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cellsFig. 10. Improvements in throughput due to fast retransmissionsing interactive delays to 200-300 milliseconds beyond therendezvous. Reducing hando� latency through careful im-plementation would further reduce this remaining delay.The Mobile IP software in our testbed is an early exam-ple of support for mobile networking and was not writ-ten with fast hando�s in mind. For example, it incurssubstantial system overhead by employing application-levelprocesses to process beacons, change routes, and performother hando�-related functions. A more e�cient imple-mentation of hando�s combined with fast retransmissionsshould in all cases bring pauses in communication to 100milliseconds or less after the rendezvous. If users do notattempt to interact with their mobile computers until theystop moving across cell boundaries, interactive delays willthen drop to acceptable levels.E. Improvements in throughputWe also measured signi�cant improvements in through-put due to the fast retransmission scheme. As shown inFigure 10 for the test described in Section III-A, through-put improves from 1400 to 1490 Kbit/second for 0-secondrendezvous delays, and from 1100 to 1380 Kbit/second for1-second rendezvous delays. Some throughput losses re-main because a transport-level scheme like fast retrans-missions does not reduce network-level delays and packetlosses, and because the slow-start algorithm throttles con-nections for some time after transport-level communicationresumes. V. Wireless transmission errorsEven in the absence of motion, the WaveLAN networkin our testbed su�ers from relatively frequent packet lossesdue to physical transmission errors. A separate mea-surement study found that WaveLAN exhibited excellentpacket capture rates (over 99%) in an indoor environ-ment [10]. However, in our environment, packet loss fre-quency varies widely even across short distances and de-pends on such factors as the positions of antennas in a

