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Abstract

In this paper, we present an Internet-based melanoma screening system. Our web server is accessible from all over the world and performs the
following procedures when a remote user uploads a dermoscopy image: separates the tumor area from the surrounding skin using highly accurate
dermatologist-like tumor area extraction algorithm, calculates a total of 428 features for the characterization of the tumor, classifies the tumor as
melanoma or nevus using a neural network classifier, and presents the diagnosis. Our system achieves a sensitivity of 85.9% and a specificity of

86.0% on a set of 1258 dermoscopy images using cross-validation.
© 2008 Elsevier Ltd. All rights reserved.
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. Introduction

In the past few decades, the incidence of malignant melanoma
as increased gradually in most parts of the world. In Aus-
ralia, the incidence of melanoma is now approaching 50
ases per 100,000 population [1]. Although advanced malig-
ant melanoma is often incurable, early-stage melanoma can
e cured in many cases, particularly before the metastasis
hase. For example, patients with a melanoma less than or
qual to 0.75 mm in thickness have a good prognosis and
heir 5-year survival rate is greater than 93% [2]. Therefore,
arly detection is crucial for the reduction of melanoma-related

eaths.

It is often difficult to distinguish between early-stage
elanoma and Clark nevi with the naked eye, especially when
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mall lesions are involved. Dermoscopy or epiluminescence
ight microscopy (ELM) was introduced to improve the accu-
acy in the diagnosis of pigmented skin lesions (PSLs) [3]. Stolz
t al. developed a convenient diagnosis scheme for dermoscopy
mages called the ABCD rule [4]. This method quantifies the
haracteristics of PSLs such as asymmetry, border sharpness,
olor variegation and the presence/absence of various differ-
ntial structures and makes a diagnosis based on the total
core. A systematic review covering Medline entries from
983 to 1997 revealed that dermoscopy had 10–27% higher
ensitivity [5]. However, dermoscopic diagnosis is often sub-
ective and is therefore associated with poor reproducibility
nd low accuracy especially in the hands of inexperienced der-
atologists. The use of dermoscopy, the accuracy of expert

ermatologists in diagnosing melanoma is estimated to be about
5–84% [1,6].

Several groups have developed automated analysis proce-

ures to overcome these problems and reported high levels of
iagnostic accuracy [7–17]. Table 1 shows an overview of these
tudies. Rubegni et al. [11] achieved a sensitivity (SE: melanoma
etection accuracy) of 94.3 % and a specificity (SP: benign
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Table 1
Comparison of classification performance for malignant melanomas

Source Author Year Segmentation method Classifier Total # images Mel. a(%) Dys. b(%) SE (%) SP (%) Comment

[9] Ganster et al. 2001 Thresholding + color clustering kNN 5363 2 19 73 89
[10] Elbaum et al. 2001 Thresholding Linear 246 26 45 100 85
[11] Rubegni et al. 2002 Thresholding ANN 550 36 64 94.3 93.8
[12] Hoffman et al. 2003 Clustering + region growing ANN 2218 22 7 – – AUC = 0.844
[13] Blum et al. 2004 – Logistic 837 10 11 82.3 86.9
[18] Oka et al. 2004 Thresholding Linear 247 24 76 87.0 93.1 Internet-based
[14] Burroni et al. 2005 Thresholding Linear 174 22∗ 78 71.1 72.1 ∗Only in situ
[15] Seidenari et al. 2005 – Linear 459 21 17 87.5 85.7 AUC = 0.933
[16] Menzies et al. 2005 Semi − auto + manual Logistic 2420 16 25 91 65
[
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17] Celebi et al. 2007 Region growing SVM

a Percentage of melanomas in the dataset.
b Percentage of dysplastic nevi in the dataset.

etection accuracy) of 93.8% on 350 cases of nevi and 200 cases
f melanoma using an artificial neural network (ANN). Blum et
l. [13] reported a SE of 83.3% and a SP of 86.9% on 753 cases
f nevi and 84 cases of melanomas with a logistic regression
odel. Recently, Celebi et al. [17] achieved a SE of 93.3% and
SP of 92.3% on 476 cases of nevi and 88 cases of melanomas
ith an improved border detection method and a support vec-

or machine classifier with radial basis function (RBF) kernel.
owever, several problems have persisted with these software-
ased approaches. For example, results of these studies are not
omparable because of the different image sets used in each one.
n addition, these studies were designed to develop a screening
ystem for new patients using standalone systems and therefore
hey have not been opened to the public.

In 2004, we developed a prototype Internet-based melanoma
creening system [18]. The URL of the site has changed and
t is now http://dermoscopy.k.hosei.ac.jp. When one uploads a
ermoscopy image and the associated clinical data, the system

xtracts the tumor area, calculates the tumor characteristics and
eports a diagnosis based on linear discriminant analysis. The
ystem then registers the uploaded image, the associated clinical
ata and the diagnosis result into a database. Our preliminary

c

t
t

Fig. 1. Overview of the Internet
564 16 55 93.3 92.3

nternet-based system achieved a SE of 87.0% and a SP of 93.1%
n 188 Clark nevi and 59 melanomas. Since we made this system
pen to the public, we have identified several issues that would
ake the system more practical. We have thus focused on the fol-

owing topics: (1) expansion of the image database for building a
lassifier, (2) development of a more accurate tumor area extrac-
ion algorithm, (3) extraction of more discriminative diagnostic
eatures, (4) development of an effective classification model,
nd (5) reduction of the system response time.

Collecting many dermoscopy images for building a clas-
ifier is the most important issue ensuring system accuracy
nd generality. However, this is not a trivial task because in
rder to obtain the diagnosis information, dermatologists usu-
lly need histopathological tests or long-term clinical follow-up.
o address this issue, our system is designed to store uploaded
ermoscopy images into our database. When we have collected
large number of dermoscopy images with the associated diag-
oses, we plan to use them in the development of a more accurate

lassification model.

