
Μ

Abstract—The IEC 61131-3 standard defines a common
framework for programming PLCs (Programmable Logic
Controllers), which includes the complete definition of four
programming languages and a state machine definition
language. Industrial PLC vendors are slowly offering support
for this standard, however small inconsistencies remain
between their implementations, transferring programs
between vendors is almost impossible due to different file
formats, and licenses are generally too expensive to allow
students do install these commercial solutions on their own
computers.

To this end, the authors have developed an Integrated
Development Environment (IDE) for the IEC 61131-3
framework, which is being offered to the general public under
the GNU Public License (GPL). The IDE consists of a
Graphical User Interface (GUI) and a backend compiler.
Using the GUI the user may develop programs in any of the
four programming languages, as well as the state machine
definition language. The backend compiler is used to convert
these programs into equivalent C++ programs which may
later be compiled and executed on various platforms.

I.INTRODUCTION

HE proliferation of PLCs (Programmable Logical
Controllers) used in an industrial setting is indicative

of their usefulness. These have evolved with the times, to
the point that many modern top of the range PLCs are
actually full fledged computers in disguise, executing
modern operating systems. The hardware inside many
vendor's PLCs has a tendency to become similar to PCs
(Personal Computers) in order to take advantage of
economies of scale.

On the other hand, the diversity of the programming
languages used between different vendors, along with their
increased complexity, has led to larger learning times for
the programmer when switching between PLC. To this end,
the IEC (International Electrotechnical Commission), an
international standards body, has approved a collection of
standards with the intention of creating a common user
experience when configuring and programming industrial
controllers. One of the components of this standard,
namely the IEC 61131-3 [1], defines how the user may
program the PLCs, and includes a programming framework
and several programming languages.

Nevertheless, even though both the hardware and the
software aspect of differing vendor PLCs are becoming
similar, the vendors are still able to lock users into their
line of products using several techniques which we shall

Manuscript received January 24, 2007.
Mário de Sousa is with the Electrical Engineering Department,

University of Porto, 4200 465 Porto, Portugal, (phone: +351 22 508 1815;
fax: +351 22 508 1443; e-mail: msousa@fe.up.pt).

Edouard Tisserant and Laurent Bessard are with TBI SARL - Lolitech,
88100 Saint-Dié-des-Vosges, France (phone: +33 (0)3 29 52 95 67; e-mail:
edouard.tisserant@lolitech.fr, laurent.bessard@lolitech.fr).

not discuss.
Additionally, and just like any other programming

language, learning and becoming proficient with these
programming languages requires that the student practice
extensively program development and therefore learn from
his/her mistakes and errors. Expensive licensing deals from
existing vendors makes it cost prohibitive to allow students
to install an IEC 61131-3 programming environment on
their own personal computers. Practice is therefore limited
to the few workstations that may be made available to the
students and located on the school campus.

The authors therefore embarked on the project of
developing and IDE for the IEC 61131-3 standard that may
be used freely and without restrictions by anybody who so
wishes. In order to foment the dissemination and take
advantage of any help that third parties may wish to
provide, the code has been made publicly available under
the GPL. The project has two main requirements, namely:

– strict adherence to the IEC 61131-3 standard
– cross platform support

A.Outline

This paper describes the implementation of an IEC
61131-3 integrated development environment. After this
first section which introduces the paper, section 2 gives a
necessarily brief overview of the IEC 61131-3 standard.
Section 3 describes the graphical user interface of the IDE
and its implementation, and section 4 describes the IL and
ST compiler that comprises the backend. We conclude in
section 5 with a few comments on the IEC 61131-3
standard itself, and point to directions to which we may
draw our attention in future work.

II.IEC 61131-3 OVERVIEW

The IEC 61131 standard [1] is a general framework, that
tries to establish the rules to which all PLCs should adhere
to, encompassing mechanical, electrical, and logical
aspects. The third part, IEC 61131-3, deals with the
programming aspect of the industrial controllers, defining
the logical programming blocks and the programming
languages.

There are three variations of top level programming
blocks: functions, function block types, and program types.
Functions have similar semantics to those in traditional
functional languages, and directly return a single output
value. However, besides one or more input values
(equivalent to variables passed as values), the function may
also have parameters used as outputs (equivalent to passing
variables as references), or as input and output
simultaneously. Function semantics state that they are
idempotent, i.e. all invocations of the same function with

An Open Source IEC 61131-3 Integrated Development
Environment

Edouard Tisserant, Laurent Bessard, and Mário de Sousa

T

the same input values should always yield exactly the same
result, whatever the state of the rest of the system,
including the time at which the function is executed.

Function block types are similar to classes in object
oriented languages, with the limitation of having a single
public member function. Function blocks are instantiated
as variables, each with their own copy of the function block
state. The default function of a function block does not
directly return any value, but, like functions, may have
parameters to pass data as input, output or bidirectional.
Since the function block has only a single function, calling
this function is commonly referred to as 'calling the
function block'. Likewise, this function's parameters are
often referred to as the function block parameters.

