
A Modular Derivation Strategyvia Fusion and TuplingWei-Ngan ChinNational University of Singapore Zhenjiang HuUniversity of Tokyo Masato TakeichiUniversity of TokyoAbstractWe show how programming pearls can be systematically derived via fusion, followed bytupling transformations. By focusing on the elimination of intermediate data structures (fu-sion) followed by the elimination of redundant calls (tupling), we can systematically realiseboth space and time e�cient algorithms from naive speci�cations.We illustrate our approach using a well-known maximum segment sum (MSS) problem,and a lesser-known maximum segment product (MSP) problem. While the two problemsshare similar speci�cations, their optimised codes are signi�cantly di�erent. This divergencein their transformed codes do not pose any di�culty for our approach. In fact, by relyingon modular transformation techniques, we are able to systematically reuse both code andtransformation in our derivation.Keywords: Fusion, Tupling, Program Derivation, Programming Pearls.1 IntroductionA major impetus for highlighting programming pearls is to provide a better understanding of how elegantand e�cient algorithms could be build. While creative algorithms are interesting to exhibit, they oftenlose their links to the programming techniques that were employed in their discoveries. A more motivatingapproach to programming pearls would be to formally relate creative algorithms with naive speci�cationsvia program derivations.While elegant, many examples of program derivations often require deep insights which make majorchanges/jumps to the transformed code. This can make things very di�cult for human to comprehend,and machine to implement. In this paper, we shall show that it is possible to minimise some of theseinsights, and provide a systematic and modular approach towards discovering programming pearls.Consider the maximum segment product problem. Given an input list [x1 ; : : : ; xn ], we are interestedto �nd the maximum product of all non-empty (contiguous) segments (of the form [xi ; xi+1 ; : : : ; xj ] where1 � i � j � n) taken from the input list. An initial speci�cation for this problem can be written in amodular fashion, as follows:msp(xs) = max(map(prod,segs(xs)))Here, the innermost segs call returns a complete list of all segments, while the map call applies prod toeach segment to yield its product, before the outermost max call chooses the largest value. The functionsused in the above speci�cation are given below.segs([x]) = [x]segs(x:xs) = inits(x:xs)++segs(xs)inits([x]) = [x]inits(x:xs) = [x]:map((x:),inits(xs))map(f,Nil) = Nilmap(f,x:xs) = f(x):map(f,xs)prod([x]) = xprod(x:xs) = x�prod(xs)max([x]) = xmax(x:xs) = max2(x,max(xs))max2(x,v) = if v>x then v else x 1



The above speci�cation uses a modular approach to coding. Through the reuse of abstract functions,such as segs, inits, map, max and prod, we are able to specify the msp function via a relatively straightfor-ward composition of simpler functions. There are two main advantages for such high-level speci�cations.Firstly, they are clearer for human to comprehend and more obviously correct. Secondly, their moremodular style encourages software reusability. For example, the better known maximum segment sumproblem [Ben86] can be speci�ed by replacing only the prod function with sum, as follows:mss(xs) = max(map(prod,segs(xs)))sum([x]) = xsum(x:xs) = x+sum(xs)Unfortunately, high-level speci�cations have one major drawback, namely that they can be terriblyine�cient. Fortunately for us, it is possible to use the transformational approach to calculate e�cientalgorithms. This is potentially very useful since e�cient algorithms can be very unintuitive.Our thesis is that high-level transformation techniques can help provide a systematic approach todiscover programming pearls. To substantiate this claim, we propose to apply two key transformationtechniques, namely (i) fusion enhanced with laws, and (ii) tupling, to help derive algorithms with goodtime and space behaviours. The mild insights needed by our derivation are mainly con�ned to the fusiontechnique, in the form of laws needed to facilitate its transformation.To appreciate the virtues of the transformational approach, the initiated reader may want to tryinvent an e�cient algorithm for maximum segment product, before studying the rest of this paper. Wehad some di�culties, until we embark on the transformational approach.Our main contributions in this paper are summarized as follows.� We propose a modular derivation that supports the reuse of codes and transformation techniques.The basis of our approach is the identi�cation of a small set of commonly used transformationtechniques. Particularly, we highlight two important transformation techniques, fusion and tupling,which in combination can be surprisingly good for deriving very e�cient algorithms.