room. Such problems are common in wireless communica-tion because wireless media are vulnerable to ambient noiseand multipath interference. Commonly cited bit error ratesfor radio and infrared links are 10�6 or worse, compared to10�12 or better for �ber optic links.Wireless transmission errors will also trigger thetransport-level problems described in Section III. One pos-sible solution is for the link-layer protocol that controlswireless links to retransmit packets lost on those links andthus hide the losses from higher layers. However, recentresearch shows that, under certain packet loss conditions,competing retransmission strategies in the link and trans-port layers can interact to reduce end-to-end throughputwhile increasing link utilization [11]. Alternative tech-niques such as selective retransmissions at the transportlayer may prove more e�ective than link-layer retransmis-sions.We wanted to isolate the e�ects of motion across cellboundaries from the e�ects of wireless transmission errors.We solved the problem by positioning the WaveLAN an-tennas physically close together in an area relatively freefrom ambient radiation and multipath problems. Packetlosses in the absence of cell crossings then dropped to neg-ligible levels. We also repeated all our hando� experimentsusing a wired network to emulate a wireless network; wesubstituted a second Ethernet for the WaveLAN in ourtestbed and found no fundamental di�erences in our re-sults. We did not treat transmission errors any further inorder to concentrate on hando�s. Nevertheless, the impactof wireless transmission errors on reliable transport proto-cols warrants further study.VI. ConclusionsMobility changes important assumptions on which ex-isting systems operate. In particular, networks that in-clude wireless links and mobile hosts su�er from delaysand packet losses that are unrelated to congestion. Cur-rent reliable transport protocols react to these delays and
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such as the route to a new cell, is one of the principalmotivations behind the slow start algorithm.It is important to note that there is no need to initi-ate fast retransmissions in networks that guarantee smoothhando�s, that is, in networks that never lose packets dur-ing hando�s. In that case, the MH software involved inthe hando� need not signal the transport level when hand-o�s complete. The fast retransmission scheme thereforecoexists with any hando� scheme. The software that im-plements the scheme resides in the transport level and isexercised only when needed.D. Improvements in latencyFigure 9 shows the pauses in transport-level communica-tion caused by motion across non-overlapping cell bound-aries, together with the improvements gained by applyingthe fast retransmission procedure. As shown, when thetransmitter resides on the MH, fast retransmissions reducethese pauses from 0.8 to 0.2 seconds for a 0-second ren-dezvous delay, and from 2.8 to 1.2 seconds for a 1-secondrendezvous delay.Figure 9 also shows our results for the case when the TCPtransmitter resides on the SH, where pauses drop from 0.6to 0.3 seconds for 0-second rendezvous delays, and from2.6 to 1.3 seconds for 1-second rendezvous delays. Pausesbefore the improvements are shorter when the transmitteris on the SH (e.g., 0.6 vs. 0.8 seconds for 0-second ren-dezvous delays) because data packets incur added propa-gation delay before they are lost. E�ectively, lost packetsare sent earlier before the cell crossing, and thus retrans-mission timeouts occur earlier after the crossing. Pausesafter the improvements are longer when the transmitter ison the SH (e.g., 0.3 vs. 0.2 seconds for 0-second rendezvousdelays) because the fast retransmission must wait for an ac-knowledgement packet to travel between the MH and theSH after the hando� completes.The fast retransmission scheme thus succeeds in reduc-
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Fig. 8. Fast retransmission after a hando� with a 1-second rendezvous delay� Multiple backo�s of the retransmission timer. Backo�sgrow exponentially with consecutive timeouts and canquickly lead to the long pauses in communication weare trying to avoid.� Multiple retransmissions before the routes become con-sistent. These futile retransmissions waste bandwidthin the slow wireless medium.In general, it is di�cult for a timer-based scheme to adaptto the abrupt changes in round-trip delay introduced bycellular hando�s.C. Fast retransmissionsAn attractive end-to-end solution [9] to the problems pre-sented in Section III is for the transport protocol to resumecommunication immediately after hando�s complete, with-out waiting for a retransmission timeout. Modern TCP im-plementations, including the 4.3BSD-Tahoe implementa-tion in our testbed, already perform similar fast retransmis-sions when a transmitter receives triplicate acknowledge-ments from a remote receiver. When activated, the fastretransmission procedure immediately retransmits the ear-liest unacknowledged packet, drops the transmission win-dow, and initiates the slow-start algorithm. The rationalebehind current fast retransmissions is that triplicate ac-knowledgements clearly indicate that packet loss has oc-
curred, and thus there is no need to wait for a timeoutbefore retransmitting.We made modest changes to the TCP and Mobile IPsoftware in our testbed to invoke the existing fast retrans-mission procedure as soon as routes become consistent fol-lowing a cell crossing. First, the Mobile IP software on theMH signals the TCP software on the MH when a greetingacknowledgement arrives from the new MSS. Second, theTCP transmitter on the MH invokes the fast retransmis-sion procedure when it receives such a signal. The signalis delivered through shared memory between TCP and IPsoftware in the same host.Figure 7 shows the measured e�ect of fast retransmis-sions after a non-overlapping cell hando� with a 0-secondrendezvous delay. As shown, fast retransmissions cause aTCP connection to resume communication 50 millisecondsafter the hando� completes. In contrast, the retransmis-sion timeout would not have occurred until 650millisecondsafter the hando� completed.An additional communication step is necessary to informthe TCP software on the SH of the events occurring at theother end of the connection. First, the Mobile IP soft-ware on the MH signals the TCP software on the MH ofthe completion of the hando�, as described above. Second,the TCP software on the MH forwards the signal over the



6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 5, JUNE 1995grows the congestion window exponentially until it reachesa threshold, then grows it linearly. The threshold is set toone half of the window size at the time of the retransmis-sion timeout. The slow start threshold thus decays expo-nentially with consecutive timeouts.The slow recovery after each hando� contributes to theloss of throughput discussed earlier, but only moderately.Our measurements show that the algorithm throttles trans-missions for approximately 1 second after communicationresumes. At that point the connection again reaches itsmaximum throughput (1.6 Mbit/second), and the conges-tion window ceases to a�ect performance.E. Unacceptable interactive responseInteractive delays are a concern in addition to through-put. Studies of human factors indicate that people per-ceive interactive response to be \bad" if it takes longerthan 100 to 200 milliseconds [8]. As discussed above andshown in Figures 3, 4, 5, and 6, transport-level commu-nication comes to a halt for 800 milliseconds or longerafter non-overlapping cell crossings. Furthermore, thesepauses grow exponentially with growing rendezvous delaysdue to TCP's exponential retransmission backo� policy.In interactive applications that use TCP for reliable datatransport, user inputs and their responses will be unableto travel between mobile hosts and remote servers duringthese pauses.Although users may not always interact with their com-puters while moving, there will certainly be times whenthey will do so soon after stopping. Our results show thatpauses will persist from 650 milliseconds to several secondsafter a host enters a new cell and the hando� completes.Motion will thus lead to unacceptable interactive responseunless we solve the problems presented in this section.IV. Alleviating the effects of motionOur results demonstrate that we must improve the per-formance of reliable transport communication in mobilecomputing environments. Two approaches are possible:hiding motion from the transport level, and adapting thetransport level to react better to motion.A. Smooth hando�sCellular networks should strive to provide smooth hand-o�s in order to eliminate packet losses during cell crossingsand thus hide motion from the transport level. As we haveshown with our testbed, one way to achieve this goal isto implement \make then break" hando�s and to engineerenough overlap between cells to insure that hando�s com-plete before an MH loses contact with the old MSS. How-ever, there are compelling reasons to build networks withlittle or no overlap between small cells:� They o�er high aggregate bandwidth because they canuse the same portion of the electromagnetic spectrumin nearby cells. Bandwidth is scarce in wireless net-works.� They support low-powered mobile transceivers be-cause signals need only reach short distances. Mobile

