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Abstract

Decision makers operating in modern defence theatres need to comprehend and reason with huge

quantities of potentially uncertain and imprecise data in a timely fashion. In this paper, an automatic

information fusion system is developed which aims at supporting a commander’s decision making

by providing a threat assessment, that is an estimate of the extent to which an enemy platform

poses a threat based on evidence about its intent and capability. Threat is modelled by a network of

entities and relationships between them, while the uncertainties in the relationships are represented

by belief functions as defined in the theory of evidence. To support the implementation of the threat

assessment functionality, an efficient valuation-based reasoning scheme, referred to as an evidential

network, is developed. To reduce computational overheads, the scheme performs local computations

in the network by applying an inward propagation algorithm to the underlying binary join tree. This

allows the dynamic nature of the external evidence, which drives the evidential network, to be taken

into account by recomputing only the affected paths in the binary join tree.
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1 Introduction

Situation and threat assessment are two important interdependent information fusion concepts which

are usually treated jointly by the military command and control (C2) process. According to [1], situation

assessment establishes a view of the battlespace in terms of the observed activities, events, manoeuvres,

locations and organisational aspects of the enemy force elements and from this view infers what is

happening or what is going to happen on the battlefield. Threat assessment, on the other hand,

estimates the degree of severity with which the engagement events will occur and its significance is

in proportion to the perceived capability of the enemy to carry out its hostile intent. An essential

prerequisite for winning a battle is for the decision maker (commander) to be aware of the current

situation and threat rapidly in order to act properly and in a timely fashion.

The amount of data and information potentially relevant and available to a decision maker in

modern warfare far exceeds the human ability to review and comprehend them in a timely manner.

Moreover, the decisions usually have to be made under very stressful conditions which adversely affect

humans and make them prone to error. All this leads to the need for the development of an automatic

knowledge-based information fusion system that will support the commander’s decision process in a

reliable, timely and consistent manner [2]. Similar problems exist in other fields of human endeavour

(management of commercial enterprises, medical diagnosis, etc), although the military C2 domain is

particularly challenging due to the inherently incomplete, uncertain and imprecise data.

A review of the early (pre 1990s) attempts at building knowledge-based expert systems is presented

in [1, Ch.9]. The main drawback with these early attempts was the lack of a means and associated

difficulties in handling uncertain domain knowledge and imprecise or non-specific evidence. The invention

of Bayesian networks [3] in the mid 1980s for knowledge representation and probabilistic inference

represented the next important stepping stone in the development of expert systems. Since then,

Bayesian networks have been the main technique reported in the literature for constructing situation

assessment [4, 5, 6], threat assessment [7] and intent assessment [8, 9] systems. Bayesian networks

are based on the assumption that all data (domain knowledge and accumulated evidence) can be
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conveniently represented by probability functions. In reality, this may not always be the case and so,

as alternative to Bayesian networks, which rely on a representation of the uncertain information in

terms of probability functions, other network-based systems [10, 11] employing alternative uncertainty

formalisms, such as possibility theory [12, 13, 14] and the theory of evidence (or the belief function

theory) [15, 16], have been developed.

In 1989 Shenoy [17, 18] introduced the concept of a valuation-based system (VBS) which provides a

general framework for managing uncertainty in expert systems1. There exist specialisations of the VBS

for each of the three major theories of uncertainty, namely probability theory, possibility theory and the

theory of evidence2. In a VBS, knowledge is represented by a network of variables (nodes) corresponding

to the entities of the domain (and their states), and of links (edges) representing the relationships

between these entities. For solving a particular problem, we first need to build a network model in

terms of these nodes and links. Then we associate a valuation to each link which encapsulates the

information (based on our domain knowledge and prior information) about how to propagate evidence

and uncertainty from one entity to another via that link. Inference within a VBS is performed via

two operators called combination and marginalisation. Combination corresponds to the aggregation of

knowledge, while marginalisation refers to the focussing (coarsening) of it. Typically, we draw inferences

on a small subset of variables within a valuation-based network. A “brute-force” approach to reasoning

within a VBS would be to compute the joint valuation for the entire network and then to marginalise

it to the subset of variables of interest for decision making. The trouble with this approach, however,

is that it becomes computationally intractable even for small scale problems. A better alternative to

the brute-force approach is to compute the required marginals of the joint valuation without explicitly

computing the joint valuation. Shenoy and Shafer [20] established the set of axioms that combination

and marginalisation need to satisfy in order for the local computation concept to be applicable. These

1In addition to being a framework for managing uncertainty, VBSs have been used in optimisation problems, constraint

satisfaction problems, etc [18].
2Other examples of VBSs have been developed for handling uncertain information, such as assumption-based systems

[19] which are based on propositional logic.
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axioms are satisfied for all three major theories of uncertainty mentioned earlier. In this paper we have

chosen to focus on VBSs in the context of the theory of evidence, due to the expressive power of belief

functions which can represent both classical probability functions and possibility/necessity functions [21,

Ch.2]. This is particularly important when the valuations need to represent domain knowledge that is

expressed in the form of uncertain implication rules [22, 23]. In order to emphasise this aspect of our

work, we refer to the resulting reasoning networks as evidential networks. In the paper we develop

a representative model of threat in the context of air defence and implement it using an evidential

network. Local computations in the network are performed using the inward propagation algorithm on

the binary join tree [24]. We introduce a modified version of the standard inward propagation algorithm,

which takes into account the dynamic nature of input valuations (the external evidence which drives

the evidential network) by recomputing only the affected paths in the binary join tree.

The paper is organised as follows. Section 2 describes valuation-based systems and the algorithms for

local computation. Section 3 reviews the main concepts and tools from the theory of evidence. Section 4

develops the entities and relationships of a threat model cast in terms of an evidential network. Section

5 presents the numerical analysis and results for the proposed reasoning scheme. Finally, Section 6

discusses the conclusions drawn from the study and possible avenues for further research.

2 Valuation based systems

2.1 Networks and axioms for local computation

A valuation based system is a framework for knowledge representation and inference. Real-world prob-

lems are modelled in this framework by a network of interrelated entities, called variables. The re-

lationships between variables (possibly uncertain or imprecise) are represented by the functions called

valuations. The two basic operations for performing inference in a VBS are combination and marginal-

ization. Throughout the paper we will deal with discrete-valued variables characterised by finite sets of

possible values. Let x denote a variable in a VBS; the set of its possible values will be denoted by Θx

and referred to as the frame of x.
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In a nutshell, a VBS [18] consists of a 5-tuple {V,ΘV,ΦV,⊕, ↓}, where V denotes the set of all

variables in the model, ΘV = {Θx : x ∈ V} is the set of frames of all variables, ΦV = ∪{ΦD : D ⊆ V}

denotes the set of all valuations, ⊕ is the combination operator and ↓ is the marginalization operator.

Further explanation follows.

