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Abstract

For many computer activities, user verification is necessary before the

system will authorize access. The objective of verification is to separate gen-

uine account owners from intruders or miscreants. In this paper, we propose

a general user verification approach based on user trajectories. A trajectory

consists of a sequence of coordinated inputs. We study several kinds of trajec-

tories, including on-line game traces, mouse traces, handwritten characters,

and traces of the movements of animals in their natural environments. The

proposed approach, which does not require any extra action by account users,

is designed to prevent the possible copying or duplication of information by

unauthorized users or automatic programs, such as bots. Specifically, the ap-

proach focuses on finding the hidden patterns embedded in the trajectories

produced by account users. We utilize a Markov chain model with a Gaussian
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distribution in its transition to describe trajectory behavior. To distinguish

between two trajectories, we introduce a novel dissimilarity measure com-

bined with a manifold learned tuning technique to capture the pairwise rela-

tionship between the two trajectories. Based on that pairwise relationship,

we plug-in effective classification or clustering methods to detect attempts

to gain unauthorized access. The method can also be applied to the task

of recognition, and used to predict the type of trajectory without the user’s

pre-defined identity. Our experiment results demonstrate that, the proposed

method can perform better, or is competitive to existing state-of-the-art ap-

proaches, for both of the verification and recognition tasks.

Key words:

account security, bot detection, dissimilarity measure, Isomap, manifold

learning, on-line game, trajectory, verification.

1. Introduction

With the rapid growth of computer networks, an increasing number of

people are relying on the Internet to perform various activities in their daily

lives; for example, conducting bank transactions, talking with friends in an

on-line community, searching the Web for information, or playing on-line

games. Many of the activities do not allow anonymous access. To log-on

to a system, the user normally provides a password, but biometric methods

like fingerprint matching, facial recognition, or iris scans may also be used for

personal identification. Sometimes, a web connection is built on an untrusted

network and a user’s personal information, and even his identity, may be

stolen by unauthorized persons, such as hackers breaking into on-line game
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accounts. Verification schemes play an important role in preventing such

activity. They are usually integrated with other intrusion detection methods

to provide a complete defense, known as account security.

In this work, we propose a verification scheme based on user trajectories,

which are sequences of coordinated inputs. The objective is to verify that

the person accessing an account is the actual owner. The method can also

be used to recognize the person represented by the trajectory if his identify

is not provided. We evaluate our method on several kinds of trajectories,

including on-line game traces, mouse traces, handwriting traces, and traces

of the movements of animals in their natural environments. Some examples

are shown in Figure 1. The experiment results demonstrate the method’s

efficacy. We formally define our problem as follows:

Definition 1 (Verification and Recognition). Given a trajectory of co-

ordinates s = (x1, . . . ,xt, ...,xT ), where T is the length of the trajectory and

xt ∈ R
2 or R

3, verification evaluates a function v(s, I) = y ∈ {0, 1} that

determines whether a match exists between a trajectory s and a pre-defined

identity I ∈ I. This is a simple Yes/No question. On the other hand, recog-

nition evaluates a function r(s) = I ∈ I that identifies the owner of the

trajectory. This is a multiple choice question.

Our first goal is to extract hidden patterns from a set of coordinates.

We consider a trajectory of length T denoted1 by s = (x1, . . . ,xt, ...,xT ).

Sometimes we prefer a method that remains robust, even when the length

1We use equally-spaced time stamps in this work. In practice, we sample one point for

each second in this work.
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(a) On-line game: human (b) On-line game: bot

(c) Mouse trace: a left-handed user (d) Mouse trace: a right-handed user

Figure 1: Different types of input trajectory: (a) and (b) are the traces of a human and a

bot taken from an on-line game called Quake 2; (c) and (d) are the mouse traces of two

users. From their appearance, we can determine that (c) belongs to a left-handed user

and (d) belongs to a right-handed user.

of the input is limited. To have that, we can detect non-authorized access

in an early moment. After extracting the hidden patterns, we compute a

dissimilarity measurement for each pair of trajectories, and use some well-

known classifiers to decide the label of each trajectory. More specifically,

the dissimilarity measurement is integrated with a manifold learning method

called Isomap (Isometric feature mapping) [29] for trajectory representation.
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Then, the trajectory’s label is decided by a type of support vector machines,

called Smooth SVM [13] in the representation space. A positive label means

that an intruder is trying to access the account, and a negative label indicates

that the person is the actual account holder. The proposed method can be

applied to various types of trajectories, e.g., on-line game traces, handwriting

traces, mouse traces, and traces of animal movements.

Note that our method can be regarded as a two-factor authorization pro-

cess [27]. The ideal design would be to combine a password and our method

to ensure complete account security. Our work differs from other approaches

in that it is passive, which means that no extra effort is required by account

users. For instance, user trajectories can be captured easily by a background

TSR (Terminate and Stay Resident) process on a PC. Therefore, it is prefer-

able to other two-factor schemes, such as those that combine a password with

some biometric features, physical devices like smart cards, or a CAPTCHA

test [30], which we discuss in the next section.

