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CAPTCHAs (completely automated public Turing test to tell computers and humans apart) are in common
use today as a method for performing automated human verification online. The most popular type of
CAPTCHA is the text recognition variety. However, many of the existing printed text CAPTCHAs have
been broken by web-bots and are hence vulnerable to attack. We present an approach to use human-like
handwriting for designing CAPTCHAs. A synthetic handwriting generation method is presented, where the
generated textlines need to be as close as possible to human handwriting without being writer-specific.
Such handwritten CAPTCHAs exploit the differential in handwriting reading proficiency between humans
and machines. Test results show that when the generated textlines are further obfuscated with a set of
deformations, machine recognition rates decrease considerably, compared to prior work, while human
recognition rates remain the same.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In 1950, Alan Turing described a test to distinguish humans from
machines. This test, known as the Turing test [1], was designed to be
administered by a human who would ask questions, to a human and
a machine trying to pose as a human, and try to ascertain which is
which by the answers received. In a reverse Turing test, a machine
asks the questions with the aim of distinguishing between humans
and machines. The CAPTCHA (completely automated public Turing
test to tell computers and humans apart) [2] is an example of a re-
verse Turing test. Today, there are a number of online services which
allow people to contribute content and interact online in some man-
ner. Many of these services require that they be accessed only by
humans. CAPTCHAs have come into the spotlight in cyber security
applications for use in automated human verification online. Spam
control for blogs and automated account sign-up by bots are some of
the applications that require testing if the entity accessing a service
is a human or an automated machine. There is economic incentive in
posing as a human online. Consider a website like Ticketmaster.com
which sells event tickets online. The website allows only a limited
number of tickets to be bought using one account, to prevent activi-
ties like ticket hoarding which leads to ticket price inflation. A hacker
could write a web-bot to sign up for hundreds of accounts and buy
out a large number of tickets. These tickets could later be sold at a
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premium price, illegally. In such situations, it is imperative to know
whether the entity creating the account is human or machine.

Most CAPTCHAs in use today are text-based. An image consisting
of a series of printed text characters are rendered, distorted and
obfuscated to varying degrees. The distorted image is then presented
to a user. If the user correctly guesses the characters present in
the CAPTCHA in the right order, he/she is granted access to some
service. Circumventing the challenge posed by a CAPTCHA is an area
that malicious hackers are actively looking into. Several printed text
based CAPTCHAs have already been broken as reported in [3].

2. Background

Researchers are working on techniques to allow for automatically
distinguishing between humans and machines. The general area
is termed as human interactive proofs (HIPs) of which CAPTCHAs
are a type of HIP. A number of different genres of CAPTCHAs exist;
visual, auditory and semantic. The most commonly used genre is
the visual CAPTCHA. Under the visual CAPTCHA, various types are
present. http://www.captcha.net/cgi-bin/esp-pix [4] asks users to
mark all images out of a set of images that contain similar objects.
http://www.toallwhoseekit.net/cgi-bin/sq-pix [5] asks users to mark
the region in an image containing some object where the object name
is presented on screen to the user. However, the most popular kind
of visual CAPTCHA is the text CAPTCHA. Text CAPTCHAs are popular
since automatic recognition of degraded, noisy, distorted text with
background clutter is still a challenging task for machines, but is a
task that humans perform with relatively more ease. Many of the
text CAPTCHAs proposed in the literature exploit this shortcoming.

http://www.sciencedirect.com/science/journal/pr
http://www.elsevier.com/locate/pr
mailto:aothomas@buffalo.edu
http://www.captcha.net/cgi-bin/esp-pix
http://www.toallwhoseekit.net/cgi-bin/sq-pix
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PessimalPrint [6], whose designers had extensive experience with
OCR technology and understood its limitations takes advantage of
known weaknesses of OCR technology. Other CAPTCHAs [7–9] are
based on heuristics from Gestalt theory. ScatterType [7] uses the
Gestalt principle of proximity. Fragments of the message are scat-
tered within a short distance of each other; the relatively small dis-
tance allows the human perceptual system to connect the pieces
so humans can read the message. Machines still find this to be a
big challenge. For more background on CAPTCHAs, the reader can
refer [10].

