
Two Samples are Enough: Opportunistic Flow-level
Latency Estimation using NetFlow

Myungjin Lee†, Nick Duffield‡, Ramana Rao Kompella†
†Purdue University,‡AT&T Labs–Research

Abstract—The inherent support in routers (SNMP counters
or NetFlow) is not sufficient to diagnose performance problems
in IP networks, especially for flow-specific problems where the
aggregate behavior within a router appears normal. To address
this problem, in this paper, we propose a Consistent NetFlow
(CNF) architecture for measuring per-flow performance measure-
ments within routers. CNF utilizes existing NetFlow architecture
that already reports the first and last timestamps per-flow, and
proposes hash-based sampling to ensure that two adjacent routers
record the same flows. We devise a novel Multiflow estimator
that approximates the intermediate delay samples from other
background flows to improve the per-flow latency estimates
significantly compared to the naive estimator that only usesactual
flow samples. In our experiments using real backbone traces and
realistic delay models, we show that the Multiflow estimatoris
accurate with a median relative error of less than 20% for flows of
size greater than 100 packets. We also show that prior approach
based on trajectory sampling performs about 2-3x worse.

I. I NTRODUCTION

Although IP networks were designed to be best-effort,
an increasing number of applications today require perfor-
mance guarantees. These range from multimedia applications
such as voice-over-IP, video, multi-player online gaming,to
performance-critical enterprise applications such as online
trading. ISPs often provide SLA guarantees to ensure that the
performance of their network matches up with the expectations
of their customers that want to run these applications. SLA
violations typically have heavy financial implications forthe
ISP; ISPs, therefore, care deeply about ensuring the healthof
their network.

IP networks, however, are notoriously hard to debug today.
Apart from SNMP counters [1] such as for interface packet
drops, there exists very little support in the routers for diag-
nosing performance problems. For example, routers today do
not report aggregate performance statistics (e.g., average delay,
jitter, loss rate) of the forwarding paths (from one interface
to another). Such performance statistics would be extremely
useful for operators to diagnose the root cause of end-to-end
problems, and take necessary steps to fix it. Without these
intrinsic measurement capabilities, network operators today
are forced to use external means to infer such statistics. For
instance, ISPs today routinely monitor their networks with
the help of measurement boxes that inject ‘active probes’
between routers. From the path properties observed by these
probes, operators typically use inference algorithms to isolate
the location of the problem.

Several inference algorithms based on tomographic ap-
proaches exist in the literature today (e.g., [2], [3], [4]).

As noted before, however, the problem is generally under-
constrained in this sense that, depending on topology on
disposition of measurement points, not all individual link
performances are visible. Another major problem is that they
only provide aggregate statistics, not on a per-flow basis,
which may be crucial to diagnose and debug flow-specific
problems in the network. For example, a flow may have
passed a router exactly when the busy period started for the
router’s queue, because of which that particular flow may have
obtained terrible throughput. When aggregated over a larger
interval, it may appear that the forwarding path within the
router is functioning correctly and thus may not be detected
using active probes alone.

Thus, despite their limitations in coverage and granular-
ity, network operators still rely on active probes as they
do not have any other alternative today. From the router
vendors’ point of view, routers are already burdened with
the ever increasing suite of protocols they need to support
and extremely high line rates, making it quite challenging
to provide these measurement capabilities. From the network
operator’s perspective, obtaining such measurements directly
from the routers would definitely make the task of debugging
their network easier. As a first attempt to bridging this gap
between the capabilities of routers and the ISP needs, in this
paper,we consider the problem of obtaining hop-level latency
measurements on a per-flow basis.

At first glance, this goal may appear challenging to achieve.
We need precise time-synchronization, which has been tradi-
tionally hard, as well as coordination between routers, which
is often met with resistance since routers are already over-
burdened. The ground has, however, significantly shifted in
terms of the capabilities of routers today. For instance, routers
are being equipped with sophisticated time-synchronization
primitives such as the IEEE 1588 protocol [5], GPS-based
clocks, etc. There have been significant innovations in de-
signing router primitives that facilitate coordination between
routers without explicit communication [6].

To describe our architecture for obtaining per-flow latencies,
we start with sampled NetFlow as our main point of departure.
There are two key ideas: The first idea is to exploit the fact that
NetFlow already maintains two timestamps corresponding to
the first and last packets of a flow. We ensure that two NetFlow
processes running at two different routers (or more generically
any segment along an end-to-end path) maintain the same
flows and timestamps for the same first and last packets. This
Consistent NetFlowarchitecture enables us to obtain two delay

2

samples for the flow. We can easily achieve this using hash-
based packet sampling. The second idea is to opportunistically
refine the latency estimates of a flow by utilizing the delay
samples obtained from other flows that lie within the flow’s
duration. We show that how our novelMultiflow estimator
based on this idea provides significantly better estimates of
per-flow latencies compared to the Endpoint estimator that
uses the two delay samples obtained using consistent NetFlow.

There is one main challenge that remains in the above
architecture. Our architecture provides per-flow latency es-
timates for only the sampled flows and, notall flows. We
believe this problem is fundamentally due to the existing router
resource constraints that any passive measurement solution
has to deal with. As technology improves, so will the router
resources to support higher sampling rates; the fact that our
architecture lies within the NetFlow framework makes this
scaling automatic and straightforward. While the fact that
our architecture can provide reasonable estimates of per-flow
latencies within routers is significant, it is not intended to serve
as a replacement for sophisticated measurement frameworks
(e.g., GPS-enabled setup used in [7]). Instead, we envision our
approach to provide low-cost ways of continuously monitoring
latency characteristics of flows across routers. Thus, whenany
SLA violations are observed in the network, our architecture
will allow easy localization of the router or interface at which
such a violation occurred.

