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Abstract—The inherent support in routers (SNMP counters As noted before, however, the problem is generally under-
or NetFlow) is not sufficient to diagnose performance problms  constrained in this sense that, depending on topology on
in IP networks, especially for flow-specific problems where tie disposition of measurement points, not all individual link

aggregate behavior within a router appears normal. To addrss - . .
this problem, in this paper, we propose a Consistent NetFlow performances are visible. Another major problem is thay the

(CNF) architecture for measuring per-flow performance measre- Only provide aggregate statistics, not on a per-flow basis,
ments within routers. CNF utilizes existing NetFlow archilecture which may be crucial to diagnose and debug flow-specific
that already reports the first and last timestamps per-flow, @ad  problems in the network. For example, a flow may have
proposes hash-based sampling to ensure that two adjacentut®rs 55564 a router exactly when the busy period started for the

record the same flows. We devise a novel Multiflow estimator , . .
that approximates the intermediate delay samples from othe router’s queue, because of which that particular flow mayghav

background flows to improve the per-flow latency estimates Obtained terrible throughput. When aggregated over a farge
significantly compared to the naive estimator that only useactual interval, it may appear that the forwarding path within the

flow samples. In our experiments using real backbone tracesnal  router is functioning correctly and thus may not be detected
realistic delay models, we show that the Multiflow estimatoris using active probes alone.

accurate with a median relative error of less than 20% for flows of Th d ite their limitati . d |
size greater than 100 packets. We also show that prior apprad us, despite their imitations In coverage and granuiar-

based on trajectory sampling performs about 2-3x worse. ity, network operators still rely on active probes as they
do not have any other alternative today. From the router
. INTRODUCTION vendors’ point of view, routers are already burdened with

Although IP networks were designed to be best-efforthe ever increasing suite of protocols they need to support
an increasing number of applications today require perfand extremely high line rates, making it quite challenging
mance guarantees. These range from multimedia applicatiom provide these measurement capabilities. From the nktwor
such as voice-over-IP, video, multi-player online gamitw, operator’s perspective, obtaining such measurementstlgire
performance-critical enterprise applications such asnenl from the routers would definitely make the task of debugging
trading. ISPs often provide SLA guarantees to ensure tleat their network easier. As a first attempt to bridging this gap
performance of their network matches up with the expeatatiobetween the capabilities of routers and the ISP needs, $n thi
of their customers that want to run these applications. Slaper,we consider the problem of obtaining hop-level latency
violations typically have heavy financial implications ftite measurements on a per-flow basis
ISP; ISPs, therefore, care deeply about ensuring the heflth At first glance, this goal may appear challenging to achieve.
their network. We need precise time-synchronization, which has been-tradi

IP networks, however, are notoriously hard to debug todaionally hard, as well as coordination between routersctvhi
Apart from SNMP counters [1] such as for interface packé often met with resistance since routers are already over-
drops, there exists very little support in the routers fagdi burdened. The ground has, however, significantly shifted in
nosing performance problems. For example, routers today t@oms of the capabilities of routers today. For instanceters
not report aggregate performance statisteeg,(average delay, are being equipped with sophisticated time-synchroromati
jitter, loss rate) of the forwarding paths (from one inteda primitives such as the IEEE 1588 protocol [5], GPS-based
to another). Such performance statistics would be extyemelocks, etc. There have been significant innovations in de-
useful for operators to diagnose the root cause of end-do-e3igning router primitives that facilitate coordinationtlveen
problems, and take necessary steps to fix it. Without thesmiters without explicit communication [6].
intrinsic measurement capabilities, network operatodayo  To describe our architecture for obtaining per-flow latesgi
are forced to use external means to infer such statistios. ke start with sampled NetFlow as our main point of departure.
instance, ISPs today routinely monitor their networks witithere are two key ideas: The first idea is to exploit the fa&t th
the help of measurement boxes that inject ‘active probdsetFlow already maintains two timestamps corresponding to
between routers. From the path properties observed by th#sefirst and last packets of a flow. We ensure that two NetFlow
probes, operators typically use inference algorithmsdatate processes running at two different routers (or more geakyic
the location of the problem. any segment along an end-to-end path) maintain the same

