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An Exploration Of The Generalized Cantor Set 
 

Md. Shariful Islam Khan, Md. Shahidul Islam 
 

Abstract: In this paper, we study the prototype of fractal of the classical Cantor middle-third set which consists of points along a line segment, and 
possesses a number of fascinating properties. We discuss the construction and the self-similarity of the Cantor set. We also generalized the construction 
of this set and find its fractal dimension. 
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———————————————————— 
 

1 INTRODUCTION 
A fractal is an object or quantity that displays self-similarity. 
The object needs not exhibit exactly the same structure but 
the same type of structures must appear on all scales. 
Fractals were first discussed by Mandelbrot[1] in the 1970, but 
the idea was identified as early as 1925. Fractals have been 
investigated for their visual qualities as art, their relationship to 
explain natural processes, music, medicine, and in 
Mathematics. The Cantor set is a good example of an 
elementary fractal. The object first used to demonstrate fractal 
dimensions is actually the Cantor set. The process of 
generating this fractal is very simple. The set is generated by 
the iteration of a single operation on a line of unit length. In 
each iteration, the middle third from each lines segment of the 
previous set is simply removed. As the number of iterations 
increases, the number of separate line segments tends to 
infinity while the length of each segment approaches zero. 
Under magnification, its structure is essentially 
indistinguishable from the whole, making it self-similar[2]. We 
studied the dimension of the Cantor set that its magnification 
factor is three, or the fractal is self-similar if magnified three 
times. Then we noticed that the line segments decompose 
into two smaller units. We also studied the fractal dimensions 
of the generalized Cantor sets. We explore the generalization 
of the Cantor set with fractal dimension and demonstrate the 
diagram of self-similarity of this generalized Cantor set in 
three phases. Although we used the typical middle-thirds or 
ternary rule[3] in the construction of the Cantor set, we 
generalized this one-dimensional idea to any length other than 
1

3
, excluding the degenerate cases of 0 and 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 BASIC DEFINITIONS 
 
Definition 2.1: A set 𝑆 is self-similar if it can be divided into 𝑁 

congruent subsets, each of which when magnified by a 

constant factor 𝑀 yields the entire set 𝑆. 
 

Definition 2.2: Let 𝑆 be a compact set and 𝑁(𝑆, 𝑟) be the 

minimum number of balls of radius r needed to cover 𝑆. Then 

the fractal dimension[4] of 𝑆 is defined as 
 

dim 𝑆 = lim
𝑟→0

log𝑁(𝑆, 𝑟)

log(1/𝑟)
. 

 
In the line (ℝ1), a ball is simply a closed interval. 
 

3 CONSTRUCTION OF CANTOR SET 
 

3.1. Cantor middle-1/3 set  
To construct this set (denoted by 𝐶3), we begin with the 

interval  0,1  and remove the open set  
1

3
,
2

3
  from the closed 

interval  0,1 . The set of points that remain after this first step 

will be called 𝐾1, that is, 𝐾1 =  0,
1

3
 ∪  

2

3
, 1 . In the second step, 

we remove the middle thirds of the two segments of K1, that is, 

remove  
1

9
,
2

9
 ∪  

7

9
,
8

9
  and set 𝐾2 =  0,

1

9
 ∪  

2

9
,

3

9
 ∪  

6

9
,

7

9
 ∪  

8

9
, 1  

be what remains after the first two steps. Delete the middle 
thirds of the four remaining segments of K2 to get K3. 

Repeating this process, the limiting set 𝐶3 = 𝐾∞ is called the 
Cantor middle 1/3 set.  
 

 
Figure 1. The Cantor set, produced by the iterated process of 
removing the middle third from the previous segments. The 
Cantor set has zero length, and non-integer dimension. 
 
3.2. Fractal dimension of the Cantor middle-1/3 set 
The set 𝐶3 is contained in 𝐾𝑛  for each 𝑛. Just as 𝐾1 consists of 

2 intervals of length 
1

3
, and 𝐾2 consists of 2

2
 intervals of length 

1

3
2 and 𝐾3 consists of 2

3
 intervals of length 

1

3
3. In general, 𝐾𝑛  
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consists of 2𝑛  intervals, each of length 
1

3𝑛
. Further, we know 

that 𝐶 contains the endpoints of all 2𝑛  intervals, and that each 

pair of endpoints lie 3−𝑛  apart. Therefore, the smallest number 
of 3−𝑛-boxes covering 𝐶3 is 𝑁 𝐶3, 3−𝑛 = 2𝑛 . Compute the 
dimension of the Cantor middle-1/3 set 𝐶3 as  

