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Preface 
 
Welcome to the inaugural 2005 IEEE Symposium on Computational Intelligence and 
Games. This symposium marks a milestone in the development of machine learning, 
particularly using methods such as neural, fuzzy, and evolutionary computing. Let me 
start by thanking Dr. Simon Lucas and Dr. Graham Kendall for inviting me to write 
this preface. It's an honor to have this opportunity.  
 
Games are a very general way of describing the interaction between agents acting in 
an environment. Although we usually think of games in terms of competition, games 
do not have to be competitive: Players can be cooperative, neutral, or even unaware 
that they are playing the same game. The broad framework of games encompasses 
many familiar favorites, such as chess, checkers (draughts), tic-tac-toe (naughts and 
crosses), go, reversi, backgammon, awari, poker, blackjack, arcade and video games, 
and so forth. It also encompasses economic, social, and evolutionary games, such as 
hawk-dove, the prisoner's dilemma, and the minority game. Any time one or more 
players must allocate resources to achieve a goal in light of an environment, those 
players are playing a game.  
 
Artificial intelligence (AI) researchers have used games as test beds for their 
approaches for decades. Many of the seminal contributions to artificial intelligence 
stem from the early work of Alan Turing, Claude Shannon, Arthur Samuel, and 
others, who tackled the challenge of programming computers to play familiar games 
such as chess and checkers. The fundamental concepts of minimax, reinforcement 
learning, tree search, evaluation functions, each have roots in these early works.  
 
In the 1940s and 1950s, when computer science and engineering was in its infancy, 
the prospects of successfully programming a computer to defeat a human master at 
any significant game of skill were dim, even if hopes were high. More recently, 
seeing a computer defeat even a human grand master at chess or checkers, or many 
other familiar games, is not quite commonplace, but not as awe-inspiring as it was 
only a decade ago. Computers are now so fast and programming environments are so 
easy to work with that brute force methods of traditional AI are sufficient to compete 
with or even defeat the best human players in the world at all but a few of our 
common board games.  
 
Although it might be controversial, I believe that the success of Deep Blue (the chess 
program that defeated Garry Kasparov at chess), Chinook (the checkers program that 
earned the title of world champion in the mid-1990s), and other similar programs 
mark the end of a long journey - but not the journey started by Turing, Shannon, and 
Samuel - but rather a different journey.  
 
The laudatory success of these traditional AI programs has once again pointed to the 
limitations of these programs. Everything they "know" is preprogrammed. They do 
not adapt to new players, they assume their opponent examines a position in a similar 
way as they do, they assume the other player will always seek to maximize damage, 
and most importantly, they do not teach themselves how to improve beyond some 
rudimentary learning that might be exhibited in completing a bigger lookup table of 
best moves or winning conditions. This is not what Samuel and others had in mind 
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when asking how we might make a computer do something without telling it how to 
do it, that is, to learn to do it for itself. Deep Blue, Chinook, and other superlative 
programs have closed the door on one era of AI. As one door closes, another opens.  
 
Computational intelligence methods offer the possibility to open this new door. We 
have already seen examples of how neural, fuzzy, and evolutionary computing 
methods can allow a computer to learn how to play a game at a very high level of 
competency while relying initially on little more than primitive knowledge about the 
game. Some of those examples include my own efforts with Blondie24 and Blondie25 
in checkers and chess, respectively, and perhaps that is in part why I was asked to 
contribute this preface, but there are many other examples to reflect on, and now 
many more examples that the reader can find in these proceedings. No doubt there 
will be many more in future proceedings.  
 
Computational intelligence methods offer diverse advantages. One is the ability for a 
computer to teach itself how to play complex games using self-play. Another is the 
relatively easy manner in which these methods may be hybridized with human 
knowledge or other traditional AI methods, to leapfrog over what any one approach 
can do alone. Yet another is the ability to examine the emergent properties of 
evolutionary systems under diverse rules of engagement. It is possible to examine the 
conditions that are necessary to foster cooperation in different otherwise competitive 
situations, to foster maximum utilization of resources when they are limited, and 
when players might simply opt out of playing a game altogether. Computational 
intelligence offers a versatile suite of tools that will take us further on the journey to 
making machines intelligent.  
 
If you can imagine the excitement that filled the minds of the people exploring AI and 
games in the 1940s and 1950s, I truly believe what we are doing now is even more 
exciting. We all play games, every day. We decide how to allocate our time or other 
assets to achieve our objectives. Life itself is a game, and the contributors to this 
symposium are players, just as are you, the reader. Not all games are fun to play, but 
this one is, and if you aren't already playing, I wholeheartedly encourage you to get in 
the game. I hope you'll find it as rewarding as I have, and I hope to see you at the next 
CIG symposium. There is a long journey ahead and it is ours to create.  
 
David B. Fogel  
Chief Executive Officer  
Natural Selection, Inc.  
La Jolla, CA, USA 
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Is Progress Possible?

Jordan Pollack 
DEMO Laboratory 
Brandeis University 
Waltham MA 02454 

pollack@cs.brandeis.edu 
 
 

 
 
 

For the past decade my students and I have 
worked on coevolutionary learning, both in 
theory, and in practice. Coevolution tries to 
formalize a computational  "arms race" which 
would lead to the emergence of sophisticated 
design WITHOUT an intelligent designer or his 
fingerprints1 left in the choice of data 
representations and fitness function. 
Coevolution thus strives to get maximal learning 
from as little bias as possible, and often takes 
the shape of a game tournament where the 
players who do well replicate (with mutation) 
faster than the losers. The fitness function, 
rather than being absolute, is thus relative to the 
current population. We have had many 
successes, such as in learning game strategies in 
Tic Tac Toe (Angeline & Pollack 1993) or 
Backgammon (Pollack & Blair, 1998), in 
solving problems like sorting networks and CA 
rules (Juille & Pollack 1998, 2000), and in co-
designing Robot morphology and control (Funes 
& Pollack, 1998, Lipson & Pollack 2000, 
Hornby & Pollack, 2002). 
But we find that often, the competitive structure 
of coevolution leads to maladies like winner-
take-all equilibria, boom and bust cycles of 
memory loss, and mediocre stable states (Ficici 
& Pollack, 1998) where an oligarchy arises 
which survives by excluding innovation rather 
than embracing it.  
One of the new instruments which has emerged 
is the use of adaptive agents themselves to 
measure and reveal their own incentive 
infrastructure, rather than assuming it is what 
we hoped (Ficic, Melnik, & Pollack, 2000). We 
                                                           
1 Fingerprints refers to intentional inductive 
bias, the gradients engineered into the learning 
environment and representations of evolutionary 
and neural learning systems. 
 

have elaborated these learning dynamics using a 
particularly simple class of model called the 
“numbers games” (Watson & Pollack, 2001), 
and have been looking at underlying issues and 
methods for treating the maladies, including 
Pareto coevolution (Ficici & Pollack 2001), 
emergent dimensional analysis (Bucci & 
Pollack 2002, 2003), methods for preserving 
information which can drive learning (Dejong & 
Pollack, 2004) and idealized memory for what 
has been learned (Ficici & Pollack, 2003).  
Nevertheless, something is wrong if after many 
years of believing that competition is the central 
organizing principle of Nature, we have yet to 
have in hand a convincing mathematical or 
computational demonstration that competition 
between self-interested players– without a 
central government - can lead to sustained 
innovation. 
Is there a missing principle, a different 
mechanism design under which self-interested 
players can optimize their own utility, yet as a 
whole the population keeps improving at the 
game? If so, and if we discover this “principle 
of progress” in the realm of computational 
games, would it transfer it to human social 
organization? 
I will describe one candidate we have been 
working on, a game metaphor called “The 
Teacher’s Dilemma”, which can explain why 
peer learners in many situations are actually 
motivated to stop learning. The Teacher’s 
Dilemma also suggests how to design learning 
communities motivated to produce and maintain 
their own gradient. 
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Creating Intelligent Agents through Neuroevolution

Risto Miikkulainen 
The University of Texas at Austin 

risto@cs.utexas.edu 
 
 
 

Abstract- The main difficulty in creating artificial agents is that intelligent behavior is hard to describe.  Rules 
and automata can be used to specify only the most basic behaviors, and feedback for learning is sparse and 
nonspecific.  Intelligent behavior will therefore need to be discovered through interaction with the environment, 
often through coevolution with other agents.  Neuroevolution, i.e. constructing neural network agents through 
evolutionary methods, has recently shown much promise in such learning tasks.  Based on sparse feedback, 
complex behaviors can be discovered for single agents and for teams of agents, even in real time.  In this talk I 
will review the recent advances in neuroevolution methods and their applications to various game domains such 
as othello, go, robotic soccer, car racing, and video games. 
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Challenges in Computer Go

Martin Müller 
Department of Computing Science 

University of Alberta 
mmueller@cs.ualberta.ca 

 
 
 

Abstract- Computer Go has been described as the "final frontier" of research in classical board games. The game 
is difficult for computers since no satisfactory evaluation function has been found yet. Go shares this aspect with 
many real-life decision making problems, and is therefore an ideal domain to study such difficult domains.  
This talk discusses the challenges of Computer Go on three levels: 1. incremental work that can be done to 
improve current Go programs, 2. strategies for the next decade, and 3. long term perspectives. 
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Opponent Modelling and Commercial Games
H.J. van den Herik, H.H.L.M. Donkers, P.H.M. Spronck

Department of Computer Science, Institute for Knowledge and Agent Technology, Universiteit Maastricht.
P.O.Box 616, 6200 MD, Maastricht, The Netherlands.

Email: herik,donkers,p.spronck@cs.unimaas.nl

Abstract- To play a game well a player needs to under-
stand the game. To defeat an opponent, it may be suf-
ficient to understand the opponent’s weak spots and to
be able to exploit them. In human practice, both ele-
ments (knowing the game and knowing the opponent)
play an important role. This article focuses on opponent
modelling independent of any game. So, the domain
of interest is a collection of two-person games, multi-
person games, and commercial games. The emphasis is
on types and roles of opponent models, such as specula-
tion, tutoring, training, and mimicking characters. Vari-
ous implementations are given. Suggestions for learning
the opponent models are described and their realization
is illustrated by opponent models in game-tree search.
We then transfer these techniques to commercial games.
Here it is crucial for a successful opponent model that
the changes of the opponent’s reactions over time are
adequately dealt with. This is done by dynamic script-
ing, an improvised online learning technique for games.
Our conclusions are (1) that opponent modelling has a
wealth of techniques that are waiting for implementa-
tion in actual commercial games, but (2) that the games’
publishers are reluctant to incorporate these techniques
since they have no definitive opinion on the successes of
a program that is outclassing human beings in strength
and creativity, and (3) that game AI has an entertain-
ment factor that is too multifaceted to grasp in reason-
able time.

1 Introduction

Ever since humans play games they desire to master the
game played. Obviously, gauging the intricacies of a game
completely is a difficult task; understanding some parts is
most of the time the best a player can aim at. The latter
means solving some sub-domains of a game. However, in
a competitive game it may be sufficient to understand more
of the game than the opponent does in order to win a com-
bat. Remarkably, here a shift of attention may take place,
since playing better than the opponent may happen (1) by
the player’s more extensive knowledge of the game or (2)
by the player’s knowledge of the oddities of the opponent.
In human practice, a combination of (1) and (2) is part of
the preparation of a top grandmaster in Chess, Checkers
or Shogi. Opponent modelling is an intriguing part of a
player’s match preparation, since the preparing player tries
to understand the preferences, strategies, skill, and weak
spots of his1 opponent.

In the following we distinguish between the player and
the opponent if a two-person game is discussed. In multi-

1In this article we use ‘he’ (‘his’) if both ‘he’ and ‘she’ are possible.

person games and in commercial games we will speak of
agents. Opponent modelling is a research topic that was en-
visaged already a long time ago. For instance, in the 1970s
chess programs incorporated a contempt factor, meaning
that against a stronger opponent a draw was accepted even if
the player was +0.5 ahead, and a draw was declined against
a weaker opponent even when the player had a minus score.
In the 1990s serious research in the domain of opponent
modelling started [5, 19]. Nowadays opponent modelling
also plays a part in multi-person games (collaboration, con-
spiracy, opposition) and in commercial games. Here we see
a shift from opponent modelling towards subject modelling
and even environmental entertainment modelling.

The course of the article is as follows. Section 2 de-
fines types and roles of opponent models. In section 3 we
provide a brief overview of the development of opponent
models currently in use in Roshambo, the Iterated Prisoner’s
Dilemma, and Poker. We extrapolate the development to
commercial Games. Section 4 lists six possible implemen-
tations of the opponent models. A main question is dealt
with in section 5, viz. how to learn opponent models. We
describe two methods, refer to a third one, and leave the
others undiscussed. Section 6 focuses on the three imple-
mentations in game-tree search: OM search, PrOM search,
and symmetric opponent modelling. Section 7 presents dy-
namic scripting as a technique for online adaptive game AI
in commercial games. Finally section 8 contains our con-
clusions.

2 Roles of Opponent Models

In general, an opponent model is an abstracted description
of a player or a player’s behaviour in a game. There are
many different types. For instance, a model can describe a
player’s preferences, his strategy, skill, capabilities, weak-
nesses, knowledge, and so on.

For each type we may distinguish two different roles in a
game program. The first role is to model a (human or com-
puter) opponent in such way that it informs the player ap-
propriately in classical two-person games. Such opponent
model can be implicit in the program’s strategy or made
explicit in some internal description. The task of such an
opponent model is to understand and mimic the opponent’s
behaviour, in an attempt either to beat the opponent (see
section 2.1) or to assist the opponent (section 2.2).

The second role is to provide an artificial opponent agent
for the own agent (program or human player) using the pro-
gram (see section 2.3), or an artificial agent that participates
in an online multi-person game (section 2.4). Iteratively,
such an opponent agent could bear in itself an opponent
model of its own opponents. In most cases, the task of an
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opponent model in this second role is to manifest an inter-
esting and entertaining opponent to human players.

Regardless of its internal representation, an opponent
model may range from statically defined in the program to
dynamically adaptable. Opponent models that are dynam-
ically adapted (or adapt themselves) to the opponent and
other elements of the environment are to be preferred.

Below we will detail the four appearances in which op-
ponent models are of use.

2.1 Speculation in heuristic search

The classical approach in Artificial Intelligence to board
games, such as Chess, Checkers and Shogi, is heuristic
search. It is based on the Minimax procedure for zero-sum
perfect-information games as described by Von Neumann
and Morgenstern [41]. However, the complexity of board
games makes Minimax infeasible to be applied directly to
the game tree. Therefore, the game tree is reduced in its
depth by using a static heuristic evaluation, and quite fre-
quently also in its breadth by using selective search. More-
over, during the detection of the best move to play next,
much of the reduced game tree is disregarded by using αβ
pruning and other search enhancements. Actual game play-
ing in this approach consists of solving a sequence of re-
duced games. Altogether, the classical approach has proven
to be successful in Chess, Checkers, and a range of other
board games.

In the classical approach, reasoning is based on defend-
ing against the worst case and attempting to achieve the best
case. However, because heuristic search is used, it is not cer-
tain that the worst case and the best case are truly known. It
means that it might be worthwhile to use additional knowl-
edge during heuristic search in order to increase the chance
to win, for instance, knowledge of the opponent. It is clear
that humans use their knowledge of the opponent during
game playing.

There are numerous ways in which knowledge of the
(human) opponent can be used to improve play by heuristic
search. One can use knowledge of the opponent’s prefer-
ences or skills to force the game into positions that are con-
sidered to be less favourable to the opponent than to oneself.
In the case that a player is facing a weak position, the player
may try to speculate on positions in which the opponent is
more likely to make mistakes. If available, a player may
use the opponent’s evaluation function to speculate (or even
calculate) the next move an opponent will make and thus
adopt its strategy to find the optimal countermoves. We will
concentrate on the last approach in section 5.

2.2 Tutoring and Training

An opponent model can be used to assist the human player.
We discuss two different usages: tutoring and training.
Commercial board game programs (can) increase their at-
tractiveness by offering such functionality.

In a tutoring system [20], the program can use the model
of the human opponent to teach the player some aspects
of the game in a personalized manner, depending on the

type of knowledge present in the opponent model. If the
model includes the player’s general weaknesses or skills, it
can be used to lead apprentices during a game to positions
that help them to learn from mistakes. When the model in-
cludes the strategy or preferences of the player, then this
knowledge can be employed to provide explicit feedback to
the user during play, either by tricking the player into po-
sitions in which a certain mistake will be made and explic-
itly corrected by the program, or by providing verbal advice
such as: ”you should play less defensive in this stage of the
game”.

A quite different way to aid the apprentice is to provide
preset opponent types. Many game programs offer an op-
tion to set the playing strength of the program. Often, this is
arranged by limiting the resources (e.g., time, search depth)
available to the program. Sometimes, the preferences of
a program can be adjusted to allow a defensive or aggres-
sive playing style. An explicit opponent model could assist
even the experienced players to prepare themselves for a
game against a specific opponent. In order to be useful, the
program should in this case be able to learn a model of a
specific player. In Chess, some programs (e.g., CHESS AS-
SISTANT2) offer the possibility to adjust the opening book
to a given opponent, on the basis of previously stored game
records.

2.3 Non-player Characters

The main goal in commercial computer games is not to play
as strong as possible but to provide entertainment. Most
commercial computer games, such as computer roleplay-
ing games (CRPGs) and strategy games, situate the human
player in a virtual world that is populated by computer-
controlled agents, which are called ”non-player characters”
(NPCs). These agents may fulfil three roles: (i) as a com-
panion, (ii) as an opponent, and (iii) as a neutral, back-
ground character. In the first two roles, an opponent model
of the human player is needed. In practice, for most (if not
all) commercial games this model is implemented in an im-
plicit way. The third role, however commercially interest-
ing, is not relevant in the subject area of opponent mod-
elling, and thus it is not discussed below.

In the companion role, the agent must behave accord-
ing to the expectations of the human player. For instance,
when the human player prefers a stealthy approach to deal-
ing with opponents agents, he will not be pleased when the
computer-controlled companions immediately attack every
opponent agent that is near. If the companions fail to pre-
dict with a high degree of success what the human player
desires, they will annoy the human player, which is detri-
mental for the entertainment value of the game. Nowa-
days, companion agents in commercial games use an im-
plicit model of the human player, which the human player
can tune by setting a few parameters that control the behav-
iour of the companion (such as ”only attack when I do too”
or ”only use ranged weapons”).

In the opponent role, the agent must be able to match the

2See: http://store.convekta.com.

16 CIG'05 (4-6 April 2005)



playing skills of the human player. If the opponent agent
plays too weak a game against the human player, the human
player loses interest in the game [34]. In contrast, if the
opponent agent plays too strong a game against the human
player, the human player gets stuck in the game and will quit
playing too [25]. Nowadays, commercial games provide a
‘difficulty setting’ which the human player can use to set
the physical attributes of opponent agents to an appropriate
value (often even during gameplay). However, a difficulty
setting does not resolve problems when the quality of the
tactics employed by opponent agents is not appropriate for
the skills of the human player.

The behaviour of opponent agents in commercial games
is designed during game development, and does not change
after the game has been released, i.e., it is static. The
game developers use (perhaps unconsciously) a model of
the human player, and a program behaviour for the opponent
agents appropriate for this model. As a consequence, the
model of the human player is implicit in the programmed
agent behaviour. Since the agent behaviour is static, the
model is static. In reality, of course, human players may
be very different, and thus it is to be expected that for most
games a static model is not ideal. A solution to this problem
would be that the model, and thus the behaviour of the op-
ponent agent, is dynamic. However, games’ publishers are
reluctant to release games where the behaviour of the oppo-
nent agents is dynamic, since they fear that the agents may
learn undesirable behaviour after the game’s release.

The result is that, in general, the behaviour of opponent
agents is unsatisfying to human players. Human players
prefer to play against their own kind, which is a partial ex-
planation for the popularity of multi-person games [33].

2.4 Multi-person games

In multi-person games, opponent models can be used to pro-
vide NPCs as well. Clearly, the problem mentioned in the
previous subsection is also present here, only in a much
harder form for the opponent agents, since they have to
deal with many human players with many different levels
of skills in parallel.

Yet another role of opponent models comes into sight in
multi-person games. There are situations in which a player
is not able or willing to continue playing, but the charac-
ter representing the player remains ‘alive’ inside the game.
Such a situation could arise from (i) a connection interrupt
in an online game, (ii) a ‘real-world’ interruption of the hu-
man player, or (iii) a human player wanting to enter multiple
copies of himself in the game. An opponent model could be
used in those instances to take over control of the human’s
alter-ego in the game, while mimicking the human player’s
behaviour. Of course, such a model should be adaptable to
the player’s characteristics.

3 Towards Commercial Games

Below we deal with three actual implementations of oppo-
nent models (3.1), viz. in Roshambo, the Iterated Prisoner’s
Dilemma, and Poker. From here we extrapolate the develop-

ment to commercial games (3.2) with an emphasis on adap-
tive game AI.

3.1 Opponent models used Now

Many of the usages of opponent models as presented in the
previous section are still subject of current and future re-
search. However, in a number of games, adaptive opponent
models are an essential part of successful approaches. It
is especially the case in iterated games. These are mostly
small games that are played a number of times in sequence;
the goal is to win the most games on average. Two famous
examples of iterated games are Roshambo (Rock-Paper-
Scissors) and the Iterated Prisoner’s Dilemma (IPD). Both
games consist of one simultaneous move after which the
score is determined. Roshambo has three options for each
move and zero-sum scores, IPD has only two options, but
has nonzero-sum scores. Both games are currently played
by computers in tournaments.

In Roshambo, the optimal strategy in an infinitely re-
peated game is to play randomly. However, in an actual
competition with a finite number of repetitions, a random
player will end up in the middle of the pack and will not
win the competition. Strong programs, such as IOCAINE
POWDER [12] apply opponent modelling in order to predict
the opponent’s strategy, while at the same time they attempt
to be as unpredictable as possible.

Although IPD seems not so different from Roshambo,
the opponent model must take another element into account:
the willingness of the opponent to cooperate. In IPD, the
players receive the highest payoff if both players cooper-
ate. Since the first IPD competition by Axelrod in 1979 [2],
the simple strategy ‘Tit-for-Tat’ has won most of the com-
petitions [23]. However, the 2004 competition was won by
a team that used multiple entries and recognition codes to
‘cheat’. Although this is not strictly opponent modelling,
the incident caused the birth of a new IPD competition at
CIG’05 in which multiple entries and recognition codes are
allowed. IPD illustrates an aspect of opponent modelling
that will play a role, in particular, in multi-person games,
viz., how to measure the willingness to cooperate and how
to tell friendly from hostile opponents?

A more complex iterated game is Poker. The game offers
more moves than Roshambo and IPD, involves more play-
ers in one game and has imperfect information. However,
the game does not need heuristic search to be played. Al-
though many Poker-playing programs exist that do not use
any opponent model, the strong and commercially available
program POKI ([3]) is fully based on opponent-modelling.
Schaeffer states: “No poker strategy is complete without a
good opponent-modelling system. A strong poker player
must develop a dynamically changing (adaptive) model of
each opponent, to identify potential weaknesses.” Oppo-
nent modelling is used with two distinct goals: to predict
the next move of each opponent and to estimate the strength
of each opponent’s hand.
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3.2 The Future is in Commercial Games

The answer to the question “Are adaptive opponent mod-
els really necessary?” is that adaptive opponent models are
sorely needed to deal with the complexities of state-of-the-
art commercial games.

Over the years commercial games have become increas-
ingly complex, offering realistic worlds, a high degree of
freedom, and a great variety of possibilities. The tech-
nique of choice used by game developers for dealing with
a game’s complexities is rule-based game AI, usually in the
form of scripts [29, 40]. The advantage of the use of scripts
is that scripts are (1) understandable, (2) predictable, (3)
tuneable to specific circumstances, (4) easy to implement,
(5) easily extendable, and (6) useable by non-programmers
[40, 39]. However, as a consequence of game complexity,
scripts tend to be quite long and complex [4]. Manually-
developed complex scripts are likely to contain design flaws
and programming mistakes [29].

Adaptive game AI changes the tactics used by the com-
puter to match or exceed the playing skills of the particu-
lar human player it is pitted against, i.e., adaptive game AI
changes its implicit model of the human player to be more
successful. Adaptive game AI can ensure that the impact of
the mistakes mentioned above is limited to only a few sit-
uations encountered by the player, after which their occur-
rence will have become unlikely. Consequently, it is safe to
say that the more complex a game is, the greater the need
for adaptive game AI [13, 24, 16]. In the near future game
complexity will only increase. As long as the best approach
to game AI is to design it manually, the need for adaptive
game AI, and thus for opponent modelling, will increase
accordingly.

4 How to Model Opponents

The internal representation of an opponent model depends
on the type of knowledge that it should contain and the task
that the opponent model should perform. Artificial Intelli-
gence offers a range of techniques to build such models

4.1 Evaluation functions

In the context of heuristic search, an opponent model can
concentrate on the player’s preferences. These preferences
are usually encoded in a static heuristic evaluation function
that provides a score for every board position. An oppo-
nent model can consist of a specific evaluation function.
The evaluation function can either be hand-built on the basis
of explicit knowledge or machine-learned on basis of game
records.

4.2 Neural networks

The preferences of an opponent can also be represented
by a neural network or any other machine-learned function
approximator. Such a network can be learned from game
records or actual play. However, neural networks can also
be used to represent other aspects of the opponent’s behav-
iour. They could represent the difficulty of positions for a

specific opponent [28], or the move ordering preferred. The
Poker program POKI also uses neural networks to represent
the opponent model.

4.3 Rule-based models

A rule-based model consists of a series of production rules,
that couple actions to conditions. It is a reactive system, that
tests environment features to generate a response. A rule-
based model is easily implemented. It is also fairly easy to
be maintained and analysed.

4.4 Finite-State Machine

A finite-state machine model consists of a collection of
states, which represent situations in which the model can
exist, with defined state transitions that allow the model to
go into a new state. The state transitions are usually defined
as conditions. The model’s behaviour is defined separately
for each state.

4.5 Probabilistic models

The finite-state machine model can be augmented by prob-
abilistic transitions. It results in a probabilistic opponent
model. This kind of model is especially useful in games
with imperfect information, such as Poker, and most com-
mercial games.

A second probabilistic opponent model consists of a
mixture of other models (opponent types). In these mod-
els, the strategy of the opponent is determined by first gen-
erating a random number (which may be biased by certain
events) and then on the basis of the outcome selecting one
type out of a set of predefined opponent types.

4.6 Case-based models

A case-based model consists of a case base with samples of
situations and actions. By querying the case base, the cases
corresponding with the current situation are retrieved, and
an appropriate action is selected by examining the actions
belonging to the selected cases. An advantage of a case-
based model, is that the model can be easily updated and
expanded by allowing it to collect automatically new cases
while being used.

5 Learning Opponent Models

A compelling question is: can a program learn an opponent
model? Below we describe some research efforts made in
this domain. They consist of learning evaluation functions
(5.1), learning probabilistic models (5.2), and learning op-
ponent behaviour (5.3).

5.1 Learning evaluation functions

There are two basic approaches to the learning of opponent
models for heuristic search: (1) to learn an evaluation func-
tion, a move ordering, the search depth and other search
preferences used by a given opponent, and (2) to learn the
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opponent’s strategy, which means to learn directly the move
that the opponent selects at every position.

The first approach has been studied in computer chess,
especially the learning of evaluation functions. Although
the goal often is to obtain a good evaluation function for
αβsearch, similar techniques can be used for obtaining the
evaluation function of an opponent type. For instance,
Anantharaman [1] describes a method to learn or tune an
evaluation function with the aid of a large set of positions
and the moves selected at those positions by master-level
human players. The core of the approach is to adapt weights
in an evaluation function by using a linear discriminant
method in such a way that a certain score of the evalua-
tion function is maximized. The evaluation function is as-
sumed to have the following form: V (h) =

∑

i Wi Ci(h).
The components Ci(h) are kept constant, only the weights
Wi are tuned. The method was used to tune an evaluation
function for the program DEEP THOUGHT, a predecessor of
DEEP BLUE. Although the method obtained a better func-
tion than the hand-tuned evaluation function of the program,
the author admits that it is difficult to avoid local maxima.
Fürnkranz [15] gives an overview of machine learning in
computer chess, including several other methods to obtain
evaluation functions from move databases.