Various models of human-like writing generation are available in
the literature [11–17]. Many of the existing approaches are on-line
based since it is convenient to change the trajectory and shape of the
letters based on the on-line information such as pen-down, pen-up,
and velocity profiles. Lin and Wan [11] describe an approach to syn-
thesize handwriting in a user's style. They collect handwritten char-
acter samples using a GUI interface and then build the textlines in a
bottom-up fashion. Their technique adapts to a user's specific style.
Wang et al. [12] presented a learning based approach to synthesiz-
ing cursive handwriting of a user by combining shape and physical
models. A delta-log normal model based conditional sampling algo-
rithmwas used to produce the handwriting. Guerfali and Plamondon
[13] describe the delta-log normal model which has been used for
the generation and modelling of rapid movements to generate curvi-
linear strokes. An optimal selection of parameters for generation of
these strokes will result in appropriate symbols being generated so
as to conform to different characters in the alphabet. Kokula [14]
performs script font ligature generation on-the-fly by optimizing a
parametric curve between two characters. Researchers are also ap-
plying various character and image level perturbations directly on
real character images in cases where online character information
is absent. In [15,16], a perturbation model for generating synthetic
textlines from existing cursively handwritten textlines by humans is
presented. The perturbationmodel uses a continuous nonlinear func-
tion to geometrically transform points along the original textlines
based on the value of the function. Mori et al. [17] developed a char-
acter generation method based on point correspondence between
patterns. Their method automatically generates new character sam-
ples that appear to be written naturally.

3. Motivation

Automated recognition of high resolution printed text is all but
a solved problem [18]. However, automated recognition of uncon-
strained handwriting continues to be a challenging research task.
This fact can be exploited to develop human verification systems
for cyber security applications. By replacing the printed text content
in today's text CAPTCHAs with handwritten content, it would intu-
itively appear that the recognition task would be made more diffi-
cult for machines. To be suitable for online applications, a machine
must be able to generate a challenge as well as score the response
to it. Also, it must be possible to automatically generate infinitely
many distinct artificially handwritten samples. To our knowledge,
the only other use of handwritten CAPTCHAs is in the work done in
[8,19]. However, in that work, the challenge images used were city
names segmented out from postal envelopes. The approach of ob-
taining handwritten word images by segmenting out word images
from handwritten documents (postal envelopes, handwritten letters,
etc.) will seriously limit the size of the dataset fromwhich challenges
can be generated. It will also not include random strings of charac-
ters or combinations of phonemes. A finite dataset is a flaw while
designing CAPTCHAs, as an adversary with access to the dataset can
use dictionary/lexicon based brute force attacks to circumvent the
system. The other approach would be to build textlines of handwrit-
ten words on-the-fly. This makes it possible to generate infinitely

Fig. 1. Sample characters from the character dataset.

many distinct challenges limited only by the length of the textline.
We have thus chosen to build a handwriting generator and base our
generation technique on pre-existing character images taken from
varied sources to reduce dependency on specific writer styles.

4. Generation method

In this section, we describe a method for the generation of cursive
English handwritten textline samples that uses pre-existing charac-
ter images. The generation algorithm consists of several steps: (i)
character auto-scaling, (ii) automatic baseline determination, (iii) lig-
ature endpoint detection, (iv) ligature parameterization, (v) ligature
joining, (vi) skeleton perturbation, and (vii) skeleton thickening.

The high level algorithm to achieve this task can be described as
follows. We first construct a preliminary image which is a concate-
nation of individual character templates/representations. Character
templates are one pixel wide representations (skeletons) of the origi-
nal character image. The preliminary image contains individual char-
acter templates strung together to form a string. Since the textlines
have to be close to human handwriting style, important aspects like
character baseline alignment, scaling of character sizes and ligature
joins have to be considered. We present original techniques for au-
tomatic baseline detection and ligature handling. We also present
a character auto-scaling technique. Once we have the preliminary
image, we apply a set of geometric, image level perturbations that
distorts the preliminary image in a random fashion. The perturba-
tions can be parameterized and this allows us to pick random values
over a range of values. The technique follows the model presented
in [15]. Finally, the distorted image is thickened. Thickening can be
controlled so that different parts of the image are thickened by dif-
ferent amounts.