We also study the scenario where we do not have a pre-assigned iden-

tity, which is a recognition task. For instance, if the user does not input a

password, our method can still recognize his identity by analyzing his mouse

trace of a certain length. The success of the recognition process depends on

the size of the account database. We assess the performance of the proposed

method on datasets that only have a limited number of account users. For

both of the verification and recognition tasks, we claim that the proposed

method is superior to or competitive to state-of-the-art approaches that we

have known.

The remainder of this paper is organized as follows. Section 2 contains
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a review of related works. In Section 3, we describe our user verification

and recognition method; and in Section 4, we evaluate its performance on

different input traces. Then, in Section 5, we summarize our conclusions.

2. Related Work

In the first part of this section, we discuss previous user verification and

recognition research. Because the input of this work is trajectory data, in the

second part of the section, we discuss some past approaches that are relevant

to trajectory analysis.

2.1. Account Security

2.1.1. Traditional Approach

To prevent unauthorized access and the theft of account information,

various techniques are used to verify the user’s identity and match it with

the account owner’s pre-stored profile. Most people use a password or a PIN

to access their accounts. To enhance the security level, some people maintain

different passwords for different accounts, and change passwords frequently.

Security can also be improved by using a password in conjunction with a

communication lock. As well as providing the password, the user must unlock

the communication lock by dialing a specific number, after which he has a

limited timeframe to log-on to his account. Most of the above methods are

inconvenient and inefficient. A user must remember his password to access

his account. On the other hand, a hacker can easily compromise the account

by stealing the access from an intercepted log-in process. If the system could

verify the identity of account users based on their account usage patterns,

such problems may be solved.
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2.1.2. Handwritten Signature and Other Biometrics

In contrast to the above methods, which are based on “something you

know” or “something you have” biometric approaches, it is believed that a

method that shows “something you are” is more resistant to duplication. For

example, in an on-line game, a player can steal other players’ accounts and

obtain the same user privileges. However, imitating a user’s game-playing

trajectory would be more difficult [19] because the behavior of human players

is not always rational or logical.

Among all the interesting user verification and recognition methods, we

focus on the handwritten signature, a well-known biometric. The handwrit-

ten signature has long been used to judge user’s identity in the history. In

this work, we regard the handwritten signature as a special kind of user

trajectory, if we consider the temporal information in the signature. Signa-

ture verification methods can be divided into on-line methods and off-line

methods [10, 25]. On-line methods consider the temporal information in a

signature, but off-line methods only consider 2-D images captured by a scan-

ner as the input. Because on-line methods consider temporal information,

they are 5-25% more accurate than off-line methods [25]. However, few busi-

nesses have devices to capture on-line signatures. Moreover, it is not easy to

acquire the on-line information in every case; for instance, it is difficult to

obtain the on-line information of signatures on personal checks.

To acquire handwriting traces for on-line verification, Munich et al. [21]

used a camera to collect data and claimed that affine arc-length parameteriza-

tion methods perform better than conventional time and Euclidean arc-length

methods. Richiardi et al. [26] employed Gaussian Mixture Models to verify
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on-line signatures. They used Gaussian components to represent the features

of signatures, and applied the MDL (Minimum Description Length) princi-

ple to automatically select the signature model. Ahmad et al. [1] combined

HMM and SVM for online handwriting recognition. In off-line signature ver-

ification, the problem is similar to an image recognition problem. To bridge

the performance gap between on-line and off-line methods, Qiao et al. [25]

developed a method that finds on-line information from off-line inputs based

on a stored on-line signature database. In contrast to the above methods,

our model utilizes a very simple feature set. Even so, its performance is su-

perior or comparable to that of existing methods2. Moreover, our primary

motivation is to ensure account security. In this case, the devices needed to

capture on-line information are available to us. For example, a mouse or an

electronic pen can help us capture mouse traces, handwriting traces, and on-

line game traces easily. Fingerprint, iris, retina, facial, and motion patterns

are also used in biometric verification methods [9]. Those methods have high

statistical inter-variance for identity distinguishment. Our method, which

is based on behavior traits, may not have such high inter-variance between

individuals; however, it does not need many extra devices3 to acquire the

input [5].

2.1.3. CAPTCHA

CAPTCHA (Completely Automated Public Test to tell Computers and

Humans Apart) [30] is a test that automatically asks a user to solve some

2It will be discussed in Section 4.
3Motion pattern detection usually needs some devices. For instance, we need devices

to catch the emotional states from facial and voice patterns in Fujita et al. [5].
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problems in order to determine if the user is a human or a bot (automated

program). Although the method is effective, it can still be hacked by relaying

the puzzles to human operators to obtain the correct answers. One common

CAPTCHA test shows some randomly distorted words or words in a cluttered

background. Answering the questions can be annoying for human users [8].

Because of the success of recently developed computer vision techniques [20],

more difficult tests are being developed, and the tests are no longer trivial

for human being as before.