• Variables and Frames. For a subset of variables D ⊆ V, frame ΘD denotes the Cartesian

product of the values of the variables x ∈ D, that is ΘD

△
= ×{Θx : x ∈ D}, with × denoting

the Cartesian product. The elements of ΘD are referred to as configurations. For example,

suppose D = {x, y, z} is a subset of variables in a VBS, and that their frames are specified as

follows: Θx = {x1, x2}, Θy = {y1, y2} and Θz = {z1, z2}. Then the frame of D consists of 8

configurations and is given by:

ΘD = {(x1 y1 z1), (x1 y1 z2), . . . , (x2 y2 z2)}.

• Valuations. Valuations are primitives in the VBS framework. A valuation ϕ represents some

knowledge about the possible values of a set of variables D. More precisely, given D ⊆ V,

a valuation ϕ : ΘD → [0, 1] is a function mapping the frame of D into the interval [0, 1].

The set of variables, on which the valuation is defined, will be denoted as d(ϕ) and called the

“domain” of ϕ. The symbol ΦD denotes the set of valuations for the set of variables D, that is

ΦD

△
= {ϕ : d(ϕ) = D}.

• Combination. Combination ⊕ is a binary function on valuations, ⊕ : (ΦV,ΦV) → ΦV.

Given two valuations ϕ1, ϕ2 ∈ ΦV defined on the domains D1 ⊆ V and D2 ⊆ V, respectively,

the combination ϕ1 ⊕ ϕ2 is a valuation on domain D = D1 ∪ D2. Formally we write this as

d(ϕ1 ⊕ ϕ2) = d(ϕ1) ∪ d(ϕ2) = D1 ∪ D2.

• Marginalization. Marginalization ↓ is a binary operation and is used for focusing the knowledge

onto a smaller domain, ↓: (ΦV, 2V) → ΦV. If ϕ is a valuation for the domain D ⊆ V and

D1 ⊆ D, then ϕ↓D1 is a valuation on the domain D1. Hence, it follows that d(ϕ↓D1) = D1.
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Instead of marginalization another basic operation called variable elimination can be defined and denoted

as ϕ−x △
= ϕ↓d(ϕ)\{x} with x ∈ V. Note that x /∈ d(ϕ) implies ϕ−x = ϕ.

The straightforward (“brute-force”) approach for making inference in a valuation network is to

compute the joint valuation on V, that is to combine sequentially all the valuations in the model and

then to marginalize this joint valuation to the sub-domain of interest D
o afterwards. However, when

there are many variables in the model, computing the joint valuation directly becomes computationally

intractable. Clearly the number of variables increases with each combination and the complexity grows

exponentially with the number of variables. For instance, if there are n variables and each variable

can assume m different values (i.e. each variable has m configurations in its frame), then there are

mn configurations in the joint domain of all variables. A way for reducing this complexity is to take

advantage of the local structure of the problem. In most cases, complex problems can be decomposed

into sub-problems involving a smaller number of variables. Furthermore, only a few variables are often

of interest for decision making, while the remaining ones are auxiliary (non-interesting) variables, used

only to model the problem. The fundamental idea of local computation [18, 24] is to exploit the local

structure of the problem to calculate the marginals of the joint valuation without explicitly computing

the joint valuation. This is done by combining the valuations on small groups of variables, such that

the non-interesting variables are eliminated step-by-step. At the end of this process the final result is

the valuation on the variables of interest. This is possible if the following axioms are satisfied [20, 25].

1. Commutativity and associativity of combination: combination is commutative and associative

in ΦV.

2. Order of deletion does not matter: if ϕ ∈ ΦV is a valuation and x1 and x2 are two variables

in D = d(ϕ), then (ϕ↓(D\{x1}))↓(D\{x1,x2}) = (ϕ↓(D\{x2}))↓(D\{x1 ,x2}).

3. Distributivity of marginalization over combination: if ϕ1, ϕ2 ∈ ΦV are valuations with

domains D1 and D2, respectively, and x is a variable such that x ∈ D2 but x /∈ D1 then

(ϕ1 ⊕ ϕ2)
↓((D1∪D2)\{x}) = ϕ1 ⊕ (ϕ

↓(D2\{x})
2 ).
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Axiom 2 says that if a valuation has to be marginalized to a smaller sub-domain, then the order in which

the variables are eliminated is irrelevant. Axiom 3 is the fundamental axiom for the local computation.

It states that the valuation ϕ1 ⊕ (ϕ
↓(D2\{x})
2 ) can be obtained without computing (ϕ1 ⊕ ϕ2). This

property allows substantial savings on computational resources, because the combination (ϕ1 ⊕ ϕ2) is

on the frame of the variables in D1 ∪ D2, while the combination ϕ1 ⊕ (ϕ
↓(D2\{x})
2 ) is on the frame of

(D1 ∪ D2)\{x}.

Notice that this method is not an approximation. In fact, if these axioms are satisfied, the result

obtained by applying the local computation paradigm is exactly equivalent to that provided by the

brute-force approach. For all major theories of uncertainty it can be proved that combination and

marginalization satisfy the axioms for local computation [20]. In the next section, we describe an

algorithm for performing inference via a VBS using local computation.

2.2 Fusion algorithm

The core of the VBS is the fusion algorithm [18, 24], which allows to perform inference via a VBS

using local computation. Let Ψ = {ϕ1, ϕ2, . . . , ϕr} ⊆ Φ be a given set of valuations and D
o ⊆ V,

with V = d(ϕ1) ∪ d(ϕ2) ∪ · · · ∪ d(ϕr), the domain of interest for decision making. The fundamental

operation of the fusion algorithm is to delete successively all variables x ∈ ∆, where ∆
△
= V\Do is the

set of variables of no interest in the VBS. The variables can be deleted in any sequence, since according

to Axiom 2 all deletion sequences lead to the same result. However, different deletion sequences can

imply a different computational burden. Finding an optimal elimination sequence is an NP-complete

problem [18], but there exist several heuristics for finding a good elimination sequence [23, 26, 27].

In the fusion algorithm, the marginal of the joint valuation is computed by successively eliminating

all the variables in ∆. With respect to the variable x ∈ ∆ to be eliminated, two subsets of valuations

can be defined

Ψx
△
= {ϕ ∈ Ψ : x ∈ d(ϕ)} and Ψx̄

△
= {ϕ ∈ Ψ : x /∈ d(ϕ)}

As a consequence of axiom 3, only the valuations in Ψx are affected by the elimination of x. Thus, the
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remaining set of valuations after eliminating x from Ψ is

Fusx{ϕ1, ϕ2, . . . , ϕr}
△
= {⊕Ψx}

↓(S\{x}) ∪Ψx̄
△
= {ϕr+1} ∪ Ψx̄ (1)

where S
△
=

⋃

ϕi∈Ψx

d(ϕi). Note that the Fusx operation in (1) amounts to the union of all valuations not

involving x together with the single valuation ϕr+1. The latter is obtained by combining all valuations

involving x and then marginalizing the resulting valuation to S\{x}. The valuation on the domain of

interest D
o can thus be obtained by recursively applying the fusion algorithm and deleting all variables

in ∆ = {x1, x2, . . . , xm}, i.e.

(ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕr)
↓Do

= ⊕
{

Fusxm

{

Fusxm−1 {. . . Fusx1{ϕ1, ϕ2, . . . , ϕr}}
}}

(2)

This technique allows a reduction in the computational load for two reasons: the beliefs are combined on

local domains and the variable elimination keeps the domains of the combined beliefs, i.e. d(ϕ1⊕ϕ2) =

d(ϕ1) ∪ d(ϕ2), to a reasonably small size.