A dataset of over 20,000 character images1 which contains mul-
tiple handwritten samples of each English character has been used.
The characters have been segmented outmanually from actual pieces
of US mail. For a large fraction of the cases, the beginning and end-
ing ligatures are also present with the character. Fig. 1 shows some
examples of the character images.

We first construct a preliminary image, which is a concatenation
of individual character templates. Character templates are one-pixel
wide representations (skeletons) of the original character image. We
use Blum's medial axis transform [20] to generate the character tem-
plates.

4.1. Character auto-scaling

To form the preliminary image, we need to concatenate individual
characters to form the required textline. We perform auto-scaling of
the characters so that all characters maintain their correct relative
sizes with respect to each other. This means that, for instance, a `p'

1 Dataset collection and character segmentation done by CEDAR, University at
Buffalo, NY, USA.
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Fig. 2. Automatic baseline determination for character image `g'.

has to be twice as long and once as wide as an `a'. Auto-scaling is
a required step since different samples of the same character could
be of different sizes or the relative sizes of distinct characters could
be incorrect. We base the auto-scaling on the absolute size of the
first character in the string. We maintain a lookup table of character
heights. This is known as the scaling factor for a character sfc. For
instance, the scaling factor for `a' is 1, `b' is 2, `c' is 1 and so on.
The scaling factor gives the number of segments of a three segment
space occupied by a particular character. The height for character i
is calculated as (sffc/sfi)∗hfc where sffc is the scaling character for the
first character, sfi is the scaling factor for character i and hfc is the
height in pixels of the first character. The character width is scaled
relative to the character height as per the original aspect ratio.

4.2. Automatic baseline determination

To string together individual characters to form a textline, we
need to make sure that the characters are aligned vertically at their
true baselines. We have exploited the fact that, in our dataset, the
ligatures give us clues regarding the location of the true baseline.
The procedure to determine the true baseline is as follows. Sum
up the horizontal projections of n consecutive rows and store this
value sHPR for row R. Thus, sHPR = ∑R

r=R−nHPr and HPr is the hor-
izontal projection value for row r. Normalize sHPRows. . .n+1 so that
sHPRows. . .n+1 ∈ (0, 1] and declare the true baseline as row TB where
TB= first(sHPRows. . .n+1>thresholdB) and Rows is the total number of
pixel rows in the character image, thresholdB is a cut-off value that
is determined empirically from the dataset. The function first( ) re-
turns the first value, in some ordered set X, that matches some given
criteria. first( ) looks from the bottom-most horizontal projections
to the top-most horizontal projections. Fig. 2 shows a sample char-
acter image for `g' and the corresponding horizontal projections; n
was taken as 2 in this case and thresholdB was determined to be 0.75
empirically. Once a character dataset is fixed, the values of n and
thresholdB need not be altered.

The reasoning behind using this approach was arrived at after
noticing that the ligatures of the character join the main body of
the character at the true baseline. For cases where this is not true,
like `o', using the first( ) function solves this problem, since we look
for the first horizontal projection from the bottom upwards that
crosses the threshold. We need to consider more than just a single
horizontal row while calculating the sums of horizontal projections.
This is because the ligature need not be perfectly horizontal, but it
is also always is inclined at only a small angle around 0. Using n> 0
takes care of this issue as we are considering consecutive rows of
horizontal runs of pixels.