� Our derivation is more systematic, minimizing the use of complex laws with deeper insights, such asHorner's rule in [Bir89], which tend to make derivation harder to carry out. Instead, our approachrelies on a set of smaller laws which are motivated by the need to perform fusion, i.e., to makefusion transformation successful. So most of our laws are distributive in nature.� Our derivation is also powerful . To the best of our knowledge, we demonstrate the �rst full andsystematic derivation for the maximum segment product problem, which makes unnecessary the\suitable cunning" in the previous derivation [Bir89].For the rest of this paper, we �rst outline an enhanced fusion technique, which depends on laws, forits transformation (Sec 2). Later, we apply our modular approach, based on fusion and tupling, to a well-known maximumsegment sum problem (Sec 3). We also highlight how a related but little known problem,called maximum segment product, can be similarly derived by our approach (Sec 4). A comparison isthen made with the classical derivation via Horner's rule (Sec 5), before an ++++++++++ advice onthe use of accumulation technique (Sec 6). Lastly, a short conclusion is given (Sec 7).2 Enhanced Fusion with LawsFusion method [Chi92, TM95] is potentially a very useful and prevalent transformation technique. Givena composition f(g(x)) where g(x) yields an intermediate data structure for use by f; fusion would attemptto merge the composition into a specialised function p(x) with the same semantics as f(g(x)) but withoutthe need for an intermediate data structure.In recent years, many attempts have been put forward to automate such fusion calculations [SF93,GLPJ93, SS97, HIT96]. Most current attempts to automate fusion are restricted to the use of equationalde�nitions of functions to perform transformation. For example, the deforestation algorithm [Wad88]relies on only de�ne, unfold and fold rules [BD77] in its transformation which can be carried out usingequational de�nitions of subject programs. Unfortunately, this approach is inadequate since many pro-grams also rely on laws (useful properties between functions, such as associativity and distributivity) toapply fusion successfully. 2



Consider a function sizetree to compute the number of leaves in a tree, by 
attening the leaves of thetree into a list, and then �nding its size.sizetree(t) = length(
attree(t))
attree(Leaf(a)) = [a]
attree(Node(l,r)) = 
attree(l)++
attree(r)length(Nil) = 0length(x:xs) = 1+length(xs)To optimise this program, we could try to fuse the composition length(
attree(t)). However, this cannotbe done using just the above equations via unfold/fold rules. In particular, we also require the followingdistributive law of length over ++.length(xr++xs) = length(xr)+length(xs) (1)Using this law, the fusion derivation of sizetree can be carried out, as outlined below.sizetree(Leaf(a)) = f instantiate t=Leaf(a) glength(
attree(Leaf(a)))= f unfold 
attree glength([a])= f unfold length g1sizetree(Node(l,r)) = f instantiate t=Node(l,r) glength(
attree(Node(l,r)))= f unfold 
attree glength(
attree(l)++
attree(r))= f apply law (1) : length(xr++xs)=length(xr)+length(xs) glength(
attree(l))+length(
attree(r))= f fold with sizetree twice gsizetree(l)+sizetree(r)What was the rationale for using a distributive law during the above fusion of length(
attree(t))?Informally, the inner function 
attree produces ++ calls during unfolding, which cannot be consumed bythe pattern-matching equations of the outer length function. Instead, we need the distributive law oflength over ++, to consume the ++ calls from the inner 
attree function for successful fusion. A moredetailed description of how laws help fusion can be found in [Chi94].The laws needed by such enhanced fusion technique must either be supplied by programmers withtheir programs, or be derived via advanced synthesis techniques, such as [Smi89, CT97]. Even if the lawsare supplied by users, they should still be veri�ed - perhaps by a theorem-prover. There is some potentialfor automated help to synthesize (or check) these laws, but this issue is beyond the scope of the presentpaper. In the rest of this paper, we shall assume that relevant laws will be provided and checked by users.3 A Modular Derivation StrategyWe propose a modular derivation strategy based on two key transformation techniques, namely fusionand tupling, which are applied in sequence. To illustrate this strategy, consider the MSS problem:mss(xs) = max(map(sum,segs(xs)))The above speci�cation has very bad time and space complexities. If n is the size of the input list,then mss has a time complexity of O(n3). The reason is that segs returns O(n2) sub-lists which eachrequires O(n) time to process by sum, hence the cubic time complexity.The space usage can be broken down into three parts:� stack space for the function calls (such as segs, map, sum).� heap space for input and output of main function (i.e. mss).� heap space for intermediate data structures generated (by segs, map and sum).3