Thus, themain contributionsof this paper include the design
of Consistent NetFlow (discussed in Section III-A) and an
opportunistic latency estimator called the Multiflow estimator
(discussed in Section III-C) that provides per-flow latency
estimates on a per-hop basis. The Multiflow estimator’s ac-
curacy empirically using real backbone traces under different
delay models. Our results indicate that the Multiflow estimator
provides a median relative error of less than 20% for flows
greater than 100 packets. In contrast, we observe that trajectory
sampling (when adapted for this purpose) is 2-3 times worse
than our Multiflow estimator. We describe the experiment
details and results in Section IV.

II. RELATED WORK

NetFlow [8] is the main basis for our approach. Several vari-
ants of NetFlow (e.g., Adaptive NetFlow [9], Flow slices [10])
and other passive measurement data structures [11], [12] exist,
but they only measure flow characteristics such as number
of packets, bytes, and flags. To the best of our knowledge,
we are the first to propose integrating latency measurements
into the NetFlow framework, and a concrete architecture and
estimators to achieve such an integration.

Tomography approaches are standard for predicting the
average latency characteristics of links and router forwarding
paths [13], [3]. They solve the problem of predicting the
per-hop loss and latency characteristics based on end-to-end
measurements (e.g., conducted using active probing tools [14],
[15]) and routing information obtained from the network. Our
work differs from theirs since we use passive measurements
while they rely on active probes.

Our work shares some similarity with trajectory sampling
in [6]. Specifically, we borrow consistent hashing in our effort
for ensuring that consistent streams of packets are observed at
two routers. The notion of a flow plays a fundamental role in
our work (and therefore the NetFlow collection framework)
while trajectory sampling relies on flat packet labels with
no flow-level aggregation. Passive measurement of loss and
delay by directly comparing trajectory samples observed at
different points has been studied [16], [17]. Although our
proposal is targeted toward the aggregate reporting paradigm
on NetFlow, our approach could potentially also be used to
augment collector side analysis in packet-level passive delay
measurement of the work in [16], [17]. While we do not
compare our proposal with [16] because [16] mostly focuses
on evaluating the performances of several schemes making
packet digest for packet-level delay measurement, we compare
ours with trajectory sampling [17] in the context of per-flow
delay estimates in the Section IV.

There have been other prior approaches that attempt to
obtain direct performance measurements from routers. For
example, Machirajuet al.suggest a measurement-friendly net-
work (MFN) architecture as a router primitive which uses hop-
dependent priority queuing [18]. This architecture requires
a lot of intrusive changes in routers, however. It also does
not provide per-flow latency estimates. A very recent work by
Kompellaet al. in [19] propose a high-speed latency detection
data structure called lossy difference aggregator (LDA). LDA
requires new data structures in routers and hence may not be
deployed easily.

III. F LOW COLLECTION ARCHITECTURE

In this section, we discuss ourConsistent NetFlowarchi-
tecture for supporting delay measurements, and pin-point the
changes required in current NetFlow to implement it.

A. Consistent NetFlow

In today’s flow collection architecture, individual routers in
a network run NetFlow [8] on various interfaces (typically
on the ingress direction). Given that backbone routers cannot
keep up with high line rates (e.g., OC-192 or 10 Gbps),
routers typically run a variant called Sampled NetFlow that
uses a simple stage of uniform packet sampling (rates from
0.001 to 0.01) to ensure that the processor as well as the
memory resources are not overwhelmed. The line-card CPU
computes individual flow record by aggregating all packets
with sameflow keyin the sampled packet stream. Typically, the
flow key comprises the TCP 6-tuple consisting of the source
and destination IP addresses and ports, protocol and interface
number. NetFlow also records the timestamps of the first and
last packets observed for that flow.

Our goal is to retrofit delay measurements into the NetFlow
architecture described above. Without loss of generality,let us
consider measuring the delay between NetFlow instancesA
and B in Figure 1; this will essentially measure forwarding
path latencies inR1 from input portA to output port connected
to R3, and the link delay betweenR1 andR3. We start with

3

D

A
B

C

Router R1

Router R3

Router R2

Flow
Collector

T−Stampstart T−Stampend Label start Labelend

...

F1 t2 t11 l1 l10 990
F2 t4 t8 l3 l6 400
F3 t6 t17 l4 l12 795

Counter

Flow Record from NetFlow C
Flow ID

T−Stampstart T−Stampend Label start Labelend

...
F3 t4 t12 l4 l12 800

F1 t1 t10 l1 l10 1000
F2 t3 l3 l6t6 400

Counter

Flow Record from NetFlow A
Flow ID

Fig. 1. Overview of our Consistent NetFlow architecture. The main change
compared to the current NetFlow architecture is the hash-based sampling stage
shown in the NetFlow process. The flow collector aggregates flow records
from individual routers and extracts a time-series of delaysamples from which
per-flow latency measurements are recorded.

the observation that NetFlow instancesA andB already store
the timestamps of the first and last packets for the set of
sampled flows. Thekey ideais that, if bothA andB sample
the same first and last packets (p0 and pn) for some flow
recorded by both (in their set of sampled flows), then we can
trivially compute the delay observed by these packetsp0 and
pn from the timestamps recorded at bothA andB. Of course,
we need to assume that bothA andB are time-synchronized
for the measurements to be accurate.

In the original NetFlow architecture, bothA andB sample
packets completely independently, however. In order to ad-
dress this problem, we propose aConsistent NetFlow(CNF)
architecture, that is essentially NetFlow with the additional
modification that routers usehash-based sampling. Thus, in
CNF, routers independently select the same packet set and
thus timestamps are consistent across NetFlow instances.