4.3. Ligature endpoint detection

Ligature handling is an important part of the procedure since
ligatures make a textline look like human handwriting. Several
approaches have been proposed for handling ligatures in synthetic
handwriting generation [11,12,14]. However, these approaches have
been geared towards writer-specific handwriting generation. For our
application, we decided to use the already existing ligature informa-
tion and extend from that point on. We need a way to parameterize
the ligature that connects to the body of the character. To achieve
this, we need to extract the start and end ligatures from the image.
Following a procedure similar to the automatic baseline detection
method, we compute a statistic known as the pseudo-inking profile
from the image. The pseudo-inking profile captures the pen activity
as the writer generated the character image. We compute the sums
of vertical projections of n consecutive columns and store this value
sVPC for row C where sVPC = ∑C

c=C−nVPc and VPc is the vertical
projection value for row c. We now consider the first derivative of
the pseudo-inking profile. We define the first derivative fdsVPC as
fdsVPC(i)=sVPC(i+1)−sVPC(i), wherei ∈ [1 . . .C−1]. To detect the liga-
ture endpoints we consider the left and right half images of the char-
acter separately to perform normalization of the first derivative plot.

Fig. 3 shows how the first derivative plot is divided and
normalized separately. We can use the first derivative plots
to detect the ligature endpoints by defining a threshold value
thresholdL. We now look in the normalized half plots of the first
derivative for the first peak above some threshold. We com-
pute ligatureB = first1.. .C(fdsVP1.. .C/2>thresholdL) and ligatureE =
firstC . . .1(fdsVPC/2.. .1>thresholdL). These give us the columns where
the beginning and ending ligatures join the character body. We
empirically decide on a single global thresholdL based on the dataset.

The reason for not splitting the first derivative plot exactly down
the center is because for characters like `t' and `i' with a very thin
character body, it is important that the character body information is
included while normalizing the half plots. Fig. 4 shows the correctly
detected ligature points for character images `i', `o', and `d'. Our tests
have proven that the ligature points have been detected correctly
even for `d' which has hardly any beginning ligature.

4.4. Ligature parameterization

We determine the points at which the ligatures join the main
character body. For some characters, such as `f' or `t', more than one
ligature is possible.We use heuristic rules to decide onwhich ligature
to use, either we can pick the largest/smallest ligature component
or pick one component at random. We have used a random pick in
our method.
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Fig. 3. First derivative plot is split after allowing overlap and then normalized.

Fig. 4. Correctly detected ligature points for `i', `o' and `d'.

To fit an nth order polynomial p(x) = anxn + an−1xn−1 · · · a1x + a0
to the extracted ligature, we use regression to perform polynomial
approximation. To determine the order of the polynomial to repre-
sent the ligature, we first start with a polynomial of order 1, de-
termine the polynomial and then compute a reconstruction error.
The reconstruction error is defined as the number of mismatched
points between the original ligature and the reconstructed ligature.
We move to progressively higher order polynomials until the recon-
struction error stabilizes and then choose the polynomial with the
lowest reconstruction error. Fig. 5 shows the character images for
`o', `t' and `a' and the corresponding parameterized ending ligatures.
The beginning ligatures can be parameterized in a similar manner.

4.5. Ligature joining

Given the parameterized ligatures, we can once again use a set
of heuristic rules to join the ending ligature of character i to the
starting ligature of character i+1. We can just extend the ending

ligature of character i to just touch character i+1 or vice-versa with
the starting ligature of character i+1. Another approach would be to
assign strengths to the ligatures and decide on the join based on the
dominant ligature. A simple measure of ligature strength could be
the number of pixels in the ligature. A better approach would be to
ensure a smooth join from the ending ligature of character i to the
starting ligature of character i+1. We use the following approach for
ligature joining. Consider only the ending ligature of character i. Dis-
card the beginning ligature of character i+1. Align character i+1 at
a distance of d/2 (where d is the width of character i+1) from char-
acter i. Now trace the ending ligature of character i to continue till
it joins character i+1. Since character i+1 has no beginning ligature,
the traced stroke from character i joins naturally to character i+1.

