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Summary

A number of viewpoints on how a cell can be modelled are discussed in this paper in

light of the ability it has to process information. The paper begins with a  very brief

summary of four general types of computation: sequential, parallel, distributed and

emergent. These form the general framework from which a number of comparisons are

made. Several metaphors are introduced to enable reflections to be made about cellular

computational properties. The most important metaphor namely, the cell as a machine,

is discussed and then a number of other ideas are introduced which complement a lot of

current thinking in this area. The idea of networks or circuits in the cell is then

developed as this provides a means of describing the mechanisms within a machine.

Following on from this three further metaphors are applied in order to overcome certain

limitations in current machine thinking, cell-as-society, cell-as-text and cell-as-field.  
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1 Introduction

The purpose of this paper is to examine a number of ways in which cells can be modelled and

some general features of the computational metaphor will be considered. This includes the

1 appears in BioSystems (1993), 29, 63-75.



notion that cells process information. We may ask what kind of computational model a cell or

certain parts thereof  could suggest ? There are a number of possible approaches. On one level

of description the cell is decomposed into its functional compartments such as genome

(program), enzymes (the program enactors), and secondary messenger systems (data buses).

However, as we shall see this is extremely simplistic. From another point of view it may seem

appropriate to consider certain abstract properties of the cell and model the whole as a

processing unit, for example, in a cellular automaton. As the paper unfolds it will appear that a

cell has many computational machines. Some correspond to existing computers within the

context of certain analogies but others are far removed from many computational ideas and may

require new models for their expression.  In this paper we shall consider four general types of

computational machine:

SEQUENTIAL - these machines, sometimes referred to as von Neuman machines, are

the most common form. They can characterised by a single locus of control (in the central

processing unit),  a global memory and, as the name suggests they carry out instructions

serially.

PARALLEL - these consist of several processors that are located close to each other. The

processors get involved in the joint execution of a computational task. Communication

between processors is predictable in these fixed topology systems. Two forms of

parallelism may be described: coarse grained, in which programs are split up into relatively

independent tasks and, fine grained, in which there is a very high degree of interaction

between processors. Parallel systems can be explicitly decomposed into subunits. For the

purposes of this paper we shall focus on one type of parallel computer, the multiple

instruction stream, multiple data stream (MIMD) machine. 

DISTRIBUTED - processors can be located at large distances apart in these systems and

communication is unpredictable. Information that becomes available to a processor for

computational purposes may only be in a partial form. The topology of such systems is

variable and examples include local area networks and open systems.

EMERGENT - this form of computation is characteristic of cooperative self-organising

systems made up of many very simple processes. The global behaviour of such systems

emerges from local interactions between parts. This form of computation is typified by

cellular automata and parallel distributed processing systems such as artificial neural



networks.

Computational models of the cell  can utilise any of these views. The purpose of this article is

not so much to say which should be used but rather, to examine the breadth of possible models

and how more that one will be required. In order to do this the cell will be compared to a

number of basic model-organising ideas, in particular a set of metaphors (Paton, 1992; Paton

et al, forthcoming). 

Given this kind of analysis, a cautionary note must be made even at this early stage: a

potential problem with an approach to biology which transfers ideas from computing is its

dependency on the latter for expression and this could lead to a “shoe-horning” effect namely,

biological systems get fitted to current computational models. In many ways this would not be

such a bad idea. Comprehensive conceptual frameworks for describing biological models and

facilitating explanation and prediction are not so common and theoretical computer science,

particularly those areas which can deal with the non-linear, highly parallel and emergent

behaviour of biological systems, could be an extremely valuable asset. However, computer

science is an evolving field of knowledge and a theoretical biology which is simply serviced by

current or projected computational models could eventually become a stagnating narrow-minded

discipline. For example, computing and electronics have greatly influenced the development of

biological ideas associated with the neuron which has been variously described as a switch,

transistor, multiplexer and microprocessor. However, a neuron is much more than this.