Since a function must be idem-potent, it can neither
instantiate nor call a function block instance. It may,
however, read the current values of the output or
bidirectional parameters of a function block. Note that the
function block instance must be passed to the function as
an input parameter, as a function may not instantiate a
function block instance.

Program types are very similar to function blocks, with
the exception that these may only be instantiated inside a
configuration, and not inside other functions, function
block types or program types.

A configuration is the program organization unit with
the highest abstraction level. It does not contain executable
code, but rather instantiates programs and/or function
blocks, creates and configures tasks, and assigns the
programs and/or function blocks to tasks. Tasks are similar
to processes in common operating systems, and may have
periodic execution or execute upon the occurrence of the
rising edge of a specified Boolean variable.

The three types of programming blocks may be
programmed in one of two textual languages (IL -
Instruction Language; ST - Structured Text), or two
graphical languages (LD - Ladder; FBD - Function Block
Diagram).

The standard also defines a graphical language for
specifying state machines (SFC – Sequential Function
Chart), mostly based on Grafcet, that may also be used in
programming function blocks or programs. Since a state
machine implies the maintenance of state, SFCs may not be
used to program functions because these must be idem-
potent. It should be noted that without reverting to the other
languages it is not possible to write a complete program
using only an SFC chart, which is why the authors hesitate
to refer to SFC as a programming language.

III.THE GRAPHICAL USER INTERFACE

The user interacts with the IEC integrated development
environment through a graphical interface. This graphical
interface lets the user create a project consisting of several
IEC 61131-3 program organization blocks (POUs). These
POUs are listed in a tree view on the left pane of the IDE.
Each POU in the tree may be expanded to show its

interface variables, as well as all internal variables (Fig. 1).
Each POU may be further programed in any of the IEC

61131-3 languages, using the appropriate language editor
on the right pane of the IDE. The definition of the POU
interface, as well as all internal variables is made through a
graphical window interface (Fig. 2).

A.The PLCOpen editor

The GUI lets users program with the five languages
defined by IEC 61131-3 standard :

– Sequential Function Chart (SFC)
– Function Block Diagram (FBD)
– Ladder Diagram (LD)
– Structured Text (ST, equivalent to C/C++)
– Instruction List (IL, equivalent to assembler)

The graphical editor is strongly linked to PLCOpen
specification [2]. This specification defines an XML
grammar describing the five IEC 61131-3 languages. All
automation programs written in this environment are saved
into XML files, according to this grammar. It is then
possible to exchange projects with other IEC 61131-3
editors that conform with the PLCOpen standard.

The graphical editor is written with python, and uses the
python binding to wxWidgets. The use of these two
technologies allows the code to be portable between
different platforms, including Windows and Linux.

All program editors follow the MVC (Model-View-
Controller) paradigm. The object classes used by the first

Fig. 1. General aspect of the Graphical User Interface

Fig. 2. The graphical for interface and variable definition

component (i.e. the Model) are dynamically generated from
the official scheme (.xsd) defined in the PLCOpen
specification. Incorporating future changes of the
PLCOpen specifications into the model component of the
editor may therefore be automated.

The SFC, FBD and LD graphical editors allow the user
to insert and delete programming elements in such a way as
not to permit the user to introduce illegal layout. These
programs are therefore always in a correct, although
possibly incomplete, state.

The SFC editor (Fig. 3) provides a toolbox with which to
insert initial steps, steps, transitions, and transition
convergences or divergences. The insertion of these
elements (except an initial step) must always be referenced
to a previously existing element of the SFC. For example,
to insert a transition the user must first select the step to
which it will be associated. Likewise, to insert a step the
user must first select a transition or another step. In the
case a step is selected, the editor automatically inserts a
transition between the steps.

The LD editor (Fig. 4) follows the same philosophy. The
creation of a new rung implies the insertion of an output
relay. The rung is always in a consistent state, only
allowing the user to introduce new elements in such a way
as to produce another valid state.

The textual language editors, IL (Fig. 5) and ST (Fig. 6),
include syntax highlighting of the code, and
autocompletion of keywords and variable names. Simple
syntax errors are highlighted, nevertheless (and unlike the
graphical editors), the code may be saved with the syntax
and/or semantic errors inside.

B.Conversion of Graphical Languages

A module is responsible to translate PLCOpen graphical
language (FBD and LD) into ST. This part is integrated
into the graphical editor, but may be used independently.
The reverse value propagation algorithm is used to convert
these graphical languages into ST.

Conversion is also conditioned by optional debug mode,
that adds necessary information in generated code. This
information will then be used at runtime to ensure status
feedback for users.