Several inference algorithms based on tomographic dpws and timestamps for the same first and last packets. This
proaches exist in the literature todag.d, [2], [3], [4]). Consistent NetFlowrchitecture enables us to obtain two delay



samples for the flow. We can easily achieve this using hash-Our work shares some similarity with trajectory sampling
based packet sampling. The second idea is to opportudigtican [6]. Specifically, we borrow consistent hashing in ouoeff
refine the latency estimates of a flow by utilizing the delafipor ensuring that consistent streams of packets are olsatve
samples obtained from other flows that lie within the flow'swo routers. The notion of a flow plays a fundamental role in
duration. We show that how our novlultiffiow estimator our work (and therefore the NetFlow collection framework)
based on this idea provides significantly better estimafeswhile trajectory sampling relies on flat packet labels with
per-flow latencies compared to the Endpoint estimator thad flow-level aggregation. Passive measurement of loss and
uses the two delay samples obtained using consistent NetFldelay by directly comparing trajectory samples observed at
There is one main challenge that remains in the aboddferent points has been studied [16], [17]. Although our
architecture. Our architecture provides per-flow latensy eproposal is targeted toward the aggregate reporting pgradi
timates for only the sampled flows and, ralt flows. We on NetFlow, our approach could potentially also be used to
believe this problem is fundamentally due to the existingeo augment collector side analysis in packet-level passivayde
resource constraints that any passive measurement solutiteasurement of the work in [16], [17]. While we do not
has to deal with. As technology improves, so will the routerompare our proposal with [16] because [16] mostly focuses
resources to support higher sampling rates; the fact that @ evaluating the performances of several schemes making
architecture lies within the NetFlow framework makes thipacket digest for packet-level delay measurement, we coampa
scaling automatic and straightforward. While the fact thaurs with trajectory sampling [17] in the context of per-flow
our architecture can provide reasonable estimates of @er-fldelay estimates in the Section IV.
latencies within routers is significant, it is notintendedgérve  There have been other prior approaches that attempt to
as a replacement for sophisticated measurement framewark&in direct performance measurements from routers. For
(e.g, GPS-enabled setup used in [7]). Instead, we envision a@xample, Machirajet al. suggest a measurement-friendly net-
approach to provide low-cost ways of continuously monitgri work (MFN) architecture as a router primitive which uses-hop
latency characteristics of flows across routers. Thus, veimgn dependent priority queuing [18]. This architecture reesiir
SLA violations are observed in the network, our architeztua lot of intrusive changes in routers, however. It also does
will allow easy localization of the router or interface atialin not provide per-flow latency estimates. A very recent work by
such a violation occurred. Kompellaet al.in [19] propose a high-speed latency detection
Thus, thamain contribution®f this paper include the designdata structure called lossy difference aggregator (LDA)AL
of Consistent NetFlow (discussed in Section IlI-A) and arequires new data structures in routers and hence may not be
opportunistic latency estimator called the Multiflow esdtor deployed easily.
(discussed in Section 11I-C) that provides per-flow latency
estimates on a per-hop basis. The Multiflow estimator’'s ac-
curacy empirically using real backbone traces under differ In this section, we discuss o@onsistent NetFlowarchi-
delay models. Our results indicate that the Multiflow estona tecture for supporting delay measurements, and pin-pbent t
provides a median relative error of less than 20% for flonchanges required in current NetFlow to implement it.
greater than 100 packets. In contrast, we observe thattioaye .
sampling (when adapted for this purpose) is 2-3 times worfe Consistent NetFlow
than our Multiflow estimator. We describe the experiment In today’s flow collection architecture, individual rousen

IIl. FLOW COLLECTION ARCHITECTURE

details and results in Section IV. a network run NetFlow [8] on various interfaces (typically
on the ingress direction). Given that backbone routers @ann
Il. RELATED WORK keep up with high line ratese(g, OC-192 or 10 Gbps),

NetFlow [8] is the main basis for our approach. Several varieuters typically run a variant called Sampled NetFlow that
ants of NetFlow €.g, Adaptive NetFlow [9], Flow slices [10]) uses a simple stage of uniform packet sampling (rates from
and other passive measurement data structures [11], [is2] eX0.001 to 0.01) to ensure that the processor as well as the
but they only measure flow characteristics such as numlmemory resources are not overwhelmed. The line-card CPU
of packets, bytes, and flags. To the best of our knowledgmmputes individual flow record by aggregating all packets
we are the first to propose integrating latency measuremewith sameflow keyin the sampled packet stream. Typically, the
into the NetFlow framework, and a concrete architecture afldw key comprises the TCP 6-tuple consisting of the source
estimators to achieve such an integration. and destination IP addresses and ports, protocol andacterf

Tomography approaches are standard for predicting thember. NetFlow also records the timestamps of the first and
average latency characteristics of links and router fotimay last packets observed for that flow.
paths [13], [3]. They solve the problem of predicting the Our goal is to retrofit delay measurements into the NetFlow
per-hop loss and latency characteristics based on endeto-architecture described above. Without loss of generadityys
measurement®(g, conducted using active probing tools [14]consider measuring the delay between NetFlow instantes
[15]) and routing information obtained from the network.rOuand B in Figure 1; this will essentially measure forwarding
work differs from theirs since we use passive measuremepth latencies i1 from input portA to output port connected
while they rely on active probes. to R3, and the link delay betweeR1 and R3. We start with