2.2. Trajectory Analysis

A great deal of research has been conducted on pattern recognition in

sequential or trajectory data. We only discuss approaches that are closely

related to our work. There are two types of sequential data: (1) dynamic

data, such as handwriting traces, mouse traces, and avatar traces from on-

line games; and (2) static data, such as biological sequences or language

texts. Both types of data may have dependency between neighboring data

elements; however, the latter usually has only limited length. We focus on

dynamic data in this paper.

SAX (Symbolic Aggregate approXimation) [17] is widely used to process

sequential data. One of the key steps of SAX involves discretizing the nu-

merical values of the input data to produce a set of symbols that approxi-

mate the original input. Jae-Gil et al. [12] combined the region-based and

trajectory-based clustering methods to classify trajectories. They used the

MDL principle to partition trajectories, and then searched for specific pat-

terns. Keogh et al. [11] suggested a parameter-free description of sequential

data; while Pao et al. [22] considered the distance function between biological
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sequences. Both studies followed the work of Li et al. [14], who tried to use

the Kolmogorov complexity [15] to describe the “irregularities” in sequential

data. Although the Kolmogorov complexity of a finite sequence is generally

incomputable, some compression methods (e.g. [22]) can be exploited to ob-

tain its approximation. In addition to the above works, Chen et al. [2, 3]

and Pao et al. [23] proposed using trajectory inputs for game bot detection,

and applied the method to bot detection in an FPS (First-Person Shooter)

game called Quake 2. Some studies have been extended to other types of

trajectories4 in Pao et al. [24]. Gianvecchio et al. [7] used a HOP system to

detect bots in a famous MMOG (Massive Multiplayer Online Game) called

World of Warcraft. They collected various types of information, including

user trajectories, for use in bot detection. The trajectories of an FPS game

and an MMOG are different because players have full control in the former,

but not in the latter. Therefore, for the purposes of this study, it is more

appropriate to apply our method to FPS games because they provide more

user information.

3. Proposed Method

In this section, we describe the proposed method and explain how we deal

with the verification and the recognition problems by exploiting the trajec-

tory input. The method is implemented in three steps. The first step extracts

useful features from the given trajectories. The second step measures the

4This work gives more systematic studies on more types of trajectories than the work

in [24]; moreover, we clarify the difference between the verification and recognition tasks

and give more studies on the recognition task on this work.
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Figure 2: The framework of the proposed method: the left-hand side (white rectangles)

shows the goals and the right-hand side (gray rectangles) shows the methods.

dissimilarity between a pair of trajectories. Then, based on the dissimilarity

measure, the third step uses a manifold learning method called Isomap [29]

to refine the dissimilarities and a classifier called Smooth SVM [13] to deter-

mine if the trajectories belong to authorized users or intruders. To improve

the performance further, it is often helpful to substitute the dissimilarity

measurement by two proceduces, trajectory partition followed by trajectory

alignment. The framework of the method is shown in Figure 2. The left-hand

side (white) shows the goals, and the right-hand side (gray) shows the meth-
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ods used to achieve the goals. We discuss first the standard approach, then

talk about the improvement by trajectory partition and trajectory alignment.

3.1. Feature Extraction

Given a trajectory s = (x1, . . . ,xt, . . . ,xT ) of length T , we extract two

types of features, namely, steps and angles. A step is a vector xt+1−xt. Based

on that information, the Euclidean step size is computed by λt = ||xt+1−xt||;

and, an angle θt is the angle between the vector xt+1 − xt and the x-axis.

3.2. Dissimilarity Measures

We compute the dissimilarity measure for each pair of trajectories. Given

a trajectory s, let Ms denote the model that best describes s. In this work, we

utilize a continuous valued Markov chain model5 and assume Gaussianity in

its transition to model a trajectory. There are two model parameters, σλ and

σθ, which determine the transitions in the step size and angle respectively.

To derive the parameter settings, we adopt the maximum likelihood principle.

We indicate the model as Ms(σλ, σθ).

The step size parameter σλ describes the standard deviation of step size

λt+1, which we assume is centered in λt; and the angle parameter σθ describes

the standard deviation of angle θt+1, which we assume is centered in θt. That

is, based on the Markovian and Gaussianity properties of the coordinates of

the consecutive time stamps xt, xt+1 and xt+2, we can express the probability

5The Markov chain (MC) model is popular in many learning tasks; for example, Shan-

non [28] uses it to model English text; Liò et al. [18] use it to model the DNA base

substitution and amino acid replacement for phylogenetic reconstruction; and Gero et al.

use it to model constructive memory [6].
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density functions as follows:

λt+1|λt ∼ N(λt, σ
2
λ) or p(λt+1|λt) =

1√
2πσλ

exp
(

− (λt+1 − λt)
2

2σ2
λ

)

, (1)

θt+1|θt ∼ N(θt, σ
2
θ) or p(θt+1|θt) =

1√
2πσθ

exp
(

− (θt+1 − θt)
2

2σ2
θ

)

. (2)

Given a model Ms, the log-likelihood ℓ(s;Ms) of a trajectory s can be

written as6

ℓ(s;Ms) = log L(s;Ms) = log
(

p(x1)p(x2 |x1)
∏

t=1

p(xt+2 |xt,xt+1)
)