 

dim .6309.0
3ln

2ln

3ln

2ln
lim

3ln

2ln
lim)( 3 

 n

n
C

nn

n

n
 

 
3.3. Self-similarity of the Cantor middle-1/3 set 
One of the most important properties of a fractal is known as 
self-similarity[5]. Roughly speaking, self-similarity means if we 
examine small portions of the set under a microscope, the 
image we see resembles our original set. To see this let us 

look closely at 𝐶3. Note that 𝐶3 is decomposed into two distinct 
subsets, the portion of 𝐶3 in  0, 1/3  and the portion in 
 2 3, 1  . If we examine each of these pieces, we see that they 

resemble the original Cantor set 𝐶3. Indeed, each is obtained 
by removing middle-thirds of intervals. The only difference is 

the original interval is smaller by a factor of 1/3. Thus, if we 
magnify each of these portions of 𝐶3 by a factor of 3, we 
obtain the original set. More precisely, to magnify these 

portions of 𝐶3, we use an affine transformation. Let 𝐿 𝑥 = 3𝑥. 
If we apply 𝐿 to the portion of 𝐶3 in  0, 1/3 , we see that 𝐿 

maps this portion onto the entire Cantor set. Indeed, 𝐿 maps 
 1 9 , 2/9  to  1 3 , 2/3 ,  1 27 , 2/27  to  1 9 , 2/9 , and so 

forth (Fig. 2). Each of the gaps in the portion of 𝐶3 in  0, 1/3  is 
taken by 𝐿 to a gap in 𝐶3. That is, the ―microscope‖ we use to 
magnify 𝐶3 ∩  0, 1/3  is just the affine transformation 𝐿 𝑥 =
3𝑥. 
 

 
Figure 2. Self-similarity of the Cantor middle-thirds set 

 
To magnify the other half of 𝐶3, namely 𝐶3 ∩  2 3 , 1 , we use 

another affine transformation, 𝑅 𝑥 = 3𝑥 − 2. Note that 
𝑅 2 3  = 0 and 𝑅 1 = 1 so 𝑅 takes  2 3 , 1  linearly onto 
 0, 1 . As with 𝐿, 𝑅 takes gaps in 𝐶3 ∩  2 3 , 1  to gaps in 𝐶3, so 

𝑅 again magnifies a small portion of 𝐶3 to give the entire set. 
Using more powerful ―microscope‖, we may magnify arbitrarily 

small portions of 𝐶3 to give the entire set. For example, the 
portion of 𝐶3 in  0, 1/3  itself decomposes into two self-similar 
pieces: one in  0, 1/9  and one in  2 9 , 1 3  . We may magnify 

the left portion via 𝐿2 𝑥 = 9𝑥 to yield 𝐶3 and the right portion 
via 𝑅2 𝑥 = 9𝑥 − 2. Note that 𝑅2 maps  2 9, 1 3    onto  0, 1  
linearly as required. Note also that at the 𝑛th stage of the 
construction of 𝐶3, we have 2𝑛  small copies of 𝐶3, each of 

which may be magnified by a factor of 3𝑛  to yield the entire 
Cantor set.  

4 GENERALIZED CANTOR MIDDLE-𝝎 SETS 
(𝟎 < 𝝎 < 1) 

 

4.1. Cantor middle-1/5 set 
To build this set (denoted by 𝐶5) we can follow the same 
procedure as construction of the middle-third Cantor’s set. 
First we delete the open interval covering its middle fifth from 
the unit interval 𝐼 = [0,1]. That is, we remove the open interval 

(
2

5
,
3

5
). The set of points that remain after this step will be called 

𝐾1. That is, 𝐾1 =  0,
2

5
 ∪  

3

5
, 1 . In the second step, we remove 

the middle fifth portion of each of the 2 closed intervals of 𝐾1 
and set 
 

𝐾2 =  0,
4

25
 ∪  

6

25
,

2

5
 ∪  

3

5
,

19

25
 ∪  

21

25
, 1 . 

 

 
Figure 3. Construction of the Cantor middle-1 5   set. 

 

Again, we remove the middle fifth portion of each of the 2
2
 

closed intervals of 𝐾2 to get 𝐾3. Repeating this process, the 
limiting set 𝐶5 = 𝐾∞ is called the Cantor middle-1 5  set. The 

set 𝐶5 is the set of points that belongs to all of the 𝐾𝑛 . 
 