Hash-based sampling.Each router calculates a hash over
some set of packet fields that are invariant over the packet
path, and the packet is selected for reporting if the hash
falls into a given range. When all measuring routers use the
same hash function, input fields, and selection range, their
selection is consistent. Hash-based sampling was proposedin
[6], and has now been standardized in the IETF [20], [21].
With a suitably strong hash function, the average sampling
rate can be determined as the size of the selection range
divided by the size of the set of possible hash values. Note
that the standards are flexible over what fields are used as
input to the hash. By changing an input ranging from invariant
fields of flow key to packet payload, we can achieveflow
sampling[22] or select packets consistently between different
routers (unless otherwise mentioned, we refer to this form of
sampling henceforth as justpacket sampling).

While in theory, both sampling mechanisms can be used

to ensure that same flows are recorded, hash-based packet
sampling is often preferred because flow sampling can lead to
bursts while packet sampling results in smoother selectionof
packets. In addition, packet sampling is also famously biased
towards large flows, for which our goal of identifying latency
measurements may be even more critical. Typically, there is
an additional level of sampling during flow export to a flow
collector to reduce the reporting bandwidth. For simplicity,
however, we assume all sampled flows are transmitted but our
architecture works even if such sampling were performed.

Time synchronization. In addition to the above, we require
accurate time synchronization between the end-points. This is
a fundamental requirement forany architecture that wishes to
enable accurate delay measurements. The Global Positioning
System (GPS) is used to synchronize clocks at different
measurement points; seee.g., [7]. Router vendors are also
increasingly considering hardware protocols such as IEEE
1588 [5] to synchronize routers withinµsecond precision.
Finally, one implicit assumption is that the stream of packets
follows a serial order (FIFO) between the monitoring points.
While this is mostly true, some routers can employ fair
queuing mechanisms, and thus, packets may pass through
separate forwarding paths within a router. In such cases, we
require that different forwarding paths be treated differently.

B. Flow Correlation

Expired flow records are transmitted by the NetFlow process
on each of the routers to a centralized flow collector as shown
in Figure 1. Flow records obtained at any given NetFlow
instance (sayA) will contain flow records that would have
potentially taken different paths at the router (toB and C).
Thus, we need theintersection setof the flow records obtained
from the end-points (betweenA andB, A andC). The second
step is to associate these sets of flow records with each other.
By construction, each flow record at the downstream instance
C will have a corresponding entry at the upstream instanceA,
but there could be multiple flow records with the same flow
key due to flow expiration timeouts in NetFlow. In many cases,
we can trivially associate by sorting and pair-wise associating
flow records using the start timestamps. There could still be
cases, however, due to packet losses, or clock synchronization.
One way to eliminate this is to use a packet label (using the
hash digest of a packet), but that would require non-standard
modifications. We outline a mechanism based on just timing
checks to eliminate such inconsistencies.

Timing checks to eliminate inconsistencies.The boundary
between flows reported at the sender and receiver side may be
different due to (i) packet loss, (ii) differences in application
of flow timeouts due to slight difference in inter-packet times,
(iii) different cache expiry events due to heavy loads, and (iv)
uncertainties in timestamps due to propagation delay and clock
synchronization issues. The following scheme addresses these
problems. We can treat a packet stream with a single key,
since flows with different keys at sender and receiver are not
matched. The sender exports a set of flow recordsi with fields
(τsi,1, τsi,2, nsi, bsi) being the initial, final packet timestamps

4

number of packets and bytes respectively. The receiver side
flows have corresponding fields(τri,1, τri,2, nri, bri). But note
the same indexi on sender and receiver side is not assumed
to originate in the same set of packets.

We now consider four different quantitiese−1 , e+
1 , e2, e3 that

represent timing uncertainty:
• The propagation delay lies in the interval[e−1 , e+

1].
• The packet processing latency is less thane2.
• The clock uncertainty is less thane3.
Let Tin and Tact denote the inactive and active flow

timeouts respectively. We consider the following criteria(C1)–
(C5) applied to matching sender flowi and receiver flowj.
In practice, these are applied as follows. We seek pairs of
sender and receiver flows that are time compatible,i.e., they
satisfy (C1). Since flows of a given key can be ordered by
first packet time, this requires only a windowed search. Each
(C1) compatible pair is then examined to check they satisfy
(C2)–(C4). If so, they can be passed to the analysis stage and
we return to seek another (C1) compatible pair. If the flows
fail any of the conditions (C2)–(C5), they are discarded.

(C1) τri,1 ∈ τsj,1 + [e−1 − e3, e
+
1 + e2 + e3] and τri,2 ∈

τsj,2 + [e−1 − e3, e
+
1 + e2 + e3]. This condition says

the first and last packet times of receiver flowi are
compatible with first and last packet times of sender flow
j, given the uncertainties of propagation, queuing, and
clock synchronization.

(C2) nri = nsj and bri = bsj . Equality of bytes and packets
is a necessary condition for the flows to be reporting on
the same set of packets.

(C3) τri,2−e−1 +e3 < τsj,1 +Tact. The upper bound for latest
possible compatible sending time of the last flow packet
seen at the receiverτri,2−e−1 +e3, should fall within the
active timeout since the first sender packet.

(C4) τri,2 − e−1 + e3 < τsj,2 + Tin. This condition is similar
to (C3) except that it rules out sender packets being
excluded from the flow due to inactive timeout since the
last sender packet.

(C5) If a pair of sender and receiver flows (of a particular
key) has been discarded, discard all subsequent sender
and receiver flows (of the same key) until the separation
between successive flows exceedsTin on both sender and
receiver sides. This is used because after discard of a
pair of flows for violating any of conditions (C2)–(C4),
the first times of subsequent flows may refer to different
packet on the sender and receiver sides. The condition
ensures discard of such “out of sync” flows.

C. Latency estimation

Once pairs of flow records are associated, we have sender
and receiver timestamps from both its first and last packets
(but for just one packet in the case of a single packet flow).
Using these packet timestamps, our goal is to estimate per-flow
latency characteristics of the particular segment. We consider
several estimators in increasing degree of accuracy. Before we
discuss our estimators, we briefly outline the basic intuition
behind our estimators.