4.6. Skeleton perturbation

We use the perturbation model proposed in [15,16] for the dis-
tortion of cursive handwritten textlines. This is needed so that each
time, the generated textline will appear different. The perturbations
take the form of a set of geometrical transformations. Each geometri-
cal transformation is controlled by a continuous nonlinear function,
(underlying function), which determines the strength of the trans-
formation at each horizontal or vertical coordinate position of the
textline. The underlying function is typically composed of piecewise
sinusoidal functions which are stitched together to form a continu-
ous function and they control geometrical transformations that affect
a whole line of text. The perturbation model incorporates a set of pa-
rameters over a range of possible values, from which a random value
is picked before an existing textline is distorted. The range of values
for these parameters is chosen such that the maximum perturbation
just places the distorted textline at the edge of human readability.
The transformations include shearing, horizontal and vertical scal-
ing, and baseline bending. A detailed description of the perturbation
model is available in [15,16].

4.7. Skeleton thickening

At this point, the textlines are still single pixel wide images. To
thicken the textlines, we use the inverse medial axis transform. To
add to the image complexity, we also apply an underlying function to
vary the stroke width across the textline. Examples of final synthetic
handwritten images are shown in Fig. 6.

5. CAPTCHA distortion

The primary application of our synthetic handwriting generator
is automatic random generation of infinitely-many distinct hand-
written (image) challenges for cyber security. Our ability to generate
infinitely many handwritten word images implies that we are not
limited by a finite size database of CAPTCHA challenges. This makes
the method suitable for online applications. Once a handwritten
word image or textline has been generated, we add further distor-
tions to obfuscate the image to a greater extent. Fig. 7 shows some
examples of the kind of distortions that we have used. Note that
these are just an arbitrarily chosen set of distortions. It is certainly
possible to think of other distortions. What follows is a brief descrip-
tion of the different distortions we have used.

Edge: The image edge contour is traced by applying the canny
edge operator to the word image. An instance of this distortion can
be seen in word “aesthetic” in Fig. 7.

Fragmentation and displacement: First a vertical row number is
randomly chosen, subject to the condition that the row is located
between the ascenders and descenders of all characters. For the
fragmentation distortion, the top part of the image is shifted hor-
izontally randomly to the right or the left. For the displacement
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Fig. 5. Parameterized ending ligatures for `o', `t', `a'. Original images are on the left, processed images are on the right.

distortion, the top part of the image is shifted vertically by a ran-
dom amount first, and then horizontally shifted. The horizontal shift
value is constrained to lie between 0.25 and 0.75 times the average
character width. An instance of this distortion can be seen in the
word “anatomy” in Fig. 7.

Jaws/arcs and waves: A continuous nonlinear sinusoidal curve is
generated using the perturbation model explained in Section 4.6. For
the jaws/arcs distortion, this curve is overlaid on the word image
using the foreground color. For the waves distortion, this curve is
overlaid on the word image using the background color. An instance
of this distortion can be seen in the word “abort” in Fig. 7.

Mosaic: A set of randomly oriented lines are overlaid on the word
image at random locations, using the background color. The line
width is constrained to match the stroke width of the characters.

Circles: A set of disks of random sizes are overlaid on the word
image at random locations, using the background color. The circle
diameter is constrained to lie between 0.25 and 0.75 times the av-
erage character width.

Exploded: First, the word contour is obtained as in the edge dis-
tortion. Next, each contour pixel is randomly offset. Larger the offset,
larger the distortion effect produced. An instance of this distortion
can be seen in the word “abandon” in Fig. 7.

Overlap: A copy of the word image is overlaid over the original
image, shifted by a vertical, horizontal or combined offset. The shift
value is constrained to lie between 0.25 and 0.75 times the average
character width. An instance of this distortion can be seen in the
word “breeding” in Fig. 7.