Consequently a more dynamic approach to interaction between biology and computing is

necessary, one in which both disciplines are enabled to co-evolve. As a result, we see the

emergence of two interrelated but distinct disciplines: biologically motivated computing (using

biology to inspire computing) and computationally motivated biology (using computing to

inspire biology). Finally, unlike a number of reductionist writers, the present author has been

very careful not to presume that a cell is necessarily a kind of machine. Hence, the metaphors

for the cell which are described in the following sections are predicated by the relation “as a”

rather than “is a”.

2 The Cell as a Machine

The idea of the cell as a processor of biochemical symbols can be traced back through the work

of for example, Stahl & Goheen (1963), to the notion of the cell as a Turing machine. Both



cells and their components can be modelled using the language of automata theory. For

example, Hofstader (1979) describes several ways in which DNA can be described in

computational terms. It may be thought of as a program written in a high level language which

is subsequently interpreted in the machine language of the cell (proteins). Alternately, it is like

data which is manipulated by a program (enzymes). 

Kauffman (1991) describes the genome as acting like a complex parallel computer system

which he models in terms of Boolean networks consisting of a large number of two-state

components. This kind of model reduces the computational capacities of the genome to the

simple (Boolean) behaviour of genes. On the other hand, Davidson (cited Beardsley, 1991)

looks at some individual genes as operating like ‘smart’ agents. In this case a degree of

‘knowledge’ or cognitive capability is associated with the parts of the system. Keeping both of

these insights in mind, we may envisage DNA, genes and the genome acting as parallel

processing systems in a variety of ways for which a number of automata-based models can be

described. It should also be noted that the genome is itself a highly organised parallel

processing system and what used to be dismissed as ‘junk DNA’ is more likely to be a part of a

complex integrated system (Bernardi, 1989).

Another important source for intracellular computing is the enzymes. For example, in his

discussion of biomolecular computers, Conrad (1990) notes two important cellular devices:

enzymes and secondary messengers. In his scheme enzymes act as transistors or molecular

switches but are far better than their electronic analogues because of their greater variety (i.e.,

there are many types of biomolecular transistor) and also because of the very low dissipative

energy required by them to operate. What is more, the functionality of an enzyme as a parallel

processing device is considerable. We may note that enzyme processing, and particularly that

associated with allosteric forms and multi-enzyme complexes carries with it more that a catalytic

role when its parallel processing capacities are considered. An example would be the timed and

intrinsically regulatable GTPases which may contribute to a large number of cellular processes

(Macara, 1991). 

Marijuan (1991) seeks to model enzymes as molecular automata and argues that enzyme

networks are highly parallel systems which reflect the primary computing properties of the cell.

As such, networks of enzymes are a form of automata network which may be generalised as a

Boolean network in a similar way to Kauffman’s scheme. Quoting Kornberg, he notes that

although DNA provides the script, it is the enzymes which do the acting (this type of thinking



may also be described in terms of the society and text metaphors discussed below). 

Secondary messengers play the linking role in cellular information processing providing the

cell with the capability to process patterns of input data. It is also worth noting that second

messengers can be modelled in terms of Boolean states. For example, Lichtstein and Rothbard

(1987) describe possible models for second messenger activation systems and suggest one

based on the number of on/off states (i.e., 2n where n is the number of messengers involved).

This hypothetical scheme could be further extended if the device-behaviour of receptor

molecules had some kind of processing capacity.

So far, the discussion has concentrated on three classes of molecule - DNA, enzyme and

secondary messengers. However, other biomolecules and molecular complexes can also be

ascribed computational capacities including protein complexes such as multi-enzyme

assemblies, microtrabeculum and membrane-based channels and pumps. For example, Aizawa

(1991) discusses how a photosystem can be seen as a photodiode and Lauger (1987) describes

small biomolecular assemblies such as ion pumps that behave like stochastic machines.

Switching (i.e., Boolean) properties can also be ascribed to ion channels and transcriptional

factors (Macara, 1991).