Example 1. Let us consider the set of valuations {ϕ1, ϕ2, ϕ3, ϕ4} defined respectively on the domains

d(ϕ1) = {x1, x2}, d(ϕ2) = {x2, x3}, d(ϕ3) = {x3, x4}, d(ϕ4) = {x4, x1}, where x1, . . . , x4 are the

variables of the problem. Assume that x1 is the decision variable, i.e. D
o = {x1}. Then it follows that

∆ = {x2, x3, x4} is the set of variables of no interest. The objective is to apply the fusion algorithm to

compute the combined valuation (ϕ1 ⊕ ϕ2 ⊕ ϕ3 ⊕ ϕ4)
↓Do

. The steps of the fusion algorithm are the

following:

1. ϕ5 = (ϕ1 ⊕ ϕ2)
↓(d(ϕ1)∪d(ϕ2))\{x2}, Fusx2 = {ϕ5} ∪ Ψx̄2 = {ϕ3, ϕ4, ϕ5}

where d(ϕ5) = (d(ϕ1) ∪ d(ϕ2))\{x2} = {x1, x3} is the domain of ϕ5.

2. ϕ6 = (ϕ3 ⊕ ϕ5)
↓(d(ϕ3)∪d(ϕ5))\{x3}, Fusx3 = {ϕ6} ∪ Ψx̄3 = {ϕ4, ϕ6}

where d(ϕ6) = (d(ϕ3) ∪ d(ϕ5))\{x3} = {x1, x4}

3. ϕ7 = (ϕ4 ⊕ ϕ6)
↓(d(ϕ4)∪d(ϕ6))\{x4}, Fusx4 = {ϕ7} ∪ Ψx̄4 = {ϕ7}

where d(ϕ7) = (d(ϕ4) ∪ d(ϕ6))\{x4} = {x1}
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At the end of the last step the valuation Fusx4, defined on the domain of interest {x1}, represents the

solution of the problem. �

2.3 Dynamic fusion

The fusion algorithm (2) works well if the valuations are static (invariant in time). However, we may

want to compute the marginal of the variables of interest more than once, for example every time one or

more valuations in the VBS change. In this case, we would need to repeat the application of the fusion

algorithm every time any of the valuations in Ψ is changed. This would clearly be inefficient, since it

would result in a lot of duplication in computation. To avoid this, it is more efficient to represent the

VBS in the form of a binary join tree (BJT) and then to propagate the changes.

A BJT is a binary tree (N,E) of nodes N = {n1, n2, . . . , nf} and edges E = {(n,m) : n,m ∈

N,n 6= m}, where each node has at most three neighbors, one parent and two children. A node without

children is called a leaf. A node without a parent is called a root. As such, a BJT is only a graphical

representation of the fusion algorithm [18]. For this reason, like in the fusion algorithm, the structure

of the BJT (i.e. nodes and edges) strongly depends on the elimination sequence ∆.

A BJT has the following characteristics.

• To each node ni a subset of variables Di ⊆ V and a valuation ϕ(ni), such that d(ϕ(ni)) = Di

are associated.

• The domain of the root of the BJT is such that D
o ⊆ d(root).

• Edges represent the order in which the valuations must be combined (in order to calculate the

valuation of the root on D
o).

• Nodes and edges represent steps of the fusion algorithm.

• A BJT has to satisfy the Markov property, which means that Di ∩ Dj ⊆ Dk for every pair of

nodes ni and nj and for every node nk ∈ Path(ni, nj), where Path(ni, nj) denotes the set of
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nodes on the path between ni and nj .

Note that the Markov property is one of the most important properties of the BJT, as will be discussed

in Sec. 5.1. An algorithm for building a BJT is given in appendix A.

In a BJT, marginals are computed by means of a message-passing scheme among the nodes. Initially

only the valuations of leaves of the BJT are specified. The process of propagating the valuations from

the leaves toward the root of a BJT is called inward propagation [18, 24] and can be implemented

with the algorithm reported in appendix B. The key feature of the BJT and inward propagation is that

the combination operator is applied only at the non-leaf nodes of the tree, between their left and right

children. The advantage of using inward propagation on a BJT instead of the fusion algorithm lies in the

ability to re-use the computations of the inward phase if the marginals need to be re-computed. In this

way, every time one or more valuations of the leaves of the BJT change, the inward phase re-calculates

the valuations for all the nodes in the BJT which are affected by the change. That is, if ni is the leaf

whose valuation has changed, then the inward phase re-computes the valuations of all the nodes of the

BJT along Path(ni, root).

Suppose the BJT has been constructed for the domain of interest D
o, and the inward propagation

has been carried out. Let us also assume that the domain of interest has changed. One way to carry out

the inference would be to create a new BJT and to perform again inward propagation. However, there

is a more efficient alternative, the so called outward propagation [24]. Outward propagation distributes

the knowledge from the root to the leaves of the tree, by reversing the direction in which the messages

are passed between nodes [24]. Note that in the threat assessment problem the set D
o is fixed and

hence outward propagation is not used in the sequel.

In summary, a BJT can be seen as a data structure which allows the intermediate results of the

combination process to be saved and the marginals to be computed efficiently.
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3 Belief functions as valuations

A VBS with valuations expressed by belief functions (as defined in the theory of evidence) will be referred

to as an evidential network. The theory of evidence satisfies all of the VBS axioms for local computation

listed in Sec.2.1. In this section we review the main components and tools of the theory of evidence.

Let frame Θh = {h1, h2, . . . , hn} define a finite set of possible values of variable h in an evidential

network. Elementary values hi (i = 1, . . . , n) of the frame Θh are assumed to be mutually exclusive

and exhaustive so that n = |Θh| is the cardinality of the frame. The beliefs about the actual value of

the variable h are expressed on the subsets of Θh. The set containing all possible subsets of Θh, i.e.

the power set of Θh, is denoted by 2Θh = {H : H ⊆ Θh}; its cardinality is 2n. In this formalism,

belief is represented by a so-called basic belief assignment (BBA) m : 2Θh → [0, 1], that satisfies

∑

H⊆Θh
m(H) = 1. Thus for H ⊂ Θh, m(H) is the part of the belief that supports H (i.e. the fact

that the true value of h is in H), but due to the lack of further information, does not support any strict

subset of H. The subsets H such that m(H) > 0 are referred to as focal elements of the BBA. The

state of complete ignorance about the variable h is represented by a vacuous BBA defined as m(H) = 1

if H = Θh and zero otherwise. Since the valuations in the evidential networks are BBAs, we denote

them in the sequel by m in place of ϕ.

3.1 Combination

The combination operator in the theory of evidence is carried out using Dempster’s rule of combination.