Diagnostic accuracy depends greatly on the accurate extrac-
ion of the tumor area. Since the late 1990s, numerous solutions
hat address this issue have been reported [19–30]. A notable

-based screening system.

http://dermoscopy.k.hosei.ac.jp
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roblem with these studies is that the computer-extracted regions
ere often smaller than the dermatologist-drawn ones, resulting

n the area immediately surrounding the tumor, an important
eature in the diagnosis of melanoma, being excluded from
he subsequent analysis [1,4,25]. Therefore, there is need for
eveloping a more accurate tumor area extraction algorithm that
roduces results similar to those determined by the dermatolo-
ists.

With regard to the choice of the classifier, despite the fact
hat simple comparison of classification performance cannot be

ade, nonlinear classification models such as ANNs [7,11,12],
ogistic regression models [13,16], and support vector machines
17] have been used.

In this study, we describe the development of a more
ractical Internet-based melanoma screening system with a
ermatologists-like tumor area extraction algorithm [27]. We
sed a total of 1258 dermoscopy images from three countries
nd extracted a total of 428 image features from each image. We
arefully selected effective features for diagnosis and built an
NN classifier to realize a more practical web-based diagnostic

ystem (Fig. 1).
In addition, a globally accessible Internet-based system

equires a well-designed architecture and appropriate user inter-
ace facilities. Thus, we revised the internal processing scheme
nd interfaces to reduce the processing time. Note that our
ystem is a diagnosis support system for dermatologists inexpe-
ienced with dermoscopy or physicians of different specialties.
he results of our system, therefore, should be considered sup-
lementary.

. Materials

Device calibration to compensate for various imaging con-
itions, such as different types of dermoscopy, magnification
actors, lighting conditions, etc. is crucial in the development of
reliable system. An expert dermatologists would perform the

ame diagnosis on a particular case even in different imaging

onditions. Since scale and color calibration is not feasible in
web-based system, we followed an alternative approach. We
eveloped an accurate classifier using effective and invariant
mage features extracted from a large and diverse image set.

r
c
p
c

ig. 2. Example of tumor areas manually determined by five dermatologists: (a) D
ermatologists.
ging and Graphics 32 (2008) 566–579

Digital dermoscopy images of PSLs were collected from
our university hospitals (University of Naples, Italy; University
f Graz, Austria; Vienna University, Austria; Keio University,
okyo). These were 24-bit JPEG images with a typical resolu-

ion of 768 × 512 pixels. Since we had no control over the image
cquisition and camera calibration, we extracted scale-invariant
eatures from images and dermoscopy images that satisfied at
east one of the following criteria were omitted from the study:
i) the tumor does not fit entirely within the image frame, (ii) the
umor is part of an acral or mucosal area, and (iii) presence of
oo much hair. This selectivity was necessary in order to ensure
ccurate border detection and reliable feature extraction.

We used three different datasets that fulfilled the above cri-
eria:

Dataset-A: 247 dermoscopy images—188 Clark nevi and 59
melanomas (including 23 melanoma in situ) from University
of Naples and Graz.
Dataset-B: Dataset-A plus 56 Reed nevi and 16 melanomas
from University of Naples and Graz (319 dermoscopy images:
188 Clark nevi, 56 Reed nevi and 75 melanomas, including
23 melanoma in situ).
Dataset-C: Dataset-B plus 816 melanocytic nevi and 123
melanomas from Keio University and Vienna University
(1258 dermoscopy images: 1060 melanocytic nevi and 198
melanomas).

All of the cases in Dataset-A, Dataset-B and some of the
ases in Dataset-C were diagnosed based on histopathological
xamination of biopsy material. The remaining cases in Dataset-

were diagnosed clinically by several expert dermatologists
r long-term clinical follow-up. Dataset-A is the dataset from
hich our prototype system [18] was built and Dataset-B is
escribed in Ref. [27]. Dataset-C was used for developing an
ccurate classifier. Sensitivity and specificity were used as the
valuation criteria for diagnostic accuracy. We also plotted the

eceiver operating characteristic (ROC) curve to examine the
lassifier performance under varying conditions. The diagnostic
erformance was also quantified by the area under the ROC
urve (AUC) measure.

ermoscopy image (Clark nevus) and (b) areas manually determined by five
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The “dermatologist-like” tumor area extraction algorithm
consists of four phases: (1) initial tumor area decision, (2) region-
alization, (3) tumor area selection, and (4) region growing.
ig. 3. Flowchart of the tumor area selection phase. RL: The largest region; RN

oundary; NB: Number of pixels in the region, which touches the outer frame o

. Tumor area extraction from surrounding skin

.1. Definition of the tumor area

For a quantitative evaluation of a tumor area extraction
ethod, we first need the definition of a ground-truth tumor

rea. Guillod et al. [23,24] used 25 dermoscopy images and
ound that tumor areas manually extracted by dermatologists
ere not consistent. Therefore, in order to achieve statisti-

ally significant results, we prepared a large number of manual
xtraction results – 319 images (Dataset-B) × 5 expert dermatol-
gists – and evaluated them quantitatively. Five dermatologists,
ith an average of 11 years of experience manually deter-
ined the borders of all tumors using a tablet computer. In

ur previous research [27], we compared the extraction results
rom the 5/5 medical doctor (5/5 MD) area (the region that
s selected by all five dermatologists) to the 1/5 MD area
the region that is selected by at least one dermatologist) and
valuated the standard deviation (S.D.) of the selected area
s well as the precision and recall. In that study, we con-
luded that the area extracted by two or more dermatologists
2/5 MD area) could be taken as the standard tumor area
STA).