The computational capacities of the cell are not simply restricted to particular classes of

biomolecules; supramolecular systems can also be described in machine terms. One approach is

that of Holcombe (1990) who provides an algebraic formalism based on Eilenberg’s generalised

automaton, the X-machine.  In this case, intracellular biochemical organisation structured

around a set of organisational layers within the cell. An X-machine is a generalisation which

subsumes finite state machines, Petri nets and Turing machines. The basic thesis of

Holcombe’s approach is that many types of biological activity can be modelled using various

types of X-machine at various levels of behavioural description. This is generalised as a

hierarchy of algebraic machines that describe certain organisational and computational features

to be found in the biochemical behaviour of cellular systems (Holcombe, 1992). Each

hierarchical level within the model of cellular organisation has its own variety of X-machine

corresponding to:

0 Energy transfers for the whole system,

1 Conformational level (the set of states)

2 Metabolic level

3 Enzyme control level



Each of these levels, of which 0 is the most general and 3 is the most specific, may be modelled

as either a sequential or as a parallel machine. In this hierarchy of X-machines the enzyme

control level machine (3) is used to provide inputs to the metabolic level machine (2), and so

forth. The power of Holcombe’s approach is its potential capacity for modelling massively

parallel processes (Holcombe, 1991, 1992). We may now speculate on at least two types of

parallelism which exists in the X-machine approach namely, within-level parallelism that is, the

X-machine at a given level is a parallel X-machine and between-level parallelism. In this latter

case, the parallelism of the models may remain implicit in the operation of the levels.
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Figure 1 - Some Organisational Levels within the Cell

Welch (1977) models the cell as machine-with-slots; slots are the inputs and outputs and the

machine is a transformation system. However, the functionality of the system is not restricted

to a slot transfer function for Welch emphasises the spatial organisation in terms of localisation

of processes (due to subcellular organelles and multi-enzyme complexes) and pooling of

transformed materials due to their arrangement in space and time. These properties reflect a

fractal dimension. Not only this, in their review of a model of glycolysis, Hess and Markus

(1987) note that certain switching phenomena take place depending on the concentration of a



number of substrate (such as phosphoenol pyruvate and fructose 6-phosphate). This oscillatory

switching may display chaotic behaviour and Hess and Markus speculate on how the pathway

can then have a capacity to store information. 

To summarise so far, we have seen how different molecules and supramolecular structures

can exhibit computational capacities. The resulting models are often simplified to reflect these

computational  features for example, by abstracting state-based and/or Boolean behaviours.

However, it is also important to note that a number of levels of computational organisation may

be considered for example as shown in Figure 1. As we shall see, these are amenable to a

variety of modelling viewpoints (see also Paton, 1992a).

Consider  a way of exploring the functionality of both biological neurons and their artificial

analogues in terms of organisational level. Neuroscience has influenced computing in that the

nerve cell has proved to be an extremely valuable source of ideas about networks of automata.

Beginning with McCulloch and Pitts (1943) and their description of a neuron as a logical

processing unit there has been a steady development of neuronal analogues over the past fifty

years. Simplistic models identify the functionality of the different parts of a neuron as

summarised in Figure 2. In this case, the dendritic tree corresponds to the input section, the

soma (cell body) to the central processor and, the axon output section.
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Figure 2  - Diagrammatic Representation of an ANN Processing Unit



In this kind of architecture the processing unit, rather than say the dendritic tree and axon, does

the computation. This is far removed from the computational power of a biological neuron in

which considerable information processing takes place in dendrites and axons as well. Interest

in the cell (rather than the network) as a source for modelling adaptive computational systems is

related to its non-linear behaviour and should not be underestimated (Shepherd, 1992).

Shepherd (1990) argues that the synapse should be considered to be the basic unit of

computation in the nervous system rather than the neuron. Indeed, he describes a number of

organisational levels of computation between synapse and cell: 

synapse -> microcircuit -> dendritic tree -> neuron-> local circuit  -> module -> column.

Shepherd and Brayton (1987) describe how excitable dendritic spines may compute AND, OR

and NAND functions. As a consequence of this a single dendritic tree could be considered as

computing a very complicated function. It is therefore important to acknowledge that there are

considerable biological sources for the development of novel artificial neurons. Indeed, the
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Figure 3 - Some Ways of Exploring Computational Features of Neurons



limited capacities of the McCulloch-Pitts neuron require extension. What is more, the artificial

neuron remains very much a serial processor (in a parallel network) whereas a biological

neuron is a parallel processor in a parallel network. 