5.2 Learning probabilistic models

The learning of opponent-type probabilities during a game
is limited since the number of observations is low. It can,
however, be useful to adapt probabilities that were achieved
earlier, for instance by offline learning. Two types of online
learning can be distinguished: a fast one in which only the
best move of every opponent type is used, and a slow one
in which the search value of all moves is computed for all
opponent types.

Fast online learning happens straightforwardly as fol-
lows: start with the prior obtained probabilities. At every
move of the opponent do the following: for all opponent
types detect whether their best move is equal to the actu-
ally selected move. If so, reward that opponent type with a
small increase of the probability. If not, punish the oppo-
nent type. The size of the reward or punishment should not
be too large because this type of learning will lead to the
false supremacy of one of the opponent types. This type of
incremental learning is also applied in the prediction of user
actions [8].

Slow online learning would be an application of the
naive Bayesian learner (see [9]). A similar approach is
used in learning probabilistic user profiles [30]. Slow on-
line learning works as follows. For all opponent types ωi,
the sub-game values vωi

(h + mj) of all possible moves mj

at position h are computed. These values are transformed
into conditional probabilities Pr(mj |ωi), that indicate the
“willingness” of the opponent type to select that move. This
transformation can be done in a number of ways. An exam-
ple is the method by Reibman and Ballard [31]: first deter-
mine the rank r(mj) of the moves according to vωi

(h+mj)

and then assign probabilities:

Pr(mj |ωi) =
(1− Ps)

r(mj)−1 · Ps
∑

k(1− Ps)r(mk)−1 · Ps
(1)

Ps (∈ (0, 1]) can be interpreted as the likeliness of the oppo-
nent type not to deviate from the best move: the higher Ps,
the higher the probability on the best move. It is however
also possible to use the actual values of vωi

(h + mj). Now
Bayes’ rule is used to compute the opponent-type probabil-
ities given the observed move of the opponent.

Pr(ωi|mΩ(h)) =
Pr(mΩ(h)|ωi) Pr(ωi)t

∑

k Pr(mΩ(h)|ωk) Pr(ωk)t
(2)

These a-posteriori probabilities are used to update the
opponent-type probabilities.

Pr(ωi)t+1 = (1− γ) Pr(ωi)t + γ Pr(ωi|mΩ(h)) (3)

In this formula, parameter γ (∈ [0, 1]) is the learning fac-
tor: the higher γ, the more influence the observations have
on the opponent-type probabilities. The approach is called
naive Bayesian learning, because the last formula assumes
that the observations at the subsequent positions in the game
are independent.

5.3 Learning opponent behaviour

Direct learning of opponent strategies is studied extensively
on iterated games [14]. For learning opponent strategies
in Roshambo we refer to Egnor [12]. General learning
in repeated games is studied, for example, by Carmel and
Markovitch [7].

6 Opponent Models in Game-Tree Search

Junghanns [22] gave an overview of eight problematic is-
sues when using αβ in game-tree search. He also listed al-
ternative algorithms that aimed at overcoming one or more
of these problems. The four most prominent problems with
αβ are: (1) the heuristic-error problem (heuristic values are
used instead of real game values), (2) the scalar-value prob-
lem (only a single scalar value is used to express the value of
an arbitrarily complex game position), (3) the value-backup
problem (lines leading to several good positions are prefer-
able to a line that leads to a single good position), and (4)
the opponent problem (knowledge of the opponent is not
taken into account).

The first attempt to use rudimentary knowledge of the
opponent in heuristic search is the approach by Slagle and
Dixon [35] in 1970. At the base of their M & N -search
method lies the observation that it is wise to favour positions
in which there are several moves with good values over po-
sitions in which there is only one move with a good value.
In 1983, Reibman and Ballard [31] assume that the oppo-
nent sometimes is fallible: there is a chance in each posi-
tion that the opponent selects a non-rational move. In their
model, the probability that the opponent selects a specific
move depends on the value of that move and on the degree
of fallibility of the opponent.
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Below we will discuss three further approaches of deal-
ing with Junghanns’s fourth problem; viz. Opponent-Model
(OM) search, Probabilistic OM (PrOM) search, and sym-
metric opponent modelling.

6.1 OM search

The main assumption of OM search is that the opponent
(called MIN) uses a Minimax algorithm (or equivalent) with
an evaluation function that is known to the first player
(called MAX). Also the depth of the opponent’s search tree
and the opponent’s move order are assumed to be known.
This knowledge is used to construct a derivative of Mini-
max in which MAX maximizes at max nodes, but selects
at min nodes the moves that MIN will select, according to
MAX’ knowledge of MIN’s evaluation function.

For a search tree with even branching factor w and fixed
depth d, OM search needs n = wdd/2e evaluations for MAX
to determine the search-tree value: at every min node, only
one max child has to be investigated but at every max node,
all w children must be investigated. Because the search-
tree value of OM search is defined as the maximum over all
these n values for MAX, none of these values can be missed.
This means that the efficiency of OM search depends on
how efficient the values for MIN can be obtained.

A straightforward and efficient way to implement OM
search is by applying αβ probing: at a min node perform αβ
search with the opponent’s evaluation function (the probe),
and perform OM search with the move that αβ search re-
turns; at a max node, maximize over all child nodes. The
probes can in fact be implemented using any enhanced min-
imax search algorithm available, such as MTD(f). Because
a separate probe is performed for every min node, many
nodes are visited during multiple probes. (For example,
every min node Pj on the principal variation of a node P
will be probed at least twice.) Therefore, the use of trans-
position tables leads to a major reduction of the search tree.
The search method can be improved further by a mechanism
called β-pruning (see Figure 1).

The assumptions that form the basis of OM search give
rise to two types of risk. The first type of risk is caused
by a player’s imperfect knowledge of the opponent. When
MIN uses an evaluation function different from the one as-

OmSearchBPb(h, β)
1 if (h ∈ E) return (V0(h), null)
2 if (p(h) = MAX)
3 L← m(h) ; m← firstMove(L)
4 m∗ ← m ; v∗

0 ← −∞
5 while (m 6= null)
6 (v0,mm)← OmSearchBPb(h + m,β)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗ ← m

8 m← nextMove(L)
9 if (p(h) = MIN)
10 (v∗

op,m
∗)← αβ-Search(h,−∞, β, Vop(·))

11 (v∗
0 ,mm)← OmSearchBPb(h + m∗, v∗

op + 1)
12 return (v∗

0 ,m∗)

Figure 1: β-pruning OM search with αβ probing.

sumed by MAX (or uses a different search depth or even a
different move ordering), MIN might select another move
than the move that MAX expects. This type of risk has been
described in detail and thoroughly analyzed in [18, 21]. The
second type of risk arises when the quality of the evaluation
functions used is too low. The main risk appears to occur
when the MAX player’s evaluation function overestimates
a position that is selected by MIN. This position may then
act as an attractor for many variations, resulting in a bad
performance. To protect the OM search against such a per-
formance the notion of admissible pairs of evaluation func-
tions is needed: (1) MAX’s function is a better profitability
estimator than MIN’s, and (2) MAX’s function never overes-
timates a position that MIN’s does not overestimate likewise
[11].

6.2 PrOM search

In contrast to OM search that assumes a fixed evaluation
function of the opponent, PrOM search [10] uses a model
of the opponent that includes uncertainty. The model con-
sists of a set of evaluation functions, called opponent types,
together with a probability distribution over these functions.
More precisely, PrOM search is based on the following four
assumptions:

(1) MAX has knowledge of n different opponent types
ω0 . . . ωn−1. Each opponent type ωi is a minimax
player that is characterized by an evaluation function
Vωi

. MAX is using evaluation function V0. For conve-
nience, one opponent type (ω0) is assumed to use the
same evaluation function as MAX uses (Vω0

≡ V0).

(2) All opponent types are assumed to use the same
search-tree depth and the same move ordering as
MAX.

(3) MAX has subjective probabilities Pr(ωi) on the range
of opponents, such that

∑

i Pr(ωi) = 1.

(4) MIN is using a mixed strategy which consists of the
n opponent-type minimax strategies. At every move
node, MIN is supposed to pick randomly one strategy
according to the opponent-type probabilities Pr(ωi).

The fourth assumption is a crucial one because it de-
termines the semantics of the opponent model: the mixed
strategy acts as an approximation of opponent’s real strat-
egy. The subjective probability of every opponent type acts
as the amount of MAX’s belief that this opponent type re-
sembles the opponent’s real behaviour.

The applicability of αβ probing in PrOM search is clear
(see Figure 2). The values of vωi

(P ) and the best move Pj

for opponent type ωi at min node P , can safely be obtained
by performing αβ search at node P , using evaluation func-
tion Vωi

(·). Notice that an αβ probe has to be performed
for every opponent type separately. These αβ probes can
be improved by a number of search enhancements. If trans-
position tables are used, then a separate table is needed per
opponent type. The transposition table for an opponent type
must not be cleared at the beginning of each probe, but only
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PromSearchBPb(h, β̄)
1 if (h ∈ E) return (V0(h), null)
2 if p(h) = MAX
3 L← m(h) ; m← firstMove(L) ; m∗

0 ← m
4 v∗

0 ← −∞
5 while (m 6= null)
6 (v0,mm)← PromSearchBPb(h + m, β̄)
7 if (v0 > v∗

0) v∗
0 ← v0 ; m∗

0 ← m
8 m← nextMove(L)
9 if p(h) = MIN
10 L← ∅

11 for i ∈ {0, . . . , n− 1}
12 (v̄∗

i , m̄∗
i )← αβ-Search(h,−∞, β̄i, Vi(·))

13 L← L ∪ {m̄∗
i }

14 v∗
0 ← 0; m∗

0 ← null ; m← firstMove(L)
15 while (m 6= null)
16 for i ∈ {0, . . . , n− 1}
17 if (m = m̄∗

i ) β̄i ← v̄∗
i + 1 else β̄i ←∞

18 (v0,mm)← PromSearchBPb(h + m, β̄)
19 for i ∈ {0, . . . , n− 1}
20 if (m = m̄∗

i ) v∗
0 ← v∗

0 + Pr(ωi) v0

21 m← nextMove(L)
22 return (v∗

0 ,m∗
0)

Figure 2: β-pruning PrOM search with αβ probing.

at the start of the PrOM search so that knowledge of the
search tree is shared between the subsequent probes for the
same opponent type.

Because of the usage of multiple opponent models, the
computational efforts for PrOM search are larger than those
needed for OM search. However, the risk while using PrOM
search is lower than while using OM search, when MAX
uses the own evaluation functions as one of the opponent
types. Experimental results indicate that when computa-
tional efforts are disregarded, PrOM search performs better
than OM search with the same amount of knowledge of the
opponent and with the same search depth.

6.3 Symmetric Opponent Modelling

Instead of the asymmetric opponent models in OM search
and PrOM search, it might be more natural to assume that
both players use an opponent model of each other of which
they are mutually aware. In the context of heuristic search it
means that both players agree that they have different (i.e.,
non-opposite) evaluation values for positions. The key con-
cept is common interest. Evaluation values are based on
many factors of a position. Some of these factors are pure
competitive, such as the number of black pieces on a chess
board, other factors are of interest of both players. Carmel
and Markovitch [6] give an example for the game of check-
ers. Another example is the degree to which a chess posi-
tion is ’open’ or ’closed’. An open position (in which many
pieces can move freely) is favoured by many players over
closed positions. Therefore, the openness of a position is a
common interest of both players.

Assume that the competitive factors of a position count

S and the common-interest factors count C, then the value
for the first player would be C+S. In the standard zero-sum
approach, the opponent would be assumed to use the value
−(C +S) for the same position, which would mean that the
opponent would award the common interest of the position
with −C. However, it seems more natural that the second
player uses the value C − S for the position. In the model
of Carmel and Markovitch [6], only one of the players is
assumed to be aware of this fact. However, why should we
not assume knowledge symmetry and let both players agree
on the size of C and S? When the two players receive dif-
ferent pay-offs (e.g., C + S and C − S) and these pay-offs
are common knowledge, we achieve a nonzero-sum game of
perfect information. In such a game there is both opponent
modelling and knowledge symmetry, leading to symmetric
opponent modelling. It should be noted that in any nonzero-
sum game, it is possible to describe the pay-offs in terms of
competitive and common-interest factors. If the first player
receives A and the second player B, the common interest C
is equal to (A + B)/2 and the competitive part S is equal to
(A−B)/2.

The use of a nonzero-sum game as a means of symmetric
opponent model introduces two challenges: (1) how to se-
lect the best equilibrium and (2) how to search efficiently. In
contrast to zero-sum games in which all equilibria have the
same value, in nonzero-sum games equilibria can co-exist
with different values. Although all equilibria of a nonzero-
sum game of perfect information can be found easily by
backward induction (similar to Minimax, see Figure 3), the
selection of the best one among them is hard. Moreover, the
basic backward induction procedure is not feasible for large
game trees, so an αβ-like pruning mechanism and other en-
hancements are asked for.

BackInd(h)
1 if (h ∈ E) return (V1(h), V2(h), null)
2 v∗ ← −∞, L← ∅

3 for m ∈ m(h)
4 (·, v1, v2)← BackInd(h + m)
5 if (vp(h) > v∗) L← {(m, v1, v2)}
6 v∗ ← vp(h)

7 if (vp(h) = v∗) L← L ∪ {(m, v1, v2)}
8 select (m, v1, v2) ∈ L
9 return (m, v1, v2)

Figure 3: Backward Induction.

Both tasks can be helped by restricting ourselves to
games with bounded common interest. These are nonzero-
sum games where the value of C is bounded to an interval
[−B/2, B/2] around zero and where B is (much) smaller
than the largest absolute value of S in any pay-off. The
profit of using this bound is that it allows for pruning during
game-tree search since the difference between the value for
player 1 and 2 in each equilibrium is restricted to B. More-
over, the range of values of those equilibria is restricted, as
we will show below. We will call this types of games: BCI
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games (Bounded Common Interest games). It can be proven
that the bound B on the common interest puts a bound on
the values that the equilibria can take. For trees of depth d,
the range is v∗ ± B(d − 1) for Player 1 and −v∗ ± Bd for
Player 2. These ranges indicate the ‘damage’ that has to be
feared when selecting a suboptimal equilibrium. The ranges
can also be used to rule out moves that cannot lead to any
equilibrium.

The bound on common interest, B, also allows for prun-
ing in an αβ-like manner. This pruning is based on the fact
that in case of bounded common interest, the difference be-
tween the values for Player 1 and Player 2 is also bounded
at any position in the tree. So, the value for one player can
be used to predict the value for the other player, and bounds
on the value for one player can be used to bound the value
for the other player. In this way, shallow and deep pruning
is possible, but the amount of pruning depends on the value
of B and on the depth of the tree. With every additional
level of depth, the bounds on the values are widened by B,
leading to less and less pruning.

Two-player nonzero-sum games of perfect information
can be used for symmetric opponent modelling. A fun-
damental difference with the standard zero-sum games is
that several equilibria can exist in one game and that select-
ing a good equilibrium is very hard. We proved that when
bounded common interest is assumed, the range of values
that equilibria can take on is also bounded. Furthermore,
BCI games allow pruning during the determination of the
equilibria in a game tree. BCI games offer an alternative to
Minimax-based algorithms and to Opponent-Model Search
in heuristic search, but experimental evidence has to be col-
lected on the practical usability and effectiveness of the ap-
proach. The BCI game also offers an opportunity to apply a
range of search techniques from Artificial Intelligence to a
class of games that is of interest to a broader audience than
the traditional one.

7 Opponent Models with Dynamic Scripting

In this section we present dynamic scripting as a technique
that is designed for the implementation of online adaptive
game AI in commercial games. Dynamic scripting uses a
probabilistic search to update an implicit opponent model
of a human player, to be able to generate game AI that is
appropriate for the player. Those interested in a more de-
tailed exposition of dynamic scripting are referred to [37].

Dynamic scripting is an unsupervised online learning
technique for games. It maintains several rulebases, one for
each class of computer-controlled agents in the game. The
rules in the rulebases are manually designed using domain-
specific knowledge. Every time a new agent of a particular
class is generated, the rules that comprise the script con-
trolling the agent are extracted from the corresponding rule-
base. The probability that a rule is selected for a script is
proportional to the weight value that is associated with the
rule. The rulebase adapts by changing the weight values
to reflect the success or failure rate of the associated rules
in scripts. A priority mechanism can be used to let certain
rules take precedence over other rules. Dynamic scripting

has been demonstrated to be fast, effective, robust, and effi-
cient. The dynamic scripting process is illustrated in Figure
4 in the context of a game.

Figure 4: Dynamic scripting.

The learning mechanism in the dynamic-scripting tech-
nique is inspired by reinforcement learning techniques [38,
32]. ‘Regular’ reinforcement learning techniques, such as
TD-learning, in general need large amounts of trials, and
so are usually not sufficiently efficient to be used in games
[27, 26]. Reinforcement learning is suitable to be applied
to games if the trials occur in a short timespan (as in the
work by [17], where fight movements in a fighting game
are learned). However, for the learning of complete tactics,
such as scripts, a trial consists of observing the performance
of a tactic over a fairly long period of time. Therefore, for
the online learning of tactics in a game, reinforcement learn-
ing will take too long to be particularly suitable. In contrast,
dynamic scripting has been designed to learn from a few
trails only.

In the dynamic-scripting approach, learning proceeds as
follows. Upon completion of an encounter (i.e., a fight),
the weights of the rules employed during the encounter are
adapted depending on their contribution to the outcome.
Rules that lead to success are rewarded with a weight in-
crease, whereas rules that lead to failure are punished with
a weight decrease. The remaining rules are updated so that
the total of all weights in the rulebase remains unchanged.

Weight values are bounded by a range [Wmin,Wmax].
The size of the weight change depends on how well, or how
badly, a computer-controlled agent behaved during an en-
counter with the human player. It is determined by a fitness
function that rates an agent’s performance as a number in
the range [0, 1]. The fitness function is composed of four in-
dicators of playing strength, namely (1) whether the team to
which the agent belongs won or lost, (2) whether the agent
died or survived, (3) the agent’s remaining health, and (4)
the amount of damage done to the agent’s enemies. The
new weight value is calculated as W + MW , where W is
the original weight value, and the weight adjustment MW is
expressed by the following formula:

MW =











−bPmax
b− F

b
c {F < b}

bRmax
F − b

1− b
c {F ≥ b}

(4)
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In equation 4, Rmax ∈ N and Pmax ∈ N are the maximum
reward and maximum penalty respectively, F is the agent
fitness, and b ∈ 〈0, 1〉 is the break-even value. At the break-
even point the weights remain unchanged.

In its pure form, dynamic scripting does not try to match
the human player’s skill, but tries to play as strongly as pos-
sible against the human player. That, however, is in conflict
with the goal of commercial games, namely providing en-
tertainment.

A variation on dynamic scripting allows it to adapt to
meet the level of skill of the human player. This variation
uses a fitness scaling technique that ensures that the game
AI enforces an ‘even game’, i.e., a game where the chance
to win is equal for both players. The domain knowledge
stored in the rulebases used by dynamic scripting has been
designed to generate effective behaviour at all times. There-
fore, even when enhanced with a fitness-scaling technique,
against a mediocre player dynamic scripting does not ex-
hibit stupid behaviour interchanged with smart behaviour to
enforce an even game, but it exhibits mediocre behaviour at
all times.

We called the difficulty-scaling technique that was the
most successful ‘top culling’. Top culling works as follows.

In dynamic scripting, during the weight updates, the
maximum weight value Wmax determines the maximum
level of optimisation that a learned strategy can achieve. A
high value for Wmax allows the weights to grow to large
values, so that after a while the most effective rules will al-
most always be selected. This will result in scripts that are
close to a presumed optimum. With top culling activated,
weights are allowed to grow beyond the value of Wmax.
However, rules with weights higher than Wmax will be ex-
cluded from the script generation process. If the value of
Wmax is low, effective rules will be quickly excluded from
scripts, and the behaviour exhibited by the agent will be in-
ferior (though not ineffective).

To determine the value of Wmax that is needed to gen-
erate behaviour at exactly the level of skill of the hu-
man player, top culling automatically changes the value of
Wmax, with the intent to enforce an even game. It aims at
having a low value for Wmax when the computer wins of-
ten, and a high value for Wmax when the computer loses
often. The implementation is as follows. After the com-
puter has won a fight, Wmax is decreased by Wdec per cent
(with a lower limit equal to the initial weight value Winit).
After the computer has lost a fight, Wmax is increased by
Winc per cent.

To evaluate the effect of top culling to dynamic scripting,
we employed a simulation of an encounter of two teams in
a complex computer roleplaying game, closely resembling
the popular BALDUR’S GATE games. We used this envi-
ronment in earlier research to demonstrate the efficiency of
dynamic scripting [37]. Our evaluation experiments aimed
at assessing the performance of a team controlled by the
dynamic scripting technique using top culling, against a
team controlled by static scripts. In the simulation, we pit-
ted the dynamic team against a static team that uses one
of five, manually designed, basic strategies (named ‘offen-

sive’, ‘disabling’, ‘cursing’, ‘defensive’, and ‘novice’), or
one of three composite strategies (named ‘random team’,
‘random agent’ and ‘consecutive’).

Of the eight static team’s strategies the most interest-
ing in the present context is the ‘novice’ strategy. This
strategy resembles the playing style of a novice BALDUR’S
GATE player. While the ‘novice’ strategy normally will not
be defeated by arbitrarily picking rules from the rulebase,
many different strategies exist that can be employed to de-
feat it, which the dynamic team will quickly discover. With-
out difficulty-scaling, the dynamic team’s number of wins
will greatly exceed its losses. Details of the experiment are
found in [36].

For each of the static strategies, we ran 100 tests without
top culling, and 100 tests with top culling. We recorded the
number of wins of the dynamic team for the last 100 en-
counters. Histograms for the tests with the ‘novice’ strategy
are displayed in Figure 5. From the histogram it is imme-
diately clear that top culling ensures that dynamic scripting
plays an even game (the number of wins of the dynamic
player is close to 50 out of 100), with a very low variance.
The same pattern was observed against all the other inves-
tigated tactics. We can therefore conclude that dynamic
scripting, enhanced with top culling, is successful in auto-
matically discovering a well-working implicit model of the
human player. As a perk, this model will be automatically
updated when the human player learns new behaviour.

Figure 5: Histograms of 100 tests of the achieved number
of wins in 100 fights, against the ‘novice’ strategy. The top
graph is without difficulty scaling, the bottom graph with
the application of top culling.
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8 Conclusions

For human beings, opponent modelling is an essential and
intriguing part of a player’s match preparation. In this con-
tribution we have discussed how opponent models can be
implemented in computer programs. We investigated the
full collection of games, ranging from classical two-person
games via multi-person games to commercial games. Al-
though opponent modelling is on the research table almost
from the beginning of computer game research, serious im-
plementation started in 1993 and the realization of most
ideas is still in its infancy. There are three successful in-
stances of actual implementation, viz. in Roshambo, the It-
erated Prisoner’s Dilemma, and Poker. Yet we may con-
clude that there is a wealth of techniques that are waiting
for implementation in actual games.

In the contribution we have discussed OM search, PrOM
search, and symmetric opponent modelling for classical
games, and dynamic scripting for commercial games. In
the last application (i.e., dynamic scripting and in particu-
lar in top culling) we see a shift in the goal to be reached.
In classical games opponent modelling is used to raise the
playing strength, in commercial games opponent modelling
has as its main goal raising the entertainment factor. Cur-
rently, it is not clear to what extent both goals (i.e., raising
the playing strength and raising the entertainment factor) are
interchangeable. This is a topic of future research. How-
ever, at this moment it leads us to the conclusion that the
undecided research question has as consequence that com-
mercial games’ publishers are reluctant to incorporate these
techniques since they do not know whether a program that
is outclassing human beings in strength and creativity will
also raise the level of entertainment. From the research per-
formed so far in this new area we may conclude that game
AI (our current research tool for raising entertainment) has
an entertainment factor that is too multifactored to grasp in
reasonable time. Hence, new ideas should be developed that
bring us a new classification of entertainment factors (types
and roles) and will shed new light on the trade-off between
issues on raising the playing strength and raising the enter-
tainment.
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Abstract-
We describe Utile Coordination, an algorithm that al-

lows a multiagent system to learn where and how to co-
ordinate. The method starts with uncoordinated learn-
ers and maintains statistics on expected returns. Coordi-
nation dependencies are dynamically added if the statis-
tics indicate a statistically significant benefit. This re-
sults in a compact state representation because only nec-
essary coordination is modeled. We apply our method
within the framework of coordination graphs in which
value rules represent the coordination dependencies be-
tween the agents for a specific context. The algorithm is
first applied on a small illustrative problem, and next on
a large predator-prey problem in which two predators
have to capture a single prey.

1 Introduction

A multiagent system (MAS) consists of a group of
interacting autonomous agents [Stone and Veloso, 2000,
Vlassis, 2003]. Modeling a problem as a MAS can have
several benefits with respect to scalability, robustness and
reusability. Furthermore, some problems are inherently dis-
tributed and can only be tackled with multiple agents that
observe and act from different locations simultaneously.

This paper is concerned with fully cooperative MASs in
which multiple agents work on a common task and must
learn to optimize a global performance measure. Exam-
ples are a team of soccer playing robots or a team of robots
which together must build a house. One of the key prob-
lems in such systems is coordination: how to ensure that
the individual decisions of the agents result in jointly opti-
mal decisions for the group.

Reinforcement learning (RL) techniques have been suc-
cessfully applied in many single-agent domains to learn the
behavior of an agent [Sutton and Barto, 1998] . In principle,
we can treat a MAS as a ‘large’ single agent and apply the
same techniques by modeling all possible joint actions as
single actions. However, the action space scales exponen-
tially with the number of agents, rendering this approach
infeasible for all but the simplest problems. Alternatively,
we can let each agent learn its policy independently of the
other agents, but then the transition and reward models de-
pend on the policy of the other learning agents, which may
result in suboptimal or oscillatory behavior.

Recent work (e.g., [Guestrin et al., 2002a,
Kok and Vlassis, 2004]) addresses the intermediate case,
where the agents coordinate only some of their actions.
These ‘coordination dependencies’ are context-specific. It
depends on the state whether an agent can act independently

or has to coordinate with some of the other agents. This
results in large savings in the state-action representation
and as a consequence in the learning time. However, in that
work the coordination dependencies had to be specified in
advance.

This paper proposes a method to learn these dependen-
cies automatically. Our approach is to start with indepen-
dent learners and maintain statistics on expected returns
based on the action(s) of the other agents. If the statis-
tics indicate that it is beneficial to coordinate, a coordi-
nation dependency is added dynamically. This method is
inspired by ‘Utile Distinction’ methods from single-agent
RL [Chapman and Kaelbling, 1991, McCallum, 1997] that
augment the state space when this distinction helps the
agent predict reward. Hence, our method is called the Utile
Coordination algorithm.

As in [Guestrin et al., 2002b, Kok and Vlassis, 2004],
we use a coordination graph to represent the context-
specific coordination dependencies of the agents compactly.
Such a graph can be regarded as a sparse representation of
the complete state-action space and allows for factored RL
updates. Our method learns how to extend the initial co-
ordination graph and represent the necessary coordination
dependencies between the agents using derived statistical
measures.

The outline of this paper is as follows. In section 2 we
review the class of problems and solution methods that we
take into consideration. In section 3 we describe the con-
cept of a coordination graph which is used extensively in
the remainder of the paper as our representation framework.
In section 4 the specific contribution of this paper, the Utile
Coordination method, is explained. Experiments are pre-
sented in section 5.1 and section 5.2 which illustrate our
new method on respectively a small coordination problem
and a much larger predator-prey problem. In this popu-
lar multiagent problem a number of predators have to co-
ordinate their actions to capture a prey. We show that our
method outperforms the non-coordinated individual learn-
ers and learns a policy comparable to the method that learns
in the complete joint-action space. We conclude in section 6
with some general conclusions and future work.