Let the BBA mD1
1 be defined on a domain (subset of variables) d(m1) = D1 ⊆ V. Similarly let mD2

2

be another BBA defined on a domain d(m2) = D2 ⊆ V. If d(m1) ≡ d(m2) = D, the two BBAs are

combined directly using Dempster’s rule [15]:

(mD

1 ⊕ mD

2 )(A) =

∑

B∩C=A

mD
1 (B) mD

2 (C)

1 −
∑

B∩C=∅

mD
1 (B) mD

2 (C)
(3)

where A,B,C are subsets of the frame defined by the Cartesian product of the variables in D; i.e.

A,B,C ⊆ ΘD. If the two domains are different, D1 6= D2, then before we apply Dempster’s rule,
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we must extend both BBAs to the joint domain D1 ∪ D2 in such a way that they express the same

information before and after the extension (hence referred to as the vacuous extension and denoted by

↑). The vacuous extension of mD1
1 to D1 ∪ D2 is defined as [18]

m
D1↑(D1∪D2)
1 (C) =



















mD1
1 (A) if C = A × ΘD2 , A ⊆ ΘD1

0 otherwise.

(4)

Example 2. Suppose V = {x, y, z} with frames Θx = {x1, x2}, Θy = {y1, y2} and Θz = {z1, z2}.

Let D1 = {x}, and D2 = {y, z}, i.e. ΘD1 = Θx and ΘD2 = {(y1 z1), (y1 z2), (y2 z1), (y2 z2)}. Let the

BBA mD1
1 be defined such that mD1

1 ({x1}) = 0.7 and mD1
1 ({x1, x2}) = 0.3. Then the vacuous exten-

sion of mD1
1 to D1 ∪D2 is given by: m

D1↑(D1∪D2)
1 ({(x1 y1 z1), (x1 y1 z2), (x1 y2 z1), (x1 y2 z2)}) = 0.7

with the remaining belief of 0.3 assigned to ΘD1∪D2 = {(x1 y1 z1), (x1 y1 z2), (x1 y2 z1), (x1 y2 z2),

(x2 y1 z1), (x2 y1 z2), (x2 y2 z1), (x2 y2 z2)}. �

Dempster’s rule of combination in the general case of possibly non-identical domains is then defined

as:

mD1
1 ⊕ mD2

2 = m
D1↑(D1∪D2)
1 ⊕ m

D2↑(D1∪D2)
2 . (5)

3.2 Marginalisation

Marginalisation is a projection of a BBA defined on domain D onto a BBA defined on a coarser domain

D
′ ⊆ D. Formally we write:

mD↓D′

(A) =
∑

B↓A

mD(B) (6)

where the summation in (6) is over all B ⊆ ΘD such that the configurations in B reduce to the

configurations in A ⊆ ΘD′ by the elimination of variables D \ D
′.
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Example 3. Let D = {x, y, z} and D
′ = {x, z}, with the frames of variables Θx = {x1, x2},

Θy = {y1, y2} and Θz = {z1, z2, z3}. Suppose BBA mD has three focal sets:

mD({(x1 y1 z1)}) = 0.6

mD({(x1 y1 z1), (x1 y2 z2)}) = 0.3

mD({(x1 y1 z1), (x1 y2 z1), (x1 y2 z2)}) = 0.1.

Then:

mD↓D′

({(x1 z1)}) = 0.6

mD↓D′

({(x1 z1), (x1 z2)}) = 0.4 �

Remark. Marginalization is the inverse operation of extension, but, in general, extension is not the

inverse of marginalization. For instance, consider a valuation ϕ and three generic sets D1, D2 and D3

such that d(ϕ) = D2 and D1 ⊆ D2 ⊆ D3; then it turns out that (ϕ↑D3)↓D2 = ϕ but, in general,

(ϕ↓D1)↑D2 6= ϕ.

3.3 Representation of uncertain implication rules

Often expert knowledge is expressed in the form of uncertain implication rules, such as “if A then B”

with a certain degree of confidence. Suppose there are two disjoint domains, D1 and D2 with associated

frames ΘD1 and ΘD2 , respectively. Formally, an implication rule is an expression of the form

A ⊆ ΘD1 ⇒ B ⊆ ΘD2 . (7)

Furthermore, let us assume that this implication rule is valid only in a certain percentage of cases, i.e.

with a probability (confidence) p such that p ∈ [α, β], with 0 ≤ α ≤ β ≤ 1.

An implication rule can be expressed by a BBA using the principle of minimum commitment [28]

and its instantiation referred to as the ballooning extension [28, 22]. Thus the implication rule of (7)
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can be expressed by a BBA consisting of 3 focal sets on the joint domain D1 ∪D2 [23]:

mD1∪D2(C) =



































α, if C = (A × B) ∪ (Ac × ΘD2)

1 − β, if C = (A × Bc) ∪ (Ac × ΘD2)

β − α, if C = ΘD1∪D2

(8)

where Ac is the complement of A in ΘD1 , and accordingly Bc is the complement of B in ΘD2 .

Example 4. Let D1 = {x}, D2 = {y}, Θx = {x1, x2, x3}, Θy = {y1, y2, y3}, A = {x1, x2} and

B = {y2}. Then the BBA representation of the rule A ⇒ B with confidence p ∈ [α, β] is given by:

m{x,y}({(x1 y2), (x2 y2), (x3 y1), (x3 y2), (x3 y3)}) = α

m{x,y}({(x1 y1), (x1, y3), (x2 y1), (x2, y3), (x3 y1), (x3 y2), (x3 y3)}) = 1 − β

m{x,y}({(x1, y1), (x1, y2), (x2, y1), (x2, y2), (x2, y3), (x3, y1), (x3, y2), (x3, y3)}) = β − α. �

Note that in the special case α = β, the BBA has only two focal sets. Implication rules are sometimes

used to express the valuations (BBAs) on the leaf nodes of a BJT.

3.4 Pignistic transformation

Belief functions cannot be directly used for decision making [29], hence we need to introduce a mapping

of a belief measure to a probability measure. The pignistic transformation is the only such mapping

satisfying the requisite linearity property [29]. Let mD be a BBA defined on a subset of variables D

with corresponding frame ΘD. The pignistic transform of mD is defined for every element of the frame

θ ∈ ΘD as follows [29]:

BetP (θ) =
∑

θ∈A⊆ΘD

1

|A|

mD(A)

1 − mD(∅)
. (9)

BetP is the probability measure that we use for decision making on the domain of interest D
o ⊆ V

within evidential networks.
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4 Threat model

In this section we introduce a model of threat in the context of an air-to-air engagement which draws

on ideas from [1] and [30]. The model is shown in the form of an evidential network in Fig.1, where the

variables are represented by circular nodes and the valuations (BBAs) by diamond shapes. The list of

variables with explanations and frame definitions is given in Table 1. Each valuation node is connected

by edges to the subset of variables which define its domain. For example, the domain of valuation

(BBA) m1 consists of variables T, HI and C. Any pair of variables which are not directly connected are

assumed to be conditionally independent. The domain of interest for decision making is the singleton

D
o = {T}.