Foundation: Delay Correlation. The central premise be-
hind our approach is that when two packets traverse a link
closely separated in time, then the queuing delays that they
experience are positively correlated. We then draw the con-
clusion that it makes sense to estimate the delay of a packet
that we cannot measure directly, from the delays of closely
separated packets that we can measure directly.

At an intuitive level, packets that experience the same
queuing busy periods should tend to have positively correlated
delays. There are a number of analytical results that confirm
this behavior for classes of Markovian queuing models, such
M/G/1 or G/M/1. For our purposes, there are informative
results for models of this nature. In the simplest cases, the
lag n autocorrelation of the packet queuing delay,γn, obeys

γn = 1 − n(1 − ρ)2 + O(1 − ρ)3 (1)

whereρ ≤ 1 is the offered load; see [23]. This formula shows
that under heavy traffic conditions (ρ close to1), noticeable
correlations persist at lagn for n up to 1/(1− ρ)2, e.g., up to
n = 100 for a 90% load.

Although this result applies to a very simple model, there
are two reasons to suggest that correlations in packet delays
at a queue whose input is typical Internet traffic will be
even greater. First, under more general conditions than (1)
was derived,γn is a convex function ofn, and hence the
correlations in practice decay more slowly than the dominant
linear behavior inn of (1). Second, Internet traffic exhibits
burstier arrivals than the simple models [24]. So, for a given
load, packets that queue are more likely to do so behind other
queuing packets, and consequently waiting time autocorrela-
tion will be greater than in the Markovian case.

The power of this idea for delay measurement is that, we can
enhance the packet delay estimates of a particular flow, with
directly measured delays from nearby packets from potentially
other flows, in particular, arriving between the first and last
packets of the flow under study.

Endpoint Estimator. The Endpoint method is the naive
estimator that averages the pair∆EP = {d1, d2} of the delays
of the first and last packets of the flow:

DEP =
d1 + d2

2

Multiflow Estimator. Although the Endpoint estimator is
exact for flows having two packets, it is expected to have
limited accuracy in general precisely because it is based only
on two samples. We propose the Multiflow estimator based on
the autocorrelation description above. We first construct the
matching streamsτsi andτri, i = 1, 2, . . . of matching sender
and receiver timestamps of all first and last packets of sampled
flows. The Multiflow estimator does not distinguish between
first and last packet timestamps. Now consider a particular
flow under study with sender timestampsτsi,1 and τsi,2 and
receiver timestampsτri,1 andτri,2 wherei, 1 and i, 2 are the
indices of the first and last packets of the flow. We form a
delay estimate by averaging the delay over all packets with
sender timestamps between the sender timestamps of the flow.

5

Specifically, forr1 < r2 let S(r1, r2) = {i : r1 ≤ τsi ≤ r2}.
The set of packet delays associated with the flow is

∆MF = {τri − τsi : i ∈ S(τsi,1, τsi,2)}

and the Multiflow estimator is

DMF =

∑
δ∈∆MF

δ

|∆MF |

whereδ is a delay sample in the set∆MF .
Hybrid estimator. The hybrid method attempts to blend

the best of the Endpoint and Multiflow methods. In our
experiments in Section IV-D we shall find that the Endpoint
method tends to be more accurate for smaller flows; indeed in
the special case of a two packet flow without loss, it is exact.
In the hybrid approach we apply a threshold in the number of
packets per flow, using the Endpoint method for smaller flows
and the Multiflow method for larger flows.

D. Variance and its Estimation

In measuring delay, it is useful to produce not just a
single summary statistic, the mean, but also a measure of
the variability of the distribution of individual delays about
that value. Thus, we ask two questions: (i) given the expected
correlations between delay measurements, how well is the
variability of a single measurement predicted? (ii) how does
the variability of set of samples∆ relate to that of the packets
in the flow under study itself?

To answer the first question, if the delay samplesδ ∈ ∆
were i.i.d random variables, we would form the unbiased
estimate of the population variance as

σ2 =

∑
δ∈∆(δ − D)2

|∆| − 1

whereD = (|∆|)−1
∑

δ∈D δ is the sample mean. In the pres-
ence of positive correlations between theδ, namelyE[δδ′] >
E[δ]E[δ′] for δ, δ′ distinct elements of∆, thenE[σ2] > Var(δ).
Thus we would tend to overestimate the variance, which can be
regarded as conservative for performance applications. Wewill
answer the second question through experiments in Section IV.
For the moment we make the observation that for the Endpoint
estimator, the quantityσ2 is expected to be extremely noisy,
being based on only two data points; this is indeed the case
found in Section IV.

E. Interpolation of Packet Delays

Given our motivating intuition concerning correlation of
packet delays, the correlation between the delay of arbitrary
packet in a flow, and the endpoint delay of another flow should
be strongest if we could choose the endpoint to have closest
possible sender time to the packet in question. Unfortunately,
we cannot construct an estimator this way, since we do not
know the sender times of individual packets. On the other
hand, for a performance study, choosing to estimate with a
close-by packet indicates the limits of accuracy of any method,
such as our Multiflow estimator, which uses delays of other
flows as estimates.

Router BRouter A Droptail Queue

Weibull Model

RED QueuePacket
Trace

Statistics
DelayRecord

Flow
Record
Flow

Flow Collector

Delay Model

Fig. 2. Simulation environment.