2 Collaborative multiagent MDPs

In this section we discuss several multiagent RL meth-
ods using the collaborative multiagent MDP (CMMDP)
framework [Guestrin, 2003], which extends the single agent
Markov Decision Process (MDP) framework to multiple co-
operating agents. Formally, a CMMDP is defined as a tuple
〈n, S,A, T,R〉 where n is the number of agents, S is a fi-
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nite set of world states, A = ×n
i=1Ai are all possible joint

actions defined over the set of individual actions of agent i,
T : S ×A × S → [0, 1] is the Markovian1 transition func-
tion that describes the probability p(s′|s, a) that the system
will move from state s to s′ after performing the joint ac-
tion a ∈ A, and Ri : S × A → IR is the reward function
that returns the reward Ri(s, a) for agent i after the joint ac-
tion a is taken in state s. A policy is defined as a mapping
π : S → A. The objective is to find an optimal policy π∗

that maximizes the expected discounted future cumulative
reward, or expected return

Q∗(s, a) = max
π

Qπ(s, a)

= max
π

E

[

∞
∑

t=0

γtR(st, π(st))|π, s0 = s, a0 = a

]

(1)

for each state s. The expectation operator E[·] averages
over reward and stochastic transitions and γ ∈ [0, 1) is
the discount factor. Note that the agents try to maximize
global returns based on global expected reward R(s, a) =
∑n

i=1 Ri(s, a) which is the sum of all individual rewards.
This is in contrast with stochastic games [Shapley, 1953]
where each agent tries to maximize its own payoff. If this
framework is constrained such that each agent receives the
same reward, it corresponds exactly to the MMDP (multia-
gent MDP) framework of [Boutilier, 1996].

Fig. 1 depicts a small example problem of a collaborative
multiagent MDP (and MMDP) with two agents and seven
states. In each state every agent selects an individual action
from the action set A1 = A2 = {c, d, e}, and based on the
resulting joint action the agents move to a new state. The
next state (and the subsequent reward) depends on the joint
action only in state s0. When either of the agents chooses
action d, they move to s1, and after any of the possible joint
actions (indicated by (∗, ∗)) both agents receive a reward of
0.5 in state s4. For joint action (e, e) the agents will even-
tually receive a reward of 3, while for the remaining three
joint actions in s0, the agents will receive a large negative
reward of −15. It is difficult for the agents to learn to reach
the state s5 if they learn individually. We discuss this further
in section 5.1.

Reinforcement learning (RL) [Sutton and Barto, 1998]
can be applied to learn the optimal policy in MDPs. In this
paper we consider the case where the transition and reward
model are not available, but an agent observes the complete
state information. We focus on Q-learning, a well-known
learning method for this setting. Q-learning starts with an
initial estimate Q(s, a) of the expected discounted future re-
ward for each state-action pair. When an action a is taken
in state s, reward r is received and next state s′ is observed,
the corresponding Q-value is updated by

Q(s, a) := Q(s, a)+α[R(s, a)+γ max
a′

Q(s′, a′)−Q(s, a)]

(2)

1The Markov property implies that the state at time t provides a com-
plete description of the history before time t.
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Figure 1: Simple coordination problem with seven states.
Only in state s0 does the joint action has an influence on the
next state. The digits on the right represent the given reward
to the agents in the corresponding state.

where α ∈ (0, 1) is an appropriate learning rate. Q-learning
converges to the optimal Q-function Q∗(s, a) when all state-
action pairs are visited infinitely often by means of an ap-
propriate exploration strategy. One of the most common
strategies is ε−greedy exploration in which at every step
the greedy action a∗ = arg maxa Q(s, a) is selected with
probability 1 − ε and a (random) non-greedy action is se-
lected with probability ε. In the above description of RL
for MDPs, we assumed a tabular representation of the Q-
table in which all state-action pairs are explicitly enumer-
ated. Next, we will discuss three methods to apply RL to a
CMMDP, which has multiple agents and joint actions.

At one extreme, we can represent the system as one large
agent in which each joint action is modeled as a single ac-
tion, and then apply single agent Q-learning. In order to
apply such a joint action MDP (JAMDP) learner a central
controller represents the complete JAMDP Q-function and
informs each agent of its individual action, or all agents rep-
resent the complete Q-function separately, and execute their
own individual action2. This approach leads to the optimal
policy, but is infeasible for large problems since the joint
action space, which is exponential in the number of individ-
ual actions, becomes intractable both in terms of storage, as
well as in terms of exploration3. In the example of Fig. 1,
this approach stores a Q-value for each of the nine joint ac-
tions in state si.

At the other extreme, we have independent learners (IL)
[Claus and Boutilier, 1998] who ignore the actions and re-
wards of the other agents and learn their policies indepen-
dently. This results in a large reduction in the state-action
representation. However, the standard convergence proof

2The problem of determining the joint (possible exploration) action can
be solved by assuming that all agents are using the same random number
generator and the same seed, and that these facts are common knowledge
among the agents [Vlassis, 2003].

3Note that function approximations techniques can also be used to deal
with large state-action spaces. However, they are more often applied to
large state spaces, instead of large action spaces because of the difficulty
of generalizing over different actions.
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Figure 2: An example coordination graph for a 4-agent
problem. Each node represents an edge, while the edges
define the coordination dependencies.

for single agent Q-learning does not hold in this case, since
the transition model for each agent depends on the unknown
policy of the other learning agents. This can result in oscil-
latory behavior or convergence to a suboptimal policy. As
we will see in section 5.1, independent learners converge
to the suboptimal policy (d, d) for state s0 in the example
problem of Fig. 1, since the penalty for incorrect coordi-
nation has a large negative influence on the individual Q-
values for actions c and e.

The next section is devoted to an intermediate approach,
introduced in [Kok and Vlassis, 2004], in which the agents
only coordinate their actions in certain predefined states. In
section 4 we extend this method to learn the states in which
coordination is needed.

3 Coordination Graphs

In this section, we will describe context-specific coordi-
nation graphs (CGs) [Guestrin et al., 2002b] which can be
used to specify the coordination dependencies for subsets
of agents. In a CG each node represents an agent, while
an edge defines an action dependency between two agents.
For example, the graph in Fig. 2 shows a CG for a 4-agent
problem in which agent A3 and A4 have to coordinate, and
A1 has to coordinate with both A2 and A3. Since only con-
nected agents have to coordinate their actions, the global
coordination problem is decomposed into a number of local
problems. The dependencies between the agents are spec-
ified using value rules of the form 〈ρ; c : v〉, where c is
defined as the context (defined over possible state-action
combinations) and the payoff ρ(c) = v is a (local) con-
tribution to the global payoff. This is a much richer repre-
sentation than the IL or JAMDP variants, since it allows us
to represent all possible dependencies between the agents
in a context-specific manner. In ‘coordinated’ states, where
actions of the agents depend on each other, the rules are
based on joint actions, while for ‘uncoordinated’ states they
are based on the individual actions of an agent. In our run-
ning example of Fig. 1, value rules for all possible joint ac-
tions, e.g., 〈ρ; s0 ∧ a1 = e ∧ a2 = e : v〉 are needed in
state s0, while value rules based on individual actions, e.g.,
〈ρ; s1 ∧ a1 = a : v〉, are a rich enough representation for all
other states. The rules in a CG can be regarded as a sparse
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Figure 3: Example representation of the Q components of
three agents for a transition from state s to state s′. In state s
agent 2 and 3 have to coordinate their actions, while in state
s′ agent 1 and 2 have to coordinate their actions.

representation of the complete state-action space since they
are defined over subsets of all state and action variables.

In order to compute the joint action with maximum total
payoff, the agents first condition on the context and elim-
inate all rules that are inconsistent with the current state.
Then a variable elimination algorithm is applied in which
each agent first solves a local maximization problem (which
depends only on its neighbors in the graph) and then com-
municates the resulting conditional strategy to one of its
neighbors. After this, the communicating agent is elimi-
nated from the graph. This procedure continues until only
one agent remains, which then determines its contribution
to the optimal joint action based on the conditional strate-
gies of all agents. Thereafter, a pass in the reverse order
is performed in which all eliminated agents fix their strate-
gies based on the selected actions of their neighbors. Af-
ter completion of the algorithm, the selected joint action
corresponds to the optimal joint action that maximizes the
sum of the payoff of the applicable value rules for the cur-
rent state. Although the elimination order does not have
an effect on the outcome of the algorithm, it does have
an effect on the needed computation time. We refer to
[Guestrin et al., 2002b] for details.

We applied coordination graphs successfully in our
RoboCup simulation team by manually specifying both the
coordination dependencies and the associated payoffs us-
ing value rules [Kok et al., 2004]. This resulted in the
world champion title in the RoboCup-2003 soccer simula-
tion league, illustrating that such a representation can cap-
ture very complex and effective policies.

In [Kok and Vlassis, 2004] coordinated behavior is
learned using the concept of CGs and variations of Q-
learning. We will refer to this method as ‘Sparse Cooper-
ative Q-learning’. In that work a predefined set of value
rules is specified that captures the coordination dependen-
cies of the system. At each time step the global Q-value
equals the sum of the local Q-values of all n agents. The
local Q-value, Qi(s, a) of an agent i depends on the payoff
of the value rules in which agent i is involved and that is
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consistent with the given state-action pair (s, a):

Qi(s, a) =
∑

j

ρi
j(s, a)

nj
, (3)

where each payoff is divided proportionally over the nj in-
volved agents. Such a representation of Qi(s, a) can be re-
garded as a linear expansion into a set of basis functions
ρi

j , each of them peaked on a specific state-action context
which may potentially involve many agents. In the sparse
cooperative Q-learning method, the ‘weights’ of these basis
functions (the values of the rules) are updated as follows:

ρj(s, a) := ρj(s, a)+α

nj
∑

i=1

[Ri(s, a)+γQi(s
′, a∗)−Qi(s, a)].

(4)
Note that each rule is updated based on their local contribu-
tion for the global optimal joint action. In order to compute
this joint action a∗ = arg maxa Q(s, a) that maximizes the
sum of the (local) payoffs for state s, the variable elimina-
tion algorithm is applied. From this, the agents can deter-
mine their contribution Qi(s

′, a∗) to the total payoff. A rule
is updated by adding the individual reward and individual
expected future reward of each agent involved in the rule,
similar to Eq. (2). Effectively, each agent learns to coordi-
nate with its neighbors, in a context-specific manner.

As an example, assume we have the following set of
value rules4:

〈ρ1 ; a1 ∧ s : v1〉

〈ρ2 ; a1 ∧ a2 ∧ s′ : v2〉

〈ρ3 ; a1 ∧ a2 ∧ s′ : v3〉

〈ρ4 ; a1 ∧ a2 ∧ s : v4〉

〈ρ5 ; a2 ∧ a3 ∧ s : v5〉

〈ρ6 ; a3 ∧ s′ : v6〉

Furthermore, assume that a = {a1, a2, a3} is the performed
joint action in state s and a∗ = {a1, a2, a3} is the optimal
joint action found with the variable elimination algorithm
in state s′. After conditioning on the context, the rules ρ1

and ρ5 apply in state s, whereas the rules ρ3 and ρ6 apply
in state s′. This is graphically depicted in Fig. 3. Next, we
use Eq. (4) to update the value rules ρ1 and ρ5 in state s as
follows:

ρ1(s, a) = v1 + α[R1(s, a) + γ
v3

2
−

v1

1
]

ρ5(s, a) = v5 + α[R2(s, a) + γ
v3

2
−

v5

2
+

R3(s, a) + γ
v6

1
−

v5

2
].

Note that in order to update ρ5 we have used the (dis-
counted) Q-values of Q2(s

′, a∗) = v3/2 and Q3(s
′, a∗) =

v6/1. Furthermore, the component Q2 in state s′ is based
on a coordinated action of agent A2 with agent A1 (rule ρ3),
whereas in state s agent A2 has to coordinate with agent A3

(rule ρ5).

4Action a1 corresponds to a1 = true and action a1 to a1 = false.

In the above description, we assume that the coordina-
tion dependencies among the agents are specified before-
hand. In the next section we describe how these dependen-
cies can be learned automatically by starting with an initial
set of (individual) rules based on individual actions and dy-
namically adding rules for those states where coordination
is found to be necessary.

4 Utile Coordination

Previous work using coordination graphs assumes a known
CG topology. In this section we describe our method to
learn the coordination dependencies among the agents au-
tomatically. Our approach builds on the ideas of Chapman
& Kaelbling’s [Chapman and Kaelbling, 1991] and McCal-
lum’s [McCallum, 1997] adaptive resolution RL methods
for the single agent case. These methods construct a par-
titioning of an agent’s state space based on finding so-called
‘Utile Distinctions’ [McCallum, 1997] in the state represen-
tation. These are detected through statistics of the expected
returns maintained for hypothesized distinctions. For ev-
ery state, this method stores the future discounted reward
received after leaving this state and relates it to an incom-
ing transition (the previous state). When a state is Marko-
vian with respect to return, the return values on all incoming
transitions should be similar. However, if the statistics in-
dicate that the returns are significantly different, the state is
split to help the agent predict the future reward better. This
approach allows a single agent to build an appropriate rep-
resentation of the state space.

In our Utile Coordination algorithm, we take a similar
approach. The main difference is that, instead of keeping
statistics on the expected return based on incoming transi-
tions, we keep statistics based on the performed actions of
the other agents. The general idea is as follows. The algo-
rithm starts with independent uncoordinated learners5, but
over time learns, based on acquired statistics, where the in-
dependent learners need to coordinate. If the statistics in-
dicate there is a benefit in coordinating the actions of in-
dependent agents in a particular state, that state becomes a
coordinated state. In the CG framework, this means new
coordinated value rules are added to the coordinated graph.

Statistics of the expected return are maintained to de-
termine the possible benefit of coordination for each state.
That is, in each state s where coordination between two (or
more) agents in a set I is considered, a sample of the ‘com-
bined return’, Q̂I(s, aI), is maintained after a joint action
a is performed. The combined return is an approximation
of the expected return that can be obtained by the involved
agents in I and equals the sum of their received individual
reward and their individual contribution Qi(s

′, a∗) to the
maximal global Q-value of the next state as in Eq. (4):

Q̂I(s, aI) =
∑

i∈I

Q̂i(s, a) =
∑

i∈I

[Ri(s, a) + γQi(s
′, a∗)].

(5)

5Note that it is also possible to start with an initial CG incorporating
coordination dependencies that are based on prior domain-specific knowl-
edge.
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These samples are stored with the performed action aI .
For each of these joint actions, the expected combined re-
turn can be estimated by computing the mean, Q̄I(s, aI),
of the last M samples6. These statistics are never used
to change the agent’s state-action values, but are stored to
perform a statistical test at the end of an m-length trial
to measure whether the largest expected combined return
for a state s, maxaI

Q̄I(s, aI) (with variance σ2
max), differs

significantly from the expected combined return Q̄I(s, a
∗
I)

(with variance σ2
∗). The latter is the return obtained when

performing the greedy joint action a∗
I in the state s (and thus

corresponds to the actually learned policy). This greedy
joint action can be found using the variable elimination al-
gorithm. Note that initially, when all states are uncoordi-
nated, a∗

I corresponds to the vector of individually greedy
actions: a∗

i = arg maxai
Qi(s, ai).

We use the t-test [Stevens, 1990] as the statistical test to
compare the two values:

t =
maxaI

Q̄I(s, aI)− Q̄I(s, a
∗
I)√

[(2/M)((M − 1)σ2
max + (M − 1)σ2

∗)/(2M − 2)]
(6)

with (2M − 2) degrees of freedom. From this value the
level of significance, p, is computed indicating the proba-
bility of rejecting the null hypothesis (the two groups are
equal) when it is true.7

An additional statistical effect size measure d determines
whether the observed difference is not only statistically sig-
nificant, but also sufficiently large. In this paper d is similar
to standard effect size measures [Stevens, 1990], and it re-
lates the difference in means to the observed maximum and
minimum reward available in the task:

d =
maxaI

Q̄I(s, aI)− Q̄I(s, a
∗
I)

rmax − rmin

. (7)

If there is a statistically significant difference (p < P )
with sufficient effect size (d > D), there is a significant
benefit of coordinating the agents’ actions in this state: ap-
parently the current CG leads to significantly lower returns
than the possible returns when the actions are coordinated.
This can occur in the situation where one specific joint ac-
tion will produce a high return but all other joint actions
will get a substantially lower return (see the example at the
end of section 2). Since the agents select their actions indi-
vidually they will only occasionally gather the high return.
However, when the stored statistics (based on joint actions)
are compared with the current policy, this produces a sta-
tistical difference indicating that it is beneficial to change
this state into a coordinated state. In our CG framework,
the value rules based on individual actions are replaced by
value rules based on joint actions for this particular state.
The value of each new rule ρ(s, aI) is initialized with the
learned value Q̄I(s, aI).

6In our experiments, we used M = 10.
7Other statistical tests that compare two groups are possible. In par-

ticular, nonparametric tests may be used, because assumptions of normal-
ity and homogeneity of variance may be violated. However, the t-test is
fairly robust to such violations when group sizes are equal (as in our case)
[Stevens, 1990].

As coordination rules are added, the samples of
Q̂I(s, aI) may correspond to joint actions of two agents that
now coordinate in a particular state, such that now coordi-
nation between three or more agents can be learned. Alter-
natively, 3D, 4D, etc., tables can be constructed for three or
more independent learners to test for coordination benefits
when coordination between only 2 agents is not beneficial.
In any case, the statistical test always looks at only two es-
timates of expected combined return: maxaI

Q̄I(s, aI) and
Q̄I(s, a

∗
I).

In very large state-action spaces, memory and compu-
tation limitations will make it infeasible to maintain these
statistics for each state. In fact, those are the most inter-
esting cases, because there learning sparse coordination is
most useful, as opposed to the full coordination done by
JAMDP learners. It then makes sense to use a heuristic ‘ini-
tial filter’ which detects potential states where coordination
might be beneficial. The full statistics on combined returns
are then only maintained for the potential interesting states
detected by the initial filter. In this way, large savings in
computation and memory can be obtained while still being
able to learn the required coordination. One useful heuristic
for filtering may be to compare Qi(s, a) to the mode of the
last M samples of Q̂i(s, a) stored in a small histogram. If
they are sufficiently different, this indicates multi-modality
of expected returns for this agent i, which may mean a po-
tentially dependence on other agents’ actions. In this paper,
the emphasis is on showing the validity of the Utile Coor-
dination algorithm and its learning efficiency compared to
independent learners and JAMDP learners. Therefore, in
the experiments reported below no heuristic initial filter is
used and statistics are stored for every state.

5 Experiments

In this section, we apply the Utile Coordination algorithm
to two problems: the example of section 2 and to the much
larger predator-prey domain.

5.1 Small Coordination problem

In this section, we apply our algorithm to the simple intu-
itive problem depicted in Fig. 1 and compare it to the two
Q-learning methods mentioned in section 2, the JAMDP
learners and the Independent Learners (ILs). The latter
only keep Q-values for their individual actions and therefore
42 (= 2 · 7 · 3) Q-values are stored in total. The JAMDP
learners model the joint action for every state resulting in
63 (= 7 · 32) Q-values. Just as with the ILs, our Utile Co-
ordination approach starts with value rules based on indi-
vidual actions; but it checks, after m = 1000 steps, for
every state whether the action of the other agent should be
incorporated. We use an ε-greedy exploration step8 of 0.3,
a learning rate α = 0.25, and a discount factor γ = 0.9. For

8Note that for fair comparison of the results, independent learners ex-
plore jointly in all experiments. That is, with probability ε both agents
select a random action, which is more conservative than each agent inde-
pendently choosing a random action with probability ε.
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Figure 4: Running average of total cumulative reward of the previous 1500 time steps (including exploration) for the
different Q-learners in the problem from section 2. Results are averaged over 30 runs.

the parameters in our Utile Coordination approach we use a
significance level P = 0.05 and an effect size D = 0.01.

Fig. 4 shows the running average of the cumulative
reward (including exploration) for the three different Q-
learning approaches. The independent learners do not con-
verge to the optimal policy since the actions resulting in a
low reward have a large negative impact on the Q-values
corresponding to the individual actions of the optimal joint
action. The JAMDP learners do not have this problem, since
they model each joint action and quickly learn to converge
to the optimal policy. Since our Utile Coordination ap-
proach starts with individual value rules, the learning curve
resembles that of the independent learners in the beginning.
However, after the third trial (3000 time steps), appropriate
coordination is added for state s0 in all 30 runs, and there-
after the system converges to the optimal policy. Fig. 4 also
shows that simulation runs that start with the learned co-
ordination dependencies found with the Utile Coordination
approach produce identical results as the JAMDP learners.
Although the learned representation of the Utile Coordina-
tion approach uses a sparser representation, both methods
quickly converge to the optimal policy.

5.2 Predator-prey problem

In this section, we apply our Utile Coordination algorithm
to the predator-prey problem. We concentrate on a problem
where two predators have to coordinate their actions in or-
der to capture a prey in a 10× 10 toroidal grid. Each agent
can either move to one of its adjacent cells or remain on its
current position. In total this yields 242, 550 (joint) state-
action pairs. All agents are initialized at random positions at
the beginning of an episode. An episode ends when the prey
is captured. This occurs when both predators are located in
cells adjacent to the prey and only one of the two agents
moves to the location of the prey and the other remains on
its current position. Fig. 5 shows an example grid in which
the predators will capture the prey when either the preda-
tor north of the prey, or the prey east of the prey will move

predator

prey

Figure 5: Graphical representation of a 10×10 grid with two
agents and one prey. This situation shows a possible capture
position for two predators. The prey is only captured when
one of the two agents moves to the prey position and the
other remains on its current position.

to the prey position and the other predator will remain on
its current position. A predator is penalized and placed on a
random position on the field when it moves to the prey posi-
tion without coordinating with the other predator, or moves
to the same cell as the other predator. The predators thus
have to coordinate their actions in all states in which they
are close to each other or when they are close to the prey.
In all other states, the agents can act individually. The prey
behavior is fixed: it remains on its current position with a
probability of 0.2 and otherwise moves moves to one of its
free adjacent cells with uniform probability.

Just as with the small coordination problem, we will
apply our method and compare it with the two other Q-
learning approaches. Each predator i receives an (individ-
ual) reward Ri = 37.5 when it helps to capture the prey,
a reward of −25.0 when it moves to the prey without sup-
port, a reward of −10 when it collides with another preda-
tor, and a reward of −0.5 in all other situations to moti-
vate the predators to capture the prey as quickly as possi-
ble. We use an ε-greedy exploration step of 0.3, a learning
rate α = 0.25, and a discount factor γ = 0.9. Again, we
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use a significance level P = 0.05 and and an effect size
D = 0.01 for the Utile Coordination approach. Statistical
tests to determine coordination are performed after every
m = 20, 000 episodes.

Fig. 6 shows the capture times for the learned policy
during the first 400, 000 episodes for the different meth-
ods (running average of the capture times of the last 300
episodes is shown) and includes the exploration steps taken
by the agents. The results are averaged over 10 runs. The
IL approach does not converge to a stable policy but keeps
oscillating; the Q-values for the individual actions for cap-
turing the prey are decreased substantially when an action
is performed that results in an illegal movement to the prey.
The JAMDP learners model these dependencies explicitly
in every state which results in convergence to the optimal
policy. Our Utile Coordination approach initially does not
take these dependencies into account and follows the curve
of the independent learners. However, after the end of the
first trial (episode 20, 000), the agents add coordinated value
rules for the states in which the gathered statistics indicate
that coordination is beneficial, and immediately the capture
times decrease as is visible in Fig. 6. Thereafter, the average
capture times keep decreasing slowly as more fine-grained
coordination dependencies are added and the agents learn in
the updated coordination graph structure. At the end, while
new value rules are added, the found policy is similar to the
policy found by the JAMDP Learners.

Table 1 shows the final capture times and the number
of Q-values needed to represent the state-action space for
each method. For the Utile Coordination approach on av-
erage 457.90 (±53.4) out of 9702 states were found to
be statistically significant and added as coordinated states.
This is in contrast with the 1, 248 manually specified states
in [Kok and Vlassis, 2004], where coordinated rules were
added for all states in which the predators where within two
cells of each other or both within two cells of the prey. This
difference is caused by the fact that for many states where
a collision is possible and the agents have to coordinate
their actions, the agents are able to learn how to avoid the
collision independently and no specific coordination rule is
needed.

When the learned coordination dependencies of the Utile
Coordination approach are used to learn the policy of the
agents, the learning curve is similar to that of the JAMDP
learners. However, the latter needs a larger representation to
store the Q-values. In this experiment, this does not result
in a negative influence on the learning curve because of the
relative small joint action-size. However, for lager problems
with more agents (and more agents dependencies), this will
be more severe.

Both the Utile Coordination approach and the approach
based on the learned rules converge to a slightly higher cap-
ture time than that of the JAMDP Learners, indicating that
coordinating in some states, not statistically significant for
the Utile Coordination approach, has a very small positive
influence on the final result.

6 Conclusion and future work

This paper introduced the Utile Coordination algorithm,
which starts with independent, non-coordinating agents and
learns automatically where and how to coordinate. The
method is based on maintaining statistics on expected re-
turns for hypothesized coordinated states, and a statistical
test that determines whether the expected return increases
when actions are explicitly coordinated, compared to when
they are not. We implemented this method within the frame-
work of coordination graphs, because of its attractive prop-
erties of representing compactly and efficiently the agents’
state-action space, values, RL updates, and context-specific
coordination dependencies. In this context, the method can
be understood as testing, for a given CG, the standard CG
assumption that the overall return Q(s, a) is simply the sum
of the individual components Qi(s, a). If this assumption is
violated, the algorithm adds appropriate value rules to make
the resulting CG adhere to the assumption.

There are many avenues for future work. As described
before, maintaining the complete statistics for all states is
not computationally feasible for large CMMDPs. Heuristic
initial filters should be investigated in detail, such that the
Utile Coordination algorithm can be applied to such large
problems. In particular, tasks with many interacting agents
should be investigated, as these are the tasks where the prob-
lem of maintaining full statistics is most obvious, and where
at the same time the advantage of Utile Coordination over
JAMDP learners, in terms of space and learning time, will
be more pronounced.

Heuristic initial filters are not the only way to deal with
large state spaces. An equally important, orthogonal pos-
sibility is a variation of the Utile Coordination algorithm
based on more sophisticated, e.g., factorial or relational,
state representations. This should combine well with coor-
dination graphs, because they were explicitly designed for
such state representations. An individual agent would then
be able to represent only its own individual view of the en-
vironment state. Furthermore, it could for instance learn
to coordinate with another agent ‘when the other agent is
near’, rather than having to represent explicitly all environ-
ment states when it is near the other agent and learn to co-
ordinate separately for all those states.

Finally, we note that it should be possible to use the same
statistical tests to allow pruning of coordination rules if they
turn out to be of little use. Also, a user may inject some co-
ordination rules into the algorithm based on a priori knowl-
edge, and the system can subsequently learn additional rules
or prune superfluous user-inserted rules. In this way, a priori
knowledge and learning can be combined fruitfully.
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Abstract- Several attempts have been made in the past 
to construct encoding schemes that allow modularity 
to emerge in evolving systems, but success is limited. 
We believe that in order to create successful and 
scalable encodings for emerging modularity, we first 
need to explore the benefits of different types of 
modularity by hard-wiring these into evolvable 
systems. In this paper we explore different ways of 
exploiting sensory symmetry inherent in the agent in 
the simple game Cellz by evolving symmetrically 
identical modules. It is concluded that significant 
increases in both speed of evolution and final fitness 
can be achieved relative to monolithic controllers.  
Furthermore, we show that simple function 
approximation task that exhibits sensory symmetry 
can be used as a quick approximate measure of the 
utility of an encoding scheme for the more complex 
game-playing task. 

1 Background 

The current interest in exploring and exploiting 
modularity in evolutionary robotics can be understood in 
several ways: as a way of studying modularity in 
biological evolved systems, as a way of making evolution 
produce systems which are easier (or at least possible) for 
humans to understand and thus to incorporate into other 
human-made systems, and as a means of scaling up 
evolutionary robotics beyond the simple behaviours which 
have been evolved until now. In our opinion, these 
perspectives are complementary rather than exclusive. 

For those interested in evolving autonomous agents for 
computer games, certainly the two latter perspectives are 
the most important. Agents will need to be able to perform 
complex tasks, such as serving as opponents to human 
players, in environments constructed for human players, 
and their internal structure should ideally be amenable to 
changes or enhancements from game constructors. 

The ways in which modularity can help scaling up and 
make evolved solutions comprehensible is by improving 
network updating speed, reducing search dimensionality, 
allowing for reusability, and diminishing neural 
interference. 

When a neural network is divided up into modules, the 
number of connections for the same number of neurons 
can be significantly reduced compared to a non-modular, 
i.e. a fully connected network. As propagating an 

activation value along a connection is the most frequent 
operation performed when updating a neural network, the 
time needed for updating the network can be likewise 
significantly reduced. This not only allows the controller 
to be used in time-critical operations, like real-time games, 
but it also speeds up evolution. 