,

= log P (x1) + log p(x2 |x1) +
∑

t=1

log
(

p(xt+2 |xt,xt+1)
)

, (3)

where L is the likelihood function; and

log p(xt+2|xt,xt+1) = log p(λt+1 | λt) + log p(θt+1 | θt)

= − log(
√

2πσλ) −
(λt+1 − λt)

2

2σ2
λ

− log(
√

2πσθ) −
(θt+1 − θt)

2

2σ2
θ

. (4)

It is assumed that step size λt+1 and angle θt+1 in time t + 1 decide the

distribution of the random variable xt+2 independently, given the previous

two locations xt and xt+1 (i.e., given λt and θt). A variant of Eq. 4 can be

written as

log p(xt+2|xt,xt+1) = α log p(λt+1 | λt) + (1 − α) log p(θt+1 | θt) , (5)

6The p(x1) is a prior that assumes a uniform distribution, so it can be ignored in the

computation of the maximum likelihood. We also assume that p(x2 |x1) is a 2-D isotropic

Gaussian 1√
2πσλ

exp{−(λ1 − λ)2/(2σ2

λ
)}, centered in the origin, where λ is the mean of

step size λt in the trajectory.

13



where we would like to emphasize either the “influence” of step size or angle

changes by choosing different values of α depending on cases.

Given the likelihood computation in Eq. 3, in our design, the dissimilarity

(or distance) between two trajectories is measured by how well one of the

trajectories is described by the model of the other trajectory. First, given a

model M, we compute the code length of a trajectory s (with respect to M)

as a negative logarithm of the likelihood, as follows:

c(s|M) = −ℓ(s;M) = − log L(s;M) . (6)

Note that M does not have to be the associated model of the trajectory s.

Based on the code length measure, we define the dissimilarity7 between two

trajectories s1 and s2 as follows:

d(s1, s2) =
c(s1 |M2) + c(s2 |M1)

c(s12 |M12)
, (7)

where s12 is the trajectory that concatenates8 s1 and s2, one after another,

and M12 is the associated model of s12.

3.3. Preprocessing by Partition and Alignment

Given a dataset of trajectories, we may find the dissimilarities of the

trajectories by Eq. 7, and then apply the rest of the proposed steps (Isomap

+ SSVM) directly. However, to improve the performance further, it is often

helpful to partition a single trajectory into sub-trajectories so that in each

small sub-trajectory, we have “similar properties” or “stable parameters”.

7The smaller the value, the closer will be the relationship between s1 and s2.
8The concatenation order, such as producing s12 by concatenating s1 followed by s2, or

vice versa, makes very little difference. Only the concatenation point makes a difference.
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We believe the partitioning makes the estimation of the step size changes

and angle changes by Equations 1 and 2 more reliable. Next, we discuss the

trajectory partition scheme and some post-processing steps that are necessary

for the partitioned trajectories.

3.3.1. Trajectory Partition

If a trajectory contains different “properties” that cannot be modeled

by a single set of parameters (σλ, σθ) in Equations 1 and 2, we partition it

into several sub-trajectories and estimate the model’s parameters in each

sub-trajectory. This technique provides a better description of the sub-

trajectories and therefore the whole trajectory. We use the trajectory length

to decide whether we need to partition the trajectory, and compute the en-

tropy value to decide where to partition the trajectory if necessary.

Rigorously, given a trajectory s, we make further partitions if s is longer

than a pre-defined threshold t. If we need additional partitions, we use the

entropy to decide the cutting point, which is the point with the lowest entropy

in the partitioned sub-trajectory.

Given a trajectory s, because the step size and angle independently decide

the distribution of each step, the trajectory’s entropy can be computed for

step size and angle separately. That is, first, we discretize9 the distribution

(∆λ, ∆θ) sampled from (∆λt, ∆θt) = (λt+1 − λt, θt+1 − θt), t = 1 . . . , T − 1,

9The distribution is in a discrete form when we collect the data. Here, discretization

means that we combine several bins to form one group or we split bins into several smaller

bins, depending on the discretization parameter. We use capital P to denote that it is a

probability mass function for the entropy computation.
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and compute its entropy H as follows (measured in bits):

H(s) = H(∆λ, ∆θ)

= −
∑

i,j

P (∆λi, ∆θj) log P (∆λi, ∆θj)

= −
∑

i,j

P (∆λi)P (∆θj) log P (∆λi)P (∆θj) (8)

= −
∑

i

P (∆λi)
∑

j

P (∆θj) (log P (∆λi) + log P (∆θj))

= −
∑

i

P (∆λi)
∑

j

P (∆θj) log P (∆λi)

−
∑

i

P (∆λi)
∑

j

P (∆θj) log P (∆θj)

= −
∑

i

P (∆λi) log P (∆λi) −
∑

j

P (∆θj) log P (∆θj)