To this end, we use linear interpolation between endpoint
delays in order to construct a delay value for any time, then
compare it with individual packet delays (not just endpoints)
of arbitrary flows. Letdi = τri − τsi, i = 1, 2, . . . , n denote
the set of flow endpoint packet delays, ordered with increasing
send timeτsi. For any timex betweenτ1 and τm, let i+(r)
andi−(r) label the closest delay values in the future and past:

i+(x) = min{j : τj > x} and i−(x) = max{j : τj < x}

Then the interpolated delay at an arbitrary timex between
τ1 andτm is

dint(x) = di
−

(x) + (x − τsi
−

(x))
di+(x) − di

−
(x)

τsi+(x) − τsi
−

(x)

For a lossless flow ofm packets, having sets of{τsi : i =
1, . . . , m} and{τri : i = 1, . . . , m} of packet send and receive
times, we construct the set of interpolated delay values for
interior packets, and actual endpoint delays:

∆int = {τr1 − τs1, τrm − τsm} ∪ {dint(τsi) : i = 2, . . . , m − 1}

which we compare with the actual packet delay values∆0 =
{τri − τsi : i = 1, . . . , m}.

IV. EVALUATION

In this section, we evaluate the efficacy of our Multiflow
estimator in obtaining accurate per-flow statistics using real
backbone packet header traces and different delay models. We
also consider the impact of several variables such as packet
loss rate, packet sampling rate, etc. on the accuracy of our
estimates. Before we describe the results, we first outline our
experimental setup.

A. Experimental Setup

There are three main components in our experimental
setup—packet header trace, delay model, and flow collection
tool as shown in Figure 2. For our experiments, we need
correlated traces at two different routers with per-packet
timestamps. There areno such publicly available traces. Pa-
pagiannakiet al., however, have collected such traces from
a backbone router in [7] to create a model for the delay
distributions. Thus, we resorted to using a general-purpose
packet header trace obtained from a single monitoring point,
and simulated different delay distributions. The flow collector
allows us to take packet header traces and form flow records
just as NetFlow would. Each of the components are explained
next in detail.

6

Traces. We use two real backbone packet header traces.
Both traces contain no payload information, and all IP ad-
dresses are anonymized. The CHIC trace is collected by a
monitor located at Equinix in Chicago, IL, contains traffic
for 60 seconds from 5:00 PM, April 30th, 2008 on an OC-
192 backbone link published by CAIDA [25]. This trace has
about 1 million flows and 13 million packets in 60 seconds.
The IPLS trace published by NLANR [26] contains traffic
between Indianapolis and Kansas City through an OC-48 link
(2.5 Gbps) collected on August 14th, 2002 at 9:20AM in the
Abilene network. There are approximately 0.8 million flows
and 17 million packets in this trace.

Flow collection tool. We used an open-source NetFlow
platform called YAF [27] for our evaluation. We modified YAF
to support hash-based packet sampling and flow sampling. In
addition, we also extended YAF to report the hash label for
the first and last packets of a flow for comparing the efficacy
of our timing-based checks for packet association.

Delay models.As shown in Figure 2, we have implemented
three different delay models. The first is a Weibull distribution
that Papagiannakiet al. have empirically found to model
packet delays in real backbone routers [7]. The other two
models are based on simulating queuing dynamics according
to the Droptail and RED queue management [28] strategies.
For the Weibull distribution, we set the scale and shape
parameters to 0.0001 and 0.6 (as recommended in [7]) for
both CHIC and IPLS traces. We model packet losses as a
uniform distribution for this delay model. For the queuing
models, we control the packet delays by configuring queue
length and drain rate. We set the queue length to 10,000 for
CHIC trace and 3,000 for IPLS trace.

While Droptail requires no further parameters, RED needs
configuring the queue weight (wq), minimum and maximum
thresholds (minth andmaxth), and maximum drop probabil-
ity (maxp). Following the guidelines in [28], we chose a queue
size of 10,000,minth = 4, 000 and maxth = 9, 000 for the
CHIC trace. For IPLS trace, we chose a queue size of 3,000,
minth = 1, 000 and maxth = 2, 500. We usewq = 0.002
andmaxp = 1

50 for both traces.

B. Associating flow records

We first compare the efficacy of the timing-based approach
by running the constraint checks (outlined in Section III-B)
over the CHIC trace. We sete−1 = 10ms and e+

1 = 20ms.
We sete2 by by multiplying maximum queue size by average
packet processing time (which varies from40ms to 47.6ms
respectively). We set the clock uncertainty parametere3 to
1ms to ensure worst case. We setTin = 10s andTact = 30s
which is unusually low forTact (default on Cisco routers is 30
minutes). We chose this low value to test C3 given the trace
is only 60 seconds long.

Table I shows the percentage of flows obtained by filtering
flows that fail various constraints outlined in Section III-B. At
no packet loss, the packet label approach results in all flows
included, while at about 0.98% loss, we lose approximately
0.76% of flows because the packet labels do not match. The

(Pkt. sampling rate =0.005, Total flows = 40,564)
Pkt. Loss C1 C2 C3 C4 Pkt. Label

0.00% 100.00% 100.00% 99.99% 99.99% 100.00%
0.98% 98.77% 98.44% 98.43% 98.43% 99.24%
2.11% 97.21% 96.57% 96.56% 96.56% 98.20%
2.91% 96.24% 95.38% 95.37% 95.37% 97.64%
3.92% 94.88% 93.85% 93.84% 93.84% 96.65%
4.93% 93.73% 92.42% 92.41% 92.41% 95.85%

TABLE I
T IMING CHECKS COMPARED TO PACKET LABEL APPROACH.

 0

 0.2

 0.4

 0.6

 0.8

 1

10-3 10-2 10-1 100 101

C
D

F

Relative error of delay mean estimates

Multiflow-Weibull
Endpoint-Weibull
Multiflow-Droptail
Endpoint-Droptail

(a) Packet sampling

 0

 0.2

 0.4

 0.6

 0.8

 1

10-3 10-2 10-1 100 101
C

D
F

Relative error of delay mean estimates

Multiflow-Weibull
Endpoint-Weibull
Multiflow-Droptail
Endpoint-Droptail

(b) Flow sampling

Fig. 3. Accuracy of estimators using Weibull distribution model on CHIC
trace for flow and packet sampling. Flow and packet sampling rate = 0.01.

table also indicates that C3 and C4 result in obtaining the same
set of flows since there were no instances of C4 in the trace
(as discussed in Section III-B). We found in all cases, that the
set of flows obtained by applying the constraints are always a
proper subset of those obtained using the packet labels. Dueto
simplicity of the packet-label approach, we used label-based
association in our experiments, but we removed top 1% largest
delays to ensure no abnormal delay samples affect our results.