Fig. 2 shows a sample of a dermoscopy image and the cor-
esponding manually extracted areas. The black area represents
he area selected by all five dermatologists and the gray one is
hat selected by at least one dermatologist. We evaluated the
xtraction results using the precision and recall measures:

recision (%) = correctly extracted area in pixels × 100. (1)

extracted area in pixels

ecall (%) = correctly extracted area in pixels

tumor area in pixels
× 100. (2)
region that touches the outer frame of the dermoscopy image with the longest
dermoscopy image.

Note that “tumor area” stands for the standard tumor area and
correctly extracted area” is the overlap between the STA and
he extracted area.

.2. Dermatologist-like tumor area extraction

In our preliminary study we observed that conventional
lgorithms could mostly extract the tumor areas. However,
he extracted areas were often smaller than those determined
y dermatologists. Therefore we used our “dermatologist-
ike” tumor area extraction algorithm [27] that combines both
ixel-based and region-based methods and introduces a region-
rowing approach that aims to bring the automatic extraction
esults closer to those determined by dermatologists. We eval-
ated the tumor extraction results by comparing them to the
Fig. 4. Notation used in the region-growing algorithm.
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1) Initial tumor area decision phase: In this phase a tenta-
tive tumor area was selected with a statistical pixel-based
thresholding method [31]. Here, we briefly summarize this
method. This method uses two filtering operations before
the selection of a threshold. First, the image was processed
with a Gaussian filter to eliminate the sensor noise. Then,
the Laplacian filter was applied to the image and the pixels
in the top 20% of the Laplacian values were selected. Only
these selected pixels were used to calculate a threshold. The
threshold was decided by maximizing the inter-group vari-
ance according to a user defined property, such as intensity,
red, green or blue [32]. Ganster et al. [9] reported that the
blue channel of the RGB color model achieved the best
thresholding results and we have also confirmed this in our
previous research. Therefore, in this phase, the thresholding
was performed on the blue channel and the darker area was
taken as a tentative tumor area.

2) Regionalization phase: Because many small isolated regions
were created in the previous phase, these needed to be
merged in order to obtain a single or sometimes a few small
tumor areas. First, a unique region number was assigned
to each connected region. Second, a region smaller than
ζ% of the image size was combined with the adjacent larger
region that shares the longest boundary. This phase makes it
possible to manipulate the image as an assembly of regions.

3) Tumor area selection phase: Tumor areas were experimen-
tally determined by selecting appropriate areas from the
segmented regions. After consulting with dermatologists,
we developed a rule-bases algorithm (illustrated in Fig. 3)
based on over 2000 dermoscopy images. The main objective
of this phase is to eliminate undesired surrounding shadow
areas sometimes produced by the narrow imaging field of
the dermoscopy.

The regions that fulfilled the conditions shown in Fig. 3
were selected as the tumor area. In the figure, RL, RN, and
NB indicate the largest region, the region that touches the
outer frame of the image with the longest boundary, and
the number of pixels in the region which touches the outer
frame of the image, respectively.

4) Region-growing phase: Based on quantitative experiments
that use borders manually drawn by several dermatologists,
we have observed that the areas extracted by dermatologists
were generally larger than those determined by computer-
based methods. Hence in this phase, the extracted tumor
area was expanded along the pre-defined border by a region-
growing algorithm in order to bring it closer to the area
selected by dermatologists.

Fig. 4 illustrates the notation used in the region-growing algo-
ithm. This method traverses the border of the initial tumor using
window of S × S pixels. When the color properties of the inner
in and outer Vout regions are similar, all of the neighborhood
ixels are considered as part of the tumor area. In concrete terms,

uppose that we have a pixel on the border of the tumor (i.e. the
lack pixel in Fig. 4) and an S × S area as part of the tumor area.
hen condition (3) is satisfied, all pixels in the window are con-

idered as part of the tumor area. This procedure is performed

B
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n each and every border pixel (indicated by the brick pattern in
ig. 4). This modification makes the tumor size larger and the
order of the tumor is redefined:

in × ξmin ≤ Vout < Vin × ξmax. (3)

ote that ξmin and ξmax are the region-growing parameters
hat need to be determined experimentally. This procedure is
epeated iteratively until the size of tumor becomes stable. In
ther words, the procedure is repeated until there remains no
order pixels that satisfies (3).

.3. Performance comparison with different tumor area
xtraction algorithms

In a previous study, we evaluated our dermatologist-like
umor area extraction algorithm from a clinical perspective using

anually determined borders from five expert dermatologists.
ecause we have not evaluated this algorithm from an engineer-

ng point of view, we compare it with some novel techniques and
arious state-of-the-art methods. First, we compare our algo-
ithm with novel methods using the STA (gold standard defined
y dermatologists):

Conventional thresholding method [31] (Method A).
Thresholding + K-means clustering in the YCbCr color space
(Method B).
Thresholding + K-means clustering in the HSV color space
(Method C).
Average of borders manually determined by 10 non-medical
individuals.
Our “dermatologist-like” tumor area extraction method.

As a result of preliminary experiments, the following parame-
er values were used: S = 7, ζ = 1.00, ξmin = 1.02, and ξmax =
.07. These values were experimentally determined using the
mages in Dataset-B. Method A utilizes a statistical thresh-
lding operation [32] with Gaussian and Laplacian filtering
s a pre-processing step. The distance function L of the K-
eans algorithms used in Methods B and C are defined

s LB =
√

δ2
Y + δ2

Cr
+ δ2

Cb
and LC =

√
δ2
H + δ2

S + δ2
V , respec-

ively. Here, δX refers to the Euclidean distance between feature
X) of target pixel and average feature (X̄) of the intermedi-
te cluster. Note here, δH = min(H − H̄, H − H̄ + 2π). Based
n our preliminary results, introducing a positional term in L
eteriorates the results, so we did not use it.