4.2. Fractal dimension of the Cantor middle-1/5 set  
The set 𝐶5 is contained in 𝐾𝑛  for each .n  Just as 𝐾1 consists 

of 2 intervals of length 2/5, and 𝐾2 consists of 2
2
intervals of 

length 
2

2

5
2 and 𝐾3 consists of 2

3
 intervals of length 

2
3

5
3. In 

general, 𝐾𝑛  consists of 2𝑛  intervals, each of length  
2

5
 
𝑛

. 

Further, we know that 𝐶5 contains the endpoints of all 2𝑛  

intervals, and that each pair of endpoints lie  
2

5
 
𝑛

 apart. 

Therefore, the smallest number of  
2

5
 
𝑛

-boxes covering 𝐶5 is 

𝑁 𝐶5, 2𝑛5−𝑛 = 2𝑛 . We compute the fractal dimension of the 
Cantor middle-1/5 set 𝐶5 as  
 

dim( 𝐶5) = lim
𝑛→∞

ln 2𝑛

ln 5/2 𝑛
=

ln 2

ln 5 − ln 2
. 

 
4.3. Cantor middle-1/7 set  
To build this set (denoted by 𝐶7)  we first delete the open 

interval covering its middle 7th from the unit interval 𝐼 = [0,1]. 

That is, we remove the open interval (
3

7
,

4

7
). The set of points 

that remain after this step will be called 𝐾1, that is, 𝐾1 =  0,
3

7
 ∪

 
4

7
, 1 . In the second step, we remove the middle 7th portion of 

each of the 2 closed intervals of 𝐾1 and set 
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𝐾2 =  0,
9

49
 ∪  

12

49
,

21

49
 ∪  

4

7
,

37

49
 ∪  

40

49
, 1 . 

 

 
Figure 4. Construction of the middle-1 7  Cantor set. 

 

Again, we remove the middle 7th portion of each of the 2
2
 

closed intervals of 𝐾2 to get 𝐾3. Repeating this process, the 
limiting set 𝐶7 = 𝛿∞ is called the Cantor middle-1/7 set. The 

set 𝐶7 is the set of points that belongs to all of the 𝐾𝑛 . 
 
4.4. Fractal dimension of the Cantor middle-1/7 set  
In this case,  𝐾1 consists of 2 intervals of length 3/7, and 𝐾2 

consists of 2
2
intervals of length 

3
2

7
2 and 𝐾3 consists of 2

3
 

intervals of length 
3

3

7
3. In general, 𝐾𝑛  consists of 2𝑛  intervals, 

each of length  
3

7
 
𝑛

. Further, we know that 𝐶7 contains the 

endpoints of all 2𝑛  intervals, and that each pair of endpoints lie 

 
3

7
 
𝑛

apart. Therefore, the smallest number of  
3

7
 

𝑛

-boxes 

covering 𝐶5 is 𝑁 3𝑛7−𝑛 = 2𝑛 . We compute the fractal 

dimension of the Cantor  middle-1/7 set 𝐶7 as  
 

dim(𝐶7) = lim
𝑛→∞

ln 2𝑛

ln 7/3 𝑛
=

ln 2

ln 7 − ln 3
. 

 

5 GENERALIZATION  
In similar way, we can construct the middle-(2𝑚 − 1)th 
Cantor’s set, 𝐶2𝑚−1 where 𝑚 ≥ 2 and then compute the fractal 

dimension of the Cantor middle-1/(2𝑚 − 1) set𝐶2𝑚−1. 

In this case, 𝐾𝑛  consists of  2𝑛  intervals, each of length 
(𝑚−1)𝑛

(2𝑚−1)𝑛
 

and 𝐶2𝑚−1 contains the endpoints of all 2𝑛  intervals, and each 

pair of endpoints lie 
(𝑚−1)𝑛

(2𝑚−1)𝑛
 apart. Therefore, the smallest 

number of 
(𝑚−1)𝑛

(2𝑚−1)𝑛
 -boxes covering 𝐶2𝑚−1 is 𝑁 𝐶2𝑚−1 , (𝑚 −

1)𝑛(2𝑚 − 1)−𝑛 = 2𝑛 . We compute the fractal dimension of 

the Cantormiddle-1/(2𝑚 − 1) set 𝐶2𝑚−1as  
 

dim(𝐶2𝑚−1) = lim
𝑛→∞

ln 2𝑛

ln (2𝑚 − 1)𝑛/(𝑚 − 1 𝑛)
                     

=
ln 2

ln(2𝑚 − 1) − ln(𝑚 − 1)
, 

 

where 𝑚 ≥ 2. 
 