Flow Record from NetFlow C

a to ensure that same flows are recorded, hash-based packet
ow ID | T-Stampyay | T-Stampgpg|Label g, | Labelg,y| Counter . 3 )
A 4 t, I Lo | 990 sampling is often preferred because flow sampling can lead to

Ei :Z ttfv :i ||162 799 bursts while packet sampling results in smoother seleaion
packets. In addition, packet sampling is also famouslydulas
- - towards large flows, for which our goal of identifying latgnc

e roater Ra measurements may be even more critical. Typically, there is
b= = \i*:\ an additional level of sampling during flow export to a flow
~ }\‘n‘ collector to reduce the reporting bandwidth. For simpjicit

A however, we assume all sampled flows are transmitted but our
e architecture works even if such sampling were performed.
B colector Time synchronization. In addition to the above, we require

- accurate time synchronization between the end-points iBhi

a fundamental requirement fany architecture that wishes to

" -Router R3 >

Flow Record from NetFlow A . .
Flow 1D | T-StampLy, | T-Stampyng|Label ] Labelyrq] Counter enable accurate delay measurements. The Global Posdionin
b b o L 'Im 1000 System (GPS) is used to synchronize clocks at different
F i, t Lo | 1 | 800 measurement points; seeg, [7]. Router vendors are also

increasingly considering hardware protocols such as IEEE
Fig. 1. Overview of our Consistent NetFlow architectureeThain change 1588 [5] to synchronize routers withipsecond precision.
compared to the current NetFlow architecture is the haskédaampling stage Finally, one implicit assumption is that the stream of paske
shown in the NetFlow process. The flow collector aggregats fecords — fq16ys g serial order (FIFO) between the monitoring paints
from individual routers and extracts a time-series of dslayples from which . .. .
per.ﬂow |atency measurements are recorded. Whlle thIS IS mOSﬂy true, some rOUteI’S can emp'Oy fa.'r
gueuing mechanisms, and thus, packets may pass through
separate forwarding paths within a router. In such cases, we

the observation that NetFlow instancésand B already store roefquire that different forwarding paths be treated difftiie

the timestamps of the first and last packets for the set
sampled flows. Thé&ey ideais that, if bothA and B sample B. Flow Correlation
the same first anc_i Iast_packegso (and p,,) for some flow Expired flow records are transmitted by the NetFlow process
rejclorded by both (in their set of sampled flows), then we C3M each of the routers to a centralized flow collector as shown
trivially compute the delay observed by these packgtand in Figure 1. Flow records obtained at any given NetFlow
pn, from the timestamps recorded at bothand B. Of course,

dt that bathand B i hronized instance (sayA) will contain flow records that would have
We need 1o assume tha an are ime-synchronize potentially taken different paths at the router and C).
for the measurements to be accurate.

Thus, we need thmtersection seof the flow records obtained

In the original NetFlow architecture, both and B sample om the end-points (betweetr and B, A andC). The second
packets completely independently, however. In order 1o agap is to associate these sets of flow records with each. other
dress this problem, we proposeCansistent NetFloWCNF) gy construction, each flow record at the downstream instance
arch?t_ectl_Jre, that is essentially NetFlow with _the addia_aib C will have a corresponding entry at the upstream instafice
modification that routers uskash-based sampling’hus, in  pyt there could be multiple flow records with the same flow
CNF, routers independently select the same packet set g due to flow expiration timeouts in NetFlow. In many cases,
thus timestamps are consistent across NetFlow instances. \ye can trivially associate by sorting and pair-wise assinga

Hash-based samplingEach router calculates a hash oveflow records using the start timestamps. There could still be
some set of packet fields that are invariant over the packeises, however, due to packet losses, or clock synchrarizat
path, and the packet is selected for reporting if the hagfhe way to eliminate this is to use a packet label (using the
falls into a given range. When all measuring routers use thash digest of a packet), but that would require non-stahdar
same hash function, input fields, and selection range, thgiobdifications. We outline a mechanism based on just timing
selection is consistent. Hash-based sampling was proposedhecks to eliminate such inconsistencies.
[6], and has now been standardized in the IETF [20], [21]. Timing checks to eliminate inconsistenciesThe boundary
With a suitably strong hash function, the average samplimgtween flows reported at the sender and receiver side may be
rate can be determined as the size of the selection rangerent due to (i) packet loss, (ii) differences in apption
divided by the size of the set of possible hash values. Naj¢flow timeouts due to slight difference in inter-packet i
that the standards are flexible over what fields are used (f§ different cache expiry events due to heavy loads, any (
input to the hash. By changing an input ranging from invdriaincertainties in timestamps due to propagation delay arukcl
fields of flow key to packet payload, we can achiél@v synchronization issues. The following scheme addressseth
sampling[22] or select packets consistently between differeproblems. We can treat a packet stream with a single key,
routers (unless otherwise mentioned, we refer to this fofm gince flows with different keys at sender and receiver are not
sampling henceforth as jupticket sampling matched. The sender exports a set of flow recomlih fields