Figure 1: A model of threat assessment

According to the threat model in Fig.1, variable T (threat) depends on the degree of hostile intent

(HI) of the opponent and on its capability (C). Assuming the threat linearly related to both HI and C,

we may choose to represent the valuation m1 by the following rule: T=HI+C. Consider in the Cartesian
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Table 1: Variables of the threat assessment model

Variable Description Frame Explanation

T Threat {0, 1, . . . , 10} 0 none, 10 highest degree of T

HI (Hostile) Intent {0, 1, . . . , 6} 0 none (benign), 6 highest degree of HI

C Capability {0, 1, 2, 3, 4} 0 none, 4 highest degree of C

EM Evasive manoeuvre {0, 1} 0 is false, 1 is true

FCR Fire Control Radar {0, 1} 0 is OFF, 1 is ON

CM Countermeasures {0, 1} 0 is false, 1 is true

PC Political climate {0, 1} 0 is peace, 1 is war

NF Non-friendly platform {0, 1} 0 is false, 1 is true

IFFS Correct IFF squawking {0, 1} 0 is false, 1 is true

FPA Flight plan agreement {0, 1} 0 is false, 1 is true

PT Platform type {0, 1, . . . , 5} E.g. 0 is EuroFighter, 1 is FA-22 raptor, etc.

WER Weapon Engagement range {0, 1, 2} 0 is small, 1 medium, 2 long range

I Imminence {0, 1, 2} 0 is low, 1 medium, 2 is high

product space T×HI×C the set of triples (t, h, c), such that t = h + c, where according to the frames

of the variables in Table 1, t ∈ {0, . . . , 10}, h ∈ {0, . . . , 6} and c ∈ {0, . . . , 4}. Then we can represent

the rule T = HI + C by the following BBA:

m1({(0, 0, 0), (1, 0, 1), . . . , (4, 0, 4),

(1, 1, 0), (2, 1, 1), . . . , (5, 1, 4),

. . .

(6, 6, 0), (7, 6, 1), . . . , (10, 6, 4)}) = 1. (10)

This BBA has a single focal set consisting of 35 triples (t, h, c).
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The degree of hostile intent (HI) is proportional to the evidence that the target (opponent) behaves

in a hostile manner. In particular, the target may perform evasive manoeuvres (EM), it may employ

countermeasures (CM), such as deception jamming or chaff, we may have evidence that it is not a

friendly (NF) platform, and most importantly, its fire-control-radar (FCR) could be turned on (meaning

it intends to fire a weapon soon). In addition, the political climate (PC) has an influence on the

HI variable in the sense that the climate of political tension means that the target is more likely to

have a hostile intent. The relationship between the six variables mentioned (HI,EM,FCR,CM,PC,NF),

is captured by the valuation m2. How this relationship may be represented by m2 depends on many

factors (doctrine, engagement rules, etc), but for the sake of illustration we adopt the following simple

rule: HI = EM+2·FCR+CM+PC+NF. This rule reflects the fact that the FCR variable is weighted

higher than other variables in contributing to the HI. The adopted rule is represented by the BBA m2

defined on a 6 dimensional product space HI×EM×FCR×CM×PC×NF as follows:

m2({(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1), (1, 0, 0, 0, 1, 0),

(2, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 0) . . . , (2, 0, 1, 0, 0, 0), . . . , (6, 1, 1, 1, 1, 1)}) = 1 (11)

Thus m2 has a single focal set consisting of 32 six-tuples.

Identification friend or foe (IFF) is a radio interrogator device for positive identification of friendly

aircraft. Variable IFFS is true if the target responds correctly to the interrogation. In order to define the

valuation m3 on domain {NF, IFFS}, suppose that we have confidence that in 95% to 100% of the cases

if the IFFS is true, than the target is indeed a friend (i.e. NF = 0). On the other hand, suppose the

evidence indicates that the lack of response to the IFF interrogation (IFFS=0) is due to the non-friendly

(NF= 1) target only in 10 to 30% of the cases. We can then summarise “expert” knowledge about the

domain {NF, IFFS} by the following set of independent rules:

(IFFS = 1) ⇒ (NF = 0) with confidence between 0.95 and 1

(IFFS = 0) ⇒ (NF = 1) with confidence between 0.10 and 0.30

Then according to Sec.3.3, each of the rules above can be represented by a BBA; when the BBAs are
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combined by Dempster’s rule, we obtain the following valuation on the product space IFFS × NF:

m3 ({ (0, 0), (0, 1), }) = 0.6650

m3 ({ (0, 0), (0, 1), (1, 0) }) = 0.1900

m3 ({ (0, 1), (1, 0) }) = 0.0950

m3 ({ (0, 0), (0, 1), (1, 1) }) = 0.0350

m3 ({ (0, 1), (1, 0), (1, 1) }) = 0.0050

m3 ({ (0, 0), (0, 1), (1, 0), (1, 1) }) = 0.0100

(12)

Flight plans are plans filed by pilots with the local aviation authority prior to flying. They generally

include basic information such as departure and arrival points, estimated time, etc. If there is evidence

that an air target is flying in accordance with a flight plan (variable FPA = 1), then this is a strong

indication that it is a friend (or neutral), i.e. NF= 0. Suppose we can again summarise expert knowledge

about the domain {FPA,NF} by the following set of rules:

(FPA = 1) ⇒ (NF = 0) with confidence between 0.95 and 1

(FPA = 0) ⇒ (NF = 1) with confidence between 0.10 and 0.30

As described above, these two rules can be translated to the corresponding BBA m4 on its domain

{FPA,NF}.

Suppose we have at our disposal a sensor such as an electronic support measures (ESM) system,

which can report on the platform type (PT) variable. Valuation m5 captures the expert knowledge which

relates the PT to the NF variable. Suppose this knowledge is represented by the following implication

rule:

(NF = 1) ⇒ (PT ∈ {3, 4, 5}) with confidence between 0.50 and 1.

This rule represents our prior knowledge (e.g. from intelligence sources) that non-friendly aircraft in the

battlespace of interest are of type 3, 4 or 5, with confidence at least of 50%.

For each PT, it is usually known a priori what types of weapons (and its capabilities) it carries [31].

Variable m6 represents the relationship between the weapons engagement range (WER) variable and
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the PT. Suppose m6 is defined by the following set of rules:

(PT ∈ {0, 1}) ⇒ (WER = 0) with confidence between 0.40 and 1

(PT ∈ {2, 3}) ⇒ (WER ∈ {1, 2}) with confidence between 0.40 and 1

(PT ∈ {4, 5}) ⇒ (WER = 2) with confidence between 0.40 and 1.

Variable C (capability) in our threat model is related to the WER and to the imminence (I) of an

attack. The degree of imminence is measured by the distance, heading and speed of the target, and

according to Table 1 can be low, medium or high. We define valuation m7 by the following rule on the

product space C×WER× I: C=WER+I. This rule captures the simple notion that the capability is high

if the WER is large and the imminence is high. Thus m7 is a BBA given by:

m7({(0, 0, 0), (1, 0, 1), (2, 0, 2), (1, 1, 0), (2, 1, 1), (3, 1, 2), (2, 2, 0), (3, 2, 1), (4, 2, 2)}) = 1.