Stack space is usually pre-allocated and cheap to recover. It is principally related to the depth ofrecursive calls (ignoring the e�ect of tail-call optimisation). The space occupied by input/output of themain function is �xed, and not changed by program transformation. We shall ignore the somewhat�xed space cost associated with the stack and input/output, but focus on the variable space cost due tointermediate data structures. In the case of mss, the variable space cost are due to segs generating O(n2)sub-lists of O(n) length each, while map yields another intermediate list of size n2. These intermediatedata structures result in a variable space complexity of O(n3).Our strategy aims to derive e�cient algorithms via two key techniques : fusion, followed by tupling.The e�ect of these two transformations are illustrated in Figure 1 for the MSS problem.(a)mss(xs) = max(map(sum,segs(xs)))?Fusion Tacticwith mis(xs)=max(map(sum,inits(xs)))(b)mss([x]) = xmss(x:xs) = max2(max2(x,x+mis(xs)),mss(xs))mis([x]) = xmis(x:xs) = max2(x,x+mis(xs))?Tupling Tacticwith msstup(xs)=(mss(xs),mis(xs))(c)mss(xs) = let (u, )=msstup(xs) in umsstup([x]) = (x,x)msstup(x:xs) = let f(u,v)=msstup(xs); b=max2(x,x+v)gin (max2(b,u),b)Figure 1: Modular Derivation Strategy via Fusion & TuplingFusion transformation is capable of eliminating all intermediate data structures for this example.Apart from the composition in the original de�nition of mss, we encountered another composition whichwas de�ned as the following new de�nition:mis(xs) = max(map(sum,inits(xs)))With the help of appropriate laws, both mss and mis functions can be transformed to a pair of newrecursive functions, shown in Figure 1(b). The fused mss function does not generate any intermediatedata structures. Hence, it has a much improved O(1) variable space complexity. However, it still su�ersfrom a time-complexity of O(n2) due primarily to redundant mis calls. The redundant calls can beeliminated by tupling transformation which would introduce the following tuple de�nition:msstup(xs) = (mss(xs),mis(xs))Subsequent transformation yields a new recursive tupled de�nition shown in Figure 1(c). Withoutany redundant calls, the new msstup de�nition has a much improved time-complexity of O(n). In thenext two sections, we present the actual derivations for obtaining these optimised programs.4



3.1 Fusion to Remove Intermediate Data StructuresThe enhanced fusion technique relies on laws, in addition to the supplied equation, for its transformation.We would like to stress again that these laws do not come from thin air, but are instead motivated bythe need to perform fusion. In the case of mss, we need the following additional distributive laws.map(f,xr++xs) = map(f,xr)++map(f,xs) (2)max(xr++xs) = max2(max(xr),max(xs)) (3)map(f,map(g,xs)) = map(f � g,xs) where (f � g)(x) = f(g(x)) (4)max(map((x+),xs)) = x+max(xs) (5)The �rst two laws are distributive laws of map and max over the ++ operator, while law (4) distributesover an inner map call (or over function composition if used backwards). The last law is concerned withthe distributivity of max over an (x+) call that is being applied to each element of its input list. A moregeneral version of this last law can be constructed in conjunction with law (4), as follows:max(map((x+) � g,xs)) = x+max(map(g,xs)) (6)Fusion/deforestation method makes use of normal-order symbolic evaluation/unfolding [SGN94] tomerge functional compositions. In the case of mss, the outermost max call demands an output from aninner map call, which in turn demands an output from segs. Thus, the innermost segs(xs) call is selectedfor unfolding. This can be done via two possible instantiations to its argument, xs.The base case instantiation and transformation can be achieved, as follows:mss([x]) = f instantiate xs=[x] gmax(map(sum,segs([x])))= f unfold segs gmax(map(sum,[x]))= f unfold map gmax([sum([x])])= f unfold max g[sum([x])]= f unfold sum gxFor the recursive case instantiation, the segs function actually produces ++ calls which must be con-sumed by map through its distributive law.mss(x:xs) = f instantiate xs=x:xs gmax(map(sum,segs(x:xs)))= f unfold segs gmax(map(sum,inits(x:xs)++segs(xs)))= f apply law (2) : map(f,xr++xs) = map(f,xr)++map(f,xs) gmax(map(sum,inits(x:xs))++map(sum,segs(xs)))Another ++ operator is produced by the distributive law of map itself. This must in turn be consumedvia the distributive law of max, as follows:mss(x:xs) = f apply law (3) : max(xr++xs)=max2(max(xr),max(xs)) gmax2(max(map(sum,inits(x:xs))),max(map(sum,segs(xs))))At this point, max(map(sum,segs(xs))) is a re-occurrence of the de�nition for mss which can be handledusing a fold operation. In addition, max(map(sum,init(xs))) represents a new composed expression justencountered. We could introduce a new function, say mis, to denote it and then obtain:mss(x:xs) = f fold with mss gmax2(max(map(sum,inits(x:xs))),mss(xs))= f fold with a new mis function gmax2(mis(x:xs),mss(xs))The new composition encountered is captured by the following de�nition.5



