at the beginning. They are not changed throughout the learning process.
M. Valenzuela-Rendón took bell-shaped function which divided the interval rather equally.

A message is a binary string of lengthl + n, wheren is the number of membership functions
defined above andl is the length of the prefix (tag), which identifies the variable to which the
message belongs. A good choice forl would bedlog2Ke, whereK is the total number of variables
we want to consider. To each message anactivity level, which represents a truth value, is assigned.
Consider for instance the following message (l = 3, n = 5):

010︸︷︷︸
=2

: 00010→ 0.6

Its meaning is “Input no. 2 belongs to fuzzy set no. 4 with a degree of0.6”. On the message
list only so-called minimal messages are used, i.e., messages with only one1 in the part which
identifies the numbers of the fuzzy sets.

Classifiers again consist of a fixed numberr of conditions and an action part. Note that, in
this approach, no wildcards and no “–” prefixes are used. Both condition and action part are also
binary strings of lengthl+ n, where the tag and the identifiers of the fuzzy sets are separated by a
colon. Then the degree to which such a condition is matched is a truth value between0 and1. The
degree of matching is computed as the maximal activity of messages on the list, which have the
same tag and whose1s are a subset of those of the condition. Figure 9.1 shows a simple example
how this matching is done. The degree of satisfaction of the whole classifier is then computed as
the minimum of matching degrees of the conditions. This is then also the activity level which is
assigned to the output message (i.e., Mamdani inference).

The whole rule base consists of a fixed numberm of such classifiers. Similarly to Holland
classifier systems, one execution step of the production system is done as follows:

1. The detectors receive crisp input values from the environment and translate them into mini-
mal messages which are then added to the message list.

2. The degrees of matching are computed for all classifiers.

3. The message list is erased.
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4. The output messages of some matched classifiers (see below) are placed on the message list.

5. The output messages are translated into minimal messages. For instance, the message010 :
00110→ 0.9 is split into the two messages010 : 00010→ 0.9 and010 : 00100→ 0.9.

6. The effectors discard the output messages (referring to output variables) from the list and
translate them into instructions to the environment.

From point 2 it can be seen easily that it is of advantage to use fuzzy sets with local support instead
of bell-shaped ones, because, if bell-shaped fuzzy sets are used, every rule fires in each time step.

Step 6 is done by a modified Mamdani inference: The sum (instead of the maximum or an-
othert-conorm) of activity levels of messages, which refer to the same fuzzy set of a variable, is
computed. The membership functions are then scaled with these sums. Finally, the center of grav-
ity of the “union” (i.e. maximum) of these functions, which belong to one variable, is computed
(Sum-Prod inference).

9.2.2 Credit Assignment

Since fuzzy systems have been designed to model transitions, a probabilistic auction process as
discussed in connection with Holland classifier systems, where only a small number of rules is
allowed to fire, is not desirable. Of course, we again assign strength values to the classifiers.

If we are dealing with a one-stage system, in which payoff for a certain action is received
immediately, where no long-term strategies must be evolved, we can suffice with allowing all
matched rules to post their outputs and sharing the payoff among the rules, which were active
in the last step, according to their activity levels in this step. For example, ifRt is the set of
classifiers, which have been active at timet, andPt is the payoff received after thet-th step, the
modification of the strengths of firing rules can be defined as

ui,t+1 := ui,t + Pt ·
ai,t∑

ri∈Rt
ai,t

∀ri ∈ Rt, (9.1)

whereai,t denotes the activity level of the classifierri at timet. It is again possible to reduce the
strength of inactive classifiers by a certain tax.

In the case, that the problem is so complex that long-term strategies are indispensable, a fuzzi-
fication of the bucket brigade mechanism must be found. While Valenzuela-Rendón only provides
a few vague ideas, we state one possible variant, where the firing rules pay a certain value to their
suppliers which depends on the activity level. The strength of a classifier, which has recently
been active in time stept is then increased by a portion of the payoff as defined in (9.1), but it is
additionally decreased by a value

bi,t := cL · ui,t · ai,t, (9.2)

wherecL ∈ [0, 1] is again the learning rate. Of course, it is again possible to incorporate terms
which depend on the specifity of the classifier.

This “bid” is then shared among the suppliers of such a firing classifier according to the amount
they have contributed to the matching of the consumer. If we consider an arbitrary but fixed
classifierrj which has been active in stept and if we denote the set of classifiers supplyingrj ,
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which have been active in stept − 1, with Sj,t, the change of the strengths of these suppliers can
be defined as

uk,t+1 := uk,t + bj,t ·
ak,t−1∑

r∈Sj,t
ar,t−1

∀rk ∈ Sj,t. (9.3)

It is easy to see, that this can be an appropriate generalization of the bucket brigade algorithm as
described in the previous lecture.