6. Performance evaluation

In this section, we look at the performance of the handwrit-
ten CAPTCHA as perceived by humans and handwriting recognizers
(OCRs). Two recognizers were used, Word Model Recognizer (WMR)
[21] and Accuscript [22]. WMR is a segmentation-based recognizer.
It considers each word to be a model and finds the best match be-
tween an entry in a lexicon and the image. Accuscript is a grapheme-
based recognizer. It extracts features from sub-characters (loops,
turns, junctions, arcs, etc.) without explicit segmentation. Both rec-
ognizers take advantage of using static lexicons in the recognition
process, as well as using pre-processing techniques to enhance im-
age quality and remove noise, thus making the performance evalu-
ation for machines a fair test. The recognizers were run on a set of
2800 generated images distributed evenly among the various types
of distortions.

One could argue that using lexicon based recognizers is not rep-
resentative of the real world scenario for present day CAPTCHA im-
plementations, because we reduce the problem to include only a
limited number of challenges. However, for the tests with human
subjects, we chose to only generate words that occur in the English
language. The reason for this can best be described as seen in Fig. 8.
For handwritten word images, character formation ambiguity aris-
ing from different writing styles can lead to multiple segmentation

Fig. 6. Synthetic handwritten word images.

hypotheses for a given word image. As seen in Fig. 8, three segmenta-
tion hypotheses are possible for the handwritten word. Humans (and
recognizers relying on lexicons), decide on the correct segmentation
hypothesis based on either context information, or knowledge of the
lexicon. Human recognition accuracy would decrease if the hand-
written CAPTCHA challenges were allowed to be lexicon indepen-
dent. This defeats the purpose of using handwriting for CAPTCHAs.
So, for the tests, we limit ourselves to a lexicon that comprises all
the words in the English language. This makes it feasible for humans
to use context information (that the word is a legitimate word in the
English language), to guess the handwritten word.

Table 1 presents the recognition accuracy of two types of OCRs on
CAPTCHA challenges with different types of distortions. Even with
no distortions applied on the generated handwritten word images,
the recognizers are not able to cross the 40% mark. When distor-
tions are applied, the recognition rate drops much below 10%. The
average recognition rate is comparable for the two recognizers with
Accuscript performing marginally better.

Our proposed technique improves on prior work published in
2006 [19]. As reported in Table 2, for all distortions, the highest
machine accuracy was about 13% as opposed to the current, much
lower, 2.6%. Note that the lower the score, the better, when consid-
ering machine accuracy.

Table 3 presents the corresponding human performance on the
test set. For human testing, random CAPTCHA samples were pre-
sented to users through a website. 2800 responses were collected
from around 100 users. With no distortions, the average recognition
rate for humans is about 84%. The recognition rate drops for other
distortions. These results along with results in Table 1 are helpful
in determining which types of distortions would be more suitable
for use in CAPTCHAs. For all distortions, the average human recog-
nition rate is about 76%, which is the same as in the prior work of
Rusu and Govindaraju [19]. Thus, human recognition rate has not
decreases even though the machine recognition rate has been con-
siderably lowered by our proposed method.

An interesting test to perform is to compute machine recognition
rates on pre-processed versions of the distorted CAPTCHA images.
The pre-processing would try to undo the distortions applied to the
generated CAPCTHA images. This is a reasonable approach as we
must assume that hackers will be sufficiently motivated to develop
algorithms to undo image distortions, before using a recognizer on
the textlines. Intuitively, it would seem that such pre-processed im-
ages would be easier for machines to recognize. To this end, we
invited a programmer to develop algorithms to try and undo the
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Fig. 7. Different types of distortions applied to generated handwritten word images.

Fig. 8. Multiple segmentation hypotheses for a handwritten word.

Table 1
Recognition accuracy of OCRs for different CAPTCHA distortions.

HW recognizer (OCR) WMR (%) Accuscript (%)

No distortion 23.69 37.78
Perturbed image 0.18 2.63
Edges 0.18 0
Fragmentation 1.43 3.45
Displacement 0 3.61
Mosaic 0 3.78
Jaws/arcs 5.91 5.83
Occlusion by circles 0.36 5.75
Occlusion by waves 0 2.30
Exploded image 0 0
Vertical overlap 1.35 1.32
Horizontal overlap 4.91 1.16
Sideways overlap 2.69 1.16
All distortions 1.42 2.58

distortions applied to the generated CAPTCHA images. The program-
mer was given the generation method for the CAPTCHA images and
the subsequent distortions applied to the generated textlines and
allowed access to a number of sample images, from all classes of dis-
tortions. This allows us to test what the machine recognition rates
would be if the adversary had knowledge of the CAPTCHA genera-
tion procedure.