mis(xs) = max(map(sum,inits(xs)))We can again apply fusion transformation, by beginning with an unfold of inits(xs) using the twopossible instantiation to xs. A similar sequence of transformations via unfolding, application of laws, andfolding can yield the following equations.mis([x]) = xmis(x:xs) = max2(x,x+mis(xs))The primary gain from fusion method is the complete elimination of intermediate data structures fromthe composed expressions. This results in an improved time complexity of O(n2), and a much improvedvariable space complexity of O(1). The �nal program, after an unfolding of mis(x:xs), is shown below.mss([x]) = xmss(x:xs) = max2(max2(x,x+mis(xs)),mss(xs))mis([x]) = xmis(x:xs) = max2(x,x+mis(xs))3.2 Tupling to Eliminate Redundant CallsAfter fusion, the transformed program may still contain redundant function calls. This ine�ciency can beovercome by the tupling method [Chi93, HITT97]. The primary mechanism used in tupling is to gathercalls with identical arguments together. In the case of mss, we can �nd two calls with identical argumentsin its recursive equation. Tupling would gather these two calls into a tuple de�nition, as follows.msstup(xs) = (mss(xs),mis(xs))This can then be further transformed by using instantiations to facilitate the unfolding of one (ormore) calls in the tuple. The base case instantiation and transformation can proceed, as follows:msstup([x]) = f instantiate xs=[x] g(mss([x]),mis([x]))= f unfold mss & unfold mis g(x,x)The recursive case instantiation and transformation can be carried out, as outlined below.msstup(x:xs) = f instantiate xs=x:xs g(mss(x:xs),mis(x:xs))= f unfold mss & mis g(max2(max2(x,x+mis(xs)),mss(xs)),max2(x,x+mis(xs)))= f gather mss and mis calls using let glet (u,v)=(mss(xs),mis(xs)) in (max2(max2(x,x+v),u),max2(x,x+v))= f fold with msstup glet (u,v)=msstup(xs) in (max2(max2(x,x+v),u),max2(x,x+v))= f share a common sub-expression glet f(u,v)=msstup(xs); b=max2(x,x+v)g in (max2(b,u),b)Note how the use of a gathering step for calls with identical arguments, results in a tuple of two calls,which can later be folded against msstup. The redundant occurrences of mis call was eventually sharedby such a tuple gathering step. The end result is an e�cient linear time O(n) algorithm for maximumsegment sum, shown below.mss(xs) = let (u, )=msstup(xs) in umsstup([x]) = (x,x)msstup(x:xs) = let f(u,v)=msstup(xs); b=max2(x,x+x)g in (max2(b,u),b)4 Maximum Segment ProductLet us now turn our attention to a related but lesser known problem for �nding maximumsegment product(MSP). This MSP problem was proposed by Richard Bird in the 1989 STOP Summer School [Bir89].It is of interests because its speci�cation is closely related to the MSS problem, but yet its e�cientimplementation is considerably more complex. 6



For its speci�cation and transformation, we can reuse all functions and laws used by mss, with theexception of equations/laws related to sum and +. Speci�cally, the distributive law of max over map with(x+) needs to be replaced by corresponding laws over (x�). Interestingly, this property must be speci�edby a pair of laws, namely:max(map((x�),xs)) = if x�0 then x�max(xs) else x�min(map(f,xs)) (7)min(map((x�),xs)) = if x�0 then x�min(xs) else x�max(map(f,xs)) (8)Note the need for a dual function to max, namely min, to �nd the minimum value from a given list.min([x]) = xmin(x:xs) = min2(x,min(xs))min2(x,v) = if v<x then v else xWhy is min needed? Consider the expression x�b where b is taken from a list. If x is negative, then thevalue of x�b would be maximal if the selected element b is of smallest value. Thus, min and its auxiliaryfunction min2 are needed. More practical versions of the above pair of laws are obtained by combiningthem with law (4), as shown below.max(map((x�) � f,xs)) = if x�0 then x�max(map(f,xs)) else x�min(map(f,xs)) (9)min(map((x�) � f,xs)) = if x�0 then x�min(map(f,xs)) else x�max(map(f,xs)) (10)With the help of these two extra laws, we can perform a similar fusion transformation on the naivespeci�cation for msp. Recall:msp(xs) = max(map(prod,segs(xs)))The base case equation is easily derived, as follows.msp([x]) = f instantiate xs=[x] gmax(map(prod,segs([x])))= f unfold segs gmax(map(prod,[x]))= f unfold map gmax([prod([x])])= f unfold max g[prod([x])]= f unfold prod gxThe recursive case equation can be derived, as outlined below.msp(x:xs) = f instantiate xs=x:xs gmax(map(prod,inits(x:xs)++segs(xs)))= f apply law (2) : map(f,xr++xs)=map(f,xr)++map(f,xs) gmax(map(prod,inits(x:xs))++map(prod,segs(xs)))= f apply law (3) : max(xr++xs)=max2(max(xr),max(xs)) gmax2(max(map(prod,inits(x:xs))),max(map(prod,segs(xs))))= f fold with msp gmax2(max(map(prod,inits(x:xs))),mss(xs))= f fold with a new defn for mip gmax2(mip(x:xs),mss(xs))A new composed expression was encountered. This was de�ned as mip.mip(xs) = max(map(prod,inits(xs)))Its base case equation is derived as:mip([x]) = xThe recursive case equation can also be derived, with the help of laws, as shown below.7