Graphical SFC programs, on the other hand, may be
converted to the textual syntax used to express SFC
programs. This textual syntax, although not commonly
used, has been normalized in IEC 61131-3. As with the
textual ST and IL languages, it will be up to the backend
compiler to compile SFC programs expressed using the
textual syntax into the equivalent C++ program.

C.Human Machine Interface Creation Tool

The authors intend to continue the development of the
project in several fronts. One these will be the integration
of a tool (which the authors intend to call SVGUI) to allow
the user/programmer to define graphical interfaces to the
automation control program. This will be based on the
"SVG" (Scalable Vector Graphics) open W3C standard,

and XML grammar for describing vector graphics. The
main idea is to let users "draw" their HMI with any
standard SVG drawing software such as Inkscape, and
select graphical elements that will participate in the
interaction with the automation program.

The interaction will be made through the use of wxSVG,
which is a SVG renderer using wxWidgets graphical
library. The particularity of wxSVG is that it loads an SVG

Fig. 3. The SFC editor

Fig. 4. The LD editor

Fig. 5. The IL editor

Fig. 6. The ST editor

file into a "living" object tree in memory, allowing "live"
access to the graphical elements.

A "widgets" library (e.g: buttons, scrollbars, textareas,
checkboxes,...) will have to be developed that uses wxSVG
graphical elements for representation and interaction. As an
example a rectangle drawn under Inkscape can be defined
as a button and when clicked, change form and colour, and
move around the screen.

In SVGUI, appearance is completely independent of
code. It is possible to change GUI appearance without any
source code change. This permits the graphical creation to
be entrusted to a graphical designer (i.e. non-programmer)
and the interaction to a programmer. This aspect is actually
very difficult to find on the majority of GUI toolkits.

The link between SVG graphical elements (rectangles,
circles, ...) and widgets (buttons, textarea, ...) is done
through a simple XML file, that declares which graphical
elements participate with which widget. Widgets have their
own names and specific variables. All the widgets used will
automatically generate a corresponding Function Block
that may be used by the automation program. Each
function block instance will correspond to a single widget
instance, and each pin to a variable.

Using this architecture, SVGUI will be a library written
in C++. Development of some "bindings" for other
languages should be rather straightforward.

IV.THE BACKEND COMPILER

The backend portion of the IDE consists of a compiler
that converts IL, ST and SFC programs into equivalent
C++ programs. This compiler executes in four plus one
stages: lexical analyser, syntax parser, semantics analyser,
code generator, and binary code generator.

The lexical parser analyses the source code and breaks it
up into lexical tokens, removing on the way all comments
and white-spaces between the tokens. The syntax parser
groups the tokens into syntax constructs, and builds an
equivalent internal abstract syntax data structure. The
semantic analyser walks through the abstract syntax and
determines whether all semantic rules have been obeyed.
The code generator, based on the abstract syntax once
again, produces the final equivalent code.

This architecture allows us to easily write a new code
generator for whatever output language desired, without
having to rewrite all the lexical, syntactic and semantic
parsers. At the moment we have merely implemented a
C++ code generator. The last stage of the overall compiler
will generate the final executable from the code generated
from the previous stage. In our case we are currently using
the gcc compiler to generate the final executable.

Our abstract syntax tree has been implemented as a tree
of objects that follow the visitor design pattern [3]. This
enables us to easily add or remove stages to our
architecture without having to edit the abstract syntax tree
classes themselves. Possible additions to the architecture
include a code optimization stage.

A.Lexical Analyser

The lexical analyser was implemented using the flex
utility that generates lexical analysers from a configuration
file. The configuration file includes the extended
expression definitions of the language's tokens.

This stage is the most straightforward, but nevertheless
still has its difficulties. The main issue is the definition of
the EOL token (used in the IL language), and defined by
the standard as “normally consisting of the 'paragraph
separator' character defined as hexadecimal code 2029 by
ISO/IEC 10646 “. This statement seems to leave to the
implementors the final choice of which character should
represent the EOL token. It is our intention to allow the
programs to be written using existing text editors that
generate ASCII text. However, the suggested character is
not an ASCII character, and we were therefore forced to
choose another character to represent the EOL token. The
'newline' (ASCII 10hex) character seemed to be the most
natural.

This choice, although seemingly obvious, complicates
matters since the newline character is considered
whitespace in the standard. This means that the lexical
analyser may only generate EOL tokens while parsing IL
statements, and ignore it otherwise. Our solution was to
implement a state machine in the lexical analyser, with a
very limited knowledge of the syntax, that tracks whether
IL statements are currently being parsed, and therefore
parsers the newline character as the EOL token, instead of
the normal whitespace.

However, the state machine got more complex when we
decided to allow our compiler to automatically detect
whether it was parsing IL, ST or SFC, the reason for which
is explained later.