Comment: We can generalize the Cantor’s set by setting 

𝜔 =
1

2𝑚−1
 as the Cantor middle-𝜔 set and the fractal dimension 

of the Cantor middle-𝜔 set is 
ln 2

ln 2−ln (1−𝜔)
,  where 𝜔 =

1

3
,

1

5
,

1

7
,

⋯ ⋯ ⋯. 
 
Lemma 5.1[6]: If 𝐾𝑛  is as defined above in constructionof the 

Cantor middle-𝜔 set, then there are 2𝑛  closed intervals in 𝐾𝑛  

and the length of each closed interval is  
1−𝜔

2
 
𝑛

. Also, the 

combined length of the intervals in 𝐾𝑛  is  1 − 𝜔 𝑛, which 
approaches 0 as 𝑛 approaches ∞. We are now ready to say 

that Cantor middle-𝜔 sets are appropriately named. 
 
Proposition 5.2. The Cantor middle-𝜔 set is a Cantor set, 

where 0 < 𝜔 < 1. 
 
Proof: The proof can be found in [7]. 
 

6 SPECIAL CASES OF GENERALIZED 
CANTOR MIDDLE-𝝎 SET 

 

6.1. Removing the alternative segments (obviously the 
number of segments is odd). 

(a) When 𝜔 = 2/5, construction of the Cantor middle-2/5 set: 
In this case, we delete the middle second and fourth of 5 
portions of the unit interval 𝐼 = [0,1]. Then we have 𝐾1 =

 0,
1

5
 ∪  

2

5
,

3

5
 ∪ [

4

5
, 1] and   

 

𝐾2 =  0,
1

25
 ∪  

2

25
,

3

25
 ∪  

4

25
,

1

5
 ∪  

2

5
,

11

25
 ∪  

12

25
,

13

25
 ∪  

14

25
,

3

5
 ∪

 
4

5
,

21

25
 ∪  

22

25
,

23

25
 ∪ [

24

25
, 1]. 

 

 
Figure 5. Construction of the middle-2/5 Cantor set. 

 
Repeating this process, the limiting set 𝐶5 = 𝐾∞ can be called 

the Cantor middle-2/5 set and 𝐾3 consists of 
33  intervals of 

length 
1

5
3. In general, 𝐾𝑛  consists of 

n3  intervals, each of 

length 
1

5𝑛
. Thus the dimension of the Cantor middle-2/5 set is  

 

dim 𝐶5 = lim
𝑛→∞

ln 3𝑛

ln 5𝑛
=

ln 3

ln 5
. 

 

(b) When 𝜔 = 3/7, construction of the Cantor middle-3/7 set: 
In this case, we remove the middle second, fourth and sixth of 

7 portions of the unit interval 𝐼 = [0,1]. Then we have 𝐾1 =

 0,
1

7
 ∪  

2

7
,

3

7
 ∪  

4

7
,

5

7
 ∪  

6

7
, 1  and 𝐾2 =  0,

1

49
 ∪  

2

49
,

3

49
 ∪ ⋯∪

[
48

49
, 1]. 
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Figure 6. Construction of the middle-3/7 Cantor set. 

 
Repeating this process, the limiting set 𝐶7 = 𝐾∞ can be called 

the Cantor middle-3/7 set and 𝐾3 consists of 4
3
 intervals of 

length 
1

7
3. In general, 𝐾𝑛  consists of 4𝑛  intervals, each of length 

1

7𝑛
. Thus the dimension of the Cantor middle-3/7 set is 

  

dim 𝐶7 = lim
𝑛→∞

ln 4𝑛

ln 7𝑛
=

ln 4

ln 7
. 

 
(c) Generalization: When 𝜔 = (𝑚 − 1)/(2𝑚 − 1) and 𝑚 ≥ 2, 

construction of the  Cantor middle- (m-1)/(2m-1) set: 

As above 𝐾𝑛  consists of 
nm  intervals, each of length 

1 (2𝑚 − 1)𝑛 . Thus the dimension of the Cantor middle-
(𝑚 − 1)/(2𝑚 − 1) set is  
 

dim 𝐶2𝑚−1 = lim
𝑛→∞

ln 𝑚𝑛

ln(2𝑚 − 1)𝑛
=

ln𝑚

ln(2𝑚 − 1)
 

 

where 𝑚 ≥ 2.  
 