computers have stringent power consumption require-ments.� They provide accurate location information becausecells are small and sharply de�ned. Location informa-tion adds important functionality to distributed sys-tems.It is possible to provide smooth hando�s in spite ofpacket losses due to motion between non-overlapping cells.For example, MSSs could bu�er packets they have recentlysent to MHs. When an MSS is noti�ed that an MH hasmoved out of the MSS's cell, the MSS can send the bu�eredpackets for that MH to the MSS now responsible for theMH. The new MSS can in turn forward the packets to theMH. This technique increases the memory requirements ofthe MSSs, but may prove feasible because the amount ofdata that an MSS needs to bu�er is bounded by the max-imum hando� latency between adjacent cells.However, it is unlikely that all cellular networks willprovide perfectly smooth hando�s in the near future. Itis therefore worthwhile to investigate transport-level tech-niques for alleviating the e�ects of packet losses duringhando�s.B. More accurate retransmission timersThe long pauses in communication presented in Sec-tion III are due partly to inaccurate retransmission timers.TCP implementations historically have used coarse timerswith a 300- to 500-millisecond resolution. For example,the 4.3BSD-Tahoe implementation in our testbed uses a500-millisecond resolution timer. The resulting minimumtimeout value is twice the timer resolution, or 1 second(this 1-second value is evident in Figures 5 and 6). Theretransmission timer is intended to track the round-tripdelay experienced by a TCP connection, but actual round-trip delays are much smaller than 500 milliseconds. For ex-ample, connections in our testbed experience well under 1millisecond of round-trip delay. It may appear that chang-ing TCP implementations to use higher-resolution timerswould result in more accurate round-trip time estimatesand would thus reduce pauses in communication duringcellular hando�s.However, more accurate timers will not solve the prob-lems introduced by motion across wireless cell boundaries.A timer that successfully tracks the round-trip delay willlead to timeout values on the order of 1 millisecond or less.These small timeout values will result in multiple timeoutswhile a hando� completes, which in turn will lead to thefollowing three problems:� Multiple reductions of the slow-start threshold. Thethreshold decays exponentially with consecutive time-outs and can quickly reach the minimum window sizeof one packet. When communication resumes after ahando�, connections will �nd themselves in the linearregion of window growth dictated by the slow startalgorithm, and will take many round-trip times be-fore they reach maximum throughput. Our testbedavoided this problem because of its coarse timers.



C�ACERES AND IFTODE: TRANSPORT PROTOCOL PERFORMANCE IN MOBILE COMPUTING ENVIRONMENTS 5
0 0.05 0.15 0.8 Time (seconds)

route
changes

route
changes

MH

1.0

timeout
Retransmission

arrives
Beacon

transmission

+
crossing

Cell

Packet  losses

Last  timed

Old  MSS

Fig. 5. Hando� latency and related packet losses with a 0-second rendezvous delay
Time (seconds)