Second, we compare our algorithm with several state-of-
he-art methods. Celebi et al. [30] compared the performance
f seven recent tumor area extraction algorithms on a set of
0 dermoscopy images using borders manually determined by
wo dermatologists as the ground-truth. Celebi et al. used the
ercentage border error [20] as the evaluation criterion:
order error (%) = Area(AutomaticBorder ⊕ ManualBorder)

Area(ManualBorder)

× 100. (4)
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Table 2
Parameters of neural network classifier in cross-validation test

Items Values Items Values

# of input neurons 5–72 # of training iterations 10–10,000
#
#
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of hidden neurons 1–15 Learning coefficient ε 0.001–0.2
of output neuron 1 Momentum coefficient 0–0.9

ere, AutomaticBorder is the binary image obtained by filling
he computer detected border, ManualBorder is obtained by one
f the two dermatologists, ⊕ is the exclusive-OR operation, and
rea(I) denotes the number of pixels in the binary image I.
Celebi et al.’s comparison included optimized his-

ogram thresholding [21], orientation-sensitive fuzzy c-means
OSFCM) [22], gradient vector flow snakes (GVF snakes) [26],
ur method (dermatologist-like) [27], meanshift clustering [28],
odified JSEG [29], and their statistical region merging (SRM)

30] algorithms.

. Feature extraction, selection and classification

.1. Feature extraction

After extracting the tumor area, we rotated the tumor object
o align its major axis with the Cartesian x-axis. Then, we cal-
ulated a total of 428 image-related objective features with
eference to the ABCD rule [4]. This rule refers to asym-
etry, border sharpness, color variegation, and differential

tructures of the lesion. The D of ABCD dermoscopy rule
valuates the existence of dermoscopic features such as atyp-
cal pigment networks, branched streaks, structureless areas,
ots, and globules. It is desirable to calculate features to repre-
ent these structures directly. However, extracting these features
s often difficult because of the vast variety of dermoscopy
mages and the highly subjective definitions of these criteria.
rgenziano et al. reported that the inter-observer agreement

or these features was not high even among expert dermatol-
gists [6]. Therefore, in this study, we extracted texture features
uch as energy, moment, entropy and correlation of intensity
hannel over the entire tumor area to quantify the D compo-
ent.

The calculated features can be roughly categorized into color
140), symmetry (80), border (32) and texture (176) proper-
ies. Numbers in parentheses indicate those of calculated image
eatures.

As color-related features, a total of 140 parameters were
alculated: minimum (min), average (ave), maximum (max),
tandard deviation (S.D.) and skewness (skew) values in the
GB and HSV color spaces, respectively (subtotal 30) for

he whole tumor area (tumor), periphery of the tumor area
peripheral), difference between the tumor area and the sur-
ounding normal skin (tumor-skin) and difference between
eripheral and normal skin (peripheral-skin). In addition, a

otal of 20 color-related features were calculated; the num-
er of colors in the tumor area and peripheral tumor area
n the RGB and HSV color spaces quantized to 83 and 163

olors, respectively (area 2 × color space 2 × quantized level

e
m
a
w

ging and Graphics 32 (2008) 566–579 571

: subtotal 8), the average color of surrounding skin (R,
, B, H, S, V: subtotal 6), and average color differences
etween the peripheral tumor area and inside of the tumor
rea (R, G, B, H, S, V: subtotal 6). Note that the periph-
ral part of the tumor is defined as the region inside the
order that has an area equal to 30% of the tumor area
nd determined by a recursive dilation process applied to
he outer border, working inward from the border of the
xtracted tumor. The ratio of 30% was decided in our
reliminary experiments with visual assessment by several
ermatologists.

In the symmetry category, a total of 80 features were cal-
ulated. We designed 10 intensity (V) threshold values from
to 230 with a stepsize of 25. In the extracted tumor area,

hresholding was performed and the areas whose intensity
as lower than the threshold were determined. From each

uch area, we calculated eight features: area ratio to origi-
al tumor size, circularity, differences of the center of gravity
etween original tumor (Δx, Δy), standard deviation of the
istribution (σx, σy) and skewness of the distribution (σ3

x ,
3
y ).

In order to quantify the border structure, a total of 32
eatures were calculated. The tumor areas were divided into
ight equi-angle regions. In each region, we defined a win-
ow of size SB × SB centered on the border of the tumor.
n each window, a ratio of color intensity between the inside
nd outside of the tumor and a gradient of color intensity
ere calculated in the blue and luminance channels (ratio:
B and BL, gradient: BΔB and BΔL ), respectively. These
ere averaged over the eight equi-angle regions. We calcu-

ated four features for eight different window size SB: 1/5,
/10, 1/15, 1/20, 1/25, 1/30, 1/35 and 1/40 of the length
f the major axis of the tumor object. Note that we used
roportionate rated features rather than pre-defined absolute
nes in order to handle the images in a scale-invariant man-
er.

As for the texture features, a total of 176 parameters were
alculated. We prepared 11 co-occurrence matrices with distance
alue δ ranging from 1/2 to 1/64 of the length of the major
xis of the tumor object. Based on each co-occurrence matrix,
nergy, moment, entropy and correlation were calculated in four
irections (0◦, 45◦, 90◦ and 135◦).

These 428 image features were transformed into [0, 1] range
sing z-score normalization. This feature data was then orthog-
nalized using the principal component analysis (PCA). In this
tudy, we used two feature sets: the orthogonalized feature set
nd the original feature set.

.2. Feature selection

Feature selection is one of the most important steps for devel-
ping a classifier. The features used in each classifier were
elected by an incremental stepwise method with a hypoth-

sis test of Wilks’ lambda [37] using a linear model. This
ethod searches appropriate input parameters one after the other

ccording to the statistical rule. In each step, a statistical F-test
as performed and the feature with the highest partial correla-
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(

on Dataset-B (319 images) was approximately 1.5 s on a
Pentium 4 2.4 GHz processor.