While in theory, both sampling mechanisms can be uséd,; 1, 75 2, nsi, bsi) being the initial, final packet timestamps



number of packets and bytes respectively. The receiver sidd-oundation: Delay Correlation. The central premise be-
flows have corresponding fields,; 1, 7,2, i, bri). But note  hind our approach is that when two packets traverse a link
the same index on sender and receiver side is not assumetbsely separated in time, then the queuing delays that they

to originate in the same set of packets. experience are positively correlated. We then draw the con-
We now consider four different quantities, e}, e, e3 that  clusion that it makes sense to estimate the delay of a packet
represent timing uncertainty: that we cannot measure directly, from the delays of closely
« The propagation delay lies in the interval , e]]. separated packets that we can measure directly.
« The packet processing latency is less than At an intuitive level, packets that experience the same
o The clock uncertainty is less thag. gueuing busy periods should tend to have positively caedla

Let T, and T,. denote the inactive and active flowdelays. There are a number of analytical results that confirm
timeouts respectively. We consider the following critd()— this behavior for classes of Markovian queuing models, such
(C5) applied to matching sender floivand receiver flowj. M/G/1 or G/M/1. For our purposes, there are informative
In practice, these are applied as follows. We seek pairs rgsults for models of this nature. In the simplest cases, the
sender and receiver flows that are time compatibée, they lag n autocorrelation of the packet queuing delay, obeys
satisfy (C1). Since flows of a given key can be ordered by o 2 3
first packet time, this requires only a windowed search. Each Yo =1-n(l=p)"+00-p) @)
(C1) compatible pair is then examined to check they satisiyherep < 1 is the offered load; see [23]. This formula shows
(C2)—(C4). If so, they can be passed to the analysis stage @mak under heavy traffic conditiong lose to1), noticeable
we return to seek another (C1) compatible pair. If the flowsorrelations persist at lag for n up to1/(1 — p)?, e.g, up to
fail any of the conditions (C2)—(C5), they are discarded. n = 100 for a 90% load.

(C1) 7vi1 € Tsj1 + 6] — es,ef +ea+e3] and 72 € Although this result applies to a very simple model, there
Tsj2 + [e] — es,ef + ea + e3]. This condition says are two reasons to suggest that correlations in packet slelay
the first and last packet times of receiver floware at a queue whose input is typical Internet traffic will be
compatible with first and last packet times of sender floaven greater. First, under more general conditions than (1)
4, given the uncertainties of propagation, queuing, amdas derived,y,, is a convex function ofr, and hence the
clock synchronization. correlations in practice decay more slowly than the domtinan

(C2) n,; = ns; andb,; = bs;. Equality of bytes and packetslinear behavior inn of (1). Second, Internet traffic exhibits
is a necessary condition for the flows to be reporting dsurstier arrivals than the simple models [24]. So, for a give
the same set of packets. load, packets that queue are more likely to do so behind other

(C3) 742 —ey +e3 < 751+ Tact- The upper bound for latest queuing packets, and consequently waiting time autoorrel
possible compatible sending time of the last flow pack&ébn will be greater than in the Markovian case.
seen at the receivert,; » — e +es, should fall within the ~ The power of this idea for delay measurement is that, we can
active timeout since the first sender packet. enhance the packet delay estimates of a particular flow, with

(C4) 752 — €] +e3 < 7552 + Ty This condition is similar directly measured delays from nearby packets from poténtia
to (C3) except that it rules out sender packets beirmgher flows, in particular, arriving between the first and las
excluded from the flow due to inactive timeout since thpackets of the flow under study.
last sender packet. Endpoint Estimator. The Endpoint method is the naive

(C5) If a pair of sender and receiver flows (of a particulagstimator that averages the pAipp = {d;,d>} of the delays
key) has been discarded, discard all subsequent senafethe first and last packets of the flow:
and receiver flows (of the same key) until the separation
between successive flows exceéts on both sender and Dgp =

receiver sides. This is used because after discard of a ) ) ) )
pair of flows for violating any of conditions (C2)~(C4), Multiflow Estimator. Although the Endpoint estimator is

the first times of subsequent flows may refer to differefg<@ct for flows having two packets, it is expected to have
packet on the sender and receiver sides. The conditiJRited accuracy in general precisely because it is baséyl on

ensures discard of such “out of sync” flows. on two samples. We propose the Multiflow estimator based on
o the autocorrelation description above. We first constrhet t
C. Latency estimation matching streams,; and,;, i = 1,2, ... of matching sender