6.2. Removing the middle segments (except two end 
segments). 

 

(a) When 𝜔 = 2/4, construction of the Cantor middle-2/4 set: 
In this case, we delete the middle two of four portions of 

the unit interval 𝐼 = [0,1]. That is, we remove the open 

interval (
1

4
,

3

4
) from the unit interval 𝐼 = [0,1]. Then we have 

𝐾1 =  0,
1

4
 ∪  

3

4
, 1  and 𝐾2 =  0,

1

16
 ∪  

3

16
,

1

4
 ∪  

3

4
,

13

16
 ∪  

15

16
, 1 . 

 

 
Figure 7.Construction of the middle-2 4  Cantor set. 

 

Repeating this process, the limiting set 𝐶4 = 𝐾∞ can be called 

the Cantor middle-2/4 set and 𝐾3 consists of 
32  intervals of 

length 
1

4
3. In general, 𝐾𝑛  consists of 

n2  intervals, each of 

length 
1

4𝑛
. Thus the dimension of the Cantor middle-2/4 set is  

 

dim 𝐶4 = lim
𝑛→∞

ln 2𝑛

ln 4𝑛
=

ln 2

ln 4
. 

 

(b) When 𝜔 = 3/5, construction of the Cantor middle-3/5 set: 
In this case, we delete the middle three of five portions of 

the unit interval 𝐼 = [0,1]. Then we have 𝐾1 =  0,
1

5
 ∪  

4

5
, 1  

and 𝐾2 =  0,
1

25
 ∪  

4

25
,

1

5
 ∪  

4

5
,

21

25
 ∪  

24

25
, 1 . 

 

 
Figure 8.Construction of the middle-3 5  Cantor set. 

 
Repeating this process as above,𝐾𝑛  consists of 2𝑛  intervals, 

each of length 
1

5𝑛
. Thus the dimension of the Cantor middle-

3 5  set 𝐶5 as  
  

dim 𝐶5 = lim
𝑛→∞

ln 2𝑛

ln 5𝑛
=

ln 2

ln 5
 

 

(c) When 𝜔 = 4/6, construction of the Cantor middle-4/6 set: 
In this case, we delete the middle four of the six portions of 

the unit interval 𝐼 =  0,1 . Then we have 
 

𝐾1 =  0,
1

6
 ∪  

5

6
, 1  and 𝐾2 =  0,

1

36
 ∪  

5

36
,

1

6
 ∪  

5

6
,

31

36
 ∪  

35

36
, 1 . 

 

 
Figure 9. Construction of the middle-4 6  Cantor set. 

 

In general, 𝐾𝑛  consists of 2𝑛  intervals, each of length  
1

6
 
𝑛

. 

Thus the dimension of the Cantor middle-4/6 set 𝐶6 as  
 

𝑑𝑖𝑚 𝐶6 = lim
𝑛→∞

ln 2𝑛

ln 6𝑛
=

ln 2

ln 6
 

 
(d) Generalization: When 𝜔 = 𝑚/(𝑚 + 2) and 𝑚 ∈ ℤ+, 

construction of the Cantor middle- 𝑚/(𝑚 + 2) set: As 

above, 𝐾𝑛  consists of 2𝑛  intervals, each of length  
1

(𝑚+2)𝑛
. 

Thus the dimension of the Cantor middle-𝑚 (𝑚 + 2)  set 
𝐶𝑚+2 as  

 

dim(𝐶𝑚+2) = lim
𝑛→∞

ln 2𝑛

ln(𝑚 + 2)𝑛
=

ln 2

ln(𝑚 + 2)
  , 

 

where 𝑚 ∈ ℤ+. 
 

7 CONCLUSION  

We construct the generalized Cantor sets in three phases with 
self-similarity and find their fractal dimensions in each case. 
Although our construction of the Cantor set used the typical 
―middle-thirds‖ or ternary rule, we can easily generalize this 
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one-dimensional idea to any length other than 
1

3
, excluding of 

course the degenerate cases of 0 and 1. After decomposing 
the typical Cantor set into two distinct subsets, the portion of 

the set in  0, 1/3  and the portion in  2 3, 1 , we see that each 
of these pieces resembles the original Cantor set. The only 

difference is the original interval is smaller by a factor of 1/3. 
In the same manner, the magnifications of our generalized 
Cantor sets resemble the original set.  
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