(2) Comparison with state-of-the-art methods: Celebi et al.
recently compared seven tumor area extraction algorithms.

Table 3
Comparison of the extraction results for tumor area

Methods Precision (%) Recall (%)

(A) Thresholding [31] 99.2 82.8
72 H. Iyatomi et al. / Computerized Medica

ion coefficient under p < 0.05 (selected feature is statistically
ffective for the regression) was selected while inefficient (sta-
istically ignorable p > 0.10) feature was rejected. This process
as continued until a maximum correlation coefficient between
utputs of built linear model and the response variables of
he model (teach signal) was obtained. Note that this selection

ethod was used for both the orthogonalized feature set and the
riginal dataset. We used these selected features also as input
lements of ANN models.

.3. Diagnosis—ANN and linear classifiers

We used a back-propagation artificial neural network to clas-
ify the images based on the calculated features. Although ANNs
ave excellent learning and function approximation abilities, it
s desirable to restrict the number of hidden neurons and input
odes to a minimum in order to obtain a general classification
odel that performs well on future data [33].
Several training algorithms and refinements for ANNs have

een proposed in the literature to enhance the convergence speed
nd reduce the generalization error of the network. In this study,
e used several training algorithms, simple back-propagation

lgorithm, back-propagation with variable learning rate (VLR),
esilient (RES) back-propagation [34], scaled conjugate gradi-
nt (SCG) back-propagation [35], and Levenberg–Marquardt
LM) back-propagation [36]. We also tested alternative ker-
el functions (sigmoid and tangent) and different values for the
omentum term.
In our network design, we had only one output node, because

ur aim was to classify the input as malignant or benign. All
evi, such as Clark nevi, Reed nevi, blue nevi, and dermal nevi,
re considered benign. Note that we assigned a training signal
f 0.9 and 0.1 to melanoma and benign classes, respectively. If
he output of the ANN exceeded the diagnostic threshold θ, we
udged the input tumor as malignant.

After the candidates for the input features were determined,
e built several ANN classifiers and evaluated them using a

eave-one-out cross-validation procedure while changing the
umber of hidden neurons, training algorithms, training rate ε,
nd number of training iterations. Table 2 shows the training
arameters of the ANN classifier used in the cross-validation
rocedure. When we calculated the performance of the clas-
ifier, we moved the diagnostic threshold θ from 0.0 to 1.0
ith a stepsize of 0.001 and calculated the SE and SP for each
alue. For each ANN classifier, we decided the best thresh-
ld to be the point where the product of the SE and SP was
aximum.
On a separate note, our system provides the screening results

ot only in the form of “benign” or “malignant”, but also as a
alignancy score between 0 and 100 based on the output of the
NN classifier. We assigned a malignancy score of 50 to the

ase where the output of the ANN was θ. For other values, we
djust the score of 0, 20, 80 and 100 according to the output of

he ANN of 0, 0.2, 0.8 and 1.0, respectively using linear interpo-
ation. This conversion is based on the assumption that the larger
he score of the classifier, the greater the malignancy. Although
his assignment procedure is arbitrary, we believe the malig-

(
(
(
(
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ancy score can be useful in understanding the severity of the
ase.

We also built a linear classifier using the same
ethod as a baseline for the classification performance

omparison.

. Experiments and results

.1. Tumor area extraction

1) Comparison with novel methods: Figs. 5 and 6 show samples
of tumor extraction results. The evaluation results are sum-
marized in Table 3. Method A is the same as the first phase
of the proposed method and achieves a very high precision
(99%). However, it extracted areas smaller than the STA
and therefore the recall remained at low levels. The region-
based thresholding methods (Methods B and C) combine
Method A and the K-means algorithm. The K-means and
FCM (fuzzy c-means) algorithms, also used in [23,24],
need to determine appropriate initial conditions such as
the number and shape of the initial clusters. Because they
require a large number of clusters in order to achieve certain
fitness, they have high computational requirements. Time-
consuming procedures are not acceptable, especially for
Internet-based systems. Additionally, these methods require
other tasks such as selecting proper tumor areas from many
regions. In order to overcome these problems, we made
Methods B and C to use the result of Method A as the initial
clusters for their K-means algorithm to reduce the compu-
tational time. Segmentation was performed in the YCbCr or
HSV color spaces (Method B or C) and then the tumor area
was determined in the same way as the proposed method.
Because two relatively good initial clusters (initial tumor
area and surrounding skin area) were given, the process-
ing time was significantly reduced. However, the results of
these region-based methods were similar and the methods
could not extract important peripheral parts of the tumor as
in Method A.

The proposed dermatologist-like algorithm was supe-
rior in the extraction of the tumors (precision = 94.1 ±
4.5%, recall = 95.3 ± 5.2%) when compared to conven-
tional algorithms and manual extraction results determined
by 10 non-medical individuals. The average processing time
B) Thresholding + K-means (YCbCr) 98.6 84.6
C) Thresholding + K-means (HSV) 99.5 78.8
D) Average of 10 non-medical individuals 92.1 90.9
E) Our dermatologist-like 94.1 95.3
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Fig. 5. Examples of tumor area extraction—Clark nevi. (a) Conventional: precision = 100, recall = 74.3; proposed: precision = 98.9, recall = 87.5. (b) Conven-
tional: precision = 100, recall = 79.8; proposed: precision = 98.3, recall = 92.9. (c) Conventional: precision = 100, recall = 76.6; proposed: precision = 95.0,
recall = 90.6. (d) Conventional: precision = 99.9, recall = 78.8; proposed: precision = 94.5, recall = 93.6.
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F ision
t 7.7. (
r ision

5

ig. 6. Examples of tumor area extraction—melanomas. (a) Conventional: prec
ional: precision = 100, recall = 88.1; proposed: precision = 97.1, recall = 9
ecall = 88.3. (d) Conventional: precision = 100, recall = 84.6; proposed: prec

Their results are summarized in Table 4. In their evalua-

tion, our dermatologist-like tumor area extraction algorithm
achieved the lowest error in the benign category (mean ±
S.D. = 10.66 ± 5.13%) and the second lowest in the overall
image set (11.44 ± 6.40%).