However, even if a modular network has the same 
number of connections as its modular counterpart, as is the 
case with the architectures presented in this paper, 
evolution can be sped up by modularity. In most 
encodings of neural networks, the length of the genome is 
directly proportional to the number of connections, but 
when several modules share the same specifications, the 
genome for a modular network might be significantly 
smaller than for a non-modular network with the same 
number of connections. This reduces the dimensionality of 
the space the evolutionary algorithm searches for the 
solution in, which can improve the speed of evolution 
immensely. 

Neural interference (Calabretta et al. 2003) refers to 
the phenomenon that the interconnection of unrelated 
parts of a neural network in itself can hamper evolution, 
because any mutation is likely to set that interconnection 
to a non-zero value, which means that activity in these 
non-related parts of the network interfere with each other. 
A good modularisation alleviates this problem. 

Finally, many problems arising in computer games and 
elsewhere have the property that parts of their solutions 
can be reused in other problems arising in similar context. 
An evolutionary algorithm that could reuse neural 
modules in the development of new solutions could cut 
evolution time in such circumstances. 

The flipside to all this is that not every architecture is a 
modular architecture, and constraining your network to 
modular topologies means running the risk of ruling out 
the best architectural solutions; constraining your network 
to weight-sharing (reusable) modules means even more 
constraints, as this is optimal only when there is indeed 
some repeating problem structure to exploit. 

Many attempts have in the past been made to achieve 
the benefits outlined above while minimizing the negative 
effects of topological constraints. Several of these 
attempts try to allow for the division of the 
neurocontroller into modules to emerge during evolution, 
instead of explicitly specifying the modules. For example, 
Cellular Encoding (Gruau 1994), inspired by L-systems 
(Lindenmayer 1968) grows neural networks according to 
information specified in graphs, allowing segments of the 
network to be repeated several times. Gruau’s architecture 
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has been put to use and expanded by other researchers, 
such as Hornby et al. (2001) and Kodjabachian and Meyer 
(1995). An alternative modular encoding, called 
Automatically Defined Functions (Koza 1994) is used in 
Genetic Programming. Bongard (2003) has recently 
devised an encoding based on gene regulation, which is 
capable of producing modular designs; a good overview 
of approaches such as those mentioned above is given in 
(Stanley & Miikkulainen 2003). 

However, even in these encoding schemes, human 
design choices arguably influence the course of evolution; 
some forms of modularity are more likely to evolve than 
others. For example, a given encoding scheme might be 
better suited for evolving modules that connect to each 
other in a parallel fashion than for evolving modules that 
connect together in a hierarchic fashion. At the same time, 
we usually don’t have a theory of what sort of modularity 
would best benefit a particular combination of task, 
environment and agent. This could be why these 
encodings, though mathematically elegant, have failed to 
scale up beyond very simple tasks, at least in neural 
network-based approaches.  Furthermore, these encodings 
seem very poor at expressing re-usable modules compared 
to languages used for expressing hardware or software 
designs, such as VHDL or Java respectively.  To properly 
express modular designs, it is necessary to allow 
specification not only of the details of a module, but also 
how modules may be sensibly interconnected together, 
and how new module designs may be constructed from 
existing ones via delegation and inheritance.  The 
concepts of evolving objects (Keijzer et al, 2001), or 
object-oriented genetic programming (Lucas, 2004) 
suggest some promising directions, but more work is 
needed in these areas. 

We believe that the complementary approach of 
explicitly defining and hard-wiring modules and their 
interrelations could be useful in investigating what sorts of 
modularity are best suited to any particular problem, or 
problem class; knowledge which would be useful when 
developing new encoding schemes allowing for emergent 
modularity. We also believe that explicit modular 
definition will scale up better than any other method in use 
today. 

Raffaele Calabretta and his colleagues have reported 
increased evolvability from hard-coded modularity (with 
non-identical modules) in different contexts, such as 
robotic can-collecting (Calabretta et al. 2000) and a model 
of the what and where pathways of the primate visual 
system (Calabretta et al. 2003), but note the conflicting 
findings of Bullinaria (2002). 

Of special interest in our approach are cases where 
aspects of the problem or agent show some form of 
symmetry, so that identical modules can be evolved and 
replicated in several positions in the controller, using 
different inputs. Little work seems to have been done on 
this, but note Vaughan (2003) who evolves a segmented 
robot arm with identical modules, and Schraudolph et al. 
(1993) use tiled neural networks that take advantage of the 
symmetry inherent in the game Go.  However the problem 
of playing Go is very different than playing most 

computer games. They also use temporal difference 
learning rather than evolution. 

In this paper, we are comparing the results and 
dynamics of evolving monolithic networks (standard 
multi-layer perceptrons) of different sizes with those of 
evolving modular architectures with identical modules that 
exploit sensory symmetry. The evolved neural networks 
are compared both in terms of maximum fitness, fitness 
growth, and behaviour of the resulting controllers. 

As a test bed, we have used the game Cellz, which has 
the benefit that the agent has 8-way radial symmetry. 
While Cellz was developed especially for testing 
evolutionary algorithms, the computational expense can 
still be prohibitive for exploring large parameter spaces. 
Therefore, we have constructed a simple function 
approximation task to have similar difficulty and demands 
on network architecture as the Cellz control task, but 
which evaluates much faster. Experiments with different 
network architectures were carried out first using the 
function approximation task, and then using Cellz, and the 
qualitative similarity of results using these two tasks were 
investigated. 

2 Methods 

2.1 Cellz 
The game of Cellz (Lucas 2004) has been designed as a 
test bed for evolutionary algorithms. The game was run as 
a competition for the GECCO 2004 conference, and the 
source code is available on the web.  The elements of the 
game are a number of cellz and a number of food 
particles, and the objective of the game is for the cellz to 
eat as many food particles as possible. A cell eats a food 
particle by moving over it, which increases its mass; when 
its mass increases over a threshold it splits into two. The 
food particle, upon being eaten, vanishes and reappears 
somewhere else on the game area. A cell moves by 
applying a force vector to itself, which trades some of its 
mass for changing its speed – the problem of movement is 
not trivial, having to take momentum and friction into 
account. Neither is the problem of deciding which food 
particles to go for, which in the case of only one cell is an 
instance of the travelling salesman problem, but quickly 
becomes more complex as other cells are added. A major 
problem is not to go for a food particle that another cell 
will get to first. Furthermore, each game starts with the 
cells and the food in random locations, and each new 
piece of food is added in a random location, which means 
that evolution should aim to acquire general good 
behaviours rather than those that just happen to work well 
for a particular game configuration.  Figure 1 shows the 
trace of a part of a game run using an evolved perceptron 
controller (from Lucas 2004), and illustrates how the cells 
(thick lines) move in chaotic patterns in their attempts to 
eat food (dots) and divide. 

Each cell is equipped with eight cell sensors and eight 
food sensors spread evenly around its body; (Figure 2) 
each sensor measures the distance to and concentration of 
other cellz or food in its 45 degree angle. The sensor 
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arrays are used as inputs to the controllers, and their 
outputs are used to generate the force vectors.   

The total mass of all cells was used as fitness value for 
each game, which was run for 1000 time steps, and the 
fitness value for each individual in each generation was 
computed as the mean of ten such games in order to 
reduce noise. 
 

 

Figure 1: A sample run of Cellz with an evolved 
perceptron controller (from Lucas 2004). 

 

Figure 2: The wrap around input sensors. From 
Lucas (2004). 

 
 

2.2 Neural networks 
Four different neural architectures were tested and 
compared. In all of them, each neuron implemented a tanh 
activation function, and the synapse weights were 
constrained to be in the range [-1..1], as were inputs and 
outputs. 

The first two architectures were standard multi-layer 
perceptrons (MLPs). The first MLP consisted of an input 
layer of 16 neurons, an 8 neuron hidden layer and an 
output layer of two neurons. The second MLP had two 
hidden neuron layers of 16 neurons each. In both 
architectures, positions 0-7 received inputs from the 
”food” input vector of the Cellz agent, positions 8-15 
received inputs from the ”cells” input vector, and the two 

outputs from the network were used to create the force 
vector of the cell. 

The other two “convoluted” architectures consist of 
eight separate but identical neural network modules - they 
share the same genome. Each module can be thought of as 
assigned to its own pair of sensors, and thus being at the 
same angle r relative to the x axis as those sensors. The 
outputs from the each module’s two output units is rotated 
–r degrees, and then added to the summed force vector 
output of the controller. 

In the convoluted architectures, each module gets the 
full range of sixteen inputs, but they are displaced 
according to the position of the module (e.g. module 
number 3 gets food inputs 3, 4, 5, 6, 7, 0, 1, 2, in that 
order, while the input array to module 7 starts with sensor 
7; Figure 3). In the first convoluted architecture the 
modules lack hidden layer, but in the second convoluted 
architecture, each has a hidden layer of two neurons. 

 
It is interesting to compare the number of synapses used in 
these architectures, as that number determines the network 
updating speed and the dimensionality of the search space. 
The MLP with 8 hidden neurons has 144 synapses, while 
the MLP with two hidden layers totals 544 synapses. The 
perceptron-style convoluted controller has 32 synapses per 
module, which sums to 256 synapses, and the hidden-layer 
convoluted controller has 36 synapses per module, which 
sums to 288 synapses. It should be noted that while the 
convoluted controllers have little or no advantage over the 
MLPs when it comes to updating speed, they present the 
evolutionary algorithm with a much smaller search space, 
as only 32 or 36 synapses are specified in the genome. 

 

 

Figure 3: Simplified illustration of the convoluted 
architectures, taking only one type of sensor into 
account. The connections in black are the 
connections from all sensors to one module; this 
structure is repeated (grey lines) for each module. 
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2.3 Function approximation task 
Like the Cellz task, the function approximation task 
requires the network to have 16 inputs and 2 outputs. The 
input array is divided into two consecutive arrays of 8 
positions; each position has an associated angle in the 
same manner as the Cellz controller. Each time a network 
is evaluated, a random position on an imaginary circle, i.e. 
a raQGRP� QXPEHU� LQ� WKH� UDQJH� >���� @, is produced. The 
network inputs receive activations corresponding in a 
nonlinear fashion to their associated angles’ distance to 
the target position. The function to be approximated by 
the outputs of the network is the sine and cosine of the 
target position, and the fitness function is the mean 
absolute summed difference between these values and the 
actual network outputs. The time it takes to evaluate a 
neural network on the function approximation task is on 
the order of a thousand times less than the time taken to 
evaluate the same network as a neurocontroller for Cellz. 

2.4 Evolutionary algorithm 
Controllers for the agents were evolved using an 
evolutionary algorithm with a population size of 30. 
Truncation selection was used, and elitism of 5; at each 
generation, the population was sorted on fitness, the worse 
half was replaced with clones of the better half, and all 
controllers except the top 5 were mutated. Mutation 
consisted of perturbing all synaptic weights by a random 
value, obeying a Gaussian distribution with mean 0 and 
standard deviation 0.1.  

 

3 Results 

In all the graphs presented in this section, the dark line 
tracks the fitness of the best controller in each generation, 
while the other line represents the mean population fitness.   

3.1 Evolving function approximators 
For the function approximation problem, we define fitness 
to be the negative of the mean error – which gives a best 
possible fitness of zero.  Each figure in this sub-section 
depicts the mean of ten evolutionary runs.  Both 
monolithic (MLP) architectures were evolved for 100 
generations. (Figures 4 and 5) They eventually arrived at 
solutions of similar quality, though the dual-layer MLP 
took longer time to get there.   
 
The perceptron-style convoluted network reached fitness 
similar to that of the monolithic networks, but somewhat 
faster (Figure 6). The real difference, though, was with the 
convoluted network with one hidden layer; it achieved 
much higher fitness than any of the three other 
architectures, and did so with fewer fitness evaluations 
(Figure 7).  In this case, we are observing a very clear 
benefit of the enforced modular structure.  Next we 
investigated how well this function approximation task 
serves as a test-bed for the real game, which has a 
significant degree of noise, together with complex 
dynamics.  While the network weights to solve each task 
are likely to be very different, the overall connection 
topologies, and the constraints on those topologies are 

likely to be rather similar, based on our construction of the 
function approximation task.  Hence, while the evolved 
weights cannot be transferred from the function 
approximation task to the game, it is still possible that the 
both the task and the game measure similar qualities of the 
encoding schemes. 
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Figure 4: MLP with one hidden layer on the 
function approximation task. 
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Figure 5: MLP with two hidden layers on the 
function approximation task. 
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Figure 6: Perceptron-style convoluted network on 
the function approximation task. 
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Figure 7: Convoluted network with one hidden 
layer on the function approximation task. 

3.2 Evolving Cellz controllers 
The two MLP architectures were evolved for 200 
generations.  Each figure now shows a single run, but each 
experiment was repeated several times, and the graphs 
shown are representative.  The one-layer MLP evolved 
somewhat faster and reached a higher final fitness. Both 
evolutionary runs produced good controllers, whose 
agents generally head straight for the food, even though 
they fairly often fail to take their own momentum into 
consideration when approaching the food, overshoot the 
food particle and have to turn back. (Figures 8 and 9). 

Finally, the two convoluted controllers were evolved 
for 100 generations, and quickly generated very good 
solutions. The convoluted controller with a hidden layer 
narrowly outperformed the one without. Not only did 
good solutions evolve considerably faster than in the cases 
of the MLPs, but the best evolved convoluted controllers 
actually outperform the best evolved MLP controllers with 
a significant margin. As the computational capabilities of 
any of the convoluted controllers is a strict subset of the 
capabilities of the MLP with two hidden layers, this is 
slightly surprising, but can be explained with the 
extravagantly multidimensional search problems the 
MLPs present evolution with – even if a better solution 
exists it is improbable that it would be found in reasonable 
time. 
 

 

Figure 8:  Evolving an MLP with one hidden layer 
for the Cellz game. 
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Figure 9: Evolving an MLP with two hidden layers 
for the Cellz game. 

It is also interesting to note that the length of the neural 
path from sensor to actuator in the robots (that is, the 
number of hidden layers) seems to be of relatively small 
importance. (Figures 10 and 11) A comparison between 
controllers evolved in this paper, the winner of the 
GECCO 2004 Cellz contest, and the hand designed 
controllers mentioned in the original Cellz paper (Lucas 
2004) is presented in Table 1. Note that the differences 
between the best three controllers are not statistically 
significant.  The convoluted controller with one hidden 
layer is one of the best controllers found so far (though the 
convolutional aspect of the controller was hand-designed).  
Note that the winner of the GECCO 2004 contest was also 
partially hand-designed, as a neural implementation of the 
hand-coded sensor controller1.  So far the purely evolved 
neural networks have been unable to compete with the 
networks that have been partially hand-crafted. 
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Figure 10: Evolving a perceptron-style convoluted 
controller for the Cellz game. 

                                                           
1 See: 
http://cswww.essex.ac.uk/staff/sml/gecco/results/cellz/Cell
zResults.html  
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Figure 11: Evolving a convoluted MLP controller 
with one hidden layer for the Cellz game. 

 

Controller Fitness S. E. 
JB_Smart_Function_v1.1 (Winner of 
GECCO 2004 Cellz contest) 

1966 20 

Convoluted controller with one hidden 
layer 

1934 18 

Hand-coded sensor controller 1920 26 
MLP with one hidden layer 1460 13 
Hand-coded greedy controller 1327 24 
MLP with two hidden layers 1225 14 

Table 1: Mean fitness and standard errors over 100 
game runs for controllers mentioned in this paper 
in comparison to other noteworthy Cellz 
controllers. 

4 Conclusions 

Our results clearly show that hard-coding modularity into 
neurocontrollers can increase evolvability significantly, at 
least when agents show symmetry, as they do in many 
computer games and robotics applications. They also 
show that certain types of modularity perform better than 
others, depending on the task at hand. Adding hidden 
neural layers might either increase or decrease 
evolvability, depending on the task. As neural encodings 
that intend to let modularity emerge always have certain 
biases, these results need to be taken into account when 
designing such an encoding. 

 We have also seen that the performance of the 
different architectures on the fitness approximation task 
are qualitatively comparable to the results of the same 
networks on the full Cellz task, e.g. the MLP with two 
hidden layers evolves more slowly than the MLP with 
only one, and the convoluted networks outperform 
monolithic networks. This suggests that this much simpler 
task can be used to further investigate the merits of 
different network architectures for Cellz; in particular, it 

might be possible to evolve network architectures for this 
simpler task, and later re-evolve the connection strengths 
of the evolved architectures for the Cellz task. The 
advantage of using the simpler task as a test-bed is that it 
is around 1,000 times faster to compute.  This method can 
probably be used for other games as well. 

The research described here is part of the first author’s 
doctoral project investigating the role of modularity in 
artificial evolution; previous work on evolving layered 
structures was reported in Togelius (2004). In the future, 
we plan to extend this approach to more complicated tasks 
and input representations, such as first-person games with 
visual input. Eventually, we aim towards using the results 
of those studies as a requirements specification in the 
creation of new representations with which to evolve 
modular systems. 
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Abstract- We present a method that enhances evolution-
ary behavior testing of commercial computer games, as
introduced in [CD+04], to deal with parameterized ac-
tions. The basic idea is to use a layered approach. On
one layer, we evolve good parameter value combinations
for the parameters of a parameterized action. On the
higher layer, we evolve at the same time good action se-
quences that make use of the value combinations and
that try to bring the game in a wanted (or unwanted)
state. We used this approach to test cornerkicks in the
FIFA-99 game. We were able to evolve many parameter-
value-action sequence combinations that scored a goal
or resulted in a penalty shot, some of which are very
short or represent a rather unintelligent behavior of the
players guided by the computer opponent.

1 Introduction

In recent years, many AI researchers have turned to using
commercial computer games as “AI friendly” testbeds for
AI concepts, like improved path finding algorithms and con-
cepts for learning. Often, the guiding idea is to make the
used game smarter to beat the human players, which nat-
urally shows off the capabilities of a particular AI concept
and scores points in AI’s constant struggle to develop intel-
ligent programs. But we see games incorporating such AI
concepts rather seldom, in fact the current commercial com-
puter games have to be seen as rather behind what AI re-
searchers have accomplished with available source code of
older games (see, for example, [vR03]). The reason for this
lies in the priorities game companies have: their games are
supposed to keep a human player or a group of human play-
ers entertained, which requires them to walk a very fine line
between making it too easy and too difficult to win. There-
fore, techniques that make games less predictable (for the
game designer) have to be seen as a risk, especially given
the current state of testing methods for games. Unfortu-
nately, the aim of many AI methods is exactly that: to make
games less predictable and more resembling what humans
would do.

But we think that AI itself can come to the rescue: by us-
ing AI methods to improve the testing of commercial com-
puter games we can not only improve the current situation
with regard to testing games within the short time spans the
industry can afford, we can also open the way for incor-
porating more AI methods into games, allowing for more
complex game behavior that can even include aspects of

learning and adaptation to the human player. We see as a
key method for improving game testing the use of concepts
from learning of (cooperative) behavior for single agents or
agent groups, like [DF96], to find game player behavior that
brings the game into unwanted game states or results in un-
wanted game behavior in general. Learning of behavior can
also be used to find various game player action sequences
that bring the game into states that match conditions a game
designer has for certain special game behaviors, which also
helps improving the testing of such ideas of the designers.

In [CD+04], we presented an evolutionary learning ap-
proach that allowed us to evolve action sequences, which
lead with more than a certain high probability, to scoring
a goal in the game FIFA-99 when executed. Evolution-
ary learning with its ability to achieve something similar
to human intuition due to the mixture of randomness with
exploitation of knowledge about individuals is very well
suited to imitate game player behavior and the methods
some players use to find sweet spots in games. In contrast to
a search using more conventional methods like and-or-trees
or -graphs, an evolutionary search can deal with the inde-
terminism that many commercial computer games rely on
to offer different game playing experiences every time the
game is played in a natural manner.

Our approach of [CD+04] used a fixed set of actions on
which the action sequences to be evolved were built. Most
sport games have a rather limited number of actions that are
“activated” by pressing buttons and that are interpreted by
the game in a manner appropriate to the situation in which
the action is activated. But in many games there are at least
some actions that require the game player to provide some
parameter-values for the action (again, using buttons in a
special manner). Examples of such actions are a pitch in a
baseball game or a cornerkick in a soccer game. [CD+04]
did not cover such parameterized actions.

In this paper we present an extension of the method of
[CD+04] that allows to deal with special parameterized ac-
tions occurring at specific points in an action sequence. The
basic idea (inspired by [St00]’s idea of layered learning)
is to use a two-layered evolutionary algorithm, one layer
evolving action sequences and one layer evolving param-
eter combinations for the parameterized action. Naturally,
the fitness of a parameter layer individual has to depend on
the fitness that this individual produces when applied in an
individual of the action sequence layer, in fact it depends on
the fitness of many individuals on the action sequence layer
and vice versa. We were also inspired by concepts from
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co-evolving cooperative agents, see [PJ00] and [WS03], al-
though we make additionally use of the fact that the fitness
on the action sequence layer is based on an evaluation of the
game state after each action and therefore we can emphasize
also the evaluation of the outcome of the special action.

We evaluated our extension to special actions within the
FIFA-99 game, again. The special action we targeted was
the cornerkick and our experiments show that the old soccer
saying a corner is half a goal, while not true anymore in to-
days professional soccer, is definitely true within FIFA-99.
Many of the behaviors we found (with regard to scoring)
are rather acceptable, but we also found some very short se-
quences that always scored and some rather “stupid” oppo-
nent behavior consistently leading to penalty shots awarded
to the attackers.

This paper is organized as follows: After this introduc-
tion, we re-introduce the basic ideas of [CD+04], namely
our abstract view on the interaction of human players with
a game in Section 2 and the evolutionary learning of action
sequences for game testing in Section 3. In Section 4, we
introduce our extension of the learning approach to allow
for special parameterized actions. In Section 5, we present
our case study within FIFA-99 and in Section 6 we conclude
with some remarks on future work.

2 An interaction behavior based view on com-
mercial computer games

On an abstract level, the interaction of a human game player
with a commercial computer game can be seen as a stream
of inputs by the player to the game. These inputs have some
influence on the state of the game, although often there are
other influences from inside and sometimes outside of the
game. If we have several human players, then the other
players are such an outside influence, since the game com-
bines all the input streams and thus produces a sequence
of game states that describe how a particular game run was
played.

More precisely, we see the inputs by a game player as
a sequence of action commands out of a set

�����
of possi-

ble actions. Often it is possible to identify subsets of
�����

that describe the same general action inside the game, only
called by the game with different parameter values (like a
pitch in baseball, where the parameters determine where the
player wants to aim the ball at, or a penalty shot in soccer).
We call such a subset a parameterized action (described by
the general action and the parameter values, obviously) and
all interactions of the player with the game that are needed
to provide general action and parameter values are replaced
by the parameterized action in our representation of the in-
teraction as action sequence from now on. By � ����� we
refer to the set of parameterized actions.

The game is always in a game state out of a set � of
possible states. Then playing the game means producing an
action sequence	�
 ������ 	 � ;

	���� ������� � �����
and this action sequence produces a game state sequence� 
 ������ � � ; � � � � .

Naturally, the game has to be in a state ��� already, before
the action sequence starts. This start state can be the general
start state of the game, but many games allow to start from
a saved state, also.

What state the game is in has some influence on the
actions that a player can perform. For a situation � , by������� ����� ������� � ����� we define the set of actions that are
possible to be performed in � (are recognized by the game in� ). Especially the parameterized actions in most games are
only possible to be performed in a limited number of “spe-
cial” states, since providing the parameter values for such
an action is often rather awkward (what usually is not done
is to allow a user to enter a numerical parameter value di-
rectly; instead some graphical interface has to be used that
often requires quite some skill to handle). The “special”
states recognizing parameterized actions often allow only
for one particular parameterized action.

For the learning of action sequences that bring the game
into a state fulfilling some wanted (or, for testing purposes,
unwanted) condition –we call this also a wanted (unwanted)
behavior– the fact that not every action can be executed in
every state poses a certain problem. But the fact that

������� ���
is finite for each � (if we count a parameterized action, re-
gardless of the used parameter values, as just one action)
allows us to order the elements in

������� ��� and to refer to an
action by its index in the ordering (which is a natural num-
ber). And if we use the index number of an action to indi-
cate it in an action sequence, we can guarantee that in every
game state there will be an action associated with any index
number. If such a number �! #" is smaller than $ ������� ��� $ in sit-
uation � , then obviously it refers to a legal action (although
to different actions in different states). If �! #"&%'$ ������� ��� $ ,
then we simply execute the action indicated by �! #" modulo$ ������� ��� $ which is a legal action, again.

If we look at action sequences and the game state se-
quences they produce, then in most games the same action
sequence does not result in the same state sequence all the
time (especially if we use indexes to indicate actions, as de-
scribed in the last paragraph). This is due to the fact that the
successor state ��( of a game state � is not solely based on the
action chosen by the game player and � . In addition to other
players, random effects are incorporated by game designers
in order to keep games interesting and these random effects
influence what �)( will be. For example, wind is often real-
ized as a random effect that influences a pitch or shot in a
sports game or the aim of an archer in a fantasy role playing
game.

It has to be noted that everything we have observed so far
with regard to keeping a human player entertained makes
games less predictable and hence more difficult to test. We
have to run action sequences several times to see if they
have an intended effect, for example. But fortunately there
are also “shortcomings” of human players that help with the
testing effort. For example, producing an action sequence
that totally solves or wins a game, i.e. starting from the
game start and going on until the winning condition is ful-
filled, is very difficult, since we are talking about a sequence
that might have more than tens of thousands of actions. But
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fortunately human players also cannot produce such a se-
quence in one try, respectively without periods in which
they can relax. Therefore commercial computer games al-
low the user to save game states, as already mentioned,
and structure the game into subgoals, like minor quests in
role playing games or one offensive in a soccer or hockey
game. This means that for testing purposes smaller action
sequences can be considered, although it might be necessary
to look at several ways how these sequences are enabled.

3 Evolutionary behavior testing without pa-
rameterized actions

In [CD+04], we used the interaction behavior based view
on computer games from the last section to develop an ap-
proach to testing of computer games that aims at evolving
action sequences that bring the game into a state fulfilling a
given condition. This condition might either be a condition
that the game designer does not want to occur at all, a condi-
tion that should occur only in certain circumstances and the
designer wants to make sure that there is no action sequence
that brings us there without producing the circumstances, or
a condition that describes a game state from which the game
designer or tester wants to launch particular targeted tests.
The approach in [CD+04] did not deal with parameterized
actions. In the following, we will briefly describe this orig-
inal approach, on which we will base the extension that we
describe in the next section.

The basic idea of [CD+04] was to use a Genetic Algo-
rithm working on action sequences as individuals to pro-
duce a game behavior fulfilling a condition

���������	��
���
. Due

to the indeterminism incorporated in most games, this con-
dition has to be fulfilled in more than a predefined percent-
age of evaluation runs of an action sequence. The crucial
part of this idea is the definition of a fitness function that
guides the evolutionary process towards action sequences
that fulfill

���������	��
���
. Following [DF96], the fitness of an

individual is based on evaluating each game state produced
during an evaluation run of the action sequence (as input
to the target game), summing these evaluations up and per-
forming several evaluation runs (starting from the same start
state) and summing up the evaluations of all these runs.

The basic idea of an evolutionary algorithm is to work
on a set of solution candidates (called individuals) and use
so-called Genetic Operators to create out of the current in-
dividuals new individuals. After several new individuals are
created, the original set and the new individuals are com-
bined and the worst individuals are deleted to get a new set
(a new generation) the size of the old set. This is repeated
until a solution is found. The initial generation is created
randomly. What individuals are selected to act as “parents”
for generating the new individuals is based on evaluating the
fitness of the individuals (with some random factors also in-
volved). The idea is that fitter individuals should have a
higher chance to act as parents than not so fit ones. The
fitness is also used to determine what are the worst individ-
uals.

This general concept was instantiated in [CD+04] as fol-

lows. The set of possible individuals � is the set of se-
quences of indexes for actions, i.e.� =

�
(a


,...,a � ) $ a � � �

1,..., max
� $ � ��� ( � � ) $ � � .

The fitness of an individual is based on � evaluation runs
with this individual serving as input to the game from a
given start game state � � ( � is a parameter chosen by the
tester of the game). A low fitness-value means a good indi-
viudal, while a high fitness-value is considered bad.