Once pairs of flow records are associated, we have sendad receiver timestamps of all first and last packets of sadhpl
and receiver timestamps from both its first and last packdlsws. The Multiflow estimator does not distinguish between
(but for just one packet in the case of a single packet flowfjrst and last packet timestamps. Now consider a particular
Using these packet timestamps, our goal is to estimate @er-flflow under study with sender timestamps,; and,; 2 and
latency characteristics of the particular segment. We idens receiver timestamps,; ; andr,; » wherei, 1 andi,2 are the
several estimators in increasing degree of accuracy. Befer indices of the first and last packets of the flow. We form a
discuss our estimators, we briefly outline the basic irdniti delay estimate by averaging the delay over all packets with
behind our estimators. sender timestamps between the sender timestamps of the flow.



Specifically, forr; < ro let S(ri,re) = {i:r < 75 < ro}. \ Flow Collector \*B

The set of packet delays associated with the flow is Flow Flow
Record/,y‘ Weibull Model \fecord Delay
_ ) o ) . Statistics
App = {TM —Tsit 1 E S(Tshlv 7—5172)} B -P‘ Router A P--{ Droptail Queue }»ﬁ Router B ‘
and the Multiflow estimator is Packet \{ RED Queue d
Z ) Trace Delay Model
DMF _ SEAMFE
[Anr] Fig. 2. Simulation environment.

whered is a delay sample in the séty,p.

Hybrid estimator. The hybrid method attempts to blend To this end, we use linear interpolation between endpoint
the best of the Endpoint and Multiflow methods. In oudelays in order to construct a delay value for any time, then
experiments in Section IV-D we shall find that the Endpoirdgompare it with individual packet delays (not just endpsjnt
method tends to be more accurate for smaller flows; indeedaharbitrary flows. Letd; = 7, — 75, ¢ = 1,2,...,n denote
the special case of a two packet flow without loss, it is exathe set of flow endpoint packet delays, ordered with incregsi
In the hybrid approach we apply a threshold in the number sénd timer,;. For any timexz betweenr; andr,,, let i, (r)
packets per flow, using the Endpoint method for smaller flovesdi_(r) label the closest delay values in the future and past:

and the Multiflow method for larger flows.
i+ (z) =min{j: 7, >z} andi_(z) = max{j : 7; < x}
D. Variance and its Estimation

. L . Then the interpolated delay at an arbitrary tim&detween
In measuring delay, it is useful to produce not just a

. S 7 andr,, is

single summary statistic, the mean, but also a measure of

the variability of the distribution of individual delays st~ , .\ _ diy (@) = di_(2)
. VN mt(x) = Wj_(z) + (.I' — Tsi_ (z)) ] —

that value. Thus, we ask two questions: (i) given the expecte Tsiy (z) — Tsi_ ()

correlations between delay measurements, how well is the . .
variability of a single measurement predicted? (ii) hows;zlofor a lossless ﬂOW_Om packets, having sets dfr.; : i —
the variability of set of sampleA relate to that of the packetsl.’ ompand{r,:i=1,... ’m}.Of packet send and receive
in the flow under study itself? times, we construct the set of mt_erpolated.delay values for
To answer the first question, if the delay samples A interior packets, and actual endpoint delays:

were i.i.d random variables, we would form the unbiased, . = {71 — 7,1, 7pm — Tem } U {dint (si) : i =2,...,m — 1}
estimate of the population variance as _ _

 Yaealo— D) \?IhI.Ch W? .co.nipflre with the actual packet delay valdgs—=

_ LseA\" T T Tri — Tsi 2 1 =1,...,m}.
Al =1

whereD = (|A])~! 3", 0 is the sample mean. In the pres-

ence of positive correlations between thienamelyE[56'] > In this section, we evaluate the efficacy of our Multiflow
E[0]E[¢'] for 6, 6" distinct elements of\, thenE[s?] > Var(§). estimator in obtaining accurate per-flow statistics usieal r
Thus we would tend to overestimate the variance, which can packbone packet header traces and different delay models. W
regarded as conservative for performance applicationsyM/e also consider the impact of several variables such as packet
answer the second question through experiments in Sedation loss rate, packet sampling rate, etc. on the accuracy of our
For the moment we make the observation that for the Endpogitimates. Before we describe the results, we first outlure o
estimator, the quantity? is expected to be extremely noisygXxperimental setup.

being based on only two data points; this is indeed the case £ . 'S
found in Section IV. - Experimental Setup