(

= 96.2, recall = 76.1; proposed: precision = 84.0, recall = 91.9. (b) Conven-
c) Conventional: precision = 100, recall = 75.1; proposed: precision = 97.4,
= 98.4, recall = 95.0.

.2. Diagnostic accuracy for evaluation dataset
1) Classification performance based on the orthogonalized
feature set: We compared the diagnostic performance
of the linear and ANN classifiers on Dataset-C (1258



H. Iyatomi et al. / Computerized Medical Imaging and Graphics 32 (2008) 566–579 575

Table 4
Comparison of the extraction results with recent methods

Method Year Benign Melanoma Overall

Mean S.D. Mean S.D. Mean S.D.

Second dermatologist N/A 8.45 3.75 7.81 3.49 8.28 3.76
Histogram thresholding [21] 1998 12.55 7.27 21.33 15.37 14.79 10.61
OSFCM [22] 1999 23.00 12.61 28.31 15.37 14.79 10.61
GVF snakes [26] 2005 13.44 5.35 19.34 9.34 14.94 7.03
Dermatologist-like[27] 2006 10.66 5.13 13.70 8.93 11.44 6.40
Meanshift [28] 2006 11.53 9.74 13.29 7.42 11.98 9.19
M 6.36
S 5.73

P rea ex

T
P

#

1
3
7

3
4
5
7

2
3
7
2
7

7
7

7
7
7
7
7
7
7
7
7

7
7
7
7
7

7

7

T

odified JSEG [29] 2007 10.83
RM [30] 2007 10.92

ercentage border error statistics (from Ref. [30]). Bold row represents tumor a

images) (Fig. 7) . The incremental stepwise method selected
72 orthogonalized features from 428 principal compo-

nents and all selected features were statistically significant
(p < 0.05). Our linear classifier with 72 input parame-
ters achieved 85.3% in SE, 83.3% in SP and an AUC
value of 0.914. Table 5 compares the performance of sev-

able 5
erformance protectcomparison among several ANN and linear models

in #hid hid-func out-func ε

2 2 log b Linear 0.02
0 2 log Linear 0.02
2 2 log Linear 0.02

0 2 log Linear 0.02
0 2 log Linear 0.02
0 2 log Linear 0.02
2 2 log Linear 0.02

0 2 tan c Linear 0.02
0 2 tan Linear 0.02
2 2 tan Linear 0.02
0 2 tan Linear 0.02
2 2 tan Linear 0.02

2 2 tan log 0.02
2 2 tan tan 0.02

2 2 log log 0.02 d

2 3 log log 0.02 d

2 6 log log 0.02 d

2 2 log log 0.02
2 6 log log 0.02
2 2 log log 0.02
2 6 log log 0.02
2 2 log log 0.02
2 6 log log 0.02

2 2 log log 0.02
2 5 log log 0.02
2 6 log log 0.02
2 8 log log 0.02
2 10 log log 0.02

2 6 log log 0.02

2 N/A

he bold values are referred to typical results discussed in the Sections 5.2 and 6.2.
a The value at which SE × SP reaches maximum.
b sigmoid [0, 1] function.
c arctangent [−1, 1] function.
d Not constant. Decreasing linearly to 1/100 of initial value.
13.74 7.59 11.58 6.77
11.08 6.07 10.96 5.78

traction algorithm in the proposed web-based system (Ref. [27]).

eral ANN and linear models. In this experiment, the basic
back-propagation algorithm with constant training coeffi-

cients achieved the best classification performance among
the tested training algorithms. The ANN classifier with 72
inputs and 6 hidden neurons achieved the best performance
of 85.9% in SE, 86.0% in SP, and an AUC value of 0.928.

#train Algorithm SE a SP a AUC

100 Basic 82.8 68.9 0.835
100 Basic 73.2 81.7 0.848
100 Basic 70.2 83.5 0.808

100 LM 57.1 82.3 0.754
100 LM 75.3 74.7 0.807
100 LM 63.6 84.5 0.775
100 LM 61.6 88.0 0.748

100 Basic 77.3 77.0 0.839
100 Basic 76.8 77.4 0.843
100 Basic 66.7 86.5 0.790
100 LM 71.7 81.7 0.837
100 LM 65.2 89.3 0.789

100 Basic 68.7 79.9 0.766
100 Basic 67.7 79.9 0.734

100 VLR 80.3 72.6 0.833
100 VLR 81.8 69.4 0.823
100 VLR 77.8 71.6 0.809
100 RES 78.8 81.6 0.855
100 RES 75.8 77.2 0.830
100 SCG 74.2 77.2 0.820
100 SCG 75.3 71.2 0.793
100 LM 69.7 79.2 0.802
100 LM 58.6 80.9 0.738

100 Basic 81.8 85.6 0.893
100 Basic 88.4 81.7 0.915
100 Basic 88.9 81.1 0.914
100 Basic 88.4 82.8 0.926
100 Basic 87.9 82.9 0.923

30 Basic 85.9 86.0 0.928

Linear 85.3 83.3 0.914
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Fig. 7. ROC curve for Dataset-C (1258 images).