C. Estimator accuracy

We first provide basic results outlining the efficacy of
our estimators. We simulate both packet as well as flow
sampling approaches. For simplicity, we also assume no packet
loss for these cases; we discuss packet loss variation later
in Section IV-D. In Figure 3(a), we plot the CDF of the
relative error of mean delay estimates for the Multiflow and
Endpoint estimators. We show the curves for both Weibull
distribution as well as Droptail queuing model (RED is exactly
the same since there is no packet loss). We can observe that
the Multiflow method obtains a median relative error of 10%
and an 80th percentile relative error of about 20% for the
Weibull delay model. The accuracy is slightly lower for the
Droptail queuing model. The Endpoint estimator however is
significantly inaccurate (a median error of 50%) compared to
the Multiflow estimator for both distributions.

Figure 3(b) shows a similar comparison between Endpoint
and Multiflow for flow sampling. Curiously, Endpoint appears
to perform better than Multiflow. The fundamental difference

7

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104M
ed

ia
n

re
la

tiv
e

er
ro

r
of

de
la

y
m

ea
n

es
tim

at
es

Flow size

Multiflow
Endpoint

(a) Packet sampling.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104M
ed

ia
n

re
la

tiv
e

er
ro

r
of

de
la

y
m

ea
n

es
tim

at
es

Flow size

Multiflow
Endpoint

(b) Flow sampling.

Fig. 4. Median relative error of delay mean estimates depending on flow
size. Weibull distribution is applied to CHIC trace.

between flow sampling and packet sampling is the fact that
flow sampling uniformly samples flows while packet sampling
is known to be biased towards heavy-hitters, as large flows get
sampled more often. So, in order to understand this deeper,
we study the relationship between the estimator error and flow
sizes (number of packets in a flow).

We plot in Figure 4 the variation of median relative error of
mean delay estimates for different flow sizes. In other words,
each point represents the median relative error among all flows
that are of a particular size as defined by thex-axis. From
the figures, we can clearly observe that the relative error of
the Multiflow estimator decreases as the flow size increases
for both flow- as well as packet-sampling. For flows of size
greater than 200, the median relative error is less than 10% for
packet sampling. In contrast, the error suffered by the Endpoint
estimator increases as flow size increases significantly. More
importantly, it becomes extremely erratic indicating thatit is
not a reliable predictor of flow latency estimates.

For both types of sampling, somewhat curiously, we can
observe from Figures 4(a) and 4(b) that the Endpoint performs
better than the Multiflow estimator for flows up to a size of 3-4
(or so) and then the accuracy decreases. While the figures are
for Weibull distribution, we have observed similar patterns for
RED and Droptail as well. We believe this is because typically
for small flows, an estimate from two actual delay samples is
better than approximating using all the intermediate packets.
Thus, a hybrid estimator that combines the two approaches
will provide strictly better accuracy than either of the twoas
we have discussed in Section III-C.

Now, we return back to the question as to why the Endpoint
estimator appeared better than the Multiflow estimator. For
smaller flow sizes (< 4 packets), the Endpoint estimator was
more accurate than Multiflow. The fact that flow sampling
contains a large number of small flows, meant that the overall
distribution was heavily skewed towards these small flows.
For flow sampling, the number of small flows is much larger

10-5

10-4

10-3

10-5 10-4 10-3

E
st

im
at

ed
 m

ea
n

de
la

y
(s

ec
.)

True mean delay (sec.)

Fig. 5. Scatter plot showing the true as well as estimated delay spread across
all flows.

 0

 0.2

 0.4

 0.6

 0.8

 1

10-3 10-2 10-1 100 101

C
D

F

Relative error of delay mean estimates

Interpolation
Multiflow
Trajectory

Fig. 6. Relative error for interpolated delay and Multiflow delay estimator
for packet sampling. RED queuing model with no packet loss isused for
CHIC trace.

than that using packet sampling (11,342 out of 11,721 for flow
sampling as compared to only 5,436 small flows out of 16,178
for packet sampling). Thus, the distribution is dominated by
the small flows for flow sampling.

Unbiasedness and delay-spread.To illustrate the unbiased
nature of our Multiflow estimator, we show a scatter plot in
Figure 5 with the true mean delay on thex-axis and the
estimated mean delay on they-axis for each and every flow.
Two main conclusions can be drawn from the figure: First,
when all the flows are considered, there is quite a bit of
spread in the true latency characteristics of the flows ranging
all the way from10−5 to 10−3 seconds, although most of the
delays lie between2 × 10−5 and 10−4. This in some sense
motivates why we need estimators such as ours; if all average
delays were the same, per-flow estimators would not have been
required. Second, the Multiflow estimator appears to have two-
sided errors indicating its unbiased nature.

Comparison with Interpolation and Trajectory sam-
pling. In this experiment, we compare our Multiflow estimator
with the hypotheticalinterpolation approach and a prior ap-
proach based on trajectory sampling [6]. Trajectory sampling
can potentially be used to estimate per-flow average delays
assuming that each packet label in trajectory sampling is
augmented with extra flow information (the original proposal
[6] was only to include flow information at a sample taken
from the network ingress). For obtaining per-flow latency
estimates in trajectory sampling, we group together the original
set of packet samples based on the flow key and compute the
estimates based on these samples.