IV. EVALUATION

_ There are three main components in our experimental

E. Interpolation of Packet Delays setup—packet header trace, delay model, and flow collection

Given our motivating intuition concerning correlation otool as shown in Figure 2. For our experiments, we need
packet delays, the correlation between the delay of arpitrecorrelated traces at two different routers with per-packet
packet in a flow, and the endpoint delay of another flow shoulitnestamps. There aneo such publicly available traces. Pa-
be strongest if we could choose the endpoint to have clospagiannakiet al, however, have collected such traces from
possible sender time to the packet in question. Unfortiyatea backbone router in [7] to create a model for the delay
we cannot construct an estimator this way, since we do rdistributions. Thus, we resorted to using a general-p@pos
know the sender times of individual packets. On the othpacket header trace obtained from a single monitoring point
hand, for a performance study, choosing to estimate withaad simulated different delay distributions. The flow colte
close-by packet indicates the limits of accuracy of any meéth allows us to take packet header traces and form flow records
such as our Multiflow estimator, which uses delays of oth@rst as NetFlow would. Each of the components are explained
flows as estimates. next in detail.



(Pkt. sampling rate =0.005, Total flows = 40,564)

Traces. We use two real backbone packet header traces. s tossT 1 o 3 o) Bk Label
Both traces contain no payload information, and all IP ad- [ 000% | 100.00% | 100.00% | 99.99% | 99.99% || 100.00%
0.98% 98.77% 98.44% | 98.43% | 98.43% 99.24%

dresses are anonymized. The CHIC trace is collected by a— 19— —o7.219% | 96.57% | 96.56% | 96.56% | 95.20%

monitor located at Equinix in Chicago, IL, contains traffic 2.91% | 96.24% | 95.38% | 95.37% | 95.371% 97.64%
. ; 3.92% | 94.88% | 93.85% | 93.84% | 93.84% 96.65%

for 60 seconds_from 5.Q0 PM, April 30th, 2008_on an OC- o B R e et e85

192 backbone link published by CAIDA [25]. This trace has TABLE |

about 1 million flows _and 13 million packets in 6Q seconds. TIMING CHECKS COMPARED TO PACKET LABEL APPROACH

The IPLS trace published by NLANR [26] contains traffic

between Indianapolis and Kansas City through an OC-48 link 1

| ltiflow-Weibull
(2.5 Gbhps) collected on August 14th, 2002 at 9:20AM in the o8} -~ '\Eﬂﬁcféom-wg'ibﬂu 1
. . . Multiflow-Droptail .
Abilene network. There are approximately 0.8 million flows W 06 [ e Endpoint-Droptail ; 1
and 17 million packets in this trace. Ooat P;f 1
Flow collection tool. We used an open-source NetFlow 02 - .
platform called YAF [27] for our evaluation. We modified YAF 0= e U 0 .
. . 10 10 10 10 10
to support hash-based packet sampling and flow sampling. In Relative error of delay mean estimates
addition, we also extended YAF to report the hash label for (a) Packet sampling
the first and last packets of a flow for comparing the efficacy
of our timing-based checks for packet association. —— "Multifiow-Weibull
. . . 0.8 | ~~~-~ Endpoint-Weibull q
Delay models.As shown in Figure 2, we have implemented 0s | MulifiowDroptail ]
three different delay models. The first is a Weibull disttibn Soal nepomtbrop |
that Papagiannakét al. have empirically found to model ——— |
packet delays in real backbone routers [7]. The other two