A single run of an individual (a


,...,a � ) produces a state

sequence ( � � ,..., � � ) and we define the single run fitness� �  ����� � � � of ( � � ,..., � � ) as follows:

� �  ����� � � � (( � � ,..., � � )) �

�������� ������ 

j,
if
� �������	��
���

(( � � ,..., �"! )) = true
and

� �������"��
���
(( � � ,..., � � ))

= false for all �$#&%' ��)(�
  �� 	+* ��, 	 � (( � � ,..., � � )),
else.

Remember that
���������	��
���

is the condition on state se-
quences that we are looking for in the test. Note that we
might not always require

� �������	��
���
to take the whole se-

quence into account. If we only look for a property of a
single state, then we have to test �-! only. By using as fitness
of a run fulfilling

� �������"��
���
the number of actions needed

to get to the first game state fulfilling
���������"��
���

, we try to
evolve short sequences revealing the unwanted behavior to
make analyzing the reasons for the behavior easier.

Within the function  �� 	+* ��, 	 � we have to represent the
key knowledge of the game designer about the state or state
sequence he/she is interested in.  �� 	+* �., 	 � has to evaluate
state sequences that do not fulfill

���������	��
���
and we need

it to measure how near these sequences come to fulfilling� �������	��
���
.  �� 	+* �., 	 � depends on the particular game to

test and the particular condition we want to fulfill.� �  ����� � � � sums up the evaluations by  �� 	+* ��, 	 � for
all subsequences of � � ,..., � � starting with the subsequence� � , � 
 . On the one hand, this assures in most cases that a
state sequence not fulfilling

���������"��
���
has a � �  ����� � � � -

value much higher (usually magnitudes higher) than a se-
quence that does fulfill

���������	��
���
. On the other hand, we

award sequences that come near to fulfilling
���������	��
���

and
stay near to fulfilling it. And finally, we are able to identify
actions (resp. indexes in the individual) that move us away
from the behavior or result we are looking for (after coming
near to it).

To define the fitness � � � of an individual (
	 


,...,
	 � ), let

( � � , �



,..., �



� ),..., ( � � , ��/ 
 ,..., ��/� ) be the game state sequences

produced by the � evaluation runs. Then� � � (( 	�
 ,..., 	 � )) =
' /�0(�
 � �  ����� � � � (( � � , �

� 

,..., �

�
� ))

As Genetic Operators, the standard operators Crossover
and Mutation on strings can be employed. Given two ac-
tion sequences (

	 

,...,

	 � ) and ( 1 
 ,..., 1 � ), Crossover selects
randomly a number � between 1 and 24365 and produces
(
	�


,...,
	��

, 1 �07�
 ,..., 1 � ) as new individual. Mutation also se-
lects randomly an � and a random action

	
out of

����� 3 � 	�� �
to produce (

	 

,...,

	 �8 

,
	

,
	 �07�


,...,
	 � ) as new individual.

[CD+04] also introduced so-called targeted variants of
Crossover and Mutation that make use of the fact that
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with  �� 	+* �., 	 � we can judge the consequences of indi-
vidual actions within sequences and can identify actions
within a sequence that lead away from game states fulfill-
ing

� �������	��
���
. The precise definition of Targeted Crossover

and Targeted Mutation require that when evaluating an eval-
uation run of an action sequence (

	 

,...,

	 � ), we remember
the first position �"! such that

 �� 	+* �., 	 � � � � � ������ �"!)� � �  �� 	+* ��, 	 � � � � � � ���� �"! 8 
 � ����, � � �., 	 � �
for a parameter �, � � �., 	 � . Targeted Crossover between
(
	 


,...,
	 � ) and ( 1 
 ,..., 1 � ) first selects one of the reported

positions in (
	 


,...,
	 � ), say

	 ! , then selects a position in
(
	 


,...,
	 � ) between

	 ! 8���� 
���
	 and
	 ! 8 
 and performs a

Crossover at this selected position. The same modification
leads us to a Targeted Mutation using � � 	+* � to define the
interval to choose from.

4 Layered evolutionary behavior testing for
parameterized actions

There are several possible ways by which handling param-
eterized actions could be integrated into the method defined
in the last section. One rather obvious way is to treat them
like ordinary actions, start them off with random parameter
values and add a Genetic Operator that mutates the parame-
ters of parameterized actions. While this allows for having
parameterized actions everywhere in an action sequence, it
is not easy to balance the mutation of the parameters with
the other Genetic Operators, the search spaces for action
sequences and parameter value combinations multiply each
other and there is a big danger that targeted Genetic Oper-
ators target primarily parameterized actions in early stages
of the search, since the parameter value combinations are
not evolved enough. Additionally, the general quality of a
parameter value combination cannot be expressed, since we
have only a fitness for a whole action sequence.

Since in many games parameterized actions only occur
under special circumstances, we decided to use a different
approach that separates the evolution of action sequences
and parameter value combinations a little bit more and al-
lows for evolving action sequences that “work” with several
value combinations and value combinations that are produc-
ing good results with several action sequences. Addition-
ally, we made the assumption that parameterized actions are
a good point to break action sequences into parts, i.e. being
able to perform a particular parameterized action is often a
good subgoal in a game. This then means that the parame-
terized action is the first action of an action sequence after
the subgoal is achieved (like a cornerkick or penalty kick in
soccer or a pitch in baseball). And naturally reaching the
subgoal should be used as good point to save the game, so
that we are provided with a clearly defined start state for the
sequence starting with the parameterized action.

Under these assumptions, integrating parameterized ac-
tions can be achieved by having a second evolutionary
learning process that tries to evolve good parameter value
combinations, in a kind of lower layer of the whole process

(similar to the layered learning idea of [St00] for reinforce-
ment learning). The crucial problem that has to be solved
is how the fitness of such a parameter value combination is
calculated, once again. In fact, also the question of how to
evaluate the fitness of an action sequence has to be raised,
again. Our solution is to evaluate the fitness of a particular
parameter value combination by employing it in several ac-
tion sequences as the parameter values of the parameterized
action the sequence starts with. Part of the fitness is then
the combination of the fitnesses of the evaluation runs of the
sequences with the value combination. But we also incor-
porate the immediate result of the parameterized action by
measuring the resulting game state after performing it. As
a consequence, we also modified the fitness of an action se-
quence by not only using the evaluation run(s) for one value
combination, but the runs of all value combinations with the
action sequence.

More formally, if
	 � ��� � � is the parameterized action

with which we start an action sequence and if it requires parameters out of the value sets �


,..., � � , then an indi-

vidual on the parameter value level has the form ( �


,..., � � )

with �
� �

�
�
. On the action sequence level, as before, an

individual has the form (
	 


,...,
	 � ). The fitnesses are then

evaluated as follows.
On the action sequence level, we evaluate each indi-

vidual (
	�


,...,
	 � ) with a selection from the current pop-

ulation of the parameter value level, i.e. with individ-
uals ( �




,..., �



� ),...,( ���
 ,..., ���� ). As before a single run of

(
	�


,...,
	 � ) starts from a start state � � , performs action	 � ��� � � ( �

�

,..., �

�
� ) for an i to get to state � � 
 and then uses	 


,...,
	 � to produce states � �� ,..., �

�
� 7�
 . We then compute� �  ����� � � � (( � � , �

� 

,..., �

�
� 7�
 )) and sum up over � runs for

each ( �
�

,..., �

�
� ), as before.

On the parameter value level, we use the evaluation
runs done for the action sequence level. This means that
for an individual ( �



,..., � � ) we have game state sequences

( � � , � ! 
 ,..., � ! � 7 
 ) produced by running the action sequence	 � ��� � � ( �


,..., � � ),

	 ! 

,..., � ! � (again, we might use the same

action sequence � times, but % should range from 1 to ��� ,
to have more than one action sequence, namely , , used and
to achieve an even distribution of the evaluation runs among
the individuals on the parameter value level). For the fit-
ness � � �  of ( �



,..., � � ), we sum up the � �! ��.� � � � � -values

for the produced state sequences, but we also consider es-
pecially the “quality” of the outcome of

	 � ��� � � ( �


,..., � � ) by

computing a weighted sum of the evaluation of this quality
and the fitness of the action sequences. More precisely, if��� ���
� � 
 and � ����� � 
 indicate the weights, then

� � �  � � � 
 � ���� � � � � � ��� � �


 ������ �



� 7�
 � ������ � � � � � / � �
 ������ � / � �� 7�
 � �

� � � ����� � 
 � /!�#"$ �0(�
 � �  ����� � � ��� � � � � �
� 
 ������ �

�
� 7�
 � �

�%� ����� � 
 � /!�&"$ �0(�
  �� 	+* �., 	 � � � � � � �
� 
 � �

With regard to Genetic Operators, on the action sequence
level we use the operators introduced in Section 3, includ-
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ing the targeted operators. On the parameter value level,
we use the rather well-known operators for lists of numer-
ical values, i.e. crossover similar to the one on the action
sequence level (but not targeted) and a mutation that varies
the value of a parameter by adding/subtracting a randomly
chosen value within a mutation range

*
��� for the i-th pa-

rameter (the
*
��� are parameters of the evolutionary learning

algorithm).
The two layers of the learning system proceed at the

same pace, i.e. new generations for both levels are created,
the individuals in both levels are evaluated and based on this
evaluation the next generation is created.

5 Case study: FIFA-99

We instantiated the general methods described in Sections 3
and 4 for the Electronic Arts’ FIFA-99 game. In this sec-
tion, we will first give a brief description of FIFA-99, then
we will provide the necessary instantiations of the general
method, and finally we will report on our experiments and
their results.

5.1 FIFA-99

FIFA-99 is a typical example of a team sports games. The
team sport played in FIFA-99 (in fact, in all games of the
FIFA series) is soccer. So, two teams of eleven soccer play-
ers square off against each other and the players of each
team try to kick a ball into the opposing team’s goal (scor-
ing a goal). In the computer game, the human player is
assigned one of the teams and at each point in time controls
one of the team’s players (if the team has the ball, usually
the human player controls the player that has the ball). In
addition to actions that move a player around, the human
user can let a player also handle the ball in different ways,
including various ways of passing the ball and shooting it.
As parameterized actions on the offensive side, we have, for
example, cornerkicks and penalty kicks. On the defensive
side the actions include various tackles and even different
kinds of fouls.

The goal of the human user/player is to score more goals
than the opponent during the game. FIFA-99 allows the hu-
man player to choose his/her opponent from a wide variety
of teams that try to employ different tactics in playing the
game. In addition, Electronic Arts has included into FIFA-
99 an AI programming interface allowing outside programs
to control NPC soccer players (i.e. the soccer players con-
trolled by the computer). For our experiments, we extended
this interface to allow for our evolutionary testing system
to access various additional information, set the game to a
cornerkick situation and to feed the action sequences to the
game.

5.2 Behavior testing for cornerkicks

A human player of FIFA-99 (and other team sport games)
essentially controls one soccer player at each point in time,
allowing this player to move, pass and shoot and there is
also the possibility for the human player to switch his/her

Figure 1: Cornerkick start situation

control to another of his/her players. But this switch is
also performed automatically by the game if another soc-
cer player of the human player is nearer to the ball (and
switch goes through a predefined sequence of the players in
the team to accommodate the way the controls for the hu-
man player work). The set of actions without parameters is

� NOOP
� PASS
� SHOOT
� SWITCH
� UP
� DOWN
� RIGHT
� LEFT
� MOVEUPLEFT
� MOVEUPRIGHT
� MOVEDOWNLEFT
� MOVEDOWNRIGHT

There are several other, parameterized actions that all are
associated with special situations in the game. For our ex-
periments, we concentrated on the action

CORNER(x,z,angle)
that performs a cornerkick. Here, the x parameter gives the
x-coordinate, a value between 0 and the width of the field.
The z parameter describes the z-coordinate (at least in FIFA-
99 it is called z), a value between 0 and the length of the
field. Finally, angle provides the angle to the field plane
that the kick is aimed at (within 90 degrees).

The unwanted behavior we are looking for in our test
is either scoring a goal or getting a penalty shot. So,���������	��
���

(( � � ,..., � � )) = true, if FIFA-99 reports a goal
scored in one of the states �)� ,..., � � or a penalty shot is
awarded in one of these states. In [CD+04], �)� was the kick-
off, while in our experiments in the next subsection, we start
from the cornerkick situation depicted in Figure 1.

The fitness functions of both layers are based on the
function  �� 	+* �., 	 � . We use the same definition for this
function as in [CD+04]. This definition is based on dividing
the playing field into four zones:
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Zone 1 : from the opponent goal to the penalty box

Zone 2 : 1/3 of the field length from the opponent goal

Zone 3 : the half of the field with the opponent goal in it

Zone 4 : the whole field.

We associate with each zone a penalty value (pen



to pen � )
and decide which value to apply based on the position of
the player with the ball (resp. if none of the own players
has the ball, then we look at the position of the player that
had the ball in the last state). If the position is in zone 1,
we apply pen



as penalty, if the position is not in zone 1,

but in zone 2, we apply pen � and so on. By " � � � ( � � ) we
denote the distance of the player position from above to the
opponent’s goal. Then for a state sequence ( ��� ,..., � � ), we
define  �� 	+* ��, 	 � as follows:

 �� 	+* ��, 	 � � � � � ������ � � � � �
������ ���� 
" � � � ( � � ) � penalty �

if the own players had the
ball in � �8 
 or � �2 	 �  �) 	 � ���
else.

The parameter 2 	 �  �) 	 � ��� is chosen to be greater than
the maximal possible distance of a player with the ball
from the opponent’s goal multiplied by the maximal zone
penalty, so that losing the ball to the opponent results in
large  �� 	+* �., 	 � -values and a very bad fitness. For the tar-
geted operators we set �, � � �., 	 � to 2 	 �  �) 	 � ��� and did
not consider  �� 	+* �., 	 � (( � � ,..., �"! 8 
 )) at all, so that we target
those actions that result in losing the ball. As in [CD+04],
we used � � 	+* � = ��� � 	+* � = 1.

For the parameters guiding the computation of � � �  , we
set � � ��� � 
 to 20 and � � ����� � 
 to 1. Since a lower fitness
means a better individual, the influence of the state directly
after the cornerkick on � � �  is substantial, so that parameter
value combinations that result in the own team not being in
possession of the ball have a very bad fitness.

5.3 Experimental evaluation

We used the instantiation of our general method from the
last subsection to run several test series. As described
in [CD+04], we flagged action sequences that fulfilled� �������"��
���

in one evaluation run and then did 100 additional
runs with this action sequence-parameter value combina-
tion. And we only consider sequence-value combinations
that were successful in 80 of these additional runs for re-
porting to the developer/tester. The population size in the
parameter value level was 20 and an individual on the action
sequence level was evaluated using each of the individuals
of the current value level once (i.e. � = 20, � = 1). On the
action sequence level, the population size was 10.

In our experiments, every run of our test system quickly
produced one or several action sequences that were flagged
for further testing and from every run we got at least one pa-
rameter value-action sequence combination that passed the
additional test (and scored a goal; we usually got several
combinations that produced a penalty shot). Many of these

Figure 2: First sequence, ball in air

Figure 3: First sequence, ball under control

combinations are quite acceptable, i.e. they present a game
behavior that could be observed in a real soccer game, ex-
cept for the fact that the game does allow for the scoring by
this combination so often (or even all the time).

In the following, we will present a few rather short ac-
tion sequences that scored in our experiments all the time,
with screenshots for the shortest sequence we found. We
will then also present some screenshots showing a not very
intelligent game behavior consistently leading to a penalty
shot. This is the kind of game behavior that a developer will
want to change, respectively allow to be exploited only once
or twice. In all figures, the light-colored soccer players are
the attackers controlled by the action sequences produced
by our system and the dark-colored players are the oppo-
nents.

Since a cornerkick is a dangerous situation for defenders
in a soccer game, it can be expected in a computer soccer
game that there are many opportunities for scoring goals.
Here are the 3 shortest action sequences we have found us-
ing our testing method, so far:
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Figure 4: First sequence, shoot

Figure 5: First sequence, goal!

� CORNER(-1954,-620,28.1), LEFT, SHOOT

� CORNER(-1954,-620,28.1), MOVEDOWNRIGHT,
UP, SHOOT

� CORNER(-2097,-880,27.5), LEFT, DOWN, MOVE-
DOWNRIGHT, SHOOT

The first two were produced by the same run, after 3:15,
resp. 3:13 minutes of search, while the third was found after
7:22 minutes (in a different run). The first two are a good
example for how the fitness function � � � aims at producing
shorter sequences.

Figure 2 shows the effect of the first value-sequence
combination, resp. the effect of the cornerkick parameter
values. In Figure 3, the attacker has the ball under control
and moves to the left to get some distance to the goalie that
will come out of its goal soon. Figure 4 shows the situa-
tion after the goalie has come out and the attacker has shot
towards the goal. And Figure 5 shows the goal.

When we added being awarded a penalty shot as a suc-
cessful attack action sequence, we were not aiming at cor-

Figure 6: Second sequence, ball in air

Figure 7: Second sequence, ball under control?

nerkicks (this was more of interest for the sequences starting
from the kickoff, in our opinion). But surprisingly, our sys-
tem evolving action sequences found more sequences lead-
ing to penalty shots than it found leading to a goal. These
sequences are longer (but found earlier by the evolution-
ary search) and while some of the situations could hap-
pen in a real soccer game (although you do not see many
penalty shots developing out of corners), there are quite a
few sequences that we would consider unrealistic, due to
the foul committed being rather unnecessary. The follow-
ing sequence is an example for such a sequence:

� CORNER(-1954,-775,28.1), NOOP, DOWN,
DOWN, RIGHT, SWITCH, MOVEUPLEFT,
MOVEDOWNRIGHT, LEFT, LEFT, SWITCH

Figure 6 shows the ball in the air. Figure 7 shows the at-
tacker trying to get the ball under control. In Figure 8, the
attacker is still trying to get control, while the action se-
quence now switches to a different attacker, essentially leav-
ing the player with the ball with the built-in control, which
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Figure 8: Second sequence, still trying to get control

Figure 9: Second sequence, stupid foul!

drives it nearly out of the penalty box. In Figure 9, the con-
trol switches back just when the attacker is brought down
from behind just a little inside of the penalty box. This is
a rather stupid move by the defender and as consequence,
Figure 10 shows the referee indicating a penalty shot. We
had several other sequences leading to a penalty shot, where
actively moving control away from the key attacker to let
the game take over its behavior resulted in a penalty. While
this naturally is not a behavior expected by a human player
(and therefore not intensively tested) it shows an advantage
of our testing method.

6 Conclusion and Future Work

We presented an extension to the behavior testing method
proposed in [CD+04] that allows us to deal with actions that
have parameters. By adding a lower evolutionary layer for
evolving good parameter value combinations, we are able
to co-evolve parameter value combinations and action se-
quences resulting in value-sequence combinations that pro-

Figure 10: Second sequence, penalty kick!

duce unwanted behavior in games. Our tests with the FIFA-
99 game produced many value-sequence combinations scor-
ing goals and resulting in penalty shots. Several of the
penalty shot situations are not very realistic both from the
attacker and the defender side, so that we revealed a weak-
ness of the AI controlling the defender that should have been
avoided.

Our future work will focus on developing fitness func-
tions for unwanted behavior that do not focus on scoring
goals. In newer versions of FIFA, we have special players
with special moves and special abilities (modeled after real,
and well-known human soccer players) for which the game
designers have special expectations. Bringing the game into
situations where these expectations can be observed (and
reaching such situations in different ways) is not easy to
achieve using human testers, but an obvious application for
our method.
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Abstract- The Virus Game (or simply Virus) is a turn-
based two player perfect information game which is based 
on the growth and spread of competing viruses. This 
paper describes a CPU efficient and easy to use 
architecture for developing and testing AI for Virus and 
similar games and for running a tournament between AI 
players. We investigate move generation, board 
representation and tree search for the Virus Game and 
discuss a range of parameters for evaluating the likely 
winner from a given position. We describe the use of our 
architecture as a tool for teaching AI, and describe some 
of the AI players developed by students using the 
architecture. We discuss the relative performance of 
these players and an effective, generalisable scheme for 
ranking players based on similar ideas to the Google 
PageRank method.  

1 Introduction 

For two player games of perfect information with a 
reasonably low number of moves in any given position, 
such as chess, draughts and Othello, strong AI players to 
date have principally used a combination of fast, limited-
depth minimax tree search using alphabeta pruning (Knuth 
and Moore 1975) and a board evaluation function to 
approximate the probability of each player winning from a 
given position. Tree search has been enhanced by 
techniques such as iterative deepening, using on-chip 
hardware to conduct the search, maintaining hash tables 
of previously evaluated positions (Campbell et al 2002) 
and heuristic pruning techniques (Buro 2002). 

Creating a machine to “learn” game strategy has been 
an important goal of AI research since the pioneering work 
on checkers/draughts of (Samuel 1959). Research to date 
has shown little advantage for learning approaches 
applied to the tree search for two player perfect 
information games. However, many of the strongest AI 
players in existence now “learn” board evaluation 
functions. Logistello (Buro 2002) uses statistical 
regression to learn parameter weights for over a million 
piece configurations based on a very large database of 

self-play games. Blondie24, which has been popularised 
by the highly readable book (Fogel  2002), evolves weights 
for an artificial neural network to evaluate positions in the 
game of draughts. (Kendall and Whitwell 2001) uses an 
evolutionary scheme to tune the parameter weights for an 
evaluation function of a chess position. Their evolutionary 
scheme is notable in that evolution occurs after every 
match between two AI players, which gives faster 
convergence, since running a single game can take several 
CPU seconds. (Abdelbar et al 2003) applies particle swarm 
optimisation to evolve a position evaluation function for 
the Egyptian board game Seega. (Daoud et al 2004) evolve 
a position evaluation function for Ayo (more comonly 
known as Awari). Their evolutionary scheme is interesting 
in that a “test set” is chosen and the result of matches 
against this test set determines the fitness of an individual 
in the population. The “test set” was chosen at random. 
Later in this paper we will suggest how this idea may be 
taken further using a ranking scheme based on the 
principal eigenvector of the results matrix. In the work of 
(Ferrer and Martin 1995) the parameters used to measure 
board features for the ancient Egyptian board game Senet 
are not given in advance, but are evolved using Genetic 
Programming. While Senet is not a game of perfect 
information, this is also an interesting angle of attack for 
perfect information games. 

 

        
        
        
        
        
        
        
        

 
Fig.1. The Virus game starting position. 

 
In this paper we will explore the two-player perfect 

information game of Virus. The earliest appearance of 
which we are aware of the Virus Game was in the Trilobyte 
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game 7th Guest (Matthews 2000). The Virus game is a two 
player game of perfect information, played on an nxn board 
(in this paper we will use n = 8 as in chess, 
draughts/checkers or Othello/reversi). There are two 
players, black and white, who play alternately, starting 
with black. Initially the board is set up as in Fig. 1. 

Two types of moves are available at each turn. The first 
type of play involves growing a new piece adjacent to an 
existing piece of the same colour (Fig. 2). The second type 
of play involves moving a piece to another square a 
distance exactly 2 squares away (via an empty square) 
(Fig. 3). Note that squares are considered adjacent if they 
share an edge or corner. In either case all opposing pieces 
next to the moved piece change colour.  

Play continues until neither player can move, or until 
one player has no pieces left, when the player with the 
most pieces wins the game. 

Virus has a higher branching factor than all of chess, 
draughts/checkers or Othello/reversi, but in common with 
all of those games there are a large number of moves from 
any given position which would immediately be 
discounted as ridiculous by a reasonably intelligent 
player. Hence tree pruning based on alphabeta search is 
effective for Virus, as we will  see later. 
 
 
 
 
 
 

 
  Fig. 2. The white piece grows. 

 
 
 
  
 

 
 
 

Fig. 3. The white piece moves. 
 

We have used Virus as a testbed since it has very 
simple rules and yet the tactics and strategy of the game 
appear somewhat difficult. In particular, since the board 
changes a very great deal after only a few moves, it is 
arguably a difficult game for a human player to play well 
(much the same might be argued for Othello (Buro 1997)). 
However, after playing the game several times strategic 
and tactical ideas start to appear, and we will discuss these 
later. We have developed an Application Programming 
Interface (API) which greatly simplifies the implementation 
of AI ideas amd which ensures that they use highly 
efficient code. 

We do not know of any published work about the 
game, so Virus proved very useful as a tool for teaching 
AI to undergraduate and Masters students. Students were 

given a library containing the API,  search code and a 
client for visualising Virus games (Fig. 7), and had to 
devise and refine a board evaluation function using 
positional ideas and evolution of parameter weights. The 
students produced 43 Virus board evaluation functions of 
varying sophistication and effectiveness. We will describe 
briefly some of the ideas used in section 5 below. 

This paper looks at how we may represent the Virus 
board in section 2, investigates the nature of the search 
tree for Virus in section 3, discusses the API for 
developing AI for Virus (and other board games) as well as 
the Virus client and server in section 4, discusses a 
method for tournament ranking and its wider possibilities 
in section 5, explains several parameters which may be 
used to evaluate Virus positions in section 6, finishing 
with conclusions in section 7. 

2 Representing the Virus Board 

To greatly speed up computations based on the Virus 
board, we represent the board as a pair (B,W) of 64-bit 
unsigned integers, where each bit in the first (second) 
integer is set to one if and only if there is a black (white) 
piece in the corresponding square. We use the convention 
that in any board representation, it is always the black 
player to move (by reversing the colour of all pieces if 
necessary) since the game is symmetric with respect to 
black and white. It is possible to represent all positions of 
the Virus board using log2(3

64) = 102 bits, but any such 
representation would be much more difficult, and slower, 
to manipulate. We may then use fast bit manipulation 
routines such as those at (Anderson 2004). 

A Virus move is represented by a single 64 bit 
unsigned integer M where 

 
(B,W) →M ((W & M) XOR W, B XOR M) 

 
Where & is the binary AND operator and XOR is the 

binary exclusive-or operator. This move representation can 
be used for any game with alternating turns where (for 
black about to move):  
1. No new white pieces may be added. 

2. Black squares may become empty. 

3. Empty squares may become black. 

4. White squares may become black or remain white, but 
may not be emptied. 

Hence this representation is immediately applicable to 
Othello. With the minor modification  

(B,W) →M ((W & M) XOR W, B XOR (M XOR W)) 
we can change restriction 4. to  

4. White squares may become empty or remain white, 
but may not become black. 

when we can use this representation for games such as 
draughts. 
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The power of this representation becomes evident when 
we consider how succinctly we may write useful board 
manipulation functions using binary arithmetic. For 
example, one of the most commonly used functions in 
move generation and board evaluation is to find all 
squares adjacent to a set C of squares, Adj(C). Let N, S, E, 
W, NE, NW, SE, SW be the 64 bit integers which  

Fig.4. NW and SE unsigned long integers. 

 

consist of all ones except for a row of zeroes in the top row 
(N), bottom row (S), left column (W) or right column (E) as 
illustrated in Fig. 4, where the least significant bit is in the 
bottom right hand corner, the bit to the left of the 2i bit is 
the 2i+1 bit and the bit above the 2i bit is the 2i+8 bit. 

Then, if ∨  represents the binary OR operator, ¬ the 
NOT operator and → i, ← j the right- and left-shift operators, 
respectively, 

Adj(C) = ¬C & [(C & N)← 8 ∨  (C & NE)← 7∨  (C & E) → 1 

∨  (C & SE)→ 9∨  (C & S)→ 8∨  (C & SW)→ 7 

∨  (C & W) ← 1∨  (C & NW) ← 9] 

which can be computed using only 25 primitive binary 
operators, corresponding to 25 machine instructions at 
chip level. Other operators such as the iterators 
FirstSquare(C) which finds the rightmost square in the 
lowest possible row of C, and NextSquare(C,d) which 
finds the next square in C after square d, may be calculated 
as follows: 

FirstSquare(C) = C XOR (C & (C-1)) 
NextSquare(C,d) = FirstSquare(C & (¬((d← 1)-1)) 

Generation of all moves from a given position becomes 
simple and fast, using this representation, and 
pseudocode is given in Fig. 5. 

Another fundamental function for a Virus board, is to 
count the number of squares in a subset. A naïve 
implementation which looks at each bit would be far too 
slow. In this case we use a Count operator which uses 24 
machine instructions to count the number of bits in a 64-
bit integer as follows: 

 
S ←(S & 01..01) + (S→ 1 & 01..01)  
S ← (S & 0011..0011) + (S→ 2 & 0011..0011) 
... 
Count(S) = (S & 0..01..1) + (S→ 32 & 0..01..1)  
 

where after the first step each pair of bits is replaced by a 
count of the number of bits in the pair, after the second 
step each group of 4 bits (nybble) is replaced by the 

number of bits in the nybble, and so on. A slightly faster 
implementation based on table lookup is possible, but 
would consume large amounts of memory which could be 
a problem when using a large number of AI players on a 
server. 