Valuations m1, m2, . . . , m7 represent our prior domain knowledge of the problem. The remaining

valuations m8, m9, . . . , m15, referred to as input valuations, are the drivers of the evidential network

for threat assessment. Input valuations are initially represented by vacuous BBAs. As more evidence

(from the surveillance sensors and other external sources) about the intruder and the situation become

available, input valuations change and become more informative. The next section will present the

numerical results obtained using the described evaluation network for various combinations of input

valuations.

5 Numerical results and analysis

In this section we apply the VBS framework to determine the degree of threat posed by a hypothetical

intruder in the considered air-to-air engagement problem. According to Table 1, the degree of threat

takes integer values in the range from 0 to 10 (0 being no threat, 10 being highest threat).

In Sec. 4 we have introduced the main components of the VBS framework for the problem of interest.

The set of variables consists of 13 elements, V = {T, HI, C, EM, FCR, CM, PC, NF, IFFS, FPA, PT,
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WER, I}; the set of all valuations (BBAs) consists of 15 elements, ΦV = {m1,m2, . . . ,m15}, the

domain of interest is the singleton D
o = {T} and the set of variables to be eliminated is ∆ = V\{T}.

The following steps describe the process for solving the problem in the VBS framework.

1. construct the binary join tree;

2. initialize the leaves of the BJT with the BBAs;

3. apply the inward propagation algorithm;

4. marginalise the belief of the root of the BJT to D
o;

5. apply the pignistic transformation.

5.1 The Binary Join Tree

Only three pieces of information are necessary to build a BJT: the set of variables of interest for decision

making D
o; the set of variables to be eliminated ∆ and the set of the valuations ΦV with associated

domains. The BJT constructed for the threat assessment problem is shown in Fig. 2. This BJT is a

result of application of the algorithm presented in Appendix A. The nodes in the BJT are labelled by

integer numbers from 1 to 29. The leaves of the tree (the nodes labelled from 1 to 15) represent the

original valuations specified by the set ΦV. The remaining nodes in the BJT represent the intermediate

steps of the fusion algorithm; as such they specify the order in which the valuations must be combined

in order to calculate the valuation for the variable T. The vertical labels next to the nodes of the BJT

denote the domains (the subsets of variables) of the nodes. The following comments provide further

explanation on the construction of the BJT in Fig. 2.

• Consider the first two variables in the elimination sequence, namely IFFS and FPA. These variables

are included in the domains of the nodes 3, 4, 12 and 13 whose BBAs are the first to be combined.

The subtree of nodes {3, 4, 12, 13, 16, 17, 28} represents the intermediate steps of this combination

process. Node 16 represents the combination of 3 and 12, node 17 the combination of 4 and 13,
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and finally node 28 the combination of 16 and 17. These steps are described in (13).

m16 = m3 ⊕ m
↑{NF, IFFS}
12 , d(m16) = {NF, IFFS}

m17 = m4 ⊕ m
↑{NF, FPA}
13 , d(m17) = {NF, FPA}

m28 =
(

m
↑{NF, IFFS, FPA}
16 ⊕ m

↑{NF, IFFS, FPA}
17

)↓{NF}
, d(m28) = {NF}

(13)

• The BJT satisfies the Markov property defined in Sec. 2.3. In fact, considering for example

the subtree of nodes {1, 7, 15, 20, 21}, it can be seen that the variable C is contained in the

domains of nodes 1 and 7, but also in the domain of all nodes in the path between 1 and 7, i.e.

Path(1, 7) = {1, 7, 20, 21}. A BJT which does not satisfy this property cannot be a representation

of the fusion algorithm. For example, let us assume that the domain of node 20 does not include

C; this means that C has been eliminated during the combination of the BBAs of nodes 7 and 15.

If this were true, before combining the valuations at node 20 with node 1 to produce the BBA for

node 21 (the domain of 1 contains C), we should again extend the domain of node 20 to a new

domain containing C. Since marginalization produces a loss of information (coarsening), which can

no longer be recuperated with the extension operation (see the remark at the end of Sec. 3.2), the

BBA of node 21 would be incorrect, i.e. it would be different from (m1⊕m7⊕m15)
↓{T,HI,C,WER}.

The BJT in Fig. 2 was obtained with the following variable elimination sequence: IFFS, FPA, I,

C, EM, FCR, CM, PC, PT, WER, HI, NF. As it has already been explained in section 2.2, finding the

optimal elimination sequence is an NP-complete problem but there exist several heuristics for finding a

good elimination sequence problem. The previous elimination sequence has been calculated by means

of the One Step Look Ahead - Smallest Clique, Fewest Focal sets (OSLA-SCFF) heuristic [26, p.61].

This heuristic chooses the variable to be eliminated by minimizing the cardinality of the domain and the

number of focal sets associated with the nodes of the BJT. Note that a different elimination sequence

would result in a different BJT. For example, the BJT in Fig. 3 was obtained with the elimination

sequence IFFS, FPA, I, EM, FCR, CM, PC, PT, WER, NF, C, HI which has been calculated by applying

the One Step Look Ahead - Fewest Fill-ins (OSLA-FFI) heuristic [26, p.60]. Note that the final result of
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the application of inward propagation algorithm is independent of the elimination sequence and, thus, of

the structure of the BJT. As it will be discussed in section 5.5, the difference between the application of

inward propagation to different BJTs is only in the computational time required to calculate the result.

5.2 Three extreme cases

To apply the inward propagation algorithm, the valuations of the leaves of the tree must be initialized

first. The BBAs of the nodes from 1 to 7 have been already defined in Sec. 4. For the input valuations,

nodes from 8 to 15, in this section we consider three “extreme” cases: (1) total ignorance; (2) high

degree of threat and (3) low degree of threat. The BBAs for the input valuations in all three cases are

given in Table 2. For the case of the total ignorance, all input valuations are represented by vacuous

BBAs. For the case of a high (low) threat, all BBAs are singletons taking high (low) threat values.

Furthermore, in all three extreme cases we consider static reasoning, that is input valuations do not

change with time. A dynamic case will be discussed in Sec.5.3.

Table 2: The input belief for the no information, high degree of threat and low degree of threat cases

no information high threat low threat

BBA domain focal set mass focal set mass focal set mass

m8 EM {0, 1} 1 {1} 1 {0} 1

m9 FCR {0, 1} 1 {1} 1 {0} 1

m10 CM {0, 1} 1 {1} 1 {0} 1

m11 PC {0, 1} 1 {1} 1 {0} 1

m12 IFFS {0, 1} 1 {0} 1 {1} 1

m13 FPA {0, 1} 1 {0} 1 {1} 1

m14 PT {0, 1, 2, 3, 4, 5} 1 {5} 1 {0} 1

m15 I {0, 1, 2} 1 {2} 1 {0} 1

The output of inward propagation is the BBA of node 29, defined on domain {T,NF}. This BBA is
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then marginalised to domain {T} and finally transformed to the pignistic probability. Fig. 4 shows the

resulting (pignistic) probability mass function (PMF) for the degrees of threat (from 0 to 10) in all three

cases. From this figure it can be seen that the results are in agreement with the inputs and our intuition.