Table 2
Comparison with prior work-Machine accuracy.

HW recognizer WMR (%) Accuscript (%)

All distortions (IWFHR 2006) 12.7 6.4
All distortions (current) 1.42 2.58

Table 3
Recognition accuracy of humans for different CAPTCHA distortions.

Human performance Accuracy (%)

No distortions 83.97
Perturbed image 77.24
Edged image 78.08
Fragmentation 84.17
Displacement 77.55
Mosaic 69.53
Jaws/arcs 69.96
Occlusion by circles 71.71
Occlusion by waves 84.25
Exploded image 76.62
Vertical overlap 74.45
Horizontal overlap 80.77
Sideways overlap 66.67
All distortions 76.29

Table 4 presents the machine performance on these pre-
processed CAPTCHA images for a subset of the distortions. The
recognition rates, for all but one distortion type, are comparable to
the original distorted images. This shows that the distortions obfus-
cate the images by a considerable amount while still maintaining
readability for humans. This test allows determining what kinds of
distortions are better for use in CAPTCHAs.

Fig. 9 shows the clear gap between human and machine recog-
nition abilities for handwritten CAPTCHAs. This shows that hand-
writing has potential for use in CAPTCHA applications. We also see
that humans perform better at recognizing images with certain type
of distortions (waves, fragmentation, horizontal displacement) over
others. For these distortions, machine performance is low for both
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the original distorted image case as well as the pre-processed image
case. Hence, these types of distortions would be more successful for
use in CAPTCHAs.

Table 5 gives the success rates at breaking a number of popular
printed text CAPTCHAs as mentioned in [3]. For the handwritten
CAPTCHAs presented in this work, the success rates for machines are
much lower.

7. Discussion

For suitable use in a cyber security scenario, we must ensure that
the human recognition rate stays high when compared to machine
recognition rates (which should ideally be 0). Even a seemingly low
recognition rate for machines (say, less than 0.001%), would not nec-
essarily mean that a given cyber security application can be con-
sidered bot-proof. We must bear in mind that a recognition rate
of x% means that, statistically, x out of every 100 attempts will be
successful. Since it is possible to have distributed attack networks,
repeatedly trying to gain access to a secured application, the shear
volume of attacks would render the low recognition rate itself, irrel-
evant. This means that a human verification system using CAPTCHAs,
(handwritten or otherwise), needs to ensure that additional checks
and measures are in place to handle the rapid repeated attacks on
the verification service. A simple test would be to check from where
the verification requests are originating. Requests arriving within
t seconds of each other, from the same IP address can be denied.
In practice, t would be set to a small value to discourage web-
bots that try to repeatedly access a CAPTCHA protected site. Each IP

Table 4
Machine performance on pre-processed handwritten CAPTCHA images.

HW recognizer WMR Accuscript

Lexicon size 4000 4000
Edges 13.14% 23.97%
Fragmentation 0.99% 0.0%
Exploded image 4.11% 0.49%
Vertical overlap 0.0% 2.96%
Horizontal overlap 0.82% 0.33%
Sideways overlap 0.0% 0.33%
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Fig. 9. Gap in recognition abilities between humans and machines for the handwritten CAPTCHA. The hacked WMR and Accuscript plots are for the pre-processed images.

can only be allowed n number of authentication requests in
some pre-determined time period. These and other methods (pos-
sibly inspired from the computer security field) need to be used in
conjunction with CAPTCHAs, while designing effective automated
human verification systems. Relying on CAPTCHAs alone to solve
the human verification problem is unrealistic. As artificial intelli-
gence algorithms get better every day, and given the superior pro-
cessing capabilities of machines, a 0% recognition rate cannot be
guaranteed.