models are based on simulating queuing dynamics according W 15‘2_ 107 , 10° 10t
to the Droptail and RED queue management [28] strategies. Relative error of delay mean estimates
For the Weibull distribution, we set the scale and shape
parameters to 0.0001 and 0.6 (as recommended in [7]) #84. 3. Accuracy of estimators using Weibull distributiorodel on CHIC
both CHIC and IPLS traces. We model packet losses agrage for flow and packet sampling. Flow and packet samplatg # 0.01.
uniform distribution for this delay model. For the queuing
models, we control the packet delays by configuring quetsble also indicates that C3 and C4 result in obtaining theesa
length and drain rate. We set the queue length to 10,000 fsit of flows since there were no instances of C4 in the trace
CHIC trace and 3,000 for IPLS trace. (as discussed in Section IlI-B). We found in all cases, that t
While Droptail requires no further parameters, RED needst of flows obtained by applying the constraints are always a
configuring the queue weightu(), minimum and maximum proper subset of those obtained using the packet labelstdue
thresholds (uin,;, andmaz,,), and maximum drop probabil- simplicity of the packet-label approach, we used labektas
ity (max,). Following the guidelines in [28], we chose a queugssociation in our experiments, but we removed top 1% larges
size of 10,000/nin, = 4,000 and maz., = 9,000 for the delays to ensure no abnormal delay samples affect our sesult
CHIC trace. For IPLS trace, we chose a queue size of 3,000, |
ming, = 1,000 and mazy, = 2,500. We usew, = 0.002 C- EStimator accuracy
andmaz, = =5 for both traces. We first provide basic results outlining the efficacy of
our estimators. We simulate both packet as well as flow
sampling approaches. For simplicity, we also assume nogback
We first compare the efficacy of the timing-based approatdss for these cases; we discuss packet loss variation later
by running the constraint checks (outlined in Section I)I-Bin Section IV-D. In Figure 3(a), we plot the CDF of the
over the CHIC trace. We set;, = 10ms ande; = 20ms. relative error of mean delay estimates for the Multiflow and
We sete, by by multiplying maximum queue size by averag&ndpoint estimators. We show the curves for both Weibull
packet processing time (which varies frotms to 47.6ms  distribution as well as Droptail queuing model (RED is ekact
respectively). We set the clock uncertainty parameteto the same since there is no packet loss). We can observe that
1ms to ensure worst case. We sBt, = 10s and7,.; = 30s the Multiflow method obtains a median relative error of 10%
which is unusually low foff,.; (default on Cisco routers is 30and an 80th percentile relative error of about 20% for the
minutes). We chose this low value to test C3 given the tra®éeibull delay model. The accuracy is slightly lower for the
is only 60 seconds long. Droptail queuing model. The Endpoint estimator however is
Table | shows the percentage of flows obtained by filterirgignificantly inaccurate (a median error of 50%) compared to
flows that fail various constraints outlined in SectionBlI-At the Multiflow estimator for both distributions.
no packet loss, the packet label approach results in all flowsFigure 3(b) shows a similar comparison between Endpoint
included, while at about 0.98% loss, we lose approximatedynd Multiflow for flow sampling. Curiously, Endpoint appears
0.76% of flows because the packet labels do not match. Tieeperform better than Multiflow. The fundamental differenc

(b) Flow sampling

B. Associating flow records
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between flow sampling and packet sampling is the fact that 0= sz L = 0 )
flow sampling uniformly samples flows while packet sampling 10 Ralative error of dlgﬂay mean estimas 10
is known to be biased towards heavy-hitters, as large flows ge _ _ _ _
sampled more often. So, in order to understand this deepféﬂ?; 6. Relatwe_error for |nterp9|ated delay ‘and Multiflowelaly estimator

. . . or 'packet sampling. RED queuing model with no packet losssied for
we study the relationship between the estimator error and flgHic trace.
sizes (number of packets in a flow).

We plot in Figure 4 the variation of median relative error ofhan that using packet sampling (11,342 out of 11,721 for flow
mean delay estimates for different flow sizes. In other wordsampling as compared to only 5,436 small flows out of 16,178
each point represents the median relative error among aiflofor packet sampling). Thus, the distribution is dominated b
that are of a particular size as defined by thexis. From the small flows for flow sampling.
the figures, we can clearly observe that the relative error ofUnbiasedness and delay-spreado illustrate the unbiased
the Multiflow estimator decreases as the flow size increasesture of our Multiflow estimator, we show a scatter plot in
for both flow- as well as packet-sampling. For flows of sizEigure 5 with the true mean delay on theaxis and the
greater than 200, the median relative error is less than D0% éstimated mean delay on theaxis for each and every flow.
packet sampling. In contrast, the error suffered by the Bimdp Two main conclusions can be drawn from the figure: First,
estimator increases as flow size increases significantlyeMavhen all the flows are considered, there is quite a bit of
importantly, it becomes extremely erratic indicating tiias spread in the true latency characteristics of the flows rapgi
not a reliable predictor of flow latency estimates. all the way from10~° to 10~3 seconds, although most of the

For both types of sampling, somewhat curiously, we catelays lie betweer2 x 10~° and 10~%. This in some sense
observe from Figures 4(a) and 4(b) that the Endpoint pedormotivates why we need estimators such as ours; if all average
better than the Multiflow estimator for flows up to a size of 3-dlelays were the same, per-flow estimators would not have been
(or so) and then the accuracy decreases. While the figures guired. Second, the Multiflow estimator appears to haee tw
for Weibull distribution, we have observed similar pattefar sided errors indicating its unbiased nature.

RED and Droptail as well. We believe this is because typicall Comparison with Interpolation and Trajectory sam-

for small flows, an estimate from two actual delay samples |ing. In this experiment, we compare our Multiflow estimator
better than approximating using all the intermediate ptsckewith the hypotheticalinterpolation approach and a prior ap-
Thus, a hybrid estimator that combines the two approach@®ach based on trajectory sampling [6]. Trajectory samgpli
will provide strictly better accuracy than either of the tas can potentially be used to estimate per-flow average delays
we have discussed in Section IlI-C. assuming that each packet label in trajectory sampling is

Now, we return back to the question as to why the Endpoiatigmented with extra flow information (the original progosa
estimator appeared better than the Multiflow estimator. Ff@#] was only to include flow information at a sample taken
smaller flow sizes<{ 4 packets), the Endpoint estimator wagrom the network ingress). For obtaining per-flow latency
more accurate than Multiflow. The fact that flow samplingstimates in trajectory sampling, we group together thesiral
contains a large number of small flows, meant that the overadit of packet samples based on the flow key and compute the
distribution was heavily skewed towards these small flowsstimates based on these samples.