To be fair, a number of researchers are seeking to apply more biological detail to ANNs

in order to increase their functionality and improve their performance. Consider a very

important example from Carpenter and Grossberg (1990) who describe a neural network

architecture which is greatly influenced by the chemical processing properties of the synapse. In

this case, they transfer ideas associated with the mechanism of synaptic release such as

transmitter accumulation, release, inactivation and neuromodulation within a particular kind of

architecture based upon an Adaptive Resonance Theory (ART). This architecture (called ART 3)

is able to establish a stable self-organisation of recognition codes for arbitrary sequences of

input patterns. A mechanism for parallel search of learned pattern recognition codes is based on

synaptic processes associated with transmitter release rate and post-synaptic activation. Some of

the complex processing capabilities of neurons which could enhance their artificial homologues

are summarised in Figure 3.

The hepatocyte is another highly parallel computational system with a capacity to contribute

to over five hundred hepatic functions. A cell may have upwards of two thousand

mitochondria, with seven percent of the cell volume rough endoplasmic reticulum and twelve

percent smooth endoplasmic reticulum/Golgi bodies. Its computational capacities are very high

and a variety of levels of intracellular organisation involved ranging from amplification of genes

and gene regulation of enzyme levels through localisation of membrane receptors, pathway

regulation and intracellular signalling systems dynamics to the organisation of the

microtrabeculum,  compartmentation  and pooling. The resulting computational system is

highly complex. Figure 4 summarises some of the functional relations between non-nuclear

systems which are involved in cellular information processing.

The hepatocyte as a parallel distributed processing source can be contrasted with the neuron

and both cell types exhibit considerable computational capabilities. It should be clear to the

reader that non-linear behaviour of neurons it related to their architectural complexity as

reflected in dendritic trees and axonal arborizations. However, hepatocytes are biochemically

very complex as reflected in the very large numbers of organelles and active chemical

processes. Both of these complexities have their parallel distributed processing analogues

represented by processing units and connecting weights and the challenge to a better



understanding of PDP at this level would be to attempt to import greater biological detail at the

mechanistic level. In computational terms, the hepatocyte approximates to a MIMD machine

handling large amounts of various types of data through the integrated workings of its

metabolism and data driven processing. The pattern recognition capabilities of these metabolic

MIMDs are vast given that input patterns must take account of hormones, nerve impulses,

metabolic products, oxygen and gap junctional signals. 
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Figure 4 - Some Decompositions of the Computational Hepatocyte

In concluding this section we note that part of the value of machine thinking is that it can

supply a mathematical formalism for specifying complex devices. However, as we shall see

machine thinking on its own cannot fully accommodate all pertinent features of cellular systems

- whether they be somewhat concrete models such as cells as electrical circuits (Sen, 1990) to

abstract models based on sophisticated mathematics (Rosen, 1985). The rest of this paper seeks

to consider some alternate metaphors.

3 Circuits in the Cell

Network models of the cell depend on the idea of flow of information which involves some

form of computational activity. Indeed, the circuit metaphor is often an ideal companion to the



machine metaphor with the former providing the mechanistic details by which the latter may be

articulated. Thus, a Boolean network, Petri Net or X-machine represent abstract automata

structures which are specified in algebraic terms but visualised as graphs. Circuits in the cell

can also be expressed in abstract terms for example, Smith and Welch (1991) present a model

of cell metabolism in which enzymes represent the organisational conduit facilitating the

transport of matter-energy flux.

The circuit metaphor is very important to the life sciences for a number of reasons.  Cycles

are highly pervasive models ranging from the blood circulation to biogeochemical cycles to

biochemical cycles such as Krebs’ TCA cycle (Paton, 1992a)). Given that a cycle such as TCA

can be modelled as an algebraic machine (X-machine). It does not seem unfeasible to speculate

that X-machine models of all biosystems that display cyclical behaviour could be subjected to

the same treatment. However, the machine approach tends to emphasise input-output

(transformation) relations whereas focus on networks and cycles allows for a greater

understanding of the mechanisms within the machine and of its history of state transitions. This

kind of approach can be seen in relation to switching circuit networks (e.g., Glass, 1975),

metabolic networks (Kohn & Lemieux, 1991; Marijuan, 1991) and networks of automata

(Weisbuch, 1986). Kampis and Csanyi (1991) describe biological systems as organised

networks of self-reproducing processes at various levels. Rather than discussing the range of

approaches, we now focus on a couple of specific examples, intracellular signalling and

membrane-based electron transfer.