9.2.3 Rule Discovery

The adaptation of a genetic algorithm to the problem of manipulating classifiers in our system is
again straightforward. We only have to take special care that tags in conditional parts must not
refer to output variables and that tags in the action parts of the classifiers must not refer to input
variables of the system.

Analogously to our previous considerations, if we admit a certain number of internal variables,
the system tends to build up internal chains, coupled sequences, autonomously. If we admit in-
ternal variables, a classifier system of this type not only learns stupid input-output actions, it also
tries to discover causal interrelations.

9.3 Bonarini’s ELF Method

In [9], A. Bonarini presents his ELF (=evolutionary learning of fuzzy rules) method and applies it
to the problem of guiding an autonomous robot. The key issue of ELF is to find a small rule base
which only contains important rules. While he takes over many of M. Valenzuela-Rendón’s ideas,
his way of modifying the rule base differs strongly from Valenzuela-Rendón’s straightforward
fuzzification of Holland’s technique.

Bonarini calls the modification scheme “cover-detector algorithm”. The number of rules can
be varied in each time step depending on the number of rules which match the actual situation.
This is done by two mutually exclusive operations:

1. If the rules, which match the actual situation, are too many, the worst of them is deleted.

2. If there are too few rules matching the current inputs, a new rule, whose antecedents cover
the current state, with randomly chosen consequent value, is added to the rule base.

The genetic operations are only applied to the consequent values of the rules. Since the antecedents
are generated on demand in the different time steps, no taxation is necessary.

Seemingly, such a simple modification scheme can only be applied to so-called one-stage
problems, where the effect of each rule can be observed in the next time step. For applications
where this is not valid, e.g., backing up a truck, Bonarini introduced a modification of his ELF
algorithm — the concept of anepisode, which is a given number of subsequent control actions,
after which the reached state is evaluated.
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9.4 Online Modification of the Whole Knowledge Base

While the last two methods only manipulate rules and work with fixed membership functions,
there is at least one variant of fuzzy classifier systems where also the membership functions are
involved in the learning process. This variant was introduced by A. Parodi and P. Bonelli in [65].

The main idea is that an approximative knowledge base is used instead of a descriptive one as
in the two previous examples. So, a fuzzy rule is not represented as a linguistic expression which
refers only to labels of fuzzy sets, but a fuzzy relation onX×Y , whereX is the input andY is the
output domain. More specifically, each rule is represented as a pair consisting of a fuzzy subset of
X and a fuzzy subset ofY .

Since, in many applications,X andY are themselves cross products, i.e.,X = X1×· · ·×Xn

andY = Y1 × · · · × Ym, rules in a approximative knowledge base can be written as

Ai1 × · · · ×Ain ×Bi1 × · · · ×Bim (9.4)

wherei is the index of the rule.

If one restricts to certain class of fuzzy subsets, such as triangular or bell-shaped membership
functions, it is possible to encode a rule as

(ai1, . . . , ain, bi1, . . . , bim)

whereaij andbij are parameters uniquely identifying a fuzzy subset ofXj or Yj , respectively.

Moreover, in this approach, each rule is additionally equipped with a strength factor, which is
taken as a scaling factor of the output set. This strength factor is also used as fitness measure by
the genetic algorithm which modifies the knowledge base and modified according to payoff from
the environment.

9.5 Concluding Remarks

The advantage of M. Valenzuela-Rendón’s method is generality. Its applicability is not limited to
one-stage systems. However, the use of internal variables can lead to difficultly interpretable fuzzy
systems.

Bonarini’s ELF method is suitable for one-stage systems and multi-stage systems, where the
duration of effects of rules can be assumed as limited (length of episode). The advantage of this
approach is that also the size of the rule base is optimized.

Parodi’s and Bonelli’s approach has the advantage that the membership functions need not to
be fixed in the design phase of the system. Therefore, the system can learn to emphasize certain
regions of the input and output domains. The disadvantage is that, in general, approximative
representations are much more complicated and can result in difficultly interpretable knowledge
bases.
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10.1 Offline Optimization of a Table-Based TSK Controller

In [53, 77], M. Lee and H. Takagi introduce a method for finding an optimal TSK controller. In
general, a Sugeno controller (see [75]) is a rulebase consisting of rules of the form

IF x is Aj THEN y is fj(x),

wherej is the index of the rule,Aj is a fuzzy subset of the input domain,y is the crisp (real-
valued) output variable, andfj(x) is an arbitrary mapping from the input to the output domain. If
there is at least one firing rule, the output of such a controller can be computed as

y =

N∑
j=1

µAj (x) · fj(x)

N∑
j=1

µAj (x)
,

whereN is the total number of rules.

In most recent applications, the functionsfj are constants. A Sugeno controller with polyno-
mials of degree1, i.e., affine linear mappings, on the right hand side is called Takagi-Sugeno-Kang
(TSK) controller.