For flow sampling, the number of small flows is much larger We observe from Figure 6 that the relative errors obtained

Fig. 4. Median relative error of delay mean estimates deipgndn flow
size. Weibull distribution is applied to CHIC trace.
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using our Multiflow estimator are much higher than those ¢ 03[
obtained via interpolation for the CHIC trace. The horizdnt E‘if gi | I I Ill
distance between the curves is nearly an order of magnitude: @ T 1 144 - i

an error of a given likelihood is about 8 times as large for 0 0.01 002 o ioss 20 0.04 0.05
Multiflow as for the hypothetical interpolation approacther

horizontal distance from Multiflow to Trajectory Sampling
is a litte more than another half an order of magnitud&jg. 8. Relationship between mean and std. deviation ofydedtimates and
meaning an error of @ given frequency is about 4 times larghct o2 - The surves Show mecan and e err e 250 and
for trajectory sampling as for Multiflow. For example, the

median relative error (0.5 on the vertical axis) is abouBAdd

Interpolation, 0.2 for Multiflow, but about 0.6 for Trajecyo

Sampling. For the IPLS trace (omitted for the brevity), thgiso opserved this in flow sampling (omitted for brevity). We
curves are in the same order but tighter, with errors of argivgejieve this phenomenon could be because of the fact that
likelihood being a factor of 2 greater for Multiflow as forincreasing packet sampling rate leads to an increase ity dela
Interpolation, with Trajectory Sampling another factombbut - samples. While we expect larger number of delay samples to
3 greater. These results indicate that Multiflow has stgin e peneficial in general, the problem is that estimated delay
better accuracy than the Trajectory Sampling approach, are aggregated over larger number of samples, which
there is still plenty of room for improvement. We could liel penefits larger flows but reduces smaller flows’ accuracys Thi
achieve the accuracy of the interpolated delay estimator jfiseryation is similar to that observed in Figure 3(b) whkee

more information about packet inter-arrival were provided gngpoint estimator was better than the Multiflow estimator.

D. Sampling and loss rate variation

(b) Std. Deviation

Impact of packet loss rate. Higher loss rate typically

We have two variables that control the effective number oéduces the effective number of samples from which we can
sampled packets—packet sampling rate and loss rate. $ieacedompute the average per-flow latencies. We vary packet loss
Endpoint estimator does not function as well as Multiflow, weate from 0% to 5% for both IPLS and CHIC traces by
only show the results for Multiflow. We also only considechanging the drain rate of a queue. While 1% loss rate seems
packet sampling henceforth in the interest of space. a reasonable maximum loss rate, we test up to 5% loss rate

Impact of sampling rate. For understanding the relation-for understanding the impact of such a high packet loss rate.
ship between estimation accuracy and packet packet sagnpMihile we performed experiments for all three delay models,
rate, we ran the experiments varying packet sampling rate fr we mainly analyze results of RED while briefly summarizing
0.0001 to 0.1 for both CHIC and IPLS traces using RED quewther results. We show the RED results in Figure 8(a). Nor-
model. We only show the results of IPLS trace in this papemnally, one would expect that as loss rate increases, the erro
due to space limitation. We configured per-packet procgssishould increase as lesser number of samples exist. But, con-
time to produce no packet loss in the experiments. trary to our intuition, in Figure 8(a), relative error si§oantly

We show the influence of packet sampling rate on theduces as we increase the loss rate. The explanation for thi
estimator accuracy of large flows in Figure 7. We can obserigeas follows. In RED or Droptail queues, loss rates and delay
that while relative errors decrease as the packet samplicitaracteristics are inter-twined; high loss rate impliest the
rate increases, they stabilize after a sampling rate of tabaueue is almost always full. Thus, the delay distributiorm is
10—2 for the IPLS trace and0—2 for the CHIC trace (not lot more stable and hence easier to predict even with smaller
included in the figure). While we do not show a similar graphumber of samples (as a result of the loss rate). While our
for small flows (of size< 100), we note that there is oneresults for a Droptail queue model were similar to RED, the
major difference from the corresponding large flows’ grapMeibull delay model shows relatively constant error in the
We observe that as packet sampling rate increases, theveeldatency estimates despite increase of packet loss rats.ighi
errors for small flows also increase. We found this trend olue to the fact that packet losses are independent with slelay
both traces. While not as pronounced as packet sampling, iweour settings.
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