On the other hand, while it would be ideal to have 100% recogni-
tion accuracy for human users, it would be safe to assume that hu-
man users would tolerate some lack of CAPTCHA ease. For instance,
a human user might not be overly concerned with having to re-try
a CAPTCHA once in every 8–10 attempts. This fact can be exploited
while designing CAPTCHAs. Some human recognition performance
can be deliberately sacrificed, if it degrades machine performance
by a considerable amount.

CAPTCHAs have been developed to deal with the specific case of
machines trying to masquerade as humans. Web services that re-
quire human verification only focus on differentiating between ma-
chines and humans. Such types of web services are very vulnera-
ble to attacks from humans itself. This fact has led to some concern
of having CAPTCHAs broken by humans in what is known as the
Pornography Attack. The CAPTCHA challenge encountered by a web-
bot is forwarded to human users on some high traffic website (e.g.
a pornographic website). The human users are required to decode
the CAPTCHA to get access to pornographic images. The decoded re-
sponses are relayed back to the web-bots who supply the response to
the web service and gains access to the service. The official CAPTCHA
website at [2] describes how the above mentioned scheme will not
make economic sense under the paragraph The “Pornography Attack”
is not a concern.

Table 5
Success rate in breaking various popular printed text CAPTCHAs.

CAPTCHA Mailblocks Register Yahoo! v2 TicketMaster Google

Success rate (%) 66.2 47.8 45.7 4.9 4.89
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Fig. 10. Character template for the `e' at varying levels of perturbation.

8. Conclusion and future work

We have explored the recognition performance of humans as
compared to machines, on handwritten CAPTCHAs. We have shown
how to generate synthetic handwriting samples and then apply var-
ious distortions to make them near-unreadable by automatic com-
puter programs, so that they can be used as CAPTCHA challenges
over the Internet. Test results show a large gap between human and
machine recognition abilities. There is also a significant decrease in
machine recognition rates for our synthetic samples as compared
to prior work. However, human recognition rates remain the same.
This directly translates as the method being a better CAPTCHA gen-
eration technique.

We are currently in the process of performing human percep-
tion tests on printed character CAPTCHAs and comparing them
against machine recognition rates. We plan to improve the pro-
posed method by automatically learning the threshold values
thresholdB and thresholdL from a given dataset of character im-
ages. We plan to research on deformation techniques that exploit
the knowledge of the common source of errors in automated
handwriting recognition systems and also take advantage of the
cognitive aspects of human reading. We plan to conduct more de-
tailed tests that will involve using textlines that are generated by
stringing together random characters and also words formed by
concatenating two or more phonemes using a phonetic generator
[9]. If the human recognition performance is comparable to the
current results, it would mean that we can further reduce the ma-
chine recognition performance since the lexicon size will increase
considerably.

As an extension to using pre-handwritten character samples, we
plan to use character templates in the generation of the texlines.
Kegl and Krzyzak [23] describes a method to construct piecewise lin-
ear skeletons of handwritten characters using principle curves. The
character templates are represented as a set of control points. This
approach has the advantage of allowing distortions at the charac-
ter level itself by perturbing the control points. The perturbations
can be parameterized. Fig. 10 shows the character template for the
handwritten character `e' and varying levels of perturbation applied
to the template. As the perturbation factor increases, the charac-
ter becomes more illegible. An important aspect will be controlling
the perturbations. The maximum limit of the perturbation parame-
ter can be determined empirically by performing human perception
tests. Once the limit is known, the distortion can be varied within
that limit and human and machine accuracies can be determined
for varying perturbation levels. This would make it possible to gen-
erate operating curves. Picking a perturbation value p will give us
the accuracies that humans and machines will have at perturbation
level. CAPTCHAs can be generated for various security levels using
this approach.

Another application of the handwriting generator is to improve
the accuracy of handwriting recognizers by generating large syn-
thetic training data sets. Since our technique does not generate
writer-specific handwritten textline samples, we could use it for
training generic handwriting recognizers.
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