We observe from Figure 6 that the relative errors obtained

8

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-4

10
-3

10
-2

10
-1

10
1

10
2

10
3

10
4

10
5

10
6

R
e

la
ti
v
e

 e
rr

o
r

o
f

d
e

la
y
 m

e
a

n
 e

s
ti
m

a
te

s

#
 o

f
s
a

m
p

le
d

 f
lo

w
s

Packet sampling rate

delay mean relative error
total # of sampled flows

Fig. 7. Dependency of delay mean estimates on packet sampling rate. Each
curve represents median with error bars indicating 25th and75th percentile
where flow size> 100 packets for IPLS trace.

using our Multiflow estimator are much higher than those
obtained via interpolation for the CHIC trace. The horizontal
distance between the curves is nearly an order of magnitude:
an error of a given likelihood is about 8 times as large for
Multiflow as for the hypothetical interpolation approach. The
horizontal distance from Multiflow to Trajectory Sampling
is a little more than another half an order of magnitude,
meaning an error of a given frequency is about 4 times larger
for trajectory sampling as for Multiflow. For example, the
median relative error (0.5 on the vertical axis) is about 0.03 for
Interpolation, 0.2 for Multiflow, but about 0.6 for Trajectory
Sampling. For the IPLS trace (omitted for the brevity), the
curves are in the same order but tighter, with errors of a given
likelihood being a factor of 2 greater for Multiflow as for
Interpolation, with Trajectory Sampling another factor ofabout
3 greater. These results indicate that Multiflow has strikingly
better accuracy than the Trajectory Sampling approach, but
there is still plenty of room for improvement. We could likely
achieve the accuracy of the interpolated delay estimator if
more information about packet inter-arrival were provided.

D. Sampling and loss rate variation

We have two variables that control the effective number of
sampled packets—packet sampling rate and loss rate. Since the
Endpoint estimator does not function as well as Multiflow, we
only show the results for Multiflow. We also only consider
packet sampling henceforth in the interest of space.

Impact of sampling rate. For understanding the relation-
ship between estimation accuracy and packet packet sampling
rate, we ran the experiments varying packet sampling rate from
0.0001 to 0.1 for both CHIC and IPLS traces using RED queue
model. We only show the results of IPLS trace in this paper
due to space limitation. We configured per-packet processing
time to produce no packet loss in the experiments.

We show the influence of packet sampling rate on the
estimator accuracy of large flows in Figure 7. We can observe
that while relative errors decrease as the packet sampling
rate increases, they stabilize after a sampling rate of about
10−3 for the IPLS trace and10−2 for the CHIC trace (not
included in the figure). While we do not show a similar graph
for small flows (of size≤ 100), we note that there is one
major difference from the corresponding large flows’ graph.
We observe that as packet sampling rate increases, the relative
errors for small flows also increase. We found this trend in
both traces. While not as pronounced as packet sampling, we

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.01 0.02 0.03 0.04 0.05

R
el

at
iv

e
er

ro
r

of
de

la
y

m
ea

n
es

tim
at

es

Packet loss rate

CHIC-Multiflow
IPLS-Multiflow

(a) Mean

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.01 0.02 0.03 0.04 0.05

R
el

at
iv

e
er

ro
r

of
st

d.
 d

ev
. e

st
im

at
es

Packet loss rate

CHIC-Multiflow
IPLS-Multiflow

(b) Std. Deviation

Fig. 8. Relationship between mean and std. deviation of delay estimates and
packet loss rate. The curves show median and the error bars indicate 25th and
75th percentiles. Flow size> 100 packets. RED queue model is used.

also observed this in flow sampling (omitted for brevity). We
believe this phenomenon could be because of the fact that
increasing packet sampling rate leads to an increase in delay
samples. While we expect larger number of delay samples to
be beneficial in general, the problem is that estimated delays
now are aggregated over larger number of samples, which
benefits larger flows but reduces smaller flows’ accuracy. This
observation is similar to that observed in Figure 3(b) wherethe
Endpoint estimator was better than the Multiflow estimator.

Impact of packet loss rate. Higher loss rate typically
reduces the effective number of samples from which we can
compute the average per-flow latencies. We vary packet loss
rate from 0% to 5% for both IPLS and CHIC traces by
changing the drain rate of a queue. While 1% loss rate seems
a reasonable maximum loss rate, we test up to 5% loss rate
for understanding the impact of such a high packet loss rate.
While we performed experiments for all three delay models,
we mainly analyze results of RED while briefly summarizing
other results. We show the RED results in Figure 8(a). Nor-
mally, one would expect that as loss rate increases, the error
should increase as lesser number of samples exist. But, con-
trary to our intuition, in Figure 8(a), relative error significantly
reduces as we increase the loss rate. The explanation for this
is as follows. In RED or Droptail queues, loss rates and delay
characteristics are inter-twined; high loss rate implies that the
queue is almost always full. Thus, the delay distribution isa
lot more stable and hence easier to predict even with smaller
number of samples (as a result of the loss rate). While our
results for a Droptail queue model were similar to RED, the
Weibull delay model shows relatively constant error in the
latency estimates despite increase of packet loss rate. This is
due to the fact that packet losses are independent with delays
in our settings.

9

E. Accuracy of standard deviation estimates

We now explore the accuracy of the standard deviation
estimator outlined in Section III-D. Just as before, we compare
the accuracy of both the Multiflow and Endpoint estimators.

Similar to the case of mean delay estimates, the increase
of the packet loss rate reduces the relative error of standard
deviation of flow-level latency. The main difference thoughis
that, while in case of delay mean estimates there is a range
of loss rates in which relative error increases, no such range
exists for standard deviation. In Figure 8(b), we observe that
the Multiflow estimator relative error for large flows decreases
significantly. The same trend exists for both CHIC as well as
IPLS traces. The Endpoint estimator on the other hand exhibits
close to 100% error for all packet loss rate ranges. We omit
the actual graph due to space limitation.