mip(x:xs) = f instantiate xs=x:xs gmax(map(prod,inits(x:xs)))= f unfold inits gmax(map(prod,[x]:map((x:),inits(xs))))= f unfold map gmax(prod([x]):map(prod,map((x:),inits(xs))))= f unfold max gmax2(prod([x]),max(map(prod,map((x:),inits(xs))))= f unfold prod gmax2(x,max(map(prod,map((x:),inits(xs))))= f apply law (4) : map(f,map(g,xs)) = map(f � g,xs) gmax2(x,max(map(prod � (x:),inits(xs)))= f unfold prod gmax2(x,max(map((x�) � prod,inits(xs)))= f apply law (9) of max over (x�) gmax2(x,if x�0 then x�max(map(prod,inits(xs))) else x�min(map(prod,inits(xs))))= f fold mip gmax2(x,if x�0 then x�mip(xs) else x�min(map(prod,inits(xs))))= f introduce new mipm de�nition gmax2(x,if x�0 then x�mip(xs) else x�mipm(xs))= f apply law (11) to 
oat if outwards gif x�0 then max2(x,x�mip(xs)) else max2(x,x�mipm(xs))The last step 
oats an inner if out of the outermost max2 call. This transformation can be e�ected bythe following generic law where E[] denotes an arbitrary expression context with a hole. (Its 
oatationcan facilitate the elimination of common if test during tupling transformation, as shown later.)E[if e1 then e2 else e3] = if e1 then E[e2] else E[e3] (11)Another composition x�min(map(prod,inits(xs))) was encountered. This was de�ned to be:mipm(xs) = min(map(prod,inits(xs)))Its fusion derivation for mipm is very similar to mip. The base case instantiation simpli�es to:mipm([x]) = xThe recursive case instantiation and transformation is outlined below.mipm(x:xs) = f instantiate xs=x:xs gmin(map(prod,inits(x:xs)))= f unfold inits gmin(map(prod,[x]:map((x:),inits(xs))))= f unfold map gmin(prod([x]):map(prod,map((x:),inits(xs))))= f unfold min gmin2(prod([x]),min(map(prod,map((x:),inits(xs))))= f unfold prod gmin2(x,min(map(prod,map((x:),inits(xs))))= f apply law (4) : map(f,map(g,xs)) = map(f � g,xs) gmin2(x,min(map(prod � (x:),inits(xs)))= f unfold prod gmin2(x,min(map((x�) � prod,inits(xs)))= f apply law (10) of min over (x�) gmin2(x,if x�0 then x�min(map(prod,inits(xs))) else x�max(map(prod,inits(xs))))= f fold with mipm & mip gmin2(x,if x�0 then x�mipm(xs) else x�mip(xs))= f apply law (11) to 
oat if outwards gif x�0 then min2(x,x�mipm(xs)) else min2(x,x�mip(xs))The completely fused program for msp, after unfolding mip(x:xs) in the RHS of msp and 
oating itsinner conditional, is:msp([x]) = x 8



msp(x:xs) = if x�0 then max2(max2(x,mip(xs)),msp(xs)) else max2(max2(x,mipm(xs)),msp(xs))mip([x]) = xmip(x:xs) = if x�0 then max2(x,x�mip(xs)) else max2(x,x�mipm(xs))mipm([x]) = xmipm(x:xs) = if x�0 then min2(x,x�mipm(xs)) else min2(x,x�mip(xs))From the current program, tupling analysis of [Chi93, HITT97] would reveal that there are redundantcalls to mip and mipm. They can be eliminated by introducing the following tuple de�nition.msptup(xs) = (msp(xs),mip(xs),mipm(xs))Subsequently, tupling transformation can be applied as follows:msptup([x]) = f instantiate xs=[x] g(msp([x]),mip([x]),mipm([x]))= f unfold msp, mip & mipm g(x,x,x)msptup(x:xs)= f instantiate xs=x:xs g(msp(x:xs),mip(x:xs),mipm(x:xs))= f unfold msp, mip, mipm and 
oats/shares common if over tuple structure glet (u,v,w)=msstup(xs) inif x�0 then (max2(max2(x,x�mip(xs)),msp(xs)),max2(x,x�mip(xs)),min2(x,x�mipm(xs)))else (max2(max2(x,x�mipm(xs)),msp(xs)),max2(x,x�mipm(xs)),min2(x,x�mip(xs)))= f gather msp, mip and mipm calls using let glet (u,v,w)=(msp(xs),mip(xs),mipm(xs)) inif x�0 then (max2(max2(x,x�v),u),max2(x,x�v),min2(x,x�w))else (max2(max2(x,x�w),u),max2(x,x�w),min2(x,x�v))= f fold with msptup glet (u,v,w)= msptup(xs) inif x�0 then (max2(max2(x,x�v),u),max2(x,x�v),min2(x,x�w))else (max2(max2(x,x�w),u),max2(x,x�w),min2(x,x�v))= f abstract & share common sub-expressions glet f(u,v,w)= msptup(xs); r=x�v; s=x�w; b=max2(x,r); d=max2(x,s)g inif x�0 then (max2(b,u),b,min2(x,s))else (max2(d,u),d,min2(x,r))The �nal optimised program is:msp(xs) = let (u, , )=msptup(xs) in umsptup([x]) = (x,x,x)msptup(x:xs) = let f(u,v,w)= msptup(xs); r=x�v; s=x�w; b=max2(x,r); d=max2(x,s)g inif x�0 then (max2(b,u),b,min2(x,s))else (max2(d,u),d,min2(x,r))The derived algorithm for msptup is somewhat more complex than that for msstup, even though theirinitial speci�cations are very similar. Fortunately, for us, we used essentially the same transformationtechniques, namely fusion followed by tupling, to systematically obtain both space and time e�cientalgorithms. Speci�cally, fusion helps to eliminate unnecessary intermediate data structures (improvingon space), while tupling helps to eliminate redundant calls (improving on time). As a result, the optimisedalgorithm has a variable space complexity of O(1), and a time complexity of O(n).Due to our use of two modular transformation techniques, we need only provide two extra (straight-forward) laws to allow distribution of max (and min) over products. Such laws are su�cient for us tosystematically derive a more intricate, but yet e�cient algorithm for the MSP problem. An alternativederivation proposed by Bird, requires a somewhat deeper insight based on Horner's rule. This approachis considerably more complex for the MSP problem since the corresponding Horner's rule have to beinvented over tupled functions. In our case, this is naturally taken care of by the tupling method. Amore detailed comparison is undertaken in the next section.5 Classical Derivation via Horner's ruleThe MSS (and to a lesser extent the MSP) problem is not new. Formal derivation to obtain e�cient linear-time algorithm was �rst developed by Bird [Bir88], but the problem originated from Bentley [Ben86].9