When there is no information (total ignorance), the resulting BBA on domain {T} is a vacuous BBA and

hence all degrees of threat have the same probability. This means that the prior valuations m1, . . . ,m7

are balanced, that is they assume that all the degrees of threat are initially equally probable. For the low

and high threat cases we also obtain good results, in agreement with input valuations. Notice, however,

that in the low (high) threat case the probability of the degree 0 (10) is less than 1.0. This is due to

the intrinsic uncertainty in the prior valuations m1 to m7 (representing expert knowledge).

5.3 Dynamic reasoning example

In a realistic air-to-air engagement scenario the input valuations will change over time as the new pieces

of evidence (from surveillance sensors and other external sources) about the intruder become available.

As a result, whenever an input valuation is modified, the degree of threat is supposed to change. In our

evidential network initially we set all input valuations to be vacuous BBAs, representing the initial state

of ignorance. Then, every time an input valuation is changed, the network re-computes the valuations

of all the nodes of the BJT along the affected path of the tree. For example if the mass m15 changes,

only the masses of the nodes 20, 21, 26, 27 and 29 must be re-computed (see Fig. 2).

Consider an example of a sequence of incoming evidence shown in Table 3. At time t1 we feed into

the network the current state of the political climate (PC) represented by BBA m11. For argument’s

sake, let this BBA reflect a state of political tension in the region, so that the belief mass given to the

state of war is 0.7, while the remaining 0.3 is assigned to ignorance. Then at time t2 some evidence

about the EM variable becomes available; it appears that the target is performing an evasive manoeuvre,

so we assign a belief mass of 0.8 to true and 0.2 to the state of ignorance. Each time a new piece of

evidence is available, the situation becomes more informative (less uncertain) which is reflected by the

pignistic PMF of threat, shown in Fig 5. Note how this PMF evolves from being totaly uninformative at
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Figure 4: Pignistic probability mass function for variable T (threat) in extreme cases: (a) total ignorance

case; (b) low threat case; (c) high threat case
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time t0 to becoming concentrated (”peaky”) at time t9. At this last time instant the degree of threat

with the highest probability is 8 (on the scale from 0 to 10).
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Figure 5: Pignistic probability mass function for variable T (threat) in a dynamic situation (from time

t0 to t9)

5.4 Sensitivity analysis

Sensitivity analysis studies the effect of the changes in the input valuations on the valuation of the

output (decision) variable. In this way, sensitivity analysis helps us to identify which inputs are more

influential on decision making and how they affect the decision process. Inward propagation on a BJT

is used for performing sensitivity analysis in a VBS, because it can rapidly re-compute the valuation of

the decision variable when a valuation of one of the leaf nodes in the BJT changes. As previously noted,
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Table 3: The sequence of incoming evidence driving the evidential network

Time BBA domain focal set mass

t1 m11 PC {1} 0.7

{0, 1} 0.3

t2 m8 EM {1} 0.8

{0, 1} 0.2

t3 m15 I {0, 1} 0.7

{0, 1, 2} 0.3

t4 m13 FPA {1} 0.9

{0, 1} 0.1

t5 m15 I {1} 0.8

{0,1,2} 0.2

t6 m14 PT {2} 0.6

{3} 0.3

{4} 0.1

t7 m12 IFFS {0} 0.9

{0, 1} 0.1

t8 m10 CM {1} 0.9

{0, 1} 0.1

t9 m9 FCR {1} 0.8

{0, 1} 0.2
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when a change happens, we simply need to propagate the valuations inwards from the modified node

to the root of the BJT (see Stage 2 in Appendix B). The following algorithm describes the steps for

performing a sensitivity analysis in a VBS.

1. Change the valuation of the input variable x;

2. Execute Stage 2 of inward propagation with updated input UI = {x} and calculate the valuation

for the decision variable;

3. Evaluate the effect of the change on the valuation of the decision variable.

For the dynamic reasoning problem described in the previous section, we investigate how the change

of the input BBAs on three variables (EM, FCR and FPA) affects the BBA of the decision variable T.

Table 4 presents the results of the sensitivity analysis for this case. Input BBAs on EM, FCR and FPA

take two contrasting values: either all mass is assigned to true or to false. Comparing the resulting

pignistic PMFs of the threat variable for the considered cases, it can be seen that the most influential

variable is FCR; when the BBA of FCR goes from m({1}) = 1 to m({0}) = 1, the pignistic probability

of threat T changes more than in the other two cases. This observation is not surprising, since FCR is

weighted higher than the other variables in contributing to the HI, see (11).

5.5 Computational complexity

As we explained earlier, the reasoning for threat assessment can be carried out without using the VBS

framework, that is by directly computing the joint belief on the domain ΘV followed by marginalisation of

the resulting belief to the domain of T. The advantage of using the VBS framework is the computational

efficiency. From Table 1 it can be seen that the number of configurations in the joint frame of ΘV

is 2661120 (i.e. the Cartesian product of the frames of the single variables). This is a huge number

compared with the number of elements of the maximum domains in the two BJTs shown in Figs.2

and 3. In the BJT obtained by applying the OSLA-SCFF heuristic (Fig.2), the number of elements of

the maximum domain is only 1155 (for node 21). This number is even lower for the BJT obtained by



5.5 Computational complexity 29

Table 4: Sensitivity analysis results

Threat - Pignistic Probability

var mass 0 1 2 3 4 5 6 7 8 9 10

EM m8({T})=1 0 0 0.06 0.02 0.06 0.15 0.21 0.23 0.23 0.08 0.01

EM m8({F})=1 0 0.01 0.02 0.06 0.15 0.21 0.22 0.23 0.08 0.01 0

FCR m9({T})=1 0 0 0 0.01 0.06 0.16 0.22 0.23 0.23 0.09 0.01

FCR m9({F})=1 0.01 0.06 0.16 0.22 0.23 0.23 0.09 0.01 0 0 0

FPA m13({T})=1 0 0 0.01 0.03 0.08 0.16 0.21 0.22 0.22 0.06 0

FPA m13({F})=1 0 0 0.01 0.026 0.07 0.14 0.19 0.20 0.20 0.15 0.02

applying the OSLA-FFI heuristic (Fig.3). In this case, the maximum domain has only 385 elements (for

nodes 1 and 29).

Since the joint belief for ΘV is defined on the power set of ΘV, for computing the joint belief we

need to calculate, in the worst case, the masses for all the 22661120 elements of the power set. When we

attempted this “brute force” approach for threat assessment on the joint domain, our computer could

not complete this task after 48 hours of processing. By contrast, using the VBS framework, the threat

assessment was carried out on the same computer in just 5 seconds for the BJT obtained by applying

the OSLA-SCFF heuristic and 3 seconds for the BJT obtained by applying the OSLA-FFI heuristic.

We point out that although for the adopted threat assessment model the OSLA-FFI heuristic allows

to compute the solution faster than OSLA-SCFF, in general this may not be true: the computational

complexity and the effectiveness of the heuristic for sequence elimination depend strongly on the struc-

ture of the problem. The general rule is: the more complex are the interdependencies among the

variables, the smaller is the advantage in using the VBS. Real complex reasoning systems, with hun-

dreds or even thousands of variables, are usually characterised by very localised structures. As the

computational complexity grows exponentially with the domain size, the VBS framework can solve
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problems that otherwise would be computationally intractable.