Fig. 5. Pseudocode for Virus move generation. 
 
We will see further illustration of the efficiency of the 

compiled code resulting from this representation and the 
succinctness with which tactical ideas may be expressed 
when we talk about board parameters later. 

3 Searching the Virus Game Tree 

We search for the best move from a given position by 
searching the Virus game tree to a fixed depth (ply) using 
negamax search. This negamax search is further enhanced 
by using alphabeta pruning and ordering moves based on 
the very simple evaluation function (number of black 
pieces) – (number of white pieces). The difference between 
the basic minimax search and the search with these two 
enhancements is illustrated in Fig. 6 where we plot log 
(|leaf nodes|) against search depth for a mid-game position. 
The figure clearly illustrates the very large advantages of 
alphabeta pruning and move ordering. Using regression 
on these three plots, we estimate that the branching factor 
per ply is 86.6 for pure minimax search, 14.3 for Minimax 
with alphabeta pruning and 8.5 for alphabeta pruning with 
a simple ordering heuristic. More complex move ordering 
heuristics and transposition tables might also be used to 
drive the branching factor down a little further. 
 
 

0 0 0 0 0 0 0 0  1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1  1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1  1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1  1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1  1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1  1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1  1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 

NW  SE 

// Generate all moves from position (B,W) 
Moves = {} 
 
// Empty squares in position (B,W)  
E = ¬(B ∨  W) 
 
// First 1-step moves (to c1 from any adjacent square) 
C1 = Adj(B) & E 
c1 = FirstSquare(C1) 
while (c1 ≠ 0) 
      Moves.Add(c1 ∨  (Adj(c1) & W )) 
      c1 ← NextSquare(C1,c1) 
 
// Now 2-step moves (from c2 to d2) 
c2 = FirstSquare(B) 
while (c2 ≠ 0) 
      D2 = Adj(Adj(c2) & E) & E 
      d2 = FirstSquare(D2) 
      while (d2 ≠ 0) 
            Moves.Add(c2 ∨  d2 ∨  (Adj(d2) & W )) 
            d2 ← NextSquare(D2,d2) 
      c2 ← NextSquare(B,c2) 
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Fig.6. Plot of log10(|leaf nodes|) against ply for Alphabeta ordered 
(ABO), alphabeta unordered (ABU) and minimax without 
alphabeta (MM) search strategies. 

4 The Virus Client and Server 

A graphical Virus client, illustrated in Fig. 7 allows 
visualis ation of games. This client allows the user to watch 
a game being played as well as offering the possibility to 
save and load games and to step forwards and backwards 
through saved games. 

 

 
 

Fig. 7. The Virus graphical interface. 
 

In order to present a user-friendly Application 
Programming Interface (API) for Virus and yet still benefit 
from the speed of the binary representation as given in 
section 2, we use the expressiveness of C# and its ability 
to hide complex functions and expose a straightforward 
programming interface. We have built a SquareSet struct 
which may be visualized as a set of squares by the AI 
programmer, and which presents highly efficient (and 
relatively complex) binary manipulation to the user as a 
suite of simple variables and functions. For example, 
SquareSet.Count is one of the most common operations 
on  a SquareSet, as described earlier. “Pretending” that 
this is a variable of the SquareSet hides the complexity 
behind that function. Another fundamental operator which 
is hidden by an efficient binary function is the 
GetConnectedGroup() function which gets a connected 
group of squares. As we can see below using our API this 
becomes straightforward: 

 
GetConnectedGroup(S) 

   G ← GetFirstSquare(S) 
   while (Adj(G) & S ≠∅) 

            G ← G ∨  (Adj(G) & S) 
      return G 

Fig. 8. Pseudocode for GetConnectedGroup() 
 
The operators on a square set (&, ∨ , ¬, XOR) are 

documented in terms of squares (rather than bits) to 
facilitate their understanding in a game context. We define 
the natural operators + as a synonym for ∨  and – where A 
– B = A & (¬B). 

A Board consists of two SquareSets  (B,W), one for 
black pieces and one for white. Again it implements a 
number of fast methods for board manipulation while 
hiding the details. All access functions accept the player 
as a parameter (so that separate board evaluation 
functions do not have to be written for white and black). In 
particular a  Board exposes the sets Bi and Wi. B0 (W0) is 
the set of black (white) squares. Bi (Wi) is the set of empty 
squares at distance i from a black (white) square. We also 
define B≤m = Ui=0,1,..mBi and W≤m = Ui=0,1,..mWi. Then, for 
example, B1 is the set of squares which black can move to 
via a 1-step move, B2 is the set of 2-step moves for black 
etc. Finding these sets using our API is equally 
straighforward. We illustrate the calculation of Bi and B≤i in 
Fig. 9. 

The client and API is generic across all games on an 
8×8 board with pieces played on squares and two piece 
colours (including Othello, draughts and Seega). Only the 
GetMoves() function needs to be changed in order for the 
API to work for a different game. Of course the leaf node 
evaluation would be very different for each of these 
games. 

To use Virus as a teaching tool and to allow 
competition between Virus AI players submitted via the 
Internet, Black Marble, a software development house 
developed a web server which ran games between 
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different AI players and reported the results and league 
tables. It was found that allowing 10 CPU seconds per 
game for each AI (on a powerful twin 3.06 GHz Xeon 
processor server machine with 2GB RAM) for a 3-ply 
search was the best compromise between AI search, board 
evaluation and getting a large number of results. A league 
was played using all of the currently loaded AI players. As 
new players were uploaded (by ftp) they jumped to the 
head of the queue and quickly got games, in order to 
encourage submission to the server. Over 600,000 games 
were played on the server, submitted by 45 different 
players over a 4 week period. Following this tournament 
the AI players had to be ranked. We will discuss an 
effective ranking mechanism in the next section. 
 
// Empty squares in position (B,W) 
E = ¬(B ∨  W) 
 
// Current distance under consideration 
d = 0 
 
B0 ← B  
B≤0← B 
 
while (Bd ≠ ∅) 
      B≤d+1← B≤d ∨  (Adj(Bd) & E) 
      Bd+1← B≤d+1 XOR B≤d 
      d ← d + 1  

Fig. 9. Pseudocode for finding Bd and B≤d 

5 Tournament Ranking and Results 

Suppose that we have played a tournament with n players, 
where each pair has played both as black/white and as 
white/black. Then we have an n×n matrix M of tournament 
results. A player scores 64 points for a won game, plus the 
difference in the number of squares, 32 points for a drawn 
game, and 0 points for a loss. Then Mij is the score for 
player j when i and j played. If we normalise this matrix so 
that row sums are one, then we have a stochastic matrix, 
and the entries in this matrix can be regarded as the 
transition probabilities in a Markov chain, where the 
probabilities represent the probability of jumping from a 
losing player (state) to a winning player (state). If we work 
out the steady state distribution of this transition matrix 
then this represents the probability that a given player 
wins a match averaged over an infinite series of games. 
This is similar to the method that the Google PageRank 
algorithm uses for ranking web pages (Brin and Page 
2000). Hence the steady state of this Markov chain gives a 
very fair reflection of the relative performance of each 
player. 

In order to find the steady state we must find a vector x 
satisfying  

xM = x 
 

i.e. we must find the principal eignevector of matrix M. By 
the Perron-Frobenius theorem (Grimmett and Stirzaker 
1987) we know that such an x exists and is unique. 
Moreover, we know that for any vector y which is not 
orthogonal to x we know that 
 

limk→∞ yMk = x 
 
so that we may calculate x iteratively starting from, say, 1 
(the vector of all 1s) and iteratively multiplying by M until 
convergence occurs (typically after only five or six matrix 
multiplications). 

The use of ranking methods based on the principal 
eigenvector has wide potential in the evolution of board 
evaluation methods, since it gives us a very precise idea of 
the relative effectiveness of players, which can be used, 
for example, in roulette wheel selection for evolutionary 
algorithms, or for choosing elite populations. An 
incomplete set of matches between players can be used to 
get a good idea of their ranking. Hence rather than, for 
example, choosing a test set as in (Daoud et al 2004) we 
may find the results of a small percentage of the matches 
and use the stationary distribution/eigenvector method to 
“fill in the gaps”.  The fact that these values are  already 
normalised so that a principal eigenvector value twice as 
large corresponds to a player who is twice as strong makes 
them particularly useful. We are currently investigating a 
range of board evolution methods based upon the 
eigenrank. 

The ideas present in the 45 AI players submitted to the 
server represent a wide cross-section of tactical (and to a 
lesser extent strategic ideas). These ideas include: 

• Consideration of “degree of safety” for a piece and 
square 

• Mobility 
• Pattern matching (notably to count the number of 

times the disadvantageous pattern consisting of 
three pieces of one colour and one empty square 
occurs. 

• Assigning positional scores for owning different 
board squares such as recognising that corner 
squares are good in the opening and assigning a 
different score to each square.  

• Development of an opening book. Note that 
similarly to the game of Go (Müller 2002) the 
opening stages of Virus are very difficult to 
analyse, even on an 8×8 board. 

• Ratio of surface area to volume (using a biological 
analogy) 

• Tuning parameter weights dependent on game 
stage (as measured by the number of empty 
squares left). 

 
The sophistication of the ideas submitted to the Virus 
server gives strong support to the idea of games as an 
effective way to teach and promote understanding of 
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advanced AI concepts. In addition, many of the 
submitting players developed add-on tools and used 
evolutionary parameter tuning schemes. 

6 Evaluation Functions for the Virus Game 

There are several parameters for Virus which capture the 
strategic and tactical ideas behind the game. In this 
section we will illustrate how succinctly these tactical and 
strategic ideas may be presented using the notation (and 
API) described above.  

The simplest measure is the number of black and of 
white counters in the board position: 

• |B0 | and |W0 | 

and indeed a 3-ply search using only |B0 | - |W0 | as an 
evaluation function is a challenging opponent for a human 
virus player.  

Other ideas capture the common notion of mobility (ie. 
the number of moves in a given position: 

• |B1 |, |B2 |, |W1 | and |W2 | 

We may further refine these measures by considering only 
moves which result in captures for one player or another. 

It is also interesting to consider the size of the largest 
move of each type for each player (for i = 1,2): 

• maxs∈Bi |Adj(s) & W0 |, maxt∈Wi |Adj(t) & B0 |  
We may also consider the total number of the opponent’s  
pieces which are vulnerable to capture 

• |(Adj(B1) ∨  Adj(B2))  & W0 |,  
        |(Adj(W1) ∨  Adj(W2))  & B0 | 
 

An important strategic idea which emerges after several 
games is the notion of “encirclement”. Here we wish to 
limit the range of squares which may count for the 
opponent at game end by encircling the opponent’s pieces 
into a small area of the board, and thus capturing all of the  
empty space remaining at our leisure at game end (since 
there is no way for the oponent to move into the space). 
Hence we have the idea of “totally safe squares”. For 
example, all of the empty squares in Fig. 7 are “totally safe 
squares” for black since they are surrounded by black 
pieces which cannot be captured (i.e. the black pieces are 
not adjacent to any “unsafe” empty squares which would 
allow them to be captured. The algorithm for calculating 
this parameter is quite complicated without our API 
notions, but with the API we get the algorithm as shown in 
Fig. 10. 
While the idea of totally safe squares captures the 
immediate tactical consequences of enclosure, in order to 
address the strategic issue of how we can work towards 
enclosure of the opponent, we can consider the set of 
empty squares which are k  closer to one player than the 
other, e.g. for the black player: 

• Ui=1,2,... (Bi – W≤i+k) 
 

Other strategic and tactial ideas for Virus (and indeed 
other games) can be easily and efficiently implemented 
using our API. The above set of parameters are arguably a 
set which, given proper tuning of parameter weights, could 
give rise to a very strong player. 

Fig. 10. Pseudocode for a fast algorithm to find totally safe 
squares for the black player. 

7 Conclusion 

We have presented the board game Virus and a 
generalisable API for Virus which allows effective AI to be 
developed quickly and with relatively little experience. We 
have analysed the search tree for Virus as well as 
presenting a range of tactical and strategic ideas. We have 
used these ideas to show how an easy-to-use API can 
facilitate the development of AI for research and teaching 
purposes. We have discussed a server architecture for 
Virus that allows AI players to be submitted across the 
Internet and a generally applicable ranking method based 
on treating match results as transition probabilities in a 
Markov chain. 

We are currently working on a generalisable 
evolutionary scheme for tuning the parameters of the 
evaluation function for any board game which may be 
represented using the Virus API. 

The Virus API, client and server are publically available 
for non-commercial use. If you would like to make use of 
them send an email to P.I.Cowling@bradford.ac.uk. 

Acknowledgments 

The work described here was partially funded by 
Microsoft UK Ltd., and I am particularly grateful to Gavin 

// Find the set TB of totally safe squares for black from 
position (B,W) 
TB = ∅ 
 
// Squares not reachable from W0 
W∞ = ¬(W0 ∨  W1 ∨  ...) 
 
// The candidate groups (together with their boundary of 
black squares) 
C = W∞ ∨  Adj(W∞) 
 
// Empty squares in position (B,W)  
E = ¬(B ∨  W) 
 
// Go through connected group by connected group 
checking for safety along the boundary. 
while (C ≠ 0) 
      G = GetConnectedGroup(C) 
      while (G ≠ 0) 
            if (Adj(G) & E == ∅) 
                  TB ← TB ∨  (G & E) 
            C ← C - G 

64 CIG'05 (4-6 April 2005)



King of Microsoft for his support and advice. I would like 
to thank Steve Foster who first introduced me to the Virus 
Game. I am also grateful to Robert Hogg, Richard Fennell 
and Nick Sephton of Black Marble Ltd. who created and 
continue to maintain the client and server for Virus. I 
would particularly like to thank the 43 students on the “AI 
for Games” module who acted as guinea pigs for this 
learning experiment. I am grateful to Professor Simon 
Shepherd who reminded me of the possibilities of the 
principal eigenvector and pointed out the link with Google. 
Finally, Naveed Hussain gave me some additional 
references and is continuing this work. 

Bibliography 

Abdelbar, A.M., Ragab, S., Mitri, S., “Applying co-
evolutionary particle swarm optimisation to the Egyptian 
board game Seega”, in Proceedings of the First Asia 
Workshop on Genetic Programming (part of CEC 2003) 9-
15. 
 
Anderson, S.A., “Bit Twiddling Hacks”, 
http://graphics.stanford.edu/~seander/bithacks.html. 
 
Brin, S., Page, L., “The anatomy of a large-scale 
hypertextual Web search engine”, Computer Networks and 
ISDN Systems, vol. 30 (1-7) (1998) 107-117. 
 
Buro, M., “Improved Heuristic Mini-Max Search by 
Supervised Learning”, Artificial Intelligence, Vol. 134 (1-2) 
(2002) 85-99. 
 
Buro, M., “The Othello match of the year: Takeshi 
Murakami vs. Logistello”, ICCA J. 20 (3) (1997) 189-193. 
 
Campbell, M., Hoane, A.J. Jr., Hsu, F-h., “Deep Blue”, 
Artificial Intelligence 134 (2002) 57-83. 
 
Daoud, M., Kharma, N., Haidar, A., Popoola, J., “Ayo, the 
awari player, or how better representation trumps deeper 
search” in Proceedings of the 2004 IEEE Congress on 
Evolutionary Computation (CEC 2004) 1001-1006. 
 
Ferrer, G.J., Martin, W.N., “Using genetic programming to 
evolve board evaluation functions” in Proceedings of the 
1995 IEEE Congress on Evolutionary Computation (CEC95) 
747-752. 
 
Fogel, D.B., “Blondie24: Playing at the edge of AI”, 
Morgan Kaufmann, 2002. 
 
Grimmett, G.R., Stirzaker, D.R., “Probability and Random 
Processes”, Oxford Science Publications 1987. 
 
Kendall, G., Whitwell, G., “An evolutionary approach for 
the tuning of a chess evaluation function using population 
dynamics”, in Proceedings of the 2003 IEEE Congress on 
Evolutionary Computation (CEC 2003) 995-1002. 

 
Knuth, D.E., Moore, R.W., “An analysis of alpha-beta 
pruning”, Artificial Intelligence 6(4) (1975) 293-326. 
 
Matthews, J., “Virus Game Project”, 
http://www.generation5.org/content/2000/virus.asp. 

 
Müller, M., “Computer Go”, Artificial Intelligence, Vol. 134 
(2002) 145-179. 
 
Samuel, A., “Some studies in machine learning using the 
game of checkers”, IBM J. Res. Develop. 3 (1959) 210-229. 

65 CIG'05 (4-6 April 2005)



An Evolutionary Approach to Strategies for the Game of Monopoly®

Colin M. Frayn 
CERCIA 

School of Computer Science 
University of Birmingham, 

Edgbaston, Birmingham, UK 
B15 2TT 

mailto:cmf@cercia.ac.uk  
 

 
Abstract- The game of Monopoly® is a turn-based 
game of chance with a substantial element of skill.  
Though much of the outcome of any single game is 
determined by the rolling of dice, an effective trading 
strategy can make all the difference between an early 
exit or an overflowing property portfolio.  Here I 
apply the techniques of evolutionary computation in 
order to evolve the most efficient strategy for property 
valuation and portfolio management. 

1 Introduction 

Monopoly® is primarily a game of skill, though the short-
term ups and downs of an individual player’s net worth 
are highly dependent on the roll of a pair of dice.  As 
such, it separates itself from completely skill-controlled 
games such as chess and Go, where no direct element of 
unpredictability is involved except that of guessing the 
opponent’s next move.  Despite the element of change, a 
strong strategy for which properties to purchase, which to 
develop and which to trade, can vastly increase the 
expected results of a skilful player over less 
knowledgeable opponents. 

There are many parallels here with real life, 
where a wise property investor, though largely subject to 
the whims of the property market, can increase his or her 
expected gains by a process of shrewd strategic dealing.  
Much of the skill is involved with appraising the true 
value of a certain property, which is always a function of 
the expected net financial gain, the rate of that gain and 
the certainty of that gain. 

The game considered in this work is as faithful 
to the original rules as possible.  Players take it in turns to 
roll two dice, the combined total determining the number 
of squares over which they move.  Players may acquire 
new assets either by purchasing available properties on 
which they randomly land, or else by trading with other 
players for a mutually agreeable exchange price.  Rent is 
charged when a player lands on a property owned by 
another player, varying based on the level of development 
of that particular property.  In this study, we use the 
property names of the standard English edition of the 
game. 

Much anecdotal evidence exists concerning the 
supposed “best strategies”, though very few careful 
studies have been performed in order to gain any 
quantitative knowledge of this problem.  Because of the 
inherently stochastic nature of the game, “best strategies” 
are often described without a sufficient statistical 
foundation to support them.  

In 1972, Ash & Bishop performed a statistical 
analysis of the game of Monopoly® using the method of 
Markov chain analysis.  They evaluated all the squares on 
the board in order to determine the probability of an 
individual player landing on each square in any one turn.  
Furthermore, they gave an expected financial gain for 
every roll of the dice, given the property ownership 
situation.  The results of this study showed that the most 
commonly visited group of properties was the orange 
street consisting of Bond Street, Marlborough Street and 
Vine Street. 

This analysis gave some insights into suggested 
strategies for the game.  For example, encouraging the 
acquisition of regularly-visited properties.  A simple 
strategy built on a re-evaluation of property value based 
on the expected gain per turn could well pay dividends.  
For example, in the standard rules, it takes on average 
1400 opponent turns to pay for the purchase cost of Old 
Kent Road (if unimproved), but only 300 to pay for 
Mayfair (Ash & Bishop, 1972).  One might argue 
therefore that Mayfair is nearly 5 times under-priced 
compared to Old Kent Road. 

 
However, there is much more to this than a simple 
statistical evaluation.  For example, when improved to a 
hotel, both the properties mentioned above (Old Kent 
Road and Mayfair) take approximately 25 opponent turns 
to repay their own development costs.  So we must find a 
fair value for these two properties which considers not 
only their expected (pessimistic) time to repay 
development costs, but also the potential gain should we 
be able to purchase all members of the same colour group, 
and the potential cost of then developing those properties 
to the required levels.  It should also consider other 
factors such as the mortgage value for each property, 
strategies for paying to leave jail, when to develop, when 
to mortgage (and un-mortgage) and how to handle 
bidding wars. 
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Clearly we need a more advanced method of 
obtaining fair prices for all the properties on the board, 
based on one’s own state and that of the opponents. 
 In this work, I investigate an evolutionary 
approach to the game of Monopoly®.  I propose a scheme 
for representing a candidate strategy (section 2), and 
present the results a considerable number of games using 
both a single- (section 3) and multiple-population (section 
4) approach.  I conclude with the lessons learned from 
this study (section 5) and the scope for future 
investigation (section 6). 

2 Evolutionary Approach 

Evolutionary computation can be applied to the problem 
of strategy design in the game of Monopoly®.  It allows 
the simultaneous optimisation of a very large number of 
interdependent variables, which is exactly what is 
required in order to develop coherent fair-price strategies 
for such a complex environment. 

In the case of Monopoly®, each individual in the 
population represents a different set of strategies which 
can be used to make the various decisions required in the 
game.  The representation used in this work consists of 
four distinct elements; 
 
• Valuations for each property on the board. 
• Valuations for each property when held as a member 

of a street. 
• Valuations for the extra value of a property based on 

the number of houses built on it. 
• Extra game-related heuristic parameters. 
 
The first three elements are self-explanatory, though the 
fourth requires some elaboration.  In order to generate a 
list of required parameters, it was necessary to consider 
all the decisions made by a human player during the 
course of a game, and to decide how to encode those 
decisions as parameter values.  The final list was as 
follows: 
 
• Parameters concerned with whether or not to pay to 

exit jail.  This was modelled as a linear combination 
of the maximum and average estimated opponent net 
worth and house counts. 

• Parameters concerned with the valuation penalty 
applied to mortgaged properties, depending on 
whether they are members of complete streets or not. 

• Parameters governing a desired minimum cash 
position, based on average and maximum opponent 
net worth and number of houses. 

 
All parameters were stored as floating-point values, and 
were initialised with random perturbations about the 
following defaults: 
 

• Properties are worth 1.5 times their face value, but 4 
times if members of a street. 

• House values are twice their development cost. 
• Stay in jail if (maximum opponent worth) + (average 

opponent worth) + (10*number of houses on the 
board) is greater than 10000.  Otherwise, pay to exit. 

• Keep a minimum of 200 pounds in cash, plus 1% of 
the total and average opponent net worth, plus 5% of 
the number of houses or hotels. 

 
The exact choice of default values here made no 
difference to the outcome of the simulation, except that 
outrageously unsuitable values would cause the evolution 
process to take longer to settle down to a stable end state. 

A detailed interface was also designed, incorporating 
all the rules of Monopoly®.  A few slight alterations were 
made in order to make the game easier to deal with. 
 
• When a player becomes bankrupt, his or her 

properties are all returned to the bank, instead of 
auctioning them (which tends to reward the players 
who happen, by chance, to have a lot of spare cash at 
that particular time.)  In later work we shall use a 
standard auction at this point instead, to check if this 
affects the behaviour.  It is possible that, by using 
auctions, we might instead encourage strategies 
involving more prudent use of resources so that such 
events might be exploited more effectively. 

• Chance and Community Chest cards were picked 
randomly with replacement, instead of remembering a 
random initial card order and cycling through these.  
‘Get out of jail’ cards were tracked, and not replaced 
until used. 

• There was no maximum on the number of houses or 
hotels allowed on the board simultaneously.  It is not 
clear if this affected the strategies, avoiding the need 
for property strategies dealing with housing 
shortages. 

• Games were limited to 500 turns.  If there was no 
clear winner at this point, then the players were 
ranked by total net worth. 

• Properties not purchased immediately were not 
auctioned, but remained unsold. See section 6 below 
for a discussion on this point. 

 
Calculations were run on a 3GHz Pentium-IV 

machine.  For simplicity, all games were started with four 
players.  After careful optimisation, games could be 
simulated at the rate of approximately 400 per second.  
This project involved a total of over 377 million games of 
Monopoly®, one quarter of which (87 million) are 
included in the final results. 

3 Single Population Results 

As an initial test of the evolutionary algorithm approach, I 
generated a single population of individuals, and ran a 
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standard evolutionary algorithm, using a population size 
of 1000 and 24 hours of CPU time.  This resulted in a 
total of 1420 generations completed.  In each generation, 
100 iterations were played.  For each iteration, the 1000 
individuals were selected off randomly into groups of 
four, and each group played one single game of 
Monopoly®.  The game ended when there was only one 
player left, or after 500 turns.  Points were awarded to the 
individuals based on their position in each game.  First 
place was awarded 4 points, second place was awarded 2 
points, third place 1 point and last place 0 points. 

The fitness function, therefore, consisted of the 
sum of the points gathered by an individual over the 100 
iterations in each generation. 

At the end of each generation, the top three 
individuals survived by right as elites.  300 survivors 
were selected using a size 2 tournament selection 
algorithm with replacement.  A further 300 individuals 
were selected in the same manner to continue to the next 
generation after undergoing random mutations.  During a 
mutation, ten values from each of the property prices, 
street prices and house prices were randomly mutated 
using a Gaussian kernel of standard deviation 10% of the 
variable’s value.  All other values were mutated by the 
same amount with a probability of 50%. 

The remainder of the next generation (397 
individuals) were generated using a crossover between 
two tournament-selected parents from the current 
generation.  During crossover, the child acquired each 
parameter randomly from either parent with equal 
weighting. 

Previous experience with evolutionary 
algorithms has taught us that the solutions derived in most 
applications are not very sensitive to these values, and 
that the above values lie within sensible ranges.  
Alternative values for the elitism fraction, mutant 
fraction, crossover fraction etc. were not tested. 

At the end of each generation, the best individual 
was tested in 1000 games against randomly generated 
opponents, with the same scoring system as detailed 
above.  This was used as a check to ensure that the 
algorithm was indeed moving towards greater fitness.  
These testing figures are shown in figure 1.  They show a 
very sharp rise over the first 20-30 generations, from an 
initial score of 2522.  From generation 30-40 up to 
approximately generation 200, the test scores then slowly 
declined, before levelling off around 2930.  The plots in 
this paper show the result from a single trial.  However, 
multiple trials were performed during testing, with subtly 
different algorithmic details, and very similar results were 
achieved each time. 

A speculative interpretation of this behaviour is 
linked to the manner in which strategies evolve within 
such a complex evolutionary environment. The 
population rapidly learned some strong, simple strategies 
which could be used to good effect against simple, 
randomly generated opponents.  However, after the first 
few dozen generations, individuals began to develop 
counter-strategies which partly refuted these ‘easy wins’.  

Because the opposition from other individuals in the 
population was now much higher, the simple strategies 
had to be abandoned, leading to worsening performance 
against random opponents, but better performance against 
other members of the population, against whom the 
fitness function was measured. 
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Figure 1 : Test score of best individual as a function of 
generation (single trial) 

This style of learning is common to a wide variety of 
games.  For example, a novice chess player might quickly 
learn some clever tricks (such as “fool’s mate”) by which 
he or she can defeat rather inexperienced players.  By 
using such tricks, the novice begins to win a significant 
number of games because his or her opponents fall for 
these simple traps. 

 However, soon the opponents wise up to this 
strategy, and the novice player can no longer use the same 
tactics.  In fact, these simple ‘trap’ openings often prove 
rather weak if the opponent knows how to deal effectively 
with them.  If the novice then finds himself facing an 
unknown opponent then he will not use these same tricks 
any more, instead using more advanced opening strategies 
with which he may be far less confident.  Against a good 
player, this will be a better strategy, but against a true 
novice, using a trick strategy might have given a better 
chance of winning. 

After the end of the run, the best individual from 
each generation was studied in order to evaluate the 
degree of learning that had occurred.  It was possible to 
examine how the estimated values of the individual 
properties and the various other numerical values used in 
the winning strategies had evolved over time. 