Note that the kernel of the hidden neurons and the output

neuron were of sigmoid type. The training coefficient and
the number of iterations were 0.02 and 30, respectively.
Introducing the momentum term boosted the convergence
rate at the expense of reduced diagnostic accuracy.

p
d
m
b

able 6
elected image features by the stepwise input selection strategy and the correspondin

tep addID a exID b Category Features

1 374 Texture Moment, 90◦, δ = 1
2 71 Color Min, red, peripheral
3 59 Color Average, saturation,
4 34 Color S.D., red, tumor
5 43 Color Average, green, tum
6 219 Asymmetry σ3

x , V ≤ 30
7 109 Color S.D., red, periphera
8 59
9 71
0 82 Color Average, blue, perip
1 213 Asymmetry Area ratio, V ≤ 30
2 274 Texture Moment, 45◦, δ = 1
3 105 Color Average, red, periph
4 18 Color Max, hue, tumor
5 370 Texture Moment, 45◦, δ = 1
6 374
7 310 Texture Moment, 90◦, δ = 1
8 170 Asymmetry σy , V ≤ 180
9 32 Color # of color, RGB 163

0 100 Color Skew, intensity, per
1 34
2 412 Texture Correlation, 135◦, δ

3 51 Color S.D., blue, tumor–n
4 160 Asymmetry Δy , V ≤ 205
5 408 Texture Correlation, 90◦, δ =
6 206 Asymmetry Circularity, V ≤ 55
7 354 Texture Moment, 45◦, δ = 1

he bold values are referred to typical results discussed in the Section 6.2.
a ID of added feature.
b ID of excluded feature.
c The value at which SE × SP reaches maximum.
ging and Graphics 32 (2008) 566–579

2) Classification performance on the original feature set: In
order to show the relationship between input (image fea-
tures) and output (diagnostic result), we built a linear
classifier using the original feature set, without performing
PCA. The incremental stepwise method selected 19 features
from 428 image features with 27 steps. Some parameters
were excluded during the input selection process, because
these parameters were highly correlated with some oth-
ers. The selected 19 features were statistically significant
(p < 0.05).

These features and the diagnostic accuracy of linear classifier
re summarized in Table 6. A linear classifier with 5 image
eatures (step 9) achieved 76.3% in SE, 75.7% in SP, and an AUC
alue of 0.836 using a leave-one-out cross-validation strategy.
lso, a linear classifier with 19 features (step 27) achieved 72.7%

n SE, 84.8% in SP, and an AUC value of 0.862.

.3. Improvement of availability

Our prototype Internet-based diagnosis system [18] was com-

osed of server side Java programs to exploit this language’s high
egree of compatibility with the Internet-server and the database
anagement system. However, the computational time required

y the tumor area extraction and feature calculation modules was

g classification results

#input SE c SP c AUC

/5.7 of image size 1 60.6 80.6 0.729
2 67.7 76.7 0.775

normal skin 3 72.7 74.0 0.806
4 69.7 76.1 0.813

or–normal skin 5 73.7 76.1 0.831
6 76.3 73.3 0.833

l–normal skin 7 84.8 67.2 0.837
6 75.3 76.2 0.837
5 76.3 75.7 0.836

heral 6 83.8 70.6 0.842
7 83.3 70.8 0.844

/45 of image size 8 82.3 70.1 0.840
eral–normal skin 9 73.7 79.0 0.843

10 73.7 79.3 0.844
/5.7 of image size 11 70.7 82.7 0.845

10 71.2 82.7 0.845
/23 of image size 11 81.3 72.4 0.845

12 79.8 74.7 0.847
, peripheral 13 79.3 75.0 0.852

ipheral 14 78.3 77.0 0.853
13 82.3 70.1 0.840

= 1/2.8 of image size 14 76.8 79.4 0.859
ormal skin 15 76.3 79.8 0.860

16 73.7 83.5 0.860
1/2.8 of image size 17 72.7 83.6 0.861

18 73.7 83.7 0.862
/8 of image size 19 72.7 84.8 0.862
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igh. In fact, in the prototype system, the processing of an image
ould take up to 20 s. Rubegni et al. pointed out this issue and
lso indicated that our system had no consideration of security
38].

To overcome these problems, we substituted the time-
onsuming Java code with a faster C code and provided support
or SSL (secure sockets layer) encrypted communication [39].
espite the introduction of the SSL, the processing time for one

mage was reduced by almost 75% as a result of these modifica-
ions. Furthermore, we modified the user interface so as to enable
t to perform the time consuming calculations while the user
nters the clinical information, thereby almost completely elim-
nating the actual waiting time. Recently, out-of-context images
ere submitted to the server and therefore, we request that the
sers register their name and e-mail address.

. Discussion

.1. Dermatologist-like tumor area extraction

Our tumor area extraction algorithm was designed to achieve
cale-invariant results. The parameter ζ used in the regionaliza-
ion phase did not make a major impact in the final extraction
esults under different scaled images because this parameter
efined proportional value to the image size and it was deter-
ined empirically as ζ = 1.00. On the other hand, window size

S = 7) was numerically defined and decided empirically. Since
he dilation process using this parameter in the region-growing
hase was performed recursively, this parameter worked well for
mages with various sizes. Due to image set size limitations, we
id not divide these images into separate training and test sets
or the determination of the remaining two parameters, i.e. ξmin
nd ξmax. Initially, we used a cross-validation strategy to deter-
ine the optimal values for these parameters. However, there
ere no significant differences among different value combina-

ions. Because the extraction performance of this method was
igh enough and its S.D. was not large when compared to that of
he dermatologists, we judged that the adopted parameter values
ξmin = 1.02 and ξmax = 1.07) were appropriate.