In addition to the structure of the network, the computational complexity of an evidential network

depends on the cores, i.e. the sets of focal elements of the belief functions to be combined. Note that

the number of focal sets is also greenproblem-dependent.

Finally another computational advantage of the VBS, as discussed earlier, is the possibility of re-

computing the valuation of the decision variable when one or more inputs change. In this case the

inward propagation re-computes only the valuations of those nodes of the BJT that belong to the path

connecting the leaves with changed valuations to the root of the BJT.

6 Conclusion

The paper has presented an automatic data fusion system for determining threat assessment in the

context of air defence. Based on expert knowledge, the threat has been modelled by a network of

entities (representing target behaviours or critical events) and their mutual relationships. The uncertain

and imprecise prior information, expert knowledge and incoming evidence supplied by the surveillance

sensors and other sources of information have been expressed as belief functions. The determination

of threat assessment has been performed within the framework of valuation-based systems using local

computations on the binary join tree via the inward propagation algorithm. The result is an inference

engine capable of the timely and accurate processing of vast amounts of data in support of a comman-

der’s decision making. One of the major contributions of this paper has been to endow the inference

engine with the capacity to manage efficiently time varying information, which is typically encountered

in situation and threat assessment problems.

Our plans for future work are twofold. In terms of threat assessment, we will consider the refinement

of the threat model to capture the threat assessment process more realistically and to cater for networks

with more entities and larger frames (for example, the frame of platform types can have hundreds of

elements). However, since the inference engine that we have developed is independent of the threat

assessment application, it can also be applied in other domains provided that the variables for the given



7 Acknowledgement 31

problem, the relationships that hold between them and the values they may assume based on prior

information, sensor data and expert knowledge, can be identified. As such, we also plan to investigate

the suitability of the approach for other defence and intelligence problems such as combat identification

and possibly border protection and situation awareness for homeland security.
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A Construct a BJT

Let Ψ = {ϕ1, ϕ2, . . . , ϕr} be a given set of valuations and D
o ⊆ V, with V = d(ϕ1)∪d(ϕ2)∪· · ·∪d(ϕr),

the domain of interest. Let us introduce the following notation [24]:

L(n) : left child of node n, or nil if n is a leaf;

R(n) : right child of node n, or nil if n is a leaf;

F (n) : parent of node n, or nil if n is the root of the tree;

d(n) : domain of the valuation for the node n;

root : root of the BJT.

(14)

The algorithm for constructing a BJT is as follows [24].

1: Initialization:

2: Define the initial set of node Nψ = {n1, n2, . . . , nr} with d(ni) = d(ϕi), L(ni) = nil, R(ni) = nil and F (ni) = nil.

3: Fix the set of variables to be eliminated ∆ = V − D
0.

4: function Construct a BJT(Nψ,∆)

5: N = ∅; ∆
c = ∅; root = nil;

6: repeat

7: if ∆ = ∅ then

8: Nx = Nψ;
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9: else

10: select the next variable to be eliminated, x ∈ ∆, using some heuristic;

11: Nx = {n ∈ Nψ : x ∈ d(n)};

12: end if

13: while |Nx| > 1 do ⊲ while the cardinality of Nx is greater than 1

14: generate a new node n with F (n) = nil;

15: select distinct n1, n2 ∈ Nx;

16: F (n1) = n; F (n2) = n;

17: L(n) = n1; R(n) = n2;

18: d(n) = (d(n1) ∪ d(n2)) − ∆
c;

19: Nx = (Nx\{n1, n2}) ∪ {n};

20: N = N ∪ {n1, n2};

21: end while

22: if ∆ = ∅ then

23: root = n;

24: else

25: ∆ = ∆\{x}; ∆
c = ∆

c ∪ {x};

26: Nψ = {n ∈ Nψ : x /∈ d(n)} ∪ {n};

27: end if

28: until root 6= nil

29: N = N ∪ {n};

30: return N

31: end function

The tree resulting from this procedure is a BJT with 2r − 1 nodes, N = {n1, n2, . . . , n2r−1}, such

that D
o ⊆ d(root). The only degree of freedom in the BJT construction algorithm is the order in which

the variables are eliminated (Step 10).

B Inward propagation

The objective of the inward propagation algorithm is to compute the valuations for the variables of inter-

est. Consider again the set of valuations Ψ = {ϕ1, ϕ2, . . . , ϕr}, the domain of interest D
o and the set

N = {n1, n2, . . . , n2r−1} of nodes of the BJT constructed by the algorithm given in appendix A. The

inward propagation is performed in two stages. In Stage 1, which is executed only once, the valuations

are propagated from the leaves towards the root of the BJT [24]. Stage 2 is performed every time the

valuations of one or more leaves of the BJT change. In this case, inward propagation re-computes only

the valuations of those nodes of the BJT that belong to the path connecting the leaves with changed

valuations to the root of the BJT. The steps of the algorithm for the inward propagation are as follows.
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1: Initialization:

2: Initialize Leaves = {n ∈ N : n is a leaf}.

3: if stage=1 then

4: ϕs = nil;

5: UI = Leaves;

6: else

7: UI = {n ∈ Leaves : valuation is changed w.r.t. the previous time};

8: end if

9: function Inward propagation(Leaves, N, stage, UI, ϕ, ϕs)

10: if stage=1 then ⊲ It is the first time that inward propagation is performed

11: Set next = {n ∈ N : L(n) ∈ Leaves and R(n) ∈ Leaves}.

12: for n ∈ Leaves do

13: ϕs(n) = ϕ(n)↓d(F (n));

14: end for

15: else ⊲ inward propagation has been already performed at least one time

16: next = ∅;

17: for n ∈ N do

18: if L(n) ∈ UI or R(n) ∈ UI then

19: Set next = next ∪ n.

20: end if

21: end for

22: end if

23: visitN = ∅ ⊲ indicates the nodes visited during the inward propagation

24: while |next| > 0 do ⊲ while next is not empty

25: extract an element n from next;

26: visitN = visitN ∪ n; next = next − n;

27: ϕ(n) = ϕs(L(n)) ⊕ ϕs(R(n));

28: ϕs(n) = ϕ(n)↓d(F (n));

29: if n 6= root then

30: DomF = d(F (n));

31: else

32: DomF = d(dv)

33: end if

34: ϕs(n) = ϕ(n)↓DomF ;

35: if stage=1 then ⊲ It is the first time that inward propagation is performed

36: for n ∈ N do

37: if (n /∈ Leaves) and (n /∈ next) and (n /∈ visitN) then

38: if (L(n) ∈ Leaves or L(n) ∈ visitN) and (R(n) ∈ Leaves or R(n) ∈ visitN) then

39: next = next ∪ n;

40: end if

41: end if

42: end for

43: else

44: for n ∈ N do

45: if (n /∈ UI) and (n /∈ next) and (n /∈ visitN) then

46: if (L(n) ∈ visitN) or (R(n) ∈ visitN) then

47: next = next ∪ n;



REFERENCES 34

48: end if

49: end if

50: end for

51: end if

52: end while

53: return ϕ, ϕs ⊲ ϕs(root) is the valuation for the decision variables

54: end function
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