Figure 2 shows the change in the estimated 
property value for “Old Kent Road”, the square 
immediately after “Go” and the least valuable square on 
the board, according to face price.  In Monopoly®, Old 
Kent Road is valued at £60, and the individual houses 
cost £50 to build once a player also owns Whitechapel 
Road, two squares further along. 
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Figure 2 : Perceived value of Old Kent Road as a function of 
generation 

 
By the end of the run, the average estimated worth of Old 
Kent Road, averaged over the last 100 generations, was 
£238, meaning that the evolutionary algorithm valued this 
property at a mark-up of approximately 297%.  
Whitechapel Road was valued at £290, or a mark-up of 
383%.  This property was valued slightly higher because 
it offers substantially more rental income, especially once 
developed.  Based on individual rent prices, these 
properties were therefore valued on a forward per-
earnings multiple of 119 times and 72.5 times 
respectively.  Clearly, these prices would therefore only 
be worth paying if the player could expect to own the 
entire street and develop it with houses, or else prevent an 
opponent from doing the same. 

Figure 3 shows a summary of the average 
property value for the ownable properties, versus their 
nominal face value.  If a property is valued at less than its 
face value then the individual player will never purchase 
that property directly (though it might buy it in a trade 
from another player for a lesser amount).  Note that every 
property along the lower and left-hand sides of the board 
appears to be undervalued, and almost all of the 
remaining properties appear to be overvalued, often 
enormously so.  The only properties that the computer 
player would buy after “Free Parking” are the two stations 
(Fenchurch Street and Liverpool Street), the water works 
and the dark blue properties (Mayfair & Park Lane). 

Figures 4 and 5 show the rapid reduction in 
perceived values of Strand (red property) and Bond Street 
(green property) over the simulation run.  After 1420 
generations, the algorithm values these two properties at 
£90 and £65, at a net discount to their face values of 59% 
and 80% respectively.  During testing with smaller 
populations, or subtly different selection procedures and 
fitness functions, I obtained an extremely similar result 
every time. 

For some reason the end result appears to be that 
the evolved Monopoly® players dislike the red, yellow 
and green streets.  They will never buy a new property on 
any of these streets.  The reason for this is difficult to 
discern, but it is such a pronounced effect that I suspect 

that it is due to the house cost for the upper and right-
hand sides of the board.  When houses cost £150 or £200 
each then it gets very difficult to develop the red, yellow 
and green streets unless you are already winning  by quite 
a considerable margin.  And if you’re already winning 
then you needn’t bother developing new streets. 
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Figure 3 : Perceived value versus face value for all 
purchasable properties 
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Figure 4 : Perceived value of Strand as a function of 
generation 

 

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600

Generation

Pr
op

er
ty

 V
al

ue
/£

 
Figure 5 : Perceived value of Bond Street as a function of 
generation 

 
So the conclusions drawn from this single population 
experiment seem to show that the best strategy is to gather 
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the lower value streets as quickly as possible, develop 
them rapidly and aim to win quickly. 

4 Twin Population Results 

In order to test these results, I implemented a multiple 
population approach to test to see whether the results 
from a single population strategy held up when two or 
more distinct populations evolved separately with only a 
very small trickle of individuals exchanging between 
them. 

For this section, I implemented a two population 
approach with a migration rate of 0.5% at the end of 
every generation.  Each population was set up exactly as 
the single population above (1,000 individuals, randomly 
seeded, fitness function and breeding as above).  The 
simulation was run for 800 generations, and the results 
compared both between the two populations, and also 
back to the original single population. 

The variations between the two parallel 
populations at the end of the simulation were found to be 
extremely minimal.  When compared to the single 
population, the variations were slightly larger, but still the 
results were largely the same.  Figure 6 shows the 
difference between the property valuations in the single 
population and multiple population runs.  The differences 
between the two populations in the multiple-population 
simulation were so small that I have just plotted the first 
population results here. 
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Figure 6 : Comparing final property prices between single 
population and multiple population simulations 

The first thing to note about figure 6 is that the 
two simulations gave exactly the same results for all of 
the streets whose perceived value was greater than their 
face value.  Figure 7 shows this feature. 

In figure 7, the x-axis represents the ratio of 
perceived property value divided by the face value.  
Properties that were perceived to be undervalued on their 
face value are therefore towards the right in this diagram.  
Properties which were deemed less valuable than their 
face price (and therefore would not be bought) are at 
values less than one.  The y-axis represents the logarithm 
of the disagreement between the perceived property value 

derived by the single-pop and 2-pop simulations, as a 
percentage of the single-pop perceived value. 
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Figure 7 : Disagreement between single-pop and 2-pop 
simulations as a function of perceived property premium 

 
This plot shows that the largest disagreements by 

far are caused by those properties whose perceived value 
was less than their face value.  That is to say, those 
properties which the computer would never buy when it 
landed on them.  In these cases, the perceived property 
value is useful only for bartering and dealing between 
players, and the likelihood of any player owning a street 
of this colour property would be very small.  Thus, the 
variation in the perceived values was occasionally very 
high.  However, for the properties whose perceived value 
was greater than the face value, the two simulations 
converged to remarkably similar estimates. 

The other result to note is that the evolutionary 
algorithm, as expected, values the most expensive 
member of each colour group slightly higher than the 
other members of that colour group.  The perceived value 
of station properties, all with a face value of 200 pounds, 
was also slightly variable.  Marylebone was, as expected, 
the most valuable of the four, with an estimated value of 
£285 taken as the average of the single-pop and 2-pop 
simulation valuations.  This is because there is a chance 
card moving players to Marylebone without choice.  Next 
came Fenchurch St. At £281.40, King’s Cross at  £276.50 
and finally Liverpool St. At £276.10.  However, the 
variation between the prices here was not large, and there 
is insufficient evidence to suggest that these prices vary at 
all from a universal valuation of between £275 - £280. 

5 Other strategies 

Together with estimated house values, the genome for an 
individual also contained estimated price premiums for 
owning a property as a member of an entire street, and 
developing it with houses.  Figure 8 shows the premium, 
that is the multiple of the basic perceived value, for 
owning a property as part of a street instead of singly. 
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Figure 8 : Street ownership premium for all properties 

As is clear from figure 8, all properties up to and 
including 19 (the lower and left-hand sides of the board) 
operate at very modest premiums to their individual 
value.  However, the properties of higher face value (that 
is the red, yellow and green streets, though not the dark 
blue street, the stations or the water works) have a much 
higher street value compared to their individual value.  
This is particularly striking for the most expensive 
properties in these three zones, namely Trafalgar Square, 
Piccadilly and Bond Street, which operate at 5, 21 and 33 
times their individual values respectively. 
 

This inflated value for these properties as a 
member of streets reflects their apparently low value as 
single properties.  The evolutionary algorithm grows to 
dislike these properties, though obviously once two are 
acquired, it becomes favourable to gain the third.  As the 
chance of the algorithm acquiring two of the properties is 
very low, this adaptation is probably more of a defensive 
measure rather than anything else – stopping opponents 
from gaining the streets rather than aiming to build on 
those properties itself. 

The final set of values used in the genome concern 
particular financial strategies necessary for accurate play.  
These values varied enormously between the runs, 
tending to hint that they were largely irrelevant to the 
overall performance of any one individual.  However, a 
few rather general conclusions could be drawn. 
 

(1) It is wise to retain approximately 110-150 
pounds in your bank account as a bare minimum.  
Add to this approximately 5% of the net worth of 
the strongest opponent. 

(2) The value affecting the minimum amount of 
money to retain is much more strongly linked to 
the net worth of the strongest opponent than to 
the average or total net worth of the players on 
the board. 

(3) It is almost always a wise idea to pay to get out 
of jail.  If you get to the point when you are 
staying in jail to avoid paying rent then you’ve 
probably lost anyway!  However, there are also 
times when staying in jail can allow you to 
collect considerable rent from opponents landing 

on your properties, without the risk of you 
yourself being fined. 

(4) Avoid accepting a mortgaged property for a 
trade unless it makes up a new complete street. 

6 Conclusions 

This genetic algorithm approach to playing Monopoly® 
has given a variety of insights into the game.  Much of 
what the simulations discovered has been known for some 
time, though it is always reassuring to confirm this.  
However, some strategies are completely new. 

In most games, landing on any property with a 
hotel will cause a considerable dent in a player’s net 
worth.  Doing this twice will probably spell the end of the 
game.  Therefore, it makes sense to concentrate on the 
properties that are cheapest to develop, so that you can 
reach a high level of rent-gathering as rapidly as possible. 

For example, for the red properties, reaching the 
level where you can charge an average rent of nearly 
£300 would cost £1580 (purchasing all three properties, 
plus two houses on each – average rent £267) .  For the 
brown properties, this only costs £620 (buying two 
properties and a hotel on each – average rent £350). 

With the orange properties – which are the most 
frequently visited on the board – £1460 can buy you all 
three properties, plus three houses on each – charging an 
average rent of £567 pounds.  Not only is this £120 
cheaper than developing the red properties as above, but it 
also gives a rent of well over twice the amount.  
Moreover, these properties are more frequently visited, 
therefore making the developed orange properties a vastly 
superior investment.  A fine of 567 pounds would 
considerably dent all but the strongest of opponents. 

In addition to the property valuation strategy, 
three further tips arose from the best evolved strategies. 

Firstly, always retain a small reserve of cash to 
stop you from mortgaging properties.  Mortgaging can be 
useful, but ultimately you are stifling a revenue source, 
which tends to drop you further back in the game.  The 
penalties derived for mortgaging were very steep – with 
mortgaged properties sometimes worth as little as 2% - 
3% of their perceived un-mortgaged value. 

Secondly, don’t be afraid to make bids for 
opponent properties.  Human beings often vastly 
undervalue the cheaper streets – giving an astute player a 
certain strategic advantage if he or she can initiate a 
favourable trade.  Single, expensive properties can be 
very useful indeed if they are traded for less expensive 
properties, even at a substantial concession to their face 
value. 

Thirdly, don’t be a coward and stay in jail – 
fortune favours the bold!  Saving 50 pounds in the short 
term could well cost you the opportunity to pick up on a 
vital deal later on. 

 
One potential extension to this study is to vary 

the maximum game length.  Setting this well below the 
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expected survival time for the three losing players (say, 
50 turns) would encourage strategies which accumulated 
wealth very rapidly, but perhaps not in a stable way.  This 
is well worth investigating.  Figure 9 shows that most 
games are either complete by approximately turn 200, or 
last the full 500 turns.  Any game surviving several 
hundred turns is likely to be in one of two states: either 
(1) oscillations in power between two or more players, so 
that the eventual winner is largely random or (2) a 
stalemate where no player owns any streets nor wants to 
sell any.  It is likely that reducing the maximum game 
length to, say, 250 turns will not greatly affect the results.  
However, as the overwhelming majority of games are 
completed by this stage, the saving in CPU time will be 
barely noticeable. 
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Figure 9 : Average survival period for the losing players in 
one generation.  Note the large spike at 500 turns for games 
which lasted the full maximum duration. 
 
As an extension, I am investigating the effects of 
completing the implementation of the full realistic rules.  
During this study, I used a simplified subset of the rules 
as I believed that any mild affect on the strategies 
developed would be more than generously offset by the 
reduced programming complexity and the increased 
number of generations that could be run. 
 Subsequent study has tentatively suggested that 
the introduction of a more realistic rule set might affect 
the rules more strongly than I had predicted.  Most 
importantly, the introduction of a full auction system 
appears partially to prevent the perceived reduction in 
value for the more expensive properties, and also tends to 
shift all perceived values upwards.  However, such an 
implementation slows the game speed down considerably, 
and reduces the learning rate, so a considerable amount 
more processing time is required in order to investigate 
this effect more thoroughly.  After careful optimisation, 
and using most of the full rules, the games are running 
five times slower than reported in the present work.  I 
hope to release a follow-up paper in the future 
investigating the effects of these changes. 
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Abstract- Previous research on the use of coevolution 
to improve a baseline chess program demonstrated a 
performance rating of 2550 against Pocket Fritz 2.0 
(PF2). A series of 12 games (6 white, 6 black) was 
played against PF2 using the best chess program that 
resulted from 50 generations of variation and selection 
in self-play. The results yielded 9 wins, 2 losses, and 1 
draw for the evolved program. This paper reports on 
further evolution of the best-evolved chess program, 
executed through 7462 generations. Results show that 
the outcome of this subsequent evolution was 
statistically significantly better than the prior player 
from 50 generations. A 16-game series against PF2, 
which plays with the rating of a high-level master, 
resulted in 13 wins,  0 losses, and 3 draws, yielding a 
performance rating of approximately 2650.  

1 Introduction and Background 

As noted in [1], chess has served as a testing ground for 
efforts in artificial intelligence, both in terms of 
computers playing against other computers, and 
computers playing against humans for more than 50 years 
[2-9]. There has been steady progress in the measured 
performance ratings of chess programs. This progress, 
however, has not in the main arisen because of any real 
improvements in anything that might be described as 
“artificial intelligence.” Instead, progress has come most 
directly from the increase in the speed of computer 
hardware [10], and also straightforward software 
optimization.  
 

Deep Blue, which defeated Kasparov in 1997, evaluated 
200 million alternative positions per second. In contrast, 
the computer that executed Belle, the first program to earn 
the title of U.S. master in 1983, searched up to 180,000 
positions per second. Faster computing and optimized 
programming allows a chess program to evaluate 
chessboard positions further into the prospective future. 
Such a program can then select moves that are expected to 
lead to better outcomes, which might not be seen by a 
program running on a slower computer or with inefficient 
programming. 
 

Standard chess programs rely on a database of opening 
moves and endgame positions, and generally use a 
polynomial function to evaluate intermediate positions. 
This function usually comprises features regarding the 
values assigned to individual pieces (material strength), 
mobility, tempo, and king safety, as well as tables that are 
used to assign values to pieces based on their position 
(positional values) on the chessboard. The parameters for 
these features are set by human experts, but can be 
improved upon by using an evolutionary algorithm. 
Furthermore, an evolutionary algorithm can be employed 
to discover features that lead to improved play. 
 

Research presented in [1] accomplished this using an 
evolutionary program to optimize material and positional 
values, supplemented by three artificial neural networks 
that evaluated the worth of alternative potential positions 
in sections of the chessboard (front, back, middle), as 
shown in Figure 1. Following similar work in [10], the 
procedure started with a population of alternative 
simulated players, each initialized to rely on standard 
material and positional values taken from open source 
chess programs, supplemented with the three neural 
networks. The simulated players then competed against 
each other for survival and the right to generate 
“offspring” through a process of random variation applied 
to the standard parameters and neural connection weights.  
 

Survival was determined by the quality of play in a series 
of chess games played against opponents from the same 
population. Over successive generations of variation and 
selection, the surviving players extracted information 
from the game and improved their performance. At the 
suggestion of Kasparov [11], the best-evolved player after 
50 generations was tested in simulated tournament 
conditions in 12 games (6 as black, 6 as white) against 
Pocket Fritz 2.0. This is a standard chess program that 
plays at a rating of 2300-2350 (high-level master) [11, 
and also as assessed by nationally ranked master and co-
author Quon]. The evolved player won this contest with 
nine wins, two losses, and one draw. 
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Figure 1. The three chessboards indicate the areas (front, back, middle) in which the neural networks focused attention, 
respectively. The upper-left panel highlights the player’s front two rows. The 16 squares as numbered were used for 
inputs to a neural network. The upper-right panel highlights the back two rows, and the contents were similarly used as 
input for a neural network. The lower-left panel highlights the center of the chessboard, which was again used as input 
for a neural network. Each network was designed as shown in the lower-right panel, with 16 inputs (as numbered for 
each of the sections), 10 hidden nodes (h1-h10), and a single output node. The bias terms on the hidden and output are 
not shown. Neural networks that focus on particular items or regions in a scene are described as object neural networks. 
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Over a period of nearly six months, additional evolution 
was applied starting with the best-evolved chess player 
from [1]. After 7462 generations (evolution interrupted by 
a power failure), further testing was conducted on the new 
best-evolved player. The results of playing against a 
nonevolved baseline player and also against Pocket Fritz 
2.0 are reported here. The next section summarizes (and 
at times repeats) the methods of [1], and readers who 
would like additional details should refer to [1] directly. 
 

2 Method 

A chess engine was provided by Digenetics, Inc. and 
extended for the current and prior experiments of [1]. The 
baseline chess program functioned as follows. Each 
chessboard position was represented by a vector of length 
64, with each component in the vector corresponding to 
an available position on the board. Components in the 
vector could take on values from {−K, −Q, −R, −B, −N, 
−P, 0, +P, +N, +B, +R, +Q, +K}, where 0 represented an 
empty square and the variables P, N, B, R, Q, and K 
represented material values for pawns, knights, bishops, 
rooks, and the queen and king, respectively. The chess 
engine assigned a material value to kings even though the 
king could not actually be captured during a match. The 
sign of the value indicated whether or not the piece in 
question belonged to the player (positive) or the opponent 
(negative).  
 
A player’s move was determined by evaluating the 
presumed quality of potential future positions. An 
evaluation function was structured as a linear combination 
of (1) the sum of the material values attributed to each 
player, (2) values derived from tables that indicated the 
worth of having specific pieces in specific locations on 
the board, termed “positional value tables” (PVTs), and 
(3) three neural networks, each associated with specific 
areas of the chessboard. Each piece type other than a king 
had a corresponding PVT that assigned a real value to 
each of the 64 squares, which indicated the presumptive 
value of having a piece of that type in that position on the 
chessboard. For kings, each had three PVTs: one for the 
case before a king had castled, and the others for the cases 
of the king having already castled on the kingside or 
queenside. The PVTs for the opponent were the mirror 
image of the player’s PVTs (i.e., rotated 180 degrees). 
The entries in the PVTs could be positive and negative, 
thereby encouraging and discouraging the player from 
moving pieces to selected positions on the chessboard. 
The nominal (i.e., not considering the inclusion of neural 
networks) final evaluation of any position was the sum of 
all material values plus the values taken from the PVTs 
for each of the player’s own pieces (as well as typically 
minor contributions from other tables that were used to 
assess piece mobility and king safety for both sides). The 
opponent’s values from the PVTs were not used in 
evaluating the quality of any prospective position.  
 

Games were played using an alpha-beta minimax search 
of the associated game tree for each board position 
looking a selected number of moves into the future (with 
the exception of moves made from opening and endgame 
databases). The depth of the search was set to four ply to 
allow for reasonable execution times in the evolutionary 
computing experiments (as reported in [1], 50 generations 
on a 2.2 GHz Celeron with 128MB RAM required 36 
hours).  
 
The search depth was extended in particular situations as 
determined by a quiescence routine that checked for any 
possible piece captures, putting a king in check, and 
passed pawns that had reached at least the sixth rank on 
the board (anticipating pawn promotion), in which case 
the ply depth was extended by two. The best move to 
make was chosen by iteratively minimizing or 
maximizing over the leaves of the game tree at each ply 
according to whether or not that ply corresponded to the 
opponent’s move or the player’s. The games were 
executed until one player suffered checkmate, upon which 
the victor was assigned a win and the loser was assigned a 
loss, or until a position was obtained that was a known 
draw (e.g., one king versus one king) or the same position 
was obtained three times in one game (i.e., a three-move 
rule draw), or if 50 total moves were exceeded for both 
players. (This should not be confused with the so-called 
50-move rule for declaring a draw in competitive play.) 
Points were accumulated, with players receiving +1 for a 
win, 0 for a draw, and −1 for a loss. 

2.1 Initialization 
 
The evolutionary experiment in [1] was initialized with a 
population of 20 computer players (10 parents and 10 
offspring in subsequent generations) each having nominal 
material values and entries in their PVTs, and randomized 
neural networks. The initial material values for P, N, B, R, 
Q, and K were 1, 3, 3, 5, 9, and 10000, respectively. The 
king value was not mutable. The initial entries in the 
PVTs were in the range of −50 to +40 for kings, −40 to 
+80 for queens and rooks, −10 to +30 for bishops and 
knights, and −3 to +5 for pawns, and followed values 
gleaned from other open source chess programs.  
 
Three object neural networks (front, back, middle, see 
Figure 1) were included, each being fully connected 
feedforward networks with 16 inputs, 10 hidden nodes, 
and a single output node. The choice of 10 hidden nodes 
was arbitrary. The hidden nodes used standard sigmoid 
transfer functions f(x) = 1/(1 + exp(−x)), where x was the 
dot product of the incoming activations from the 
chessboard and the associated weights between the input 
and hidden nodes, offset by each hidden node’s bias term. 
The output nodes also used the standard sigmoid function 
but were scaled in the range of [−50, 50], on par with 
elements of the PVTs. The outputs of the three neural 
networks were added to the material and PVT values to 

75 CIG'05 (4-6 April 2005)



come to an overall assessment of each alternative board 
position. All weights and biases were initially distributed 
randomly in accordance with a uniform random variable 
U(−0.025, 0.025) and initial strategy parameters were 
distributed U(0.05). 
 
Candidate strategies for the game were thus represented in 
the population as the material values, the PVT values, the 
weights and bias terms of the three neural networks, and 
associated self-adaptive strategy parameters for each of 
these parameters (3,159 parameters in total), explained as 
follows. 

2.2  Variation 
 
One offspring was created from each surviving parent by 
mutating all (each one of) the parental material, PVT 
values, and weights and biases of all three neural 
networks. Mutation was implemented on material and 
positional values, and the weights of the neural networks, 
according to standard Gaussian mutation with self-
adaptation using a single scaling value τ = 1/sqrt(2n), 
where there were n evolvable parameters (see [1]). The 
material value and PVT strategy parameters were set 
initially in [1] to random samples from U(0, 0.05), and 
were initialized in the new experiments reported here to 
be the values of the best-evolved player from [1]. In the 
case where a mutated material value took on a negative 
number, it was reset to zero.  

2.3  Selection 
 
Competition for survival was conducted by having each 
player play 10 games (5 as white and 5 as black) against 
randomly selected opponents from the population (with 
replacement, not including itself). The outcome of each 
game was recorded and points summed for all players in 
all games. After all 20 players completed their games, the 
10 best players according to their accumulated point totals 
were retained to become parents of the next generation.  

2.4  Experimental Design 
 
A series of 10 independent trials was conducted in [1], 
each for 50 generations using 10 parents and 10 offspring. 
The best result of each trial was tested in 200 games 
against the nonevolved baseline player. All ten trials 
favored the evolved player over the nonevolved player 
(sign-test favoring the evolved player, P < 0.05), 
indicating a replicable result. The complete win, loss, and 
draw proportions over the 2000 games were 0.3825, 
0.2390, and 0.3785, respectively. Thus the win-loss ratio 
was about 1.6, with the proportion of wins in games 
decided by a win or loss being 0.6154. The best player 
from the eighth trial (126 wins, 45 losses, 29 draws) was 
tested in tournament conditions against Pocket Fritz 2.0 
(rated 2300-2350, high-level master) and in 12 games (6 
white, 6 black) scored 9 wins, 2 losses, and 1 draw. This 

corresponded to a performance rating of about 2550, 
which is commensurate with a grandmaster.1
 

3  Results of Further Evolution 

For a period of six months, the evolutionary program was 
allowed to continue iterating its variation and selection 
algorithm, until a power outage halted the experiment 
after 7462 generations. Ten players were selected in an ad 
hoc manner from the last 20 generations of evolution and 
were tested in 200 games each against the original 
nonevolved player. The results are shown in Table 1.  
 
Table 1. Results of 200 games played with each of 10 
sampled players from the last 20 generations of the 
subsequent evolution against the nonevolved player. 

Wins Losses Draws
89 37 74 
92 45 63 

109 49 42 
127 32 41 
126 34 40 
122 46 32 
108 52 40 
82 46 72 
78 48 74 
79 52 69 

 
The total win, loss, and draw proportions were 0.506, 
0.2205, and 0.2735, respectively. The proportion of wins 
in games that ended in a decision was 0.6964. A 
proportion test comparing this result to the prior result of 
0.6154 shows statistically significant evidence (P << 
0.05) that these players improved over the results from 50 
generations in 10 trials. 
 
Following the prior suggestion of Kasparov [11] the best-
evolved program from the ad hoc sample (trial #4) was 
tested (using an Athlon 2400+/256MB) against Pocket 
Fritz 2.0 under simulated tournament conditions, which 
provide 120 minutes for the first 40 moves, 60 minutes 
for the next 20 moves, and an additional 30 minutes for 
all remaining moves. Unlike Pocket Fritz 2.0 and other 
standard chess programs, the evolved player does not treat 
the time per move dynamically. The time per move was 
prorated evenly across the first 40 moves after leaving the 
opening book, with 3 minutes per move allocated to 
subsequent moves. Pocket Fritz 2.0 was executed on a 
“pocket PC” running at 206MHz/64MB RAM, with all 
computational options set to their maximum strength, 
generating an average base ply depth of about 11.  
 
A series of 16 games was played, with the evolved 
program playing 8 as black and 8 as white. The evolved 
program won 13, lost none, and drew 3. The results 

                                                           
1 Earning a title of grandmaster requires competing 
against other qualified grandmasters in tournaments. 
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provide evidence to estimate a so-called “performance 
rating” of the evolved player under tournament settings at 
approximately 2650, about 325 points higher than Pocket 
Fritz 2.0, and improves on the performance rating of 
about 2550 earned in [1]. For additional comparison, a 
series of 12 games with the nonevolved baseline chess 
program against Pocket Fritz 2.0 in the same tournament 
conditions yielded 4 wins, 3 losses, and 5 draws for a 
performance rating that is on par with Pocket Fritz 2.0. 

4  Conclusions 

The approach adopted in this research, following [10], 
relies on accumulating payoffs over a series of games in 
each generation. Selection is based only on the overall 
point score earned by each simulated player, not on the 
result of any single game. Indeed, the players do not have 
any concept of which games were won, lost, or drawn. 
 
In 1961 [12], Allen Newell was quoted offering that there 
is insufficient information in “win, lose, or draw” when 
referred to an entire game of chess or checkers to 
“provide any feedback for learning at all over available 
time scales.” Research presented in [1], [10], [13], [14], 
and now here, shows conclusively that not only was this 
early conjecture false, but it is possible to learn how to 
play these games at a very high level of play even without 
knowing which of a series of games were won, lost, or 
drawn, let alone which individual moves were associated 
with good or bad outcomes. 
 
In addition, the approach utilizes only a simple form of 
evolutionary algorithm with a small population, Gaussian 
mutation, and no sophisticated variation operations or 
representation. The use of the neural networks to focus on 
subsections of the board, coupled with positional value 
tables, and opening and endgame databases, provides 
more upfront expertise than was afforded in prior 
Blondie24 checkers research [10]; however, when 
compared to the level of human chess expertise that is 
relied on in constructing typical chess programs, the 
amount of knowledge that is preprogrammed here is 
relatively minor. 
 
All performance ratings that are based on a relatively 
small sample of games have an associated high variance. 
(Note that programs rated at [15] have a typical variation 
of plus or minus 25 points when testing in about 1000 
games.) Yet, the performance rating of the best-evolved 
chess player based on 16 games against Pocket Fritz 2.0 
is sufficiently encouraging to both continue further 
evolution and also seek to measure the program’s 
performance against another program of world-class 
quality (e.g., as rated on [15]). In addition, the level of 
play may be improved by including additional 
opportunities for evolution to learn how to assess areas of 
the chessboard or the interaction between pieces in 
formations. 
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Abstract- We present a concept for developing cooper-
ative characters (agents) for computer games that com-
bines coaching by a human with evolutionary learning.
The basic idea is to use prototypical situation-action
pairs and the nearest-neighbor rule as agent architec-
ture and to let the human coach provide key situations
and his/her wishes for an associated action for the dif-
ferent characters. This skeleton strategy for charac-
ters (and teams) is then fleshed out by the evolutionary
learner to produce the desired behavior. Our experi-
mental evaluation with variants of Pursuit Games shows
that already a rather small skeleton –that alone is not a
complete strategy– can help solve examples that learn-
ing alone has big problems with.

1 Introduction

From the first computer games on, there have been games
that confront the game player with not just one opponent
(i.e. “the computer”) but several entities in the game that,
according to design, act as opponents (although from the
game implementation perspective, there often was only one
opponent with many “bodies”). Later, the human player has
also become responsible for several “characters”, be it the
players of a team sports game or a party of adventurers in
computer versions of role-playing games. Naturally, under
sole human control, the characters do not act together as
well as a computer controlled opponent could direct them.

Nowadays, computer games offer a user several fixed
character control scripts from which he or she can choose
and naturally each character can also be taken over by the
user for a more fine-tuned strategy. But both computer con-
trolled opponents and side-kicks for a user-controlled char-
acter are far away from acting on a human-like level, in fact,
often they are acting less intelligent than a pet and require
from a human player a lot of skill in jumping the control
between the characters of the team to execute the strategy
the player has developed.