There are a number of intracellular signalling pathways which transduce extracellular

signals such as hormones and neuromodulators into cellular behaviour. The two major forms

are the cyclic AMP (cAMP) pathway and the Ca2+/phosphatidylinositol pathway. These and

other intracellular signalling systems cooperate and interact as parallel processes for example,

both systems stimulate the release of glucose from hepatocytes). As such, they provide valuable

sources (as separate and integrated systems) for parallel distributed processing models at this

level of organisation displaying a number of important source properties such as distributed

memory, fault tolerance, partial computation and non-linear behaviour. Bray (1990) models the

cAMP signalling system as a parallel distributed process (PDP) in which different molecular

types act as processing units in a network. In this case, the PDP network is not bounded and is

unlayered and contains such processing elements as adenyl cyclase (the enzyme involved in

cAMP synthesis). Bray’s application is of the glucagon-processing behaviour of hepatocytes



and was developed to simulate the pattern recognition capabilities of these cells.  

A more detailed application of network relations can now be considered in relation to a

possible biological mechanism for learning. In this case we shall see how a network in the cell

can exhibit learning capacities and is but one of many examples of the capacity of cells and parts

of cells to demonstrate a capacity for cognition. Gingrich & Byrne (1987) propose activity-

dependent neuromodulation as a mechanism for associative learning in certain sensory neurons

in Aplysia. The mechanism they describe applies to events taking place in the axon terminals of

neurons in circuits concerned with gill and tail withdrawal reflexes. 

The associative learning system can be modelled as a network which is under the joint

influence of both cAMP and  Ca2+/phosphatidylinositol signalling pathways (see Figure 5). 
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Figure 5 - Activity-dependent Neuromodulation Model of Synaptic Associative Learning  
(adapted from Gingrich & Byrne (1987))

In this case, the neuromodulator acts as the unconditioned stimulus (US) and the conditioned

stimulus (CS) is the spike activity near the axon terminal. The CS elevates Ca2+ influx into the

cell which primes the cAMP production system.This amplifies modulator (US) - mediated

cAMP synthesis. As the cAMP pool increases so the mechanism for Ca2+ influx is enhanced.

The joint increase in Ca2+ and cAMP mobilises transmitter into a releasable form for which its

subsequent release is governed by Ca2+ - dependent release mechanisms. This rather detailed



example is intended to show how a circuit appreciation of certain computational aspects of a

system permits a fuller understanding of the underlying mechanisms. We may also note how

the importance of a number of  properties associated with circuit emerge in particular the

importance of pooling to the computational economy of the cell.

4 The Cell as a Society

Parallel, distributed and emergent computer systems can be modelled from an ecological point

of view and a computational ecosystem is one in which local interactions determine global

behaviour as for example in a network of computers and associated peripheral devices. There is

a high degree of information exchange in these systems, albeit often in partial form and they can

be characterised by their non-linear behaviour. 

Cells can be described in this way, as open systems (Huberman and Hogg, 1988) which

contain collections of autonomous computational agents interacting with each other. These open

systems exhibit parallel distributed processing in that different parts of the cell do different

things and the adaptive capabilities of the system are reflected in its data driven capacities,

considerable degree of lack of global control, fault tolerance, high degree of communication and

ability of multiple parts to carry out partial computations.

The biochemist’s view of the cell developed by Welch not only makes use of a highly

organised machine-with-slots, but also indicates the need to model enzyme societies. Welch

describes two kinds of society, a molecular democracy and a supramolecular socialism (Welch

& Keleti, 1987). In the former case, each enzyme is modelled as an autonomous agent and the

model of cellular organisation is characterised as a bulk aqueous phase in which enzymes and

metabolites are homogeneously dispersed. However, this view of a democratic society of

enzymes is not supported by empirical and theoretical findings for a lot of cellular metabolism is

spatially organised. This includes membrane adsorbed enzyme clusters, multienzyme

complexes and enzyme arrays along the cellular microtrabeculum. Hence, the society is

partitioned and the individual molecules lose their autonomy giving rise to a supramolecular

socialism. Furthermore, some enzyme systems can reversibly partition between organised

states and the bulk aqueous phase depending on metabolic conditions. This emphasis on

organisation in Welch’s model shifts the focus from a homogeneous bulk reaction-diffusion

system to a heterogeneous system which is structured according to the topographical



segregation of individual processes.