If the input domain is a cross product of two real intervals[a1, b1] and [a2, b2] which are
decomposed byN1 andN2 fuzzy subsets, respectively, the whole controller can be represented
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as anN1 × N2 matrix (table), where each entry contains the three parameters(αij , βij , γij) of
fij(x1, x2) = αij · x1 + βij · x2 + γij .

In order to find an optimal TSK controller with a genetic algorithm, Lee and Takagi first fixed
the numbers of fuzzy setsN1 andN2 in advance. In their model, triangular-shaped fuzzy sets with
three degrees of freedom — center, left offset, and right offset — were chosen. Then, each fuzzy
set was encoded by coding each of the three parameters except that not the centers were encoded
but their offsets. The reason for coding the offsets of the centers instead of the centers themselves
was to avoid that unreasonable overlappings occur and to guarantee a canonical ordering of the
fuzzy sets. Finally, a whole controller is represented by a binary string composed of the parameters
of the fuzzy subsets of the two input domains and a binary coding of the table containing the
consequent values. Apparently, this is a descriptive model.

In the optimization step, a genetic algorithm, which operates on a population of controllers,
was applied to find the optimal one in an offline optimization process (cf. Pittsburgh approach)
with respect to a certain fitness function.

The generalization of the techniques presented above to the case of controllers with more than
two inputs is, apparently, straightforward. However, it is easy to see that the length of the strings
depends exponentially on the dimension.

10.2 The Nagoya Approach

The second idea goes back to T. Furuhashi, K. Nakaoka, and Y. Uchikawa from the university of
Nagoya, Japan. In their approach, a modified kind of genetic algorithm is used. Pretentiously, they
have called their idea “Nagoya Approach”. It can be found in [28].

The three authors applied a genetic algorithm to the optimization of a Mamdani controller with
five inputs and two outputs for guiding a robot to a certain goal through a room which contains
one moving obstacle.

For the input variables they used bell-shaped fuzzy sets which were additionally scaled with
a factor. For the output variables ordinary triangular membership functions were used with the
modification that only one offset was used for both left and right.

In this approach, it was assumed that the whole system is controllable with a certain fixed
numberN (concretely15 in this application) of rules. Hence, the coding of a whole controller
consisted ofN binary representations of rules, where each rule was encoded by encoding the
parameters of the five input and the two output sets (approximative model).

The most interesting novelty of this paper is that a new modification of an ordinary genetic
algorithm is introduced. It provides a better local improvement of single rules. The idea is the
following: The whole individual is divided intoNp parts which can be judged independently
(the parts and how they can be judged depends on the concrete application). In the mutation
step, for each individual of the actual population, a certain numberM of clones of each part is
produced.M − 1 of them are mutated. The best clone of each part is then implanted into the new
individual. After this step, normal selection and crossing over are performed. Normally, mutation
yields bad individuals very often, because one modification can deteriorate the fitness of the whole
individual. In this approach, various local phenomena are judged independently which can result
in better local improvement.
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10.3 Optimizing Hierarchical Structures of Fuzzy Systems

Consider for instance a fuzzy system with 14 inputs, each represented by three fuzzy sets, and
one output with five verbal values. Then the total number of different premises, which specify
each variable in the premise, is314 = 4782969 and the total number of rules with premises of
such a kind is even54782969. Obviously, this is a size which is difficult to survey for a human and
impossibly large for an optimization algorithm. This entails the necessity either to use generalizing
rules with wildcards in their premises or to prepare a hierarchical structure, which bundles the
information such that the decisions are divided into a certain number of sub-decisions.

In many applications, where the relationships between the different sets of data are unknown,
the preparation of an appropriate hierarchy is a very difficult task. Of course, it is desirable to
have methods which can help to find such a hierarchy. One approach for finding an appropriate
hierarchical structure by means of genetic algorithms was introduced by T. Fukuda, Y. Hasegawa,
and K. Shimojima ([27, 73]). These four researchers have presented a coding technique for hier-
archies which can be integrated in a genetic optimization process. The applicability of this coding
is limited to tree structures, which is not a serious restriction.

Starting point is a binary tree which consists of a certain number of units, i.e., rule bases,
which are enumerated from the root to the leaves. In [27, 73],2n−2 is recommended, wheren is
the total number of input variables. Then the numbers of the units, to which the input variables are
connected, can be encoded. Of course, a few simplifications have to be done:

1. Only units, which are connected to input variables, and the units above are considered. Units
below are removed.

2. If, after step (1) a bottom-most unit has only one input, it is removed.

Figure 10.1 shows an example for six inputs which illustrates the coding and how the structure is
simplified:

Units 8, 4, and 9–14 are removed, since none of them or of their predecessors is connected
to an input variable.