= H(∆λ) + H(∆θ) , (9)

where i and j are indices for the discretized distributions ∆λ and ∆θ respec-

tively; and Eq. 8 is derived from the independence of ∆λ and ∆θ. Given

a cut point, we use Eq. 9 to compute the entropy values of the two sub-

trajectories, and compute their weighted summation (weighted by the sub-

trajectory length). We then choose the best cut point to be the point where

we have the lowest weighted entropy. Similar to Eq. 5, we can also give a

variant of Eq. 9 as

H(s) = αH(∆λ) + (1 − α)H(∆θ) . (10)

Figure 3 shows the results of partitioning a trajectory. The blue line is

the trajectory input, and red circles indicate the cutting points. Figures 3

(a1)-(a3) are based on synthesized trajectories that combine half circles and
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Figure 3: (a1)-(a3): the different thresholds t used to partition a trajectory; (b), (c), and

(d): the trajectory partitions for different handwritten signatures.

straight lines. We tested different threshold values to partition the trajec-

tory. (a3) appears to have more partitions than (a1), because it allows no

trajectory longer than 300. We observe that the cutting points gradually

catch the curve property from (a1) to (a3). Figures 3 (b), (c), and (d) show

the results when we apply the proposed trajectory partition algorithm to real

handwritten data (see Section 4.1.2 for more detail). The red splitting points

almost partition on inflection points, or points that have high curvature.

3.3.2. Trajectory Alignment

The output of trajectory partitioning is a sequence of sub-trajectories.

Given two trajectories s1 and s2, and their respective partitioned sets s11, s12, . . . , s1u,

. . . , s1U and s21, s22, . . . , s2v, . . . , s2V , respectively, we perform trajectory align-
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ment to find the dissimilarity D between s1 and s2. The alignment is executed

by a dynamic programming procedure in which the recurrence value D(u, v)

describes the dissimilarity between s11, . . . , s1u and s21, . . . , s2v as follows:

D(u, v) = 0 if u = 0 or v = 0 ,

and if u > 0, v > 0,

D(u, v) = min















D(u − 1, v − 1) + 1

2
(|s1u| + |s2v|)δ(s1u, s2v) match

D(u − 1, v) + |s1u|δ(s1u,−) gap

D(u, v − 1) + |s2v|δ(−, s2v) gap

, (11)

where |s| denotes the length of trajectory s. The dissimilarity function δ for

two sub-trajectories s1u and s2v, or for a sub-trajectory and a “gap” (denoted

by “−”) is given by

δ(s1u, s2v) =
c(s1u|M2v) + c(s2v|M1u)

c(s1u2v|M1u2v) ,
(12)

δ(s1i,−) = δ(−, s2j) = G , (13)

where s1u2v is the concatenated trajectory of trajectory s1u and trajectory

s2v; and M1u2v is the Markov model associated with s1u2v. We define the

dissimilarity between s1 and s2 as

D(s1, s2) = D(U, V ) . (14)

Note that Eq. 12 is very similar to Eq. 7, where we compute the dissimilarity

between two original (non-partitioned) trajectories. In fact, Eq. 14 and Eq. 7

give identical result if no partition is performed and we use the input of

the same trajectory length10. We apply a linear gap penalty, as shown in

10In this work, the input trajectories that we compute their dissimilarities are always in

the same length.
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Eq. 13, which allow gaps to exist in the match of two trajectories that have

different numbers of sub-trajectories. In this work, the gap penalty is set to

be 30 at all times for simplicity. Note that dynamic programming alignment

usually incurs quadratic complexity for the computation; however, because

the number of sub-trajectories is small in this case, the whole computation

can be completed very quickly.

3.4. Trajectory Representation and Labeling

Given the pairwise dissimilarities of trajectories derived by Eq. 14 (or

Eq. 7 if no partition is necessary), we could utilize a simple method, such

as the k nearest neighbor (kNN) algorithm, to determine if a trajectory is

similar to the trajectories of the real account owner or if it belongs to an

intruder. However, we would like to design a more effective method, by

an improvement based on the concept of manifold learning. We seek an

embedding feature space to represent a set of trajectories; and in the feature

space, we use the Smooth SVM classifier [13] to label the trajectories [16]. In

the feature space, two trajectories are regarded as close (similar) if (1) they

have a small dissimilarity score, computed by Eq. 14; or, (2) both of them

are close (similar) to a third trajectory. We utilize Isomap [29] to find the

feature space to represent the trajectories. The steps are as follows.

1. Construct a neighborhood graph by linking each pair of trajectories/points

that qualify as neighbors.

2. Find the shortest path between each pair of points and take it as the

approximation of their geodesic distance.

3. Take the pairwise (geodesic) distances as the input and apply Multidi-

mensional Scaling (MDS) [4] to find the global Euclidean coordinates of
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the points.

Figure 5 shows some examples of embedding in a 2-D space, after apply-

ing Isomap. Note that the “optimal” dimensionality (also called the intrinsic

dimensionality), where we can separate different kinds of trajectories effec-

tively, is not necessarily two dimensions. The intrinsic dimensionality can be

estimated by finding the “elbow” point in the residual variance curve [29].