It is also important to be aware that an appreciation of a cell as a society can bring with it

new ideas about organisation and the internal mechanisms of the system (Paton, 1992). This is

particularly important when current thinking suggests that models are unsatisfactory. For

example, a cell can be seen as an ecological society in which there is microzonation of

structures and resources as seen in compartmentation and pooling, niche structure of the cell as

defined for example by role and the integrative effects and symbolic and cognitive significance

of communication. Ideas about the cell as an economy have some degree of support for

example, the notion of ATP as the energy currency of the cell would fall into this category.

It should also be borne in mind that tissues and organs in multicellular organisms could be

described as societies of cells. For example, Albrecht-Buehler (1990) seeks to provide a non-

reductive account of the cell by comparing much-idealised simple organisms with biomolecules.

For example, he describes the emergence of colonies of the green alga, Chlamydomonas in

which the individual organisms, which in the context of the general cell-as-society metaphor

represent molecules, are treated as chaotically-active goal-driven units, subtly interacting with

each other and their environment. The emergent properties of this system are described in

cognitive terms and include the colony being able to self-structure  itself into vertical columns,

solve problems  about circulation of oxygen and carbon dioxide, exchange information and

actively cooperate. A more exciting source of emergent computation is that of the slime mould

Dictyostelium which has a remarkable life history (see Alberts, Bray et al, 1989). Under normal

conditions they exist as individual motile cells. However, when starved of food they aggregate

to form 1-2mm multicellular wormlike slugs each of about 100,000 cells. These ‘super-

organisms’ aggregate through inter-cellular cAMP signalling and display an elaborate collective

colonial behaviour. For the purposes of the current discussion the models and language that

could be used to describe the collective behaviour of the slug can be applied to certain aspects of

the high degree of collective behaviour within a cell, particularly at the level of multi-molecular

complexes and membrane-based systems.

5 The Cell as Text 

It has been noted elsewhere that important ideas can be displaced between system-as-society

and system-as-text such as the need for interpretation of context-dependent relations across



organisational levels (Paton, 1992a; Paton et al , 1991). The text metaphor carries with it

important ideas related such concepts as context and interpretation and to emergent properties

associated with structure such as the word -> sentence -> paragraph -> chapter -> etc hierarchy. 

In this case if a cell is like a book then we may begin to speculate on the nature of its parts and

how they may be described. Indeed, it may well be that the cell is a library.

The reasons for this are related to complexity for example, the large intracellular

compartments such as mitochondria contain very large numbers of interacting molecules for

which a full account cannot be made at the cellular level. Furthermore, the variety of component

molecules is very high although most of the thousands of molecular species present are in very

low concentrations. In one sense it is possible to say that the cell is like a text, containing many

different kinds of molecules (words). Albrecht-Buehler (1990) goes further and defines cellular

information as the “glue” which holds the cell together. The more a cell is decomposed into

molecular letters, the more its meaning is destroyed. In a similar manner, Kincaid (1990)

argues that the intracellular signalling hypothesis cannot be completely describe from a

reductive point of view. Consequently, cellular information is not only context-dependent, it is

an emergent property.

The work of Varela (e.g., 1979) is of crucial importance to any comprehensive

understanding of biological information. Biological systems are described as autonomous

devices because their emergent behaviours and internal self-organising processes define what

counts as relevant interactions. This autopoietic description provides a contrast with machine

thinking associated with control and the transformation of inputs into outputs. Indeed, Varela

draws the important distinction between a heteronomous device which are defined according to

a set of instructions and the related control mechanisms acting on it and an autonomous device

which is defined according to its internal self-organising processes, emergent behaviours and

operational closure. Although it is not possible to review his work here (see Bourgine and

Varela, 1992 for a brief summary), it is worth noting the distinction he makes between two

kinds of information namely, instruction and representation. Varela points out that information

in biological systems is not simply related to the way behaviour can be adequately represented

independent of the systems structure (what he calls the representational view of information), it

is also about the way in which the system constructs information namely, the instructional view.