Units 3, 7, 15, 5, and 6 are removed since they only have one input. Consequently, input
No. 1 is considered to be connected to unit 1, No. 5 and No. 6 are connected to unit 2.

Note that, due to the simplifications, the decoding function is not injective — different strings
can result in the same hierarchies.

The concept of coding a hierarchy can now be incorporated in a optimization process. In [73],
the hierarchy is tuned before the rule bases. The process of tuning the hierarchical structure can
be outlined as follows:

1. The complete tree is prepared. For each input of each unit, a certain number of fuzzy sets is
assumed. Initially, they are set equal for all variables, such that they divide the input space
rather equally.

2. Hierarchies are chosen randomly. The consequent parameters of the rules are initially set to
0.
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Figure 10.1: Example for coding a hierarchical structure

3. The consequent parameters (we have a Sugeno controller with constants on the right hand
side) are tuned with a gradient method, where the desired output of an intermediate unit is
computed using backpropagation.

4. Selection, crossing over, and mutation are applied to the population.

5. If the stopping condition is not fulfilled, return to (3).

Apparently, this is only a raw search for an optimal fuzzy system, because the fuzzy sets are
fixed, but it can be a way for acquiring a fairly good hierarchical structure. In order to optimize
all the parameters involved, it is, after finding an appropriate structure, recommendable to apply
further optimization techniques.

10.4 Fuzzy Genetic Programming

A comparatively new idea is to apply genetic programming to the acquisition of optimal rule
bases. Much of the theory goes back to A. Geyer-Schulz ([29]) who also implemented the first ap-
plication, where he tried to improve stock management strategies with fuzzy genetic programming
([30]).

Within this promising approach, all kinds of constructs for representing fuzzy knowledge, such
as adverbs (hedges), different connectives, etc. can be used. The one and only indispensable thing
is a rule language whose grammar is given in Backus-Naur form (recursive definition).

An example of such a rule language could be the following:
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〈rule〉 := “IF” 〈premise〉 “THEN” 〈conclusion〉;
〈premise〉 := 〈conditional〉 |

“(” 〈unary〉 〈premise〉 “)” |
“(” 〈premise〉 〈connective〉 〈premise〉 “)” ;

〈conditional〉 := “x1” “is” 〈expr1〉 | · · · | “xn” “is” 〈exprn〉 ;
〈unary〉 := “NOT” ;

〈connective〉 := “AND” | “OR” ;
〈conclusion〉 := “y” “is” 〈expry〉 ;

where the expressions〈expr1〉 . . .〈exprn〉 and〈expry〉 are verbal values of the linguistic variables
x1 . . .xn andy, respectively. Of course, these values can also be built up recursively of adverbs,
adjectives, and connectives.

For coding a whole rule base, two methods are reasonable:

1. Fixing the number of rulesm:

<rulebase> := “(” 〈rule〉 “,” . . . “,” 〈rule〉︸ ︷︷ ︸
m times

“)” ;

2. Allow an arbitrary number of rules:

〈rulebase〉 := “(” 〈rulelist〉 “)” ;
〈rulelist〉 := 〈rule〉 | “,” 〈rulelist〉 ;

Furthermore, if the set of verbal values of the linguistic variabley is a finite set of adjectives,
it is, under some additional assumptions, possible to suffice with a finite number of rules (see [7,
section 5.1.2]).

Genetic operations can be applied as usual in genetic programming. However, it can be of
advantage to incorporate mechanisms into the fitness function which additionally take the com-
plexity and the number of the rules into account. Moreover, it is useful to simplify the expressions
after each generation in order to avoid wild growth of the premises and conclusions. If simplifica-
tion is desired, the operations (t-norms andt-conorms) should be chosen such that some derivation
laws, such as the De-Morgan law, are fulfilled.

More, especially theoretical details on fuzzy genetic programming can be found in [29], where
also a global convergence proof is provided.

10.5 Concluding Remarks

One of the most important advantages of fuzzy systems is that the functions are parameterized
in a way which is interpretable for humans. More specifically, it is possible to translate human
knowledge into fuzzy rules and fuzzy sets, but, on the contrary, not every system, which is for-
mally a fuzzy system, is really interpretable. In fact, the probability, that difficultly interpretable
configurations are obtained, is rather high when representations with lots of degrees of freedom
are tried to be optimized. An alternative, which can help to overcome this problem, is to encode
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whole fuzzy partitions as shown in the fifth lecture. Obviously, this approach allows less degrees
of freedom, which can also speed up convergence.

There have been a lot of publications concerning with genetic optimization of fuzzy systems
(see [1, 19, 20] for recent bibliographies). Each of these approaches — many of them are rather
similar — has only been applied to a few benchmark problems. So far, there are no proofs (neither
theoretical nor empirical) which methods are suitable for which problems.
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