Ideally, we should be able to use any classifier in the feature space to deter-

mine whether a trajectory belongs to the true account owner or an unautho-

rized person. In this study, we use SSVM [13] to evaluate the performance

of proposed method.

4. Experiments

The experiments were divided into two parts. They focused on the veri-

fication and recognition tasks respectively. The verification task is the main

focus in this work. The performance of our method in terms of the recogni-

tion task was only assessed in the situation where the number of trajectory

identities was small. In real cases, the number of identities may range from

hundreds to millions. Analyzing such cases is beyond the scope of the present

study. We evaluated the performance of the proposed method on the verifi-

cation and recognition tasks given inputs of different kinds, including on-line

game traces, handwriting traces, mouse traces, and animal movement traces.

We showed that the proposed method is superior to or competitive to exist-

ing state-of-the-art approaches in related applications. Moreover, we studied

the effectiveness of the proposed method given inputs of different length. Be-

fore discussing the experiment results, we introduce the datasets used in the
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Table 1: Statistics of the datasets used in the verification and recognition experiments,

and the associated parameters. In the table, kIso denotes the number of neighbors k used

by kNN to construct the neighborhood graph for Isomap. For simplicity and to ensure a

fair comparison, it is assumed that the intrinsic dimensionality of all the datasets is 5. We

use the length threshold to decide when we need to partition trajectories. The α in Eq. 5

and Eq. 10 is set to 0.5 at all times except that for the animal dataset we set α = 0.7.

Name Classes Instances Trace kIso Intrinsic Length

Length Dim. Threshold

Veri.

Handwriting 11 110 702 7 5 200

Mouse 14 217 16665 6 5 300

Gamev 94 940 1000 8 5 300

Recog.
Gamer 4 173 1000 5 5 300

Animal 3 101 145 5 5 160

experiments.

4.1. Data Description

Our datasets include real traces of on-line game players, handwriting

traces, mouse traces, and animal movement traces in their natural environ-

ments. Table 1 shows the statistics of the datasets as well as the parameters

settings used in the experiments.
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4.1.1. Game Trajectory

The game trace dataset is comprised of avatar movements obtained from

Quake 2, a popular FPS game developed by id Software11. In the game,

each player controls an avatar’s movements directly. The objective is to

kill enemies and accumulate treasure to achieve a high score. The dataset

comprises human traces and traces from well-known game bots (automatic

programs) such as CR Bot12, Eraser Bot13 and ICE Bot14. To obtain a

comprehensive and fair benchmark, we downloaded human traces from some

public web sites. More details can be found in [2, 3]. In total, the human

and bot traces last 143.8 hours. For the verification experiment, we sort the

human traces into 94 users, called the Gamev dataset; and for the recognition

experiment, we sort all traces into four types of users (one human group and

three groups of bots), called the Gamer dataset.

4.1.2. Handwritten Signature

The handwriting dataset15 from SVC 2004 handwritten signature verifi-

cation competition is a benchmark for user verification. It includes signature

samples written for 80 subjects, 40 from the first set (Set 1) and the other 40

from the second set (Set 2). In each subject, we have 20 genuine signatures

and 20 skilled imitations written by other forgers. In total, there are 3200

signatures in the dataset. In the dataset, a data record (i.e. a trace) is a

11http://www.idsoftware.com/
12http://arton.cunst.net/quake/crbot/
13R. R. Feltrin. Eraser bot 1.01
14http://ice.planetquake.gamespy.com/
15http://www.cse.ust.hk/svc2004/download.html
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sequence of 2-D coordinates in a period of T seconds, (xt, yt), t = 1, . . . , T . In

the experiment, given a subject, the goal is to correctly label the signatures

to either genuine signatures or the signatures written by forgers.

4.1.3. Mouse Movement Trajectory

We also compiled a mouse trace dataset containing the mouse traces of 14

users when they work on their personal computers. For each trace that lasts

for more than 30 minutes, we randomly choose a 30-minute piece as our data.

In total, the dataset contains 217 instances. Given the mouse movement, we

may observe various patterns when users are involved in different activities

at different times. For instance, while one user plays an FPS game, another

may surf web sites and listen to music simultaneously. If we compare these

two cases, we may find that the first user moves the mouse continuously,

while the second user moves it infrequently.

4.1.4. Animal Trajectory

The above datasets were collected via computers. We also investigate the

proposed method’s performance on the dataset of animal movement traces

complied by Lee et al. [12]. The traces were provided by the Starkey project16,

which started in 1989. The set contains the movement trajectories of three

kinds of animals: elk, mule deer, and cattle. In our experiment, we focus

on the data collected in June 1995. Specifically, there are 38, 30, and 34

instances of elk, mule deer, and cattle movements respectively. For our pur-

16http://www.fs.fed.us/pnw/starkey/index.shtml. Wisdom, Michael J. 1988. “The

Starkey Project: deer and elk research for the future”. Oregon Chapter, The Wildlife

Society, Pendleton, OR., U.S.A.
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Table 2: Summary of the verification results for various inputs. The table shows the

average error rates (in percentages) of the SSVM classification after performing ten-fold

cross-validation three times.