One curious observation is that, at around 4%-5% packet
loss rate, the relative error of Multiflow on CHIC increases
slightly. Upon careful investigation, we have observed that,
as link utilization become higher (which happens when we
increase the processing time and thus increase the loss rate),
the variance of packet delay becomes very small, and thus
the relative error of the standard deviation becomes large.For
instance, in CHIC trace, true and estimated delay standard
deviations of a flow were about 0.016 and 0.015 at 2.11%
packet loss rate, of which relative error was 6.25%. However,
for the same flow, true and estimated delay standard deviations
were about 0.006 and 0.007 at 4.93% packet loss rate leading
to a relative error of about 17%.

We also studied the dependence on flow size of the relative
error of the standard deviation for Multiflow. Just as before
for average delay, as flow size increases, the relative error
decreases significantly; for flows greater than size 100, the
median error in standard deviation is less than 27%. The graph
is omitted due to lack of space.

V. CONCLUSION

Customers today are frustrated whenever their applications
experience performance problems and demand better service
from their ISPs. Network operators therefore need sophis-
ticated tools to diagnose these problems whenever they do
occur. In this paper, we have proposed a way to retrofit per-
flow latency estimates in the NetFlow framework. We started
with the fundamental observation that NetFlow already records
two timestamps on a per-flow basis. By harnessing hash-based
sampling framework, which has been standardized by IETF,
we proposed a Consistent NetFlow architecture that ensures
that different routers record the same set of flows. From the
different flow records collected from different router interfaces
at a flow collector, we have shown the design of opportunistic
estimator that can utilize the background flow delay samples
to estimate the per-flow average delay and standard deviation.
Using different delay models and backbone traces, we have
shown that our Multiflow estimator can achieve significantly
accurate estimates (about 20% median error for flows of size
greater than 100 packets) of per-flow latencies under several
realistic scenarios compared to prior approaches.

VI. A CKNOWLEDGMENTS

This work was supported in part by NSF Award CNS
08316547 and a grant from Cisco Systems.

REFERENCES

[1] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simplenetwork
management protocol (SNMP),” IETF, RFC 1157, 1990.

[2] Y. Zhao, Y. Chen, and D. Bindel, “Towards unbiased end-to-end network
diagnosis,” inACM SIGCOMM, 2006.

[3] N. Duffield, “Simple network performance tomography,” in
ACM/USENIX IMC, 2003.

[4] Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An algebraic approach to
practical and scalable overlay network monitoring,” inACM SIGCOMM,
2004.

[5] J. Eidson and K. Lee, “IEEE 1588 standard for a precision clock syn-
chronization protocol for networked measurement and control systems,”
in Sensors for Industry Conference, 2002. 2nd ISA/IEEE, 2002.

[6] N. G. Duffield and M. Grossglauser, “Trajectory samplingfor direct
traffic observation,” inIEEE/ACM Transactions on Networking, 2000.

[7] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, F. Tobagi, and C. Diot,
“Analaysis of measured single-hop delay from an operational backbone
network,” IEEE JSAC, vol. 21, no. 6, 2003.

[8] “Cisco NetFlow,” http://www.cisco.com/en/US/products/ps6601/products
ios protocol group home.html.

[9] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a Better
NetFlow,” in ACM SIGCOMM, 2004, pp. 245–256.

[10] R. R. Kompella and C. Estan, “The power of slicing in internet flow
measurement,” inACM/USENIX IMC, May 2005.

[11] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems, vol. 21, pp. 270–313, 2003.

[12] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards pro-
grammable network measurement,” inACM SIGCOMM, 2007.

[13] N. M. Yan, Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An Algebraic
Approach to Practical and Scalable Overlay,” inACM SIGCOMM, 2004.

[14] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Accurate and efficient
SLA compliance monitoring,” inACM SIGCOMM, 2007.

[15] J. Mahdavi, V. Paxson, A. Adams, and M. Mathis, “Creating a scalable
architecture for internet measurement,” inProc. of INET’98, 1998.

[16] T. Zseby, S. Zander, and G. Carle, “Evaluation of building blocks for
passive one-way-delay measurements,” inProceedings of Passive and
Active Measurement Workshop (PAM 2001), 2001.

[17] N. Duffield, A. Gerber, and M. Grossglauser, “Trajectory engine: A
backend for trajectory sampling,” inIEEE Network Operations and
Management Symposium (NOMS), 2002.

[18] S. Machiraju and D. Veitch, “A measurement-friendly network (MFN)
architecture,” inACM SIGCOMM INM workshop, 2006, pp. 53–58.

[19] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese, “Ev-
ery MicroSecond Counts: Tracking Fine-grain Latencies Using Lossy
Difference Aggregator,” inACM SIGCOMM, 2009.

[20] N. Duffield, B. Claise, D. Chiou, A. Greenberg, M. Grossglauser, and
J. Rexford, “A framework for packet selection and reporting,” RFC 5474,
March 2009.

[21] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall, “Sam-
pling and filtering techniques for ip packet selection,” RFC5475, March
2009.

[22] N. Hohn and D. Veitch, “Inverting sampled traffic,” inACM/USENIX
IMC, 2003.

[23] J. F. Reynolds, “The covariance structure of queues andrelated
processes–a survey of recent work,”Adv. Appl. Prob., 1975.

[24] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson
modeling,” IEEE/ACM Transactions on Networking, 1995.

[25] C. Shannon, E. Aben, kc claffy, and D. E. Andersen, “CAIDA
Anonymized 2008 Internet Traces Dataset (collection),” http://imdc.
datcat.org/collection/1-06BX-2=CAIDA+Anonymized+2008+Internet+
Traces+Dataset.

[26] “Abilene-I data set,” http://pma.nlanr.net/Traces/Traces/long/ipls/1/IPLS-
KSCY-20020814-092000-0.gz.

[27] “YAF: Yet Another Flowmeter,” http://tools.netsa.cert.org/yaf/.
[28] S. Floyd and V. Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,”IEEE/ACM Transactions on Networking, 1993.