The traditional derivation for the MSS problem has been based on function-level reasoning via theBird-Meerstens Formalism (BMF). A major theme of the BMF approach is to capture common patternsof computations via higher-order functions, and to make heavy use of laws/theorems concerning theseoperations. Often, algebraic properties on the components of higher-order operations are required asside-conditions.An important example is the Horner's rule to reduce the number of operations used for polynomial-likeevaluation. This rule/law instantiated to three terms can be stated as:(a1 
 (a2 
 a3 ))� ((a2 
 a3 )� a3 ) = ((a1 � 1
)
 a2 � 1
)
 a3The algebraic side-conditions required are that both � and 
 are associative, 1
 be the left identityof 
, and 
 distributes through �. To generalise to n terms, we could express this rule as:(� =) map(
 =, tails([a1 ; : : : ; an ])) = �� !=1
 [a1 ; : : : ;an ] (12)where the operators �� , =, != and tails are de�ned by:a �� b = (a 
 b) � 1
� = [x] = x� = (xs++ys) = (� = xs) � (� = ys)� !=e Nil = e� !=e (xs++[y]) = (� !=e xs) � ytails(Nil) = Niltails(x:xs) = (x:xs):tails(xs)Horner's rule is a key insight used in the calculational derivation of mss in [Bir88]. We re-produce thisclassical derivation below.mss(xs) = (max2 =)(map((+ =),segs'(xs)))= f unfold segs'(xs)=
atten(map(tails,inits(xs))) g(max2 =)(map((+ =),
atten(map(tails,inits(xs)))))= f apply law : map(f,
atten(xss))=
atten(map(nxs.map(f,xs),xss)) g(max2 =)(
atten(map(nz.map((+ =),z),map(tails,inits(xs)))))= f apply law : max(
atten(xss))=max(map(max,xss)) g(max2 =)(map((max2 =),map(nz.map((+ =),z),map(tails,inits(xs)))))= f apply law : map(f,map(g,xs)) = map(f � g,xs) twice g(max2 =)(map(ny. (max2 =)(map(nz.map((+ =),z),tails(y))), inits(xs)))= f apply Horner's rule : (� =)map(
 =,tails xs) = �� !=1
 xs g(max2 =)(map(�� !=0, inits(xs))) where a �� b = max2(a+b,0)= f apply scan law : map(� !=0,inits(xs))=� !==0 xs g(max2 =)(�� !==0 xs)Note that we used a non-recursive de�nition of segs' which returns segments in a di�erent order (fromsegs given in Sec. 1). Also, a number of other functions are used, including:� !==e Nil = [e]� !==e (xs++[y]) = (� !==e xs) ++ [last(� !==e xs) � y]last(xs++[y]) = y
atten(Nil) = Nil
atten(xs:xss) = xs++
atten(xss)The �nal algorithm obtained for mss has a linear time complexity, and also a linear (variable)space complexity due to an intermediate list from (�� !==0 xs). This slightly worse space behaviourmay be improved by fusion transformation. Although this classical derivation, based on Horner's rule,looks more concise that our proposed derivation, it requires larger derivation steps (i.e. more complexlaws/theorems).Often, suitable algebraic properties are also required as side-conditions to such laws/theorems. Theymay be di�cult to check, and especially hard to ensure. For example, the Horner's rule for MSS problemrequires that + distributes through max2, and that the identity of +, namely 0, be present. (The useof 0 as the identity of + actually results in a less de�ned mss algorithm since it becomes ill-de�ned forlists with only negative numbers. But this shortcoming is often tolerated.) Worse still is the possibility10



that distributive property required may not be immediately detected, but support for such property maycome from generalised/tupled functions instead. Consider the MSP problem. The � operator does notdistribute over max2 for negative numbers, but we do have:max2(a,b)�c = if x�0 then max2(a�c,b�c) else min2(a�c,b�c)min2(a,b)�c = if x�0 then min2(a�c,b�c) else max2(a�c,b�c)As Bird reported : \These facts are enough to ensure that, with suitable cunning, Horner's rule can bemade to work"[Bir89]. Instead of max2 and * as the � and 
 operators for its Horner's rule, he suggestedthat the following tupled functions be used instead.(a1; b1) � (a2; b2) = (min2(a1; a2),max2(b1; b2))(a,b) 
 c = if c � 0 then (a�c,b�c) else (b�c,a�c)Generalised in this way, it is possible to prove that 
 distributes backwards through �, as follows:((a1 ; b1 )� (a2 ; b2 ))
 c = ((a1 ; b1 )
 c)� ((a2 ; b2 )
 c))Inventive insights are needed to come up with such tupled functions for MSP-like problems. In addi-tion, the original de�nition of msp has to be rewritten to use such tupled functions before its calculationalderivation can be applied. The main di�culty stems from the highly abstract nature of Horner's rule andits algebraic side-conditions. Fortunately, our proposal avoids this problem by decomposing the deriva-tion into fusion (which requires the distributive conditions), followed by tupling (to eliminate redundantcalls). Such separation can help break-up di�cult theorems/insights required through the use of simplertransformation techniques, where possible.6 Avoiding Accumulation to Save TuplingThe perceptive reader may noticed that our speci�cation of mss di�ers slightly from [Bir89]. Speci�cally,the classical de�nition of mss generates segments via:segs'(xs) = 