Data Set Training Error Test Error

Handwriting 1.18 3.91

Mouse 6.67 8.10

Game 10.80 15.62

poses, only the x and y coordinates in the data are used.

4.2. Verification

We design the verification experiment as follows. First, given all trajecto-

ries, based on the dissimilarity measure in Eq. 14 (or a simpler version Eq. 7),

we utilize Isomap to find the representation space for all the trajectories. Sec-

ond, given two identities (a true account owner and an intruder), we select all

trajectories belonging to the two identities in the representation space, then

we operate a binary classification (under ten-fold cross-validation, for three

repeats) to label the trajectories as belonging to the true account owner or

not.

We calculate the training error and the test error in the following ways

respectively for our evaluation metrics. The training error is the error rate

on the training set (nine out of ten parts in the ten-fold cross-validation

process), and the test error is the error rate on the test set (the rest). Given

four types of classified data: true positives (TP), true negatives (TN), false

positives (FP) and false negatives (FN), the error rate is define by ER =
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Table 3: Comparison of the proposed method to previous methods for handwritten signa-

ture verification. The table shows the error rates (in percentages). The verification by the

proposed method is done by SSVM binary classification, after performing ten-fold cross-

validation three times. The numbers of other methods, including normalized Position,

directional Angles, shape context (SC), on-line context (OC), OLT are copied from Qiao

et al. (QLT method) [25]. All methods except QLT are on-line methods, and QLT tried

to find the on-line information from off-line inputs. The proposed method is very close to

the best one among all on-line methods. The comparison to off-line methods (other than

QLT) is not shown because most off-line methods perform worse than on-line methods.

More information about the compared methods can be found in [25].

Data Set Position Angle SC OC QLT Ours Ours

Training Test

Set 1 13.6 6.5 7.2 5.8 7.3 3.29 4.21

Set 2 11.9 6.3 4.9 4.6 7.4 2.42 4.93

(FP + FN)/(FP + FN + TP + TN). If there are n identities, we need to

run n(n − 1)/2 different identity combinations to get an average result for a

fair evaluation.

Table 2 shows the performance of proposed method on different kinds of

trajectories. As expected, verification of the handwritten trajectory dataset

achieves the best error rate (3.91%), followed by verification of the mouse

trace (8.10%), and verification of the game trace (15.62%). Handwriting

traces give us the best discriminative power because they are based on finer

motions. In contrast, game traces are usually collected in a restricted envi-

ronment, so they lack some degree of freedom in their movement to show the

true identity of the trace owners.
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Figure 4: The test error rates obtained by applying two detection schemes, SSVM and

kNN, to: (a) handwriting traces, (b) mouse traces and (c) on-line game traces, of dif-

ferent length. All verification errors decrease over time; also, the SSVM-based method

outperforms the kNN-based method.

To compare to existing methods, we focus on the handwritten signature

verification because it is one the most emphasized verification tasks in the

past. In Table 3, we compare the proposed method to various existing meth-

ods that used on-line information for user verification. The result show that

the proposed method nearly outperforms all other methods (just slightly

worse than SC and OC in Set 2). Thanks to the novel dissimilarity mea-

sure and Isomap tuning, the proposed method can effectively separate input

trajectories of different patterns for verification.

Using Trajectories of Different Length

Since we want to verify the user’s identity as early as possible given a

trajectory, we are interested in analyzing the performance when only a shorter

input trajectory is given, rather than wait for a longer one. In Figure 4, given

inputs such as handwriting traces, mouse traces, or on-line game traces,

of different length, we show the error rates of verification task for SSVM
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and kNN. We use both SSVM and kNN as the classifiers after finding the

representation by Isomap. The verification results (i.e., whether the trace

belongs to the true account owner or not) can be summarized as follows.

First, the verification errors on all types of inputs decrease when we use longer

traces. Second, the SVM-based method outperforms the kNN-based method.

Third, similar to the result in Table 2, handwriting trajectory dataset again

achieves the best verification performance, followed by verification of the

mouse traces, and verification of the game traces. In particular, we observe

that for handwriting traces, after several hundred seconds, such as after

observing 550 sampling points, the (nonlinear) SVM classifier yields as low

as 2-4% error rate.

4.3. Recognition

In the recognition task, we try to find the true identity of the user from

the given trajectories. We focus on the case where the number of identities is

small. Working on a large-scale database is challenging, especially when the

inputs, such as mouse traces and on-line game traces, only have weak discrim-

inative power. Even so, we would like to study the possibility of applying the

proposed method to the recognition problem. We consider two datasets. The

first one is used to distinguish between human players and various kinds of

bots; and the second is used to distinguish between the movements of differ-

ent animals. Using different datasets between the verification and recognition

tasks is simply because: (1) the datasets used for verification task involves

large numbers of identities that are beyond the discriminative power of the

proposed method at this moment; (2) we need particular benchmark datasets

that we do have past studied results to compare the performance.
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Table 4: The recognition results on the Gamer dataset with inputs of different length. The

table shows the average error rates (in percentages) of the SSVM classification when ten-

fold cross-validation is performed three times. The dataset includes four classes: human

players and three types of bots (CR Bot, Eraser Bot, and ICE Bot).