The conventional algorithms achieved almost perfect pre-
ision but did not provide sufficient recall. This means that
hese methods could not extract the tumor area sufficiently. In
ther words, the border of the tumor, which is an important
eature in the identification of melanoma, was often not ade-
uately extracted. The proposed algorithm achieved relatively
ow precision when compared to the conventional methods.
his is due to the fact that the borders of some tumors were
mbiguous with variability observed in even the dermatologist-
elected areas. Given that the S.D. of the tumor areas manually
xtracted by five dermatologists was 8.9%, the precision of the
roposed algorithm can be considered to be high enough and
he extracted areas were almost equivalent to those determined
y dermatologists. These results support the conclusion that

he proposed dermatologist-like method with a region-growing
pproach achieves results similar to those attained by dermatol-
gists. In addition, our algorithm provided better performance
han that by non-medical individuals. Therefore, we feel that

c
f
b
t

ging and Graphics 32 (2008) 566–579 577

user interface for manual tumor area extraction will not be
ecessary when we widen the target audience of the system to
ndividuals not trained in medicine.

According to the comparative study conducted by Celebi et
l. (Table 4), our tumor area extraction method achieved the best
esults in the benign category and the second best in the overall
mage set. Based on the abovementioned results, we can con-
lude that our algorithm provides accurate and stable extraction
esults. Our algorithm is very simple and therefore suitable for
n Internet-based system from responsiveness and robustness
erspectives.

.2. Diagnostic performance

The ANN classifier achieves a good classification perfor-
ance (SE = 85.9%, SP = 86.0%, AUC = 0.928) considering

hat the diagnostic accuracy of expert dermatologists was
5–84% and that of histological tissue examination on diffi-
ult cases was as low as 90% [6]. In our experiments, the basic
ack-propagation algorithm achieved best classification perfor-
ance and the linear classifier achieved competitive results. In

his study, the feature selection was performed by the incre-
ental stepwise method with Wilks’ λ hypothesis test because

his method selects or rejects a feature with statistical test in
ach selection step based on a linear model, effective features
or linear model were obtained. It is well known that build-
ng a classifier with highly correlated parameters is adversely
ffected by so called multicollinearity, and, in such a case,
he system loses accuracy and generality. This input selection

ethod rejects statistically ignorable features during incremen-
al selection and therefore, these highly correlated features
ere automatically excluded from the model. When we used

he orthogonalized feature set, this method did not exclude
ny features during the selection. On the other hand, as we
an see from Table 6, some features were excluded from
he regression model with the original feature set. With this
unctionality, the developed model is considered to be reli-
ble.

ANNs with different training algorithms did not achieve
etter performance as expected. Several training parameters
uch as training iterations and coefficients were selected based
n the results of the basic back-propagation. If we find
n effective training parameter set or effective input fea-
ures for each model, we expect that the performance will
e better. As shown in Table 6, classification performance
f the linear classifier based on the original image feature
et was lower (AUC = 0.862) than that obtained by using
CA-based dataset (AUC = 0.914), but relationship between

nput and output was clear. The linear classifier based on
nly five features (step = 9: texture, three color, and asym-
etry features) achieved reasonable results (SE = 76.3%,
P = 75.7%, AUC = 0.836) and based on these results we
onfirmed again that color features are important for dis-

riminating melanoma. If we can extract more discriminating
eatures from the image, better classification performance can
e obtained. Recent studies on high-level dermoscopic fea-
ure extraction include two pilot studies on pigment networks
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40,41] and globules [41] and four systematic studies on dots
42], blotches [43,44], and blue-white areas [45]. We plan to
ncorporate these kinds of features in the next version of our
ystem.

.3. The Internet-based screening system and data
tandardization

We used JPEG images for building the classifier, because they
re commonly used in the practice of dermoscopy. The images
sed in this study are of high quality and it is unlikely that the
se of the JPEG format would influence the results significantly.

The total processing time for one image was 3–5 s. In most
ases, the system completes processing while the user enters
linical information associated with the image.

Despite the good classification performance obtained, our
ystem has several limitations with regard to the acceptable
umor classes and the condition of the input images. However,
hese are in line with the limitations imposed in previous studies.
t the present, the diagnostic capability of our system does not
atch that of expert dermatologists, primarily because of the

ack of a large and diverse dermoscopy image set. We address
his issue by expanding our images set continually with the help
f university hospitals and private clinics.

Our Internet-based diagnostic system serves another impor-
ant purpose as a public dermoscopy image repository. We plan
o open our database to public use in the near future with the
ope that it will enable objective comparisons to be made among
arious studies.

Currently, our system is limited for use by dermatologists or
hysicians only. We would like to widen the target audience with
urther improvements to the system. Our short-term objective is
o design more effective and intuitive features that would enable
s to build a more accurate classifier using a large number of
ermoscopy images. In addition, we are planning to provide a
ore detailed output along with the final diagnosis result. If the

ystem were to provide quantitative measures for various clinical
riteria, such as asymmetry, border structure, color, differential
tructures, etc. this would increase its clinical acceptance.

. Conclusions

In this paper, we have developed an Internet-based melanoma
creening and data collection system. Key components of this
ystem are a dermatologist-like tumor area extraction algo-
ithm and an artificial neural network classifier. The proposed
ermatologist-like tumor area extraction algorithm was superior
n extraction performance (precision = 94.1%, recall = 95.3%)
hen compared to conventional methods, results of manual

xtraction by 10 non-medical individuals, and various state-of-
he-art methods described in the literature. Our neural network
lassifier with improved tumor area extraction results achieved
ery competitive results (SE = 85.9%, SP = 86.0%, AUC =

.928) using a cross-validation test on a set of 1258 dermoscopy
mages. With the Internet connection, anyone who has a der-

oscopy image can use our screening system from all over the
orld. In its current form, our system should not be considered

[

ging and Graphics 32 (2008) 566–579

s an alternative for dermatologists, but it should be viewed as
n effective diagnosis support system that has the capability of
nding early-stage melanomas.
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