atten(map(tails,inits(xs)))In contrast, we actually started with the following de�nition before it was fused to the recursivede�nition given in Sec 1.segs(xs) = 
atten(map(inits,tails(xs)))Both seg' and seg yields the same set of segments, except that these segments are returned in a di�erentorder. Unfortunately, this innocous change seems to have an e�ect in the kind of derivation which canbe performed.For example, if segs were used by the classical derivation, we will need a di�erent type of Horner's andscan rules, which are oriented for right-to-left reduction, as opposed to left-to-right ones. f� Is this correct?g Correspondingly, if segs' were used by our modular approach to derivation, we may require equationsbased on right-to-left evaluation, typically referred to as snoc-based equations (which deconstruct a givenlist backwards), instead of the usual cons-based equations.At this point, two questions may puzzle the reader? How do we obtain such snoc-based equations?And when should we use them?The snoc-based equations can be obtained as a by-product of parallelization. Given a cons-basedequation, the inductive parallelizationmethod presented in [HTC98] is capable of (automatically) derivinga ++-based parallel equation. This can subsequently be instantiated to the snoc-based equation. As anexample, consider the cons-based version of inits function given in Sec 1. Using the method of [HTC98],it is possible to derive the following ++-based parallel equation:inits(xs++ys) = inits(xs)++map((xs++),inits(xs))By instantiating ys to [y], we can now obtain the following snoc-based equation:inits(xs++[y]) = inits(xs)++[xs++[y]] 11



Our second question was when should we use such snoc-based equations? We should consider themwhen our fusion technique is about to fail through the application of an accumulation tactic, which isknown be unfriendly to tupling! For example, consider the fusion of segs' below.segs'(x:xs) = f instantiate xs=x:xs g
atten(map(tails,inits(x:xs)))= f unfold inits g
atten(map(tails,[x]:map((x:),inits(xs))))= f unfold map g
atten(tails([x]):map(tails,map((x:),inits(xs))))= f unfold 
atten gtails([x])++
atten(map(tails,map((x:),inits(xs))))= f apply law (4) : map(f,map(g,xs)) = map(f � g,xs) gtails([x])++
atten(map(tails � (x:),inits(xs)))After several steps, we are still unable to fold as we encountered a slightly enlarged expression of theform 
atten(map(tails � (x:),inits(xs)). As reported elsewhere [Bir84] and [?]f� Please pass your reference inNGC g ), this calls for the use of an accumulation tactic to overcome the problem of meeting ever largerexpressions during transformation. Speci�cally, we need to de�ne:asegs'(w,xs) = 
atten(map(tails � (w++),inits(xs)))With a new generalised parameter w, we can now re-apply fusion to obtain:asegs'(w,[x]) = tails(w++[x])asegs'(w,x:xs) = tails(w++[x])++asegs'(w++[x],xs)In general, this accumulation tactic is bad for two reasons. Firstly, the presence of an accumulating(list) parameter has indicated that fusion has not been totally successful (at least it can be said tohave failed for the accumulating parameter). Secondly, the resulting function (with an accumulatingparameter) is actually unsuitable for tupling since its redundant calls may now have in�nitely manyvariants of the accumulative arguments during transformation. This reduces the chances of successfulfolding. As a result, we are unable to apply tupling to asegs' (or its mss counterpart) to eliminate theredundant tails calls (or its mis-like counterparts).Hence, we should avoid (or delay) the application of accumulating tactic, where possible. One wayto avoid the accumulation tactic is to turn to snoc-based equations, whenever the use of accumulation isinevitable. In the case of seg', the corresponding fusion transformation using snoc-based equations canproceed (without accumulation), as follows:segs'(xs++[y]) = f instantiate xs=xs++[y] g
atten(map(tails,inits(xs++[y])))= f unfold inits g
atten(map(tails,inits(xs)++[xs++[y]]))= f apply law (2) : map(f,xr++xs) = map(f,xr)++map(f,xs) g
atten(map(tails,inits(xs))++map(tails,[xs++[y]]))= f apply law : 
atten(xr++xs) = 
atten(xr)++
atten(xs) g
atten(map(tails,inits(xs)))++
atten(map(tails,[xs++[y]]))= f fold with segs' gsegs'(xs)++
atten(map(tails,[xs++[y]]))= f unfold map gsegs'(xs)++
atten([tails(xs++[y])])= f unfold 
atten gsegs'(xs)++ [tails(xs++[y])]With this version of segs', the main mss function can now be optimised by fusion to yield:mss([x]) = xmss(xs++[y]) = max2(mss(xs),max2(mis(xs)+y,y))mis([x]) = xmis(xs++[y]) = max2(mis(xs)+y,y)The redundant calls in the above fused program can now be eliminated via tupling without beinghindered by the presence of accumulating parameters. Our advice is therefore : to avoid/delay theapplication of accumulation tactic, where possible. As suggested here, one way to achieve this is to relyon snoc-based equations, should the cons-based counterparts be found to be inadequate for fusion.12