As such, many biological systems exhibit cognitive capacities (Manderick, 1992). 

This can also be seen in the analysis of Emmeche and Hoffmeyer (1991)  who examined



several ways in which biological information can be described using a basic metaphorical

assumption of nature-as-language.  For them, information as articulated within the mathematical

theory of information is a category which is much less comprehensive than information

exchanged between people. They argue that biological information must be understood as

embracing the semantic openness that is characteristic of information exchange in human

communication. Consequently, information is inseparable from a subject to whom the

information makes sense. Thus, when Barwise (1984) notes how verbs are like the ‘glue’

which holds together the nouns and other parts of speech, we find a way in which the

organisational structure of a whole - in this case discourse - can be made. 

It can be argued that the simple relational properties of verbs-as-glue can be seen as a

starting point for looking at certain general properties of biosystems particularly with respect to

categories and functors (Rosen, 1973). There are inadequacies with the concept of cellular

information based solely on thermodynamic models, which talks in terms of negative entropy

and physical constraints (see also, Kampis & Csanyi, 1991). It can be described in a number of

ways and from a number of viewpoints. The metaphor of text can be important when

discussing the organisational level of description; hence, cells have meaning from one point of

view.

6 Spatial Metaphors and Cellular Organisation

The cell as text is related to ideas that information equals form (e.g., Thom, 1972) and to the

development of spatial metaphors associated with cell models. Spatial metaphors, as the name

indicates, convey ideas about space ranging from dimension, form and surface through

generalised ‘spaces’ such as adaptive landscapes to the very heart of this paper namely,

perspectives or viewpoints on the cell. Reflecting on the text metaphor, we may consider for

example how Thompson (1942) notes that “the form of an object is a ‘diagram of forces’”

(p16) and that the living organism “represents or occupies a field of force” (p30). The

‘diagrams’ can be generalised in number of ways and often point to mathematical interpretation.

Savageau (1991) argues that modelling a biochemical system in terms of parts alone (i.e.,

from the bottom-up) is insufficient to describe its complexity and he proposes an integrative or

synthetic phase of modelling as well as a reductive or analytical phase. The synthetic phase

accounts for the global behaviour of biochemical systems and the mathematical relation between



the whole and its parts is achieved by the use of a Power Law (in which enzyme catalysed

reactions are accounted for in terms of self-similar scaling). Savageau shows that when a

reaction is modelled within a three dimensional homogeneous space, the kinetic order (the

mathematical relationship between the number of molecules participating in a reaction and the

reaction rate) is identical to the number of molecules involved in the reaction. However, if the

reaction takes place on a two dimensional surface such as a membrane, the kinetic order is

higher than the number of participating molecules. Smith and Welch (1991) and Welch (1992)

seek to develop a spatial approach to cell metabolism by an analogical description of a metabolic

space. This involves the application of the mathematical notion of a field. 

The fractal dynamics of the cell can in part be attributed to the spatial organisation of

molecules and cytomatrix surfaces and their associated flow processes. It is suggested that the

field concept can be applied to models of cells with respect to spatial complexity (i.e., the

abstraction of biological form) and to temporal relations (i.e., the abstraction of dynamical

behaviours). How does this apply to an appreciation of biocomputation at the cellular level ?

Several proposals are now made:

• self-similar scaling can be applied to intracellular organisational hierarchies in that levels

are characterised by a fractal dimensionality,

• computational comparisons between different cells can be made with respect to their

their fractal organisation for example, between the architectural complexity of a neuron

and the metabolic complexity of a hepatocyte,

• certain modelling principles may emerge with respect to relational invariance concerned

with  intracellular, intra-organismal and inter-organismal systems. 

Concluding Remark

The cell is a complex biological object. It displays a variety of computational activities and can

in different ways be described as a parallel distributed computer with emergent properties. The

computational metaphor is very useful to biology but in how to model certain features. An

awareness of the existence and nature of these gaps may lead to a greater understanding not

only of cell biology but also of the emergence of new computational models. 
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