Trace Length Training Error Test Error

500 seconds 5.29 7.07

1000 seconds 1.89 2.53

We again use training error and test error based on a ten-fold cross-

valiation process to be the evaluation metrics. The error rate here simply

indicates the percentage of data that are wrongly classified by the proposed

method, such as classifying human as CR Bot given the game trajectories,

or classifying elk as cattle given the animal trajectories.

4.3.1. Game Trajectory

To further demonstrate the effectiveness of the proposed method, we use

it to extract different patterns from human traces and three types of bot

traces, i.e., it is a multi-class classification problem. The results are shown in

Table 4. On a 500-second trace, our method can achieve 7.07% error rate; and

on a 1000-second trace, the error rate decreases to 2.53%. From Figures 5

(a1) and (a2), we observe that there is better separation between classes

when longer trajectories are collected. Obviously, we prefer a method that

can identify user behavior as quickly as possible, before account information

can be stolen by hackers.
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Figure 5: (a1) (a2) given inputs of different length, the representations of the Quake 2

traces after projection by Isomap into a 2-D space, where a point represents a human trace

(green circles) or a bot trace (other symbols); and (b) the representation of the animal

traces, after projection by Isomap into a 2-D space. The x- and y-axes are the first and

second principal coordinates from Isomap. Classification is usually performed in a higher

dimensional space, called the space of intrinsic dimensionality, as shown in Table 1.

4.3.2. Animal Trajectory

Next, we consider a dataset of animal movement trajectories [12]. There

are three kinds of animal trajectories for classification17. Figure 5 (b) shows

17In the SSVM classification, we adopt a hierarchical approach to solve the multi-class

classification problem. The elk and deer are combined to form one group for the first

binary classification, followed by another binary classification to separate them.
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Table 5: Error rates of the proposed method and Lee et al.’s TraClass [12] for the recog-

nition task on animal movement traces. For the proposed method, the table shows the

average error rates (in percentages) by SSVM classification, when ten-fold cross-validation

is performed three times. We set the threshold as t = 160. Clearly, our method outper-

forms the TraClass method.

Our Method TraClass

Data Set Training Error Test Error Test Error

Animal 7.53 12.51 16.70

the embeddings after applying Isomap. Interestingly, the cattle traces (blue

diamonds) are clearly separated from the elk traces (green cycles) and deer

traces (red crosses). This confirms the biological relationship between those

different traces. Moreover, we show that the proposed method outperforms

the TraClass [12]. As shown in Table 5, the error rate of recognition task

under our method is 12.51%, whereas TraClass only achieves 16.70% in its

error rate.

To summarize, the study of the game and animal movement datasets

suggests that, based on the analysis of the patterns hidden in the trajectories,

the proposed method is capable of separating different kinds of trajectories.

The general recognition problem, which involves recognizing the user without

being given a pre-defined identity, is still difficult to solve18. However, we

18It is difficult, especially when the number of individuals in the database is large, e.g.,

thousands or millions of individuals. Although identifying the true account owner based

purely on the trajectory input without any other information is difficult, the proposed

method provides a possible solution.
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believe that the proposed method could provide the basis for further studies.

4.4. Computation Time

The proposed method includes several steps as in Figure 2. First, we

compute the pairwise dissimilarity between each pair of trajectories. Some-

times we also need to compute the trajectory entropy for partition and align

the sub-trajectories. Following that, we compute the Isomap representations.

Given the dataset size from a few hundreds to fewer than one thousand in-

stances, the whole procedure above takes less than a few seconds to finish

on average. After obtaining the Isomap representations, we apply SSVM

for classification, under a ten-fold cross-validation procedure. In each fold

and each pair of identities for classification, the training takes around or

less than 2 seconds while the test procedure takes less than one second on

average. The computation time simply shows that we can easily apply the

proposed method to real verification and recognition tasks for similar size of

datasets. The whole computation is done on a regular Pentium-5 machine

with a 32-bit Microsoft Windows operating system.

5. Conclusion

In this work, we have proposed a novel method for user trajectory ver-

ification and recognition. The scheme is based on a dissimilarity measure

combined with a manifold learning adjustment by Isomap. To compute the

dissimilarity measure, we employ a Markov chain model to describe the be-

havior of the target trajectory. We have applied our method to various types

of trajectories, including handwriting traces, mouse traces, game traces, and

traces of animal movements in their natural environments. The results show
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that the trajectory input contains sufficient information for verification; and

our method is effective in identifying the hidden patterns embedded in tra-

jectories. The proposed method is also capable of solving related recognition

problems, such as recognizing an account owner without a pre-defined ac-

count identity as long as the number of identities is not large. Moreover, the

proposed method outperforms or is comparable to the existing state-of-the-

art approaches for both of the verification and recognition tasks, without any

extra action from users. Thus, we believe that the proposed method merits

further investigation by researchers interested in account security and related

fields.
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