completes

transmission

timeout  1
timeout  2

Retransmission
HandoffRetransmission

1.0 2.0

2.80.8 1.0 1.150

arrives
Beacon

crossing
Cell 

Packet  losses

Last  timedFig. 6. Hando� latency and related packet losses with a 1-second rendezvous delaynoti�cation that the MH has moved before they can changetheir routing tables to point away from the old MSS to thenew MSS.Figure 5 shows what happens during one hando� in thecase of zero rendezvous delay. Although the beacon fromthe new MSS arrives concurrently with the cell crossing,the MH's routing tables do not point to the new MSS until0.05 seconds after the cell crossing. Similarly, the oldMSS'srouting tables do not point to the new MSS until 0.15 sec-onds after the cell crossing. Although the system overheadimplicit in these �gures can be reduced through careful im-plementation, hando� latency cannot be altogether elimi-nated because at least two packet exchanges are needed tonotify both the new MSS and the old MSS that the MHhas changed cells. Because these packets incur unavoid-able propagation delays, there will always be a window ofopportunity during which both data and acknowledgementpackets can be routed to unreachable wireless transceivers.An active TCP connection thus loses up to a full trans-mission window's worth of packets and related acknowl-edgements during each hando�. Once the transmissionwindow �lls, communication stops until the retransmissiontimer expires. When a timeout occurs, TCP retransmitsthe earliest unacknowledged packet, doubles the retrans-mission interval, and resets the timer. If the hando� is not
yet complete when the timeout occurs, the retransmittedpacket is also lost and TCP waits for yet another time-out before retransmitting. A single timeout is typical ofzero rendezvous delay, as shown on Figure 5. Two consec-utive timeouts are typical of a 1-second rendezvous delay,as shown on Figure 6.It is evident how waits for retransmission timeouts freezetransport-level communication for 0.8 seconds or more witheach cell crossing across non-overlapping cells, and are re-sponsible for a large part of the throughput losses reportedearlier. In contrast, hando�s between overlapping cells donot cause the same long pauses in communication becausethe implementation of overlapping cells in our testbed in-sures that no packets are lost during those hando�s. Theslight throughput losses reported earlier for the overlappingcell scenario are due only to encapsulation and forwardingdelays during hando�s.D. Slow recoveryAs shown in Figure 4, the congestion window dropsabruptly after a cell crossing when the retransmission timergoes o�, but returns only gradually to its previous levelonce transport-level communication resumes. TCP's slow-start algorithm [2] is responsible for this behavior. As ac-knowledgements reach the TCP transmitter, slow start �rst
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Cell crossingFig. 4. Behavior of TCP congestion window in response to cell boundary crossingsB. Pauses in communicationFigure 3 shows how the TCP sequence number behavesover the life of a connection. In this example, the MHmoves between non-overlapping cells with a 1-second ren-dezvous delay. As shown, the sequence number ceases toadvance for roughly 3 seconds after the �rst two cell cross-ings, and for roughly 1 second after the last crossing. A3-second pause is typical of a 1-second rendezvous delay,while a 1-second pause is more typical of a 0-second ren-dezvous delay. During these pauses, TCP transmits no newdata and transport-level communication comes to a halt.The e�ect is also visible in Figure 4, which graphs theTCP congestion window over the life of the same connec-tion. The congestion window is an upper bound on thetransmission window, which in turn controls how much un-acknowledged data a TCP connection can have in transitover the network. As shown, the congestion window stopsgrowing with every cell crossing. Some time after the cross-ing, the window shrinks to its minimum value and eventu-ally begins to grow again. The intervals between when thewindow stops growing and when it begins to grow againcorrespond to the 3-second and 1-second pauses in com-munication noted above.
C. Packet lossesThe long pauses in communication are caused by TCP'sresponse to packet losses. Losses occur due to routing in-consistencies during non-overlapping cell hando�s. Con-sider the route from the MH to the SH. When the MHleaves a cell without warning, its routing tables continueto point to the old MSS as the default gateway. The MHdoes not know it has moved and therefore does not changeits routing tables until a beacon arrives from the new MSS.Until then, the MH continues to send packets destined forthe SH directly to the old MSS. These packets are lost be-cause the MH can no longer reach the old MSS through thewireless interface.Inconsistencies persist longer with the route from theSH to the MH. The old MSS does not know that the MHhas left the cell until an explicit noti�cation arrives fromthe new MSS, which cannot send the noti�cation before itreceives a greeting from the MH. Until the old MSS learnsof the MH's motion, it continues to route packets directlyto the MH. These packets are also lost because the oldMSS can no longer reach the MH. Any other parts of thenetwork involved in the hando� must also wait for explicit
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Non- overlapping cellsFig. 2. Loss of throughput due to host motionIII. The effects of motionWe ran a number of experiments in the manner describedabove. We found that throughput dropped signi�cantly inthe presence of motion. We then analyzed the problemin more detail to determine the causes of the performanceloss. We tracked the TCP sequence number and windowsize over the lifetime of a connection to determine how TCPbehaved during hando�s. We also traced TCP and MobileIP packets during the course of each hando� to determineif any packets were lost and why. This section presents ourresults.Due to space limitations, we only present results for thecase where data packets 
ow from the MH to the SH andacknowledgement packets 
ow from the SH to the MH.However, we also ran our experiments for the opposite case,with very similar results. We summarize our results forboth cases in Section IV-D.A. Loss of throughputFigure 2 shows the average application-level throughputachieved when transferring 4 Mbytes of data between anMH and an SH. From left to right, the vertical bars repre-sent the throughput obtained under four scenarios:� The MH does not move.� The MH moves between overlapping cells.� The MH moves between non-overlapping cells and re-ceives a beacon from the new MSS at the instant itleaves the old cell (0-second rendezvous delay).� The MH moves between non-overlapping cells and re-ceives a beacon from the new MSS one second afterleaving the old cell (1-second rendezvous delay).In the scenarios that involve motion, the beaconing periodis 1 second and the MH switches cells every 8 beaconingperiods. These parameters were chosen to allow TCP con-nections to attain maximum throughput between hando�swhile also allowing us to observe multiple hando�s duringa single data transfer.

We believe these four scenarios show a complete and fairpicture of the problems introduced by host motion. Weuse the no-motion scenario as a base for comparison. Themotion scenario with overlapping cells represents the besthando� performance possible with our hardware and soft-ware. It is realizable in a real network only if overlap re-gions are large enough, and hosts move slowly enough, forhando� operations to complete while a moving host is stillin the overlap region. The scenario with zero rendezvousdelay represents the minimum network-level interruptionintroduced by non-overlapping cell hando�s. It is realiz-able only if the MH does not have to wait for a beaconbefore it can communicate with the new MSS, for exam-ple in a network where MSSs announce their presence bymeans of a continuous signal. Finally, the scenario witha 1-second rendezvous delay shows what happens as thelength of network-level interruptions increases. It is a re-alistic scenario when a periodic beaconing scheme is used,since an MH may have to wait up to a full beaconing periodbefore it receives a beacon from the new MSS.As shown in Figure 2, throughput degrades substan-tially in the presence of motion across non-overlappingcells. In the overlapping cell scenario, throughput degradesonly slightly, by 6%. In the non-overlapping cell scenariowith zero rendezvous delay, throughput drops by 12% eventhough only 3 hando�s occur in the roughly 24-second life-time of the connection. Throughput drops much furtherwith a 1-second rendezvous delay, by 31% with 3 hando�sin roughly 29 seconds.In the rest of this section we study the causes of this per-formance degradation in increasing detail. We concentrateon single hando�s to eliminate from our results any depen-dencies on the parameters of the throughput test discussedabove (4 Mbytes of data with hando�s every 8 seconds).Our results will thus apply to all cell hando�s in each mo-tion scenario.



2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 5, JUNE 1995to other reliable transport protocols that must deal withboth mobility and congestion.The remainder of this paper is organized as follows. Sec-tion II describes the wireless networking testbed used to ob-tain our results. Section III presents the measured e�ectsof host motion on the performance of reliable transportprotocols. Section IV proposes and evaluates an end-to-end approach to alleviating the negative e�ects of motion.Section V discusses wireless transmission errors as an areafor future work, and Section VI concludes the paper.II. Wireless networking testbedWe explore the e�ects of mobility through measurementsof transport protocol behavior in a wireless networkingtestbed. The testbed consists of mobile hosts (MH), mo-bility support stations (MSS), and stationary hosts (SH)deployed in an ordinary o�ce environment. Mobile hostsconnect to a 2-Mbit/second WaveLAN local-area wirelessnetwork. WaveLAN is a direct-sequence spread spectrumradio product from NCR. Stationary hosts connect to a 10-Mbit/second Ethernet local-area wired network. Mobilitysupport stations connect to both networks. Figure 1 showsthe minimum testbed con�guration.
MH

SH

MSS 1 MSS 2

cell 1 cell 2Fig. 1. Wireless networking testbedAll hosts and support stations are equipped with 50-MHz i486 processors, 330-Mbyte hard disks, 16 Mbytesof memory, and the necessary network interface hardware.They run the 4.3BSD-Tahoe version of TCP from the Uni-versity of California at Berkeley, Mobile IP software fromColumbia University [5], and the Mach 3.0 microkernel andUnix server (MK77/UX37) from Carnegie Mellon Univer-sity [7]. 4.3BSD-Tahoe TCP is widely used throughout theInternet and implements exponential retransmission back-o�s and the slow-start algorithm.A. Cellular hando� proceduresEach MSS de�nes one cell and is responsible for the MHsin its cell. It acts as the default gateway for those MHs,routing packets that originate in an MH from the wirelessto the wired part of the network. Similarly, it forwardspackets destined to an MH from the wired to the wirelesspart of the network.MHs and MSSs collaborate to perform hando�s betweencells. MSSs make their presence known by broadcastingperiodic beacons over the wireless network. An MH decidesto switch cells when it receives a beacon from a new MSSwith a stronger wireless signal than the beacon from the

old MSS, or when it receives the �rst beacon from a newMSS after failing to receive beacons from the old MSS.To switch cells the MH sends a greeting packet to thenew MSS, and changes its own routing tables to make thenew MSS its default gateway. It also noti�es the new MSSof the identity of the old MSS. The new MSS acknowledgesthe greeting to the MH, adds the MH to the list of MHsfor which the new MSS is responsible, and begins to routethe MH's packets accordingly. The new MSS also informsthe old MSS that the host has moved and can be reachedthrough the new MSS. The oldMSS then adjusts its routingtables in order to forward to the new MSS any packets thatarrive for the MH, and acknowledges the hando� to the newMSS. Finally, the new MSS acknowledges the completionof the hando� to the MH. Further details of this protocolare found in [5].B. MethodologyIn our experiments, we initiate a reliable data transferover a TCP connection between an MH and an SH, wecause the MH to cross cell boundaries while the connectionis active, and we measure the performance of the connec-tion.We simulate motion across cell boundaries in software.The MH in our testbed is always in range of both MSSs, butwe modi�ed the Mobile IP software on the MH to ignorebeacons from all but one MSS. After the MH spends aspeci�ed number of beaconing periods in that MSS's cell,the modi�ed software listens for a beacon from the otherMSS in order to initiate hando� procedures with the newMSS.An important bene�t of simulating motion in software isthat it lets us study networks with overlapping cells as wellas networks with non-overlapping cells. When adjacentcells overlap and an MH is in the region of overlap, pack-ets can continue to 
ow between the MH and the old MSSwhile the hando� to the new MSS is in progress. When cellsdo not overlap, there is an unavoidable pause in network-level communication while the MH is out of reach from theold MSS and the hando� to the new MSS has not yet com-pleted. The testbed allows us to explore the full range ofhando� scenarios, from the case when the MH is in con-tact with both MSSs throughout the hando�, to the casewhen the MH cannot communicate with any MSS for anarbitrary interval of time after it leaves the old cell.Another bene�t of simulating motion in software is thatit gives us precise control over the instant when hando�sbegin. Under normal circumstances, hando�s begin at in-determinate times based on the time remaining in a cell'sbeaconing period when a host enters the cell, or on the rel-ative strengths of two wireless signals. Our testbed makesthis process deterministic and therefore allows us to reliablyreproduce test conditions. Finally, simulating motion insoftware eliminates the need to physically move test equip-ment during experiments.



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 5, JUNE 1995 1Improving the Performance ofReliable Transport Protocols inMobile Computing EnvironmentsRam�on C�aceres and Liviu IftodeAbstract| We explore the performance of reliable datacommunication in mobile computing environments. Motionacross wireless cell boundaries causes increased delays andpacket losses while the network learns how to route data toa host's new location. Reliable transport protocols like TCPinterpret these delays and losses as signs of network conges-tion. They consequently throttle their transmissions, fur-ther degrading performance. We quantify this degradationthrough measurements of protocol behavior in a wirelessnetworking testbed. We show how current TCP implemen-tations introduce unacceptably long pauses in communica-tion during cellular hando�s (800 milliseconds and longer),and propose an end-to-end fast retransmission scheme thatcan reduce these pauses to levels more suitable for humaninteraction (200 milliseconds). Our work makes clear theneed for reliable transport protocols to di�erentiate be-tween motion-related and congestion-related packet losses,and suggests how to adapt these protocols to perform betterin mobile computing environments.Keywords| Wireless networks, cellular hando�s, conges-tion control, TCP, mobile IP.I. IntroductionRELIABLE transport protocols have been tuned fornetworks composed of wired links and stationaryhosts. They adapt to prevailing end-to-end delay condi-tions throughout the life of a connection, and interpretunexpected increases in delay as packet losses caused bycongestion. In response to perceived losses, protocols likethe Transmission Control Protocol (TCP) [1] aggressivelyslow their transmissions to allow the network to recover.These congestion control policies have proven bene�cial inimproving the overall performance of networks like the In-ternet. The premise underlying these policies, that packetlosses are largely due to congestion, is correct for existingnetworks.Future networks, however, will include wireless links andmobile hosts. In particular, there will be local-area net-works composed of wireless cells of a few meters in diame-ter. Such microcellular networks are desirable for three im-portant reasons: they o�er high aggregate bandwidth, theyrequire low power from mobile transceivers, and they pro-vide accurate location information. Users in microcellularenvironments will often carry hosts across cell boundarieswithout warning and in the midst of data transfers.This work was performed at Matsushita Information TechnologyLaboratory.Ram�on C�aceres can be reached at AT&T Bell Laborato-ries, 101 Crawfords Corner Road, Holmdel, NJ 07733, USA,ramon@research.att.com.Liviu Iftode can be reached at Princeton University, Department ofComputer Science,Princeton, NJ 08544, USA, liv@cs.princeton.edu.

Transport-level connections will thus encounter types ofdelay and loss that are unrelated to congestion. First,communication may pause while the hando� between cellscompletes and packets can again be routed to and fromthe mobile host. Second, packets may be lost due to fu-tile transmissions over the wireless network when a mobilehost moves out of reach of other transceivers, especiallyin networks with little or no overlap between cells. Third,packets may be lost due to the relatively frequent transmis-sion errors su�ered by wireless links. Some performancedegradation due to these delays and losses is unavoidable.These events also trigger congestion control proceduresthat further degrade performance. In particular, TCP im-plementations continually measure how long acknowledge-ments take to return. They maintain a running averageof this delay and an estimate of the expected deviation indelay from the average. If the current delay is longer thanthe average by more than twice the expected deviation,TCP assumes that the packet was lost. In response, TCPretransmits the lost packet and initiates congestion con-trol procedures to give the network a chance to recover [2].First, TCP drops the transmission window size to reducethe amount of data in transit through the network. Second,it activates the slow-start algorithm to restrict the rate atwhich the window grows to previous levels. Third, it resetsthe retransmission timer to a backo� interval that doubleswith each consecutive timeout.When motion is mistaken for congestion, these proce-dures result in signi�cant reductions in throughput andunacceptable interactive delays for active connections. Thedegradation is readily apparent, for example, to users ofemerging ubiquitous computing environments [3].This paper quanti�es the e�ects of motion on through-put and delay, identi�es the factors that contribute to theloss of performance, and suggests an end-to-end approachfor alleviating the problem. It shows how waits for TCP'sretransmission timeouts cause pauses in communicationthat last 0.8 seconds and longer after each cell crossing.Other researchers have called attention to the long pausescaused by TCP's exponential backo� policy [4][5][6], butto our knowledge this is the �rst systematic treatment ofthis problem. This paper also describes how using TCP'sfast retransmission procedure can reduce these pauses to0.2 seconds. We focus on TCP because it is the mostwidely used reliable transport protocol and will be usedin at least the �rst generation of mobile computing envi-ronments. Furthermore, lessons learned from TCP apply