7 Discussion and Concluding RemarksFusion transformation is considered to be one of the most important derivation technique in the construc-tive algorithmics [Bir89, Fok92], with many useful fusion theorems being developed for deriving variousclasses of e�cient programs (A good summary of these theorems can be found in [Jeu93]). In contrast,the importance of tupling transformation technique [Fok89] for program derivation was hardly addressed,let alone a good combination of fusion and tupling.In this paper, we have proposed a new strategy for algorithm derivation through two key transforma-tion techniques. The main advantage of our proposal is a clear division of program derivation into twophases, for the eliminations of intermediate data and redundant calls, respectively. While the steps takenmay be longer than the traditional BMF approach, the opportunities for mechanisation are much highersince we rely on less insightful laws/theorems to perform these transformations. In particular, simple lawsare only used in the enhanced fusion process, while tupling depends on only equational de�nitions for itstransformation. This combination of fusion (with laws) and tupling is particularly powerful. Other mod-ular transformation techniques are likely to be helpful too. Finding a good collection of these techniquescould be instrumental towards an improved methodology for developing useful programming pearls.References[BD77] R.M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journalof ACM, 24(1):44{67, January 1977.[Ben86] Jon Bentley. Programming Pearls. Addison-Wesley, 1986.[Bir84] Richard S. Bird. The promotion and accumulation strategies in transformational programming. ACMTrans. on Programming Languages and Systems, 6(4):487{504, October 1984.[Bir88] Richard S. Bird. Lectures on Constructive Functional Programming. Springer-Verlag, 1988.[Bir89] Richard S. Bird. Lecture notes on theory of lists. In STOP Summer School on Constructive Algorith-mics, Abeland, pages 1{25, 9 1989.[Chi92] Wei-Ngan Chin. Safe fusion of functional expressions. In 7th ACM LISP and Functional ProgrammingConference, pages 11{20, San Francisco, California, June 1992. ACM Press.[Chi93] Wei-Ngan Chin. Towards an automated tupling strategy. In ACM SIGPLAN Symposium on PartialEvaluation and Semantics-Based Program Manipulation, pages 119{132, Copenhagen, Denmark, June1993. ACM Press.[Chi94] Wei-Ngan Chin. Safe fusion of functional expressions II: Further improvements. Journal of FunctionalProgramming, 4(4):515{555, October 1994.[CT97] W.N. Chin and A. Takano. Deriving laws by program specialization. Technical report, Hitachi Ad-vanced Research Laboratory, July 1997.[Fok89] M. Fokkinga. Tupling and mutumorphisms. Squiggolist, 1(4), 1989.[Fok92] M. Fokkinga. Law and Order in Algorithmics. Ph.D thesis, Dept. INF, University of Twente, TheNetherlands, 1992.[GLPJ93] A. Gill, J. Launchbury, and S. Peyton-Jones. A short-cut to deforestation. In 6th ACM Conference onFunctional Programming Languages and Computer Architecture, Copenhagen, Denmark, June 1993.ACM Press.[HIT96] Z. Hu, H. Iwasaki, and M. Takeichi. Deriving structural hylomorphisms from recursive de�nitions.In ACM SIGPLAN International Conference on Functional Programming, pages 73{82, Philadelphia,Pennsylvannia, May 1996. ACM Press.[HITT97] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation eliminates multiple traversals. In2nd ACM SIGPLAN International Conference on Functional Programming, pages 164{175, Amster-dam, Netherlands, June 1997. ACM Press.[HTC98] Z. Hu, M. Takeichi, and WN. Chin. Parallelization in calculational forms. In 25th Annual ACMSymposium on Principles of Programming Languages, San Diego, California, January 1998. ACM Press(to appear).[Jeu93] J. Jeuring. Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science, Utrecht University,1993.[SF93] T. Sheard and L. Fegaras. A fold for all seasons. In 6th ACM Conference on Functional programmingLanguages and Computer Architecture, Copenhagen, Denmark, June 1993. ACM Press.13



[SGN94] M.H. S�rensen, R. Gl�uck, and Jones N.D. Towards unifying deforestation, supercompilation, partialevaluation and generalised partial computation. In European Symposium on Programming (LNCS 788),Edinburgh, April 1994.[Smi89] Douglas R. Smith. KIDS - a semi-automatic program development system. Technical report, KestrelInstitute, October 1989.[SS97] H. Seidl and M.H. S�rensen. Constraints to stop higher-order deforestation. In 24th ACM Symposiumon Principles of Programming Languages, Paris, France, January 1997. ACM Press.[TM95] A. Takano and E. Meijer. Shortcut deforestation in calculational form. In ACM Conference on Func-tional Programming and Computer Architecture, pages 306{313, San Diego, California, June 1995.ACM Press.[Wad88] Phil Wadler. Deforestation: Transforming programs to eliminate trees. In European Symposium onProgramming, Nancy, France, (LNCS, vol 300, pp. 344{358), March 1988.

14