B.Syntax Parser

The syntax parser was implemented using the GNU
bison utility. This program generates a syntax parser from
the syntax definition of the language being parsed.
Although it too may have seemed straightforward at first,
many issues had to be overcome, of which we shall
mention only a few.

As the IL and ST languages share a very large common
syntax related to the declaration of types, functions,
variables, etc., we decided to write a single parser that
would handle both languages simultaneously. It was this
choice that led to the more complex state machine in the
lexical parser, which has already been mentioned.

A few conflicts were found in the syntax definition given
in the standard. These were mostly due to the existence of
more than one route for reducing several constructs. All of
these conflicts were easily resolved, as the expected
semantics of either route were identical.

Other more thorny issues were related to the fact that the
language requires more than one look ahead token to be
correctly parsed, whereas the bison utility generates a
parser that uses a single look ahead token. We worked

around this issue by reducing to temporary constructs until
the look ahead token that would break the deadlock was
available. Only then was the temporary construct changed
to the correct final construct. This of course resulted in a
much more confusing configuration file for the bison
utility, and less maintainable code.

We also found that the syntax does not contain sufficient
redundancy to allow it to be successfully parsed without
the help of a symbol table that keeps track of the type of
construct to which an identifier (name) refers to. The
syntax parser therefore makes use of two symbol tables,
one for the global references (function names, data type
names, ...), and another for variables declared within
functions, programs or function blocks. The syntax parser
adds entries to these tables when an identifier is declared.
Subsequently, when the lexical parser comes across an
identifier, it will first look it up in these tables to verify if it
has been previously declared. Before any parsing
commences, the global table is initialised with the names of
all the default functions and functions blocks defined in the
standard.

The use of the symbol tables results in many semantic
checks being inherently performed by the syntax parser.
For e.g., a variable name may only be used if it has been
previously declared. Type checking, for e.g., is
nevertheless not performed, and is left to the semantic
checker.

C.The Semantic Checker

Due to a lack of time and resources, the semantic
checker has not yet been implemented. Although extremely
important for the correct functioning of the overall
compiler, we felt that this part could be left for a later
stage. This is mainly due to the fact that our first code
generator creates C++ source code, which is then compiled
by the gcc compiler. Many semantic errors in the ST or IL
source code will also result in semantic errors in the C++
source code, which will be caught by the gcc compiler.
Some semantic errors, such as calling a function block
from within a function, will nevertheless not get caught.

This is of course not a desirable scenario for a fully
functioning compiler, as the user does not get any feedback
as to the location of the error in the ST or IL source code. It
is therefore our intention to complete the semantic checker
as soon as possible.

D.The C++ Code Generator

IL and ST code transcription to C++ is rather
straightforward as many of the constructs used in ST and
IL are also available in C++. Data types not supported
directly by C++, such as time of day, were implemented as
specific C++ classes, with overloaded operators.

Contrary to what might be expected, the FB and program
type constructs are both mapped onto a C++ structure data
type that contains all internal and interface variables for the
FB or program, and an accompanying function that takes
an instance of the referred data structure as its single

parameter. This was done in order to allow the loading (LD
operator of the IL language) of FB instances, which
requires that the FB instance be copied onto a default
accumulator type variable, that must be able to store many
different data types. This accumulator variable is therefore
implemented as a C++ union.

The resulting C++ code is practically self-contained and
self-referencing, which allows it to be completely portable
to any platform with a C++ compiler. The single instance
that makes the code platform dependent is how a
configuration is mapped to C++.

Due to time constraints, and in order to maintain
program portability, complete mapping of configuration
constructs has not yet been implemented. Currently a single
task running a single program instance is supported. This
single program may however call as many FB or functions
that may be necessary.

V.CONCLUSIONS

We believe that the editor and compiler are already
usable in both an academic and industrial environment. We
expect to put it to the test in the next academic year.

Nevertheless, some work still remains to be done. Future
work will involve writing the semantic checker, and
defining a runtime to allow the full syntax of
configurations, for at least one platform. Work on the
SVGUI platform to support graphical user interfaces has
already started.

REFERENCES

[1] IEC, “IEC 61131-3, 2nd Ed. Programmable Controllers – Programming
Languages”, International Electrotechnical Comission, 2003

[2] PLCopen Technical Committee 6, “XML Formats for IEC 61131-3,
Ver 1.0”, April 2005

[3] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design
Patterns”, Addison-Wesley, 1997, IEBN 0-201-63361-2

	I.INTRODUCTION
	A.Outline

	II.IEC 61131-3 Overview
	III.The Graphical User Interface
	A.The PLCOpen editor
	B.Conversion of Graphical Languages
	C.Human Machine Interface Creation Tool

	IV.The Backend Compiler
	A.Lexical Analyser
	B.Syntax Parser
	C.The Semantic Checker
	D.The C++ Code Generator

	V.Conclusions