In this paper, we present an approach that combines tech-
niques for learning cooperative behavior for agents with the
possibility for a user to develop (and tell the agent) some
basic ideas for solving a problem. This combination al-
lows us to overcome the basic drawbacks of the two indi-
vidual ideas, namely the problem that players are not pro-
grammers, so that we cannot expect them to write their own
character control scripts, and the fact that automated learn-
ing of behavior requires providing the learner with a lot of
experiences, too many experiences for most human players
to “endure”. In addition, we see our combined approach

also as a good method for game developers to develop more
complex, and possibly more human-like, scripts for their
non-player characters.

Our approach is based on the evolutionary learning ap-
proach for cooperative behavior of agents presented in
[DF96], [DE02], [DE03a], and [DE03b]. The basic agent
architecture used in these papers are sets of prototypical
situation-action pairs and the nearest-neighbor rule for ac-
tion selection. In any given situation, an agent uses a
similarity measure on situations to determine the situation-
action pair in its set that is most similar to the situation it
faces and it then performs the action indicated by this pair.
This resembles the drawing board a coach uses to explain
to his/her players game moves he/she wants them to per-
form. The obvious advantages of such an architecture are
that there will always be an action indicated to an agent and
that there is quite some resistance to “noise” in the archi-
tecture. If an agent’s position is a little bit away from a
particular position this will in most cases be tolerated by the
use of a similarity measure (if being a bit away is not cru-
cial). Additionally, situation-action-pair sets have proven to
be learnable by evolutionary algorithms.

The basic idea of our approach is to let the user define ba-
sic and key situations and the necessary or wanted actions
for all characters involved on his/her side. Then we use the
evolutionary learning approach to add to this skeleton of a
strategy additional situation-action pairs that are needed to
make the user’s idea work. Our experimental evaluation
shows that rather small and obvious skeletons combined
with learning can solve problems that learning alone is in-
capable to solve (or at least has big problems with). And the
used skeletons alone were not able to solve these examples.

2 Basic definitions

The characters of a computer game interact within the game
or specific parts of it. As such, the characters can be seen
as agents of a multi-agent system with the game being the
environment in which these agents are acting. The area
of multi-agent systems has established itself over the last
two decades and we will be using its terminology to present
our ideas. Obviously, the key component of a multi-agent
system are agents. There is no agreed-upon definition of
what an agent is, since there are a lot of properties of agents
that different people are interested in and consequently want
them to be covered by their agent definitions.

On a very abstract level, an agent
���

can be described
by three sets ����� , �
	�� , ���� and a function ���������������
��������
	�� . The set ����� describes the set of situations
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can be in (according to
���

’s perceptions), ��	�� is the set of
actions

���
can perform and ���� is the set of all possible

values of
���

’s internal data areas. Internal data areas is our
term for all variables and data structures representing

���
’s

knowledge. This knowledge can include
���

’s goals,
���

’s
history and all other kinds of data that

���
’s designer wants

it to store. The function � ��� , ��� ’s decision function, takes a
situation and a value of its internal data areas and produces
the action that

���
will take under these circumstances. It

should be noted that � ��� can be rather primitive, looking
up actions in a table based on situations only, for example,
but also very complex involving a lot of complex inferences
based on the current value from ���� , for example, to form
complex plans.

In a multi-agent setting, usually the elements of the three
sets from above can be more structured to reflect the fact
that several agents share the environment. Each situation
description in ����� will usually have a part dealing with other
agents and a part dealing with the rest of the environment.
The set ��	�� will contain a subset of actions aimed at com-
municating and coordinating with other agents and a subset
of actions not related to other agents (like the agent mov-
ing around). If an agent can perform several actions at the
same time, often such “combined” actions have a communi-
cation part and a part not related to other agents (often there
will also be a part manipulating the internal data areas). Fi-
nally, due to the unpredictability introduced by having sev-
eral agents, the knowledge in the internal data areas is often
divided into sure knowledge about other agents, assump-
tions about other agents and, naturally, the knowledge the
agent has about itself (with the latter often being structured
much more detailed).

The particular agent architecture we are using for
our work are prototypical (extended) situation-action pairs
(SAPs) together with a similarity measure on situations ap-
plied within the Nearest-Neighbor Rule (NNR) that realizes
our decision function. More precisely, an element

�
of the

set ���� of our agents consists of a part
�������

and a part���	��
��� ���� �	��
� (i.e.
�

=
�����������	��
��

), where
�������

is a
set of pairs ( ��� ,  ). Here ��� denotes an extended situation
and  � ��	�� . An extended situation ��� consists of a situ-
ation � � ����� and a value

���	��
���� ���� �	��
� (this allows
us to bring the current value of ���� into the decision pro-
cess; note that not a full “state” from ���� �	��
�� is required,
often only some parts of a

� �	��
�
are used or no part of such

an element at all). So, by changing the
� �����

-value of an
agent, we can influence its future behavior, and even more,
the agent can also change its

�������
-value itself.

For determining what action to perform in a situation �
with �  � -value

�����������	��
��
, we need a similarity measure� ��� that measures the similarity between � ���	��
� and all the

extended situations ��� � ,..., ���� in
�������

. If � ��� ( � ���	��
�� , ���� ) is
maximal, then  � will be performed (if several extended sit-
uations in

�������
have a maximal similarity, then the one

with lowest index is chosen; in contrast to rule-based sys-
tems, no other conflict management is necessary). Natu-
rally, it depends on the particular application area how these
general concepts are instantiated.

If we have an agent
���

based on a set of (extended)
SAPs, then we can define this agent’s behavior  as follows:
if �"! � �	��
��$# is the extended situation from which the agent
starts, then  (

���
, ��! � �	��
��$# ) = �"! � �	��
��$# ,sap � , � � � �	��
��&% ,sap ' ,

... , � �)( � � �	��
��$*,+�% ,sap � , � � � �	��
��$* ,..., where sap - is an element
in

� �����/.+�%
, i.e. the set of SAPs that guided the agent at the

time it made the decision. Naturally, �0- � �	��
��,. is the ex-
tended situation that is the result of

���
applying the action

associated with sap - and of the actions of all other agents
after � - ( � was observed by

���
. The SAPs in the behavior

of an agent can be seen as the justifications for its actions.
Note that for other agent architectures we might use differ-
ent justifications, but describing the behavior of an agent
by sequences of (extended) situations that are influenced by
others is a rather common method.

3 Evolutionary learning with SAPs

As stated in the previous section, SAPs together with NNR
provide a good basis for learning agents, since the strategy
of an agent can be easily manipulated by deleting and/or
adding SAPs. Note that one SAP in a set of SAPs can cover
a lot of (extended) situations. We found the use of an evolu-
tionary algorithm, more precisely a Genetic Algorithm for
individuals that consist of a set of elements, a very good
way to perform learning of a good strategy for a given task
(see [DF96]).

The general idea of evolutionary learning of strategies
for agents in our case is to start with random strategies,
evaluate them by employing them on the task to solve (or
a simulation of it) and then to breed the better strategies in
order to create even better ones until a strategy is found that
performs the given task. It is also possible to continue the
evolutionary process to hopefully get even better strategies
and so to find the optimal strategy for a task or at least a
very good one (since evolutionary algorithms usually can-
not guarantee to find the optimal solution to a problem).
The crucial points of this general scheme are how a strat-
egy is represented and how the performance of an agent or
an agent team is measured. Genetic Operators and their con-
trol depend on these two points.

Following [DF96], we have chosen to have an individ-
ual of our Genetic Algorithm representing the strategies
of all agents in a team that are supposed to be learning
agents. More formally, an individual 1 has the form 1 =
( 2 sap �3� ,...,sap � � %04 ,..., 2 sap 5 � ,...,sap 5 �76 4 ) for a team with
n learning agents

��� � ,..., ��� 5 . Then 2 sap - � ,...,sap - � .�4 will
be used as the

� �����
-value of agent

��� - .
This representation of an individual already implies that

the performance evaluation has to be on the agent team
level. For this evaluation, i.e. the fitness of an individual,
we want to measure the success of the team in every step of
its application to the task to solve. More precisely, due to
the dependence on the particular application task, we need
a function 8 � ����� � IN that measures how far from suc-
cess a particular situation is. To define the fitness � ��� 9�:<;
of an evaluation run for an individual 1 , we sum up the 8 -
value of each situation encountered by the agent team. More
precisely, if

��� - is one of the learning agents in the team
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and  (
��� - , � ! ���	��
�� # ) = � ! ���	��
�� # ,sap � ,...,sap � , � � ���	��
��� is

the behavior of this particular agent in the evaluation run,
then

� ��� 9�: ; � 1��� � ��� -�� �"! � �	��
��$#��	��

��
�� � 8

� � � �

If we assume that all our agents have the same percep-
tion of the situations the team encounters, then just us-
ing  (

��� - , � ! ���	��
�� # ) for one agent is enough for defining
� ��� 9�:<; . If the success of a team contains some require-
ments on the value of the internal data areas of the agents
(i.e. on the value from their ���� �	��
�� sets), then we can ex-
tend � ��� 9�:<; to take this into account by extending 8 (that
then has to look at some kind of “extended” extended situa-
tions, i.e. extended situations for all agents) and naturally by
looking at the behavior of all agents. This can be of a certain
interest in the context of using the evolutionary learning to-
gether with the coaching we present in Section 4 to develop
characters for computer games, since a developer naturally
is interested in the internal data areas of a character/agent
and wants to use the values of these areas.

If the task to solve does not involve any indetermin-
ism, that might be due to other agents interfering with the
agent team or other random outside influences, then the
� ��� 9�:<; -value of a single evaluation run can already be
used as the fitness-value for the individual 1 representing
the team of agents. But if there is some indeterminism in-
volved, then our fitness function � ��� uses the accumulated
� ��� 9�:<; -values of several runs. The number 9 of runs used
to compute � ��� is usually a parameter of the algorithm. Let � ( ��� - , �"! � �	��
��$# ),...,  �� ( ��� - , �"! � �	��
��$# ) be the 9 behaviors
of
��� - in those 9 runs, then

� ��� � 1��� � � ��� - �3� ! ���	��
� #�� ���������� � � ��� - �3� ! ���	��
� #�����
��
�� � � ��� 9�:<;

� 1��� � � ��� - � � ! ���	��
�� #����

As Genetic Operators, we use the rather standard
variants of Crossover and Mutation for sets. If we
look at just one agent

��� - and two individuals 1 �
and 1	' that have as SAP-sets for

��� - 2 sap
�- � ,...,sap

�- � . 4
and 2 sap '- � ,...,sap '- � . 4 , then Crossover picks out of
2 sap

�- � ,...,sap
�- � . 4�� 2 sap '- � ,...,sap '- � . 4 randomly SAPs (up

to a certain given limit) to create a new strategy for
��� - .

Mutation either deletes an SAP in 2 sap
�- � ,...,sap

�- � . 4 , or
adds a randomly generated SAP to 2 sap

�- � ,...,sap
�- � . 4 , or

exchanges an element in 2 sap
�- � ,...,sap

�- � . 4 by a new ran-
domly generated SAP to create a new strategy for

��� - . We
can then have Crossover and Mutation on the level of indi-
viduals by either just creating a new strategy for one agent
(as described above, with the agent chosen randomly) or by
creating new strategies for a selection of agents. In our ex-
periments, just modifying one agent in the case of Mutation
and modifying one agent but choosing the strategies for the
other agents from both parents (randomly) was already suf-
ficient.

4 Coaching characters

SAPs together with NNR are not only a good basis for learn-
ing agents, this agent architecture also is very similar to one
human method for coordinating the behavior of several per-
sons, a method we call the “coach’s drawing board”. In
many team sports, the coaches can draw little pictures indi-
cating the players in the team and the opponent players and
their particular (spatial) relations to each other (similar to a
situation) and also indicate for each player in the team an
action or action sequence. This is repeated until a complete
behavior, covering the most likely alternatives in detail, is
presented. And the coach assumes that the individual play-
ers will recognize the situations similar to the current one
and will select the best of the drawn situations and the in-
dicated action, similar to the SAPs with NNR architecture
we described before. Sometimes, additionally some initial
signals are exchanged before a play is initiated, which can
be seen as producing an extended situation.

So, many humans seem to be rather familiar with the
concept of prototypical situations and associated actions
and therefore we think that it is relatively easy for a hu-
man being to understand agents that are based on SAPs and
NNR. And even more, we think that humans can help in
coming up with good SAP sets for agents. Given a good
interface that allows to observe solution attempts by the
learner (resp. the agents using learned strategies) and to
input suggestions for SAPs easily (preferably in a graphical
manner), “programming” in SAPs should be much easier
than programming behavior scripts, and SAPs with NNR
(using an “obvious” similarity measure � ��� ) should be un-
derstandable by all kinds of game players (and a good devel-
opment tool for game designers, too). Even more, since the
previous work has shown that the evolutionary learning ap-
proach for SAPs can solve non-trivial tasks already without
help from humans, it is possible to let the human developer
or coach concentrate on only the key ideas for a character or
a team (meaning key SAPs) for a particular task and let the
evolutionary learning develop such a skeleton strategy into a
working strategy for the task. If the skeleton strategy is not
enough help, it can be extended after observing what the
learning accomplishes and where there are still problems.
The latter also allows to correct some behaviors of agents,
which can be used to produce flaws or weaknesses in some
agents (which might be necessary to allow a human game
player to win a game).

More formally, we modify the concepts presented in
Section 3 in the following manner. If we have ;
“coached” learning agents

��� � ,..., ��� 5 , then the
�������

-
value of agent

��� - consists of a set of “coached” SAPs2 sap ���- � ,...,sap ���-�� ��� ����� .
4

and a set of learned (or evolved)
SAPs 2 sap

�� 
- � ,...,sap

�! 
-"� ��� �� � .

4
that together are used in

��� - ’s
decision making. If we supply the coached SAPs at
the beginning and want to learn good strategies for the; agents without changing the coached SAPs, then the
learning method of Section 3 can be used as described
there, except that an individual 1 now has the form 1 =
( 2 sap

�� �3� ,...,sap
�� � � �#� �� � %

4
,..., 2 sap

�� 
5 � ,...,sap

�! 
5 � �#� �� � 6

4
) and that
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the coached SAPs are added to the evolved SAPs of an agent
before the evaluation runs are performed. Note that we add
the coached SAPs before the evolved ones, so that in case of
having a coached SAP and an evolved one of the same (min-
imal) similarity to the current situation the coached one will
be preferred.

If we want to change 2 sap ���- � ,...,sap ���-"� ��� ���	� .
4

during learn-
ing –for example, we might take a look at the evaluation
runs of the best individual found after some number of gen-
erations and suggest additional coaching SAPs or remove
previously used ones– then there are several ways how this
can be incorporated into the learning process. [DK00] pre-
sented several possibilities, how strategies evolved under
slightly different conditions can be merged and a change of
the set of coached SAPs for even only one agent definitely
produces slightly changed conditions. The most obvious al-
ternative is to throw away the current population of individ-
uals and essentially restart the whole learning process with
the new sets of coached SAPs. But this means that we to-
tally lose the experience accumulated so far by the learner.

Another alternative is to just re-evaluate the current gen-
eration of individuals (using the new sets of coached SAPs).
There is a good chance that the new coached SAPs will
boost the evaluation of some of the individuals (if the
“coach” knows what he/she is doing), perhaps even allow
an individual to fulfill the given task, which naturally is
much better than starting from scratch. There are also com-
binations possible, where some of the evolved individuals
“survive” to be re-evaluated and other members of the new
population are randomly generated.

5 Experimental evaluation

We have tested our method for coaching characters com-
bined with evolutionary learning within the OLEMAS sys-
tem (see [DK00]), a testbed for evaluating concepts for
learning of cooperative behavior. OLEMAS uses Pursuit
Games as application. In the following, we will first take
a closer look at Pursuit Games and the many variants that
are covered in literature and then describe OLEMAS and
especially how the general concepts and methods from Sec-
tions 2 and 3 are instantiated. Finally, we will present some
case studies regarding the coaching of characters in this en-
vironment.

5.1 Pursuit Games

The term Pursuit Games is used in multi-agent systems to
describe games where some predator agents hunt one or sev-
eral prey agents, a scenario that is not only rather common
in Nature, but was also used in games like Pacman. For
multi-agent systems, the use of Pursuit Games as testbed
was first suggested in [BJD85] and since then it has seen
at least as many variants in research literature as there are
variants of Pacman out there.

The version presented in [BJD85] had 4 dot-shaped
hunters going after one dot-shaped prey on an infinite grid
world without any obstacles or other agents, having all
agents perform all actions with the same speed and in a turn-

based manner. This description already shows off many
of the features of Pursuit Games that can be modified, like
numbers of hunter and prey agents, possible moves and their
speed, having a more or less complex world by using obsta-
cles and agents acting as bystanders, providing agents with
shapes and so on. Even the condition to fulfill for winning
can be varied: in [BJD85], the goal of the hunters was to
immobilize the prey, while the ghosts in Pacman definitely
were out to kill by occupying the same square as the prey.
A rather extensive description of many features of Pursuit
Games and possible feature values can be found in either
[DF96] or [DS04].

From a learning point of view, Pursuit Games are of in-
terest because of the many variants that really cry out for
automatically developing winning strategies for the hunter
agents. Naturally, many variants require cooperation be-
tween hunters to win the game. They also provide the pos-
sibility to study co-evolution of agents in various scenarios.
From the computer game point of view, Pursuit Games pro-
vide a rather abstract testbed that nevertheless allows for
scenarios that capture the essence of character interaction in
many games.

5.2 The OLEMAS System

The OLEMAS system (On-Line Evolution of Multi-Agent
Systems; but the “O” can also be interpreted as Off) was
primarily developed to provide a testbed to evaluate evolu-
tionary learning of cooperative behavior of agents based on
SAPs and NNR. But naturally, other kinds of agents and
other kinds of learning can also be integrated to work with
the part of OLEMAS that simulates a wide variety of Pur-
suit Games. In the current version of OLEMAS, we have
a variety of hard coded decision functions for agents, with
quite a selection of such functions for prey agents and a few
primitive functions for hunters and other agents.

At the core of OLEMAS is, as mentioned, a simulator
for Pursuit Games. The particular game that is simulated is
determined by providing values for the various features of
Pursuit Games mentioned in the last subsection. This is usu-
ally done using a configuration file. Part of these features
include a collection of agents, i.e. hunters, preys and by-
stander agents. Bystander agents are also used to define ob-
stacles in the world. Each agent is defined by its own config-
uration file that contains the shape of an agent, its possible
actions (with the number of game turns each action needs
to be executed) and the decision function used by the agent.
In Figure 1, we see a screenshot of the graphical interface
for OLEMAS (called XOLEMAS; OLEMAS can also run
without this interface which usually speeds up learning runs
quite a lot). The window in the upper right corner shows
the messages by the simulator. In this screenshot, we see
reports on the loaded configuration files of agents.

What happens during a simulation is reported by the two
windows on the left of Figure 1. The lower window displays
the game. The upper window provides more detailed infor-
mation on a simulation run, like the current step (or turn)
number and the agents involved.

OLEMAS also has a component for learning the behav-
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Figure 1: The interface of OLEMAS

ior of agents that implements the evolutionary learning as
described in Section 3. The lower window to the right in
Figure 1 displays the initial information for a learning run
with details about game variant and parameter values for the
genetic algorithm. A situation in OLEMAS is a vector that
contains for each agent the relative coordinates, the general
orientation of it in the world, the agent role (hunter, prey, or
obstacle), and the agent type. Relative coordinates mean
relative to the agent that is observing the situation. The
last line of the text window in Figure 2 presents a situation-
action pair (with the starting 0 being the number indicating
the action to take).

The similarity measure � ��� uses only the coordinates
and the orientation information and it is defined for two sit-
uations � - and � � with relative coordinates of agents

��� �
being � � - and � � - , resp. � � � and � � � , and orientation of the
agent being � � - , resp. � � � as

� ��� � � - �3� � ��

5�
�� �

��� � � -�� � � � � '�� �
� � -�� � � � � '��

���
� � -�� � � � � ' mod 	

�	� �
Note that we do not have extended situations in OLEMAS,
yet.

For the fitness of an individual, we need the function 8
that measures how good a particular situation is. While we
have done some work on developing measures that incorpo-

rate additional knowledge into this measure (see [DS04]),
for this paper we use the rather intuitive idea of measuring
how far the hunters are from the prey agents (it is important
for coaching to have an intuitive measure). For the distance
between two agents we use the Manhattan distance and for8 we sum up the distances between all hunter agents to all
prey agents.

For incorporating the idea of coaching, we added a spe-
cial interface to OLEMAS that is depicted in Figure 2. It
allows to enter, resp. delete, the coached SAPs for the indi-
vidual agents. In the upper left corner, we have the graphical
representation of a situation. We can select agents to move
them around in this presentation, using the buttons below
the situation representation. On the right side, we can select
a particular learning agent for which we want to edit the
coached SAPs, can look at the coached SAPs, can choose
the action that we want to add as SAP and we can remove a
coached SAP. Note that we did not put very much work into
this interface, an interface for a game developer or a game
player would have to be much more sophisticated. This in-
terface can be activated before any learning takes place or
at any time the learning performed by OLEMAS is inter-
rupted, which is determined from the main interface. If the
user makes changes to the set of coached SAPs, then the
current population of individuals is re-evaluated using the
new coached SAPs and the learning continues.82 CIG'05 (4-6 April 2005)



Figure 2: The coaching interface of OLEMAS

5.3 Experiments

We performed several experiments with various variants of
Pursuit Games within OLEMAS. Due to lack of space, we
can not present all of them and therefore selected 3 exam-
ples that show the advantages of combining coaching and
learning, but also give insight into problems that the com-
bination has so far. In order to provide some idea regard-
ing the effort necessary for learning, we do not develop the
coached SAPs interactively, but report on runs where the
coached SAPs are given to OLEMAS at the beginning.

Figure 3 presents the start situations for the 3 examples.
In all examples, all agents can move in all 8 directions (but
no rotations) and each action takes 1 turn (step) to be com-
pleted. The prey agents (light colors) try to stay as far away
as possible from the nearest hunter agent (hunters are de-
picted with dark colors). In all examples, the hunters goal is
to “kill” the prey by moving on the same square with it.

In the first example, we have the prey agent hiding within
the obstacle. Due to the used fitness measure, once the
hunter reaches the obstacle, strategies where the hunter
moves to the left of the prey are not favored because the
hunter would be moving ”away” from the prey, so the prey
does not move. As Table 1 shows, the learner is not able

to come up with a successful strategy (within our limit of
100 generations). Figure 4 presents the two coached SAPs
that are needed to help the hunter. By sending the hunter
left to the prey, the prey is flushed out of its hole and then
the learner can take care of the rest. Table 1 shows that the
remaining task for the learner is still difficult (one of our
10 runs was not successful within 100 generations), but the
coached SAPs make a big difference. The coached SAPs
alone are not able to catch the prey.

The second example presents a cooperative variant of the
first example. Again, the prey is in a hole and has to be
flushed out. The right hunter cannot do this alone, its col-
league has to get near to the prey, while the right hunter is
away, so that the prey will run away. Here learning alone
can be successful (remember, we are using evolutionary
learning and the random effects involved produce different
learning runs each time), but the 100 generations can be too
short. Using the coached SAPs from Figure 5 (the top 4
are for the right hunter, the bottom 2 are sufficient for the
left one) together with learning we are always successful in
catching the prey. The coached SAPs are far away from a
successful strategy, they just achieve the flushing out and
the learned SAPs are needed for the catch. The right hunter
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Figure 3: The start situations

Figure 4: Coached SAPs for first example

also needs learned SAPs to get in a position to do its job.
It should be noted that the average number of steps

needed for catching the prey in the successful runs of the
learner alone is smaller than the average number for learn-
ing together with the coached SAPs. We search only for
the first strategy that is successful. The particular coached
SAPs we used here are so helpful that many sets of learned
SAPs are successful together with them, so that we had a
few rather curious strategies as results of the learning runs.
In addition, the successful runs where the learner succeeds
alone are different from those of the combined approach
with the learner and coached SAPs. In these runs, the hunter
on the right did not move up at all and the prey simply ran
directly into it whereas in the runs with learning and coach-
ing the prey was caught using the desired approach to the
problem. This shows that not only can the coached SAPs
help to solve the task but can direct the learning in the di-
rection of a specific desired solution.

If we look at the coached SAPs for the hunter on the
right in example 2, we can observe that they express the
same idea: get away from the prey! Naturally, the question
is, why are 4 SAPs needed. For an explanation, look at the
third example and the coached SAPs that guaranteed suc-
cess of the learner (see Figure 6). Navigating large obstacles
has been identified as a weakness of the evolutionary learn-
ing method we use in [DK00], due to the fitness function
that does not consider obstacles in the way. With coached

Figure 5: Coached SAPs for second example

SAPs this problem can be overcome, but several SAPs are
needed to reinforce the idea of moving around the obsta-
cle. Runs with less SAPs giving the right direction were
not successful and we observed the agents going through
a ping-pong effect: the learner often generated SAPs that
negated the effects of the coached SAPs. But in interactive
mode, this can be easily fixed.

All in all, the combination of learning and coaching is
quite successful, allowing the learner to overcome it’s weak-
nesses while still making use of it’s strengths. We think that
this can be a powerful tool for the development of charac-
ter behavior. It would allow the human “behavior designer”
to simply express the key idea for the behavior, while the
learner takes care of making the idea work.

6 Related Work

There are many papers concerned with improving learning
by integrating more knowledge. For our work, the follow-
ing works have some relevance. In [AR02], reinforcement
learning was used to learn parameter values of function
skeletons, that a user defined to solve a cooperative task.
We not only use a different learning method, we use a dif-
ferent agent architecture that does not require programming
skills (at least, if combined with learning and if applied to
coordination and movement problems).

Improving scripting is an important issue in commercial
computer games. But most of the work focuses on mak-
ing scripting easier by introducing higher level concepts
(see [MC+04]). The use of learning techniques, especially
evolutionary methods, has been suggested in [ML+04] and
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Exp. Learning only Coached SAPs only Learning With Coaching
Succ. Rate Avg. Steps Avg. Learn Time Succ. Rate Avg. Steps Succ. Rate Avg. Steps Avg. Learn Time

1 0% – 305.7s 0% – 90% 55.6 73.6s
2 40% 24.8 434.5s 0% – 100% 61.4 159.4s
3 0% – 450.9s 0% – 100% 66.4 54.5s

Table 1: Learning vs. pure coaching vs. learning and coaching

Figure 6: Coached SAPs for third example

[FHJ04] for generating better behavior of non-player char-
acters, but the learning was on the level of parameters for
existing functions/scripts, which allows less flexibility for
the learner since the level of influence is on a higher level.

7 Conclusion and Future Work

We presented a method that combines learning of coopera-
tive behavior with human coaching for agents that use pro-
totypical SAPs and NNR as agent architecture. Providing
the key behavior idea through the use of coached SAPs is
very well enhanced by the evolutionary learning approach
that “fills in” the other needed SAPs to produce a success-
ful strategy. Our experiments show that the combined ap-
proach is very successful for scenarios in which the learner
alone has problems. Our method is aimed at helping both
game developers that have to create non-player characters
and game users that want to create cooperative behavior of
their characters that goes beyond the use of built-in scripts
without having to write programs.

In the future, we want to address the problem where
sometimes the learner tries to undo the effects of the
coached SAPs. It seems that more serious changes of the

evolutionary learning approach might be needed. We also
want to research the effects that different fitness functions
and similarity measures for situations have with regard to
the ease of coaching.
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Abstract- AI in computer games has been highlighted 
in recent, but manual works for designing the AI cost 
a great deal. An evolutionary algorithm has developed 
strategies without using features that are based on the 
developer. Since the real-time reactive selection of 
behaviors for NPCs is required for better playing, a 
reactive behavior system consisting neural networks is 
presented. Using only the raw information on games, 
the evolutionary algorithm optimizes the reactive 
behavior system based on a co-evolutionary method. 
For demonstration of the proposed method, we have 
developed a real-time simulation game called ‘Build & 
Build’. As the results, we have obtained emergent and 
interesting behaviors that are adaptive to the 
environment, and confirmed the applicability of 
evolutionary approach to designing NPCs’ behaviors 
without relying on human expertise. 

1 Introduction 

Game basically refers to a simulation that works entirely 
or partially on the basis of a game player’s decisions 
(Angelides, 1993). Resources are allocated to the player, 
and he makes a decision to move for acquiring scores or a 
victory (Cehllapilla, 1999). Various strategies and 
environments make a game more interesting, and many 
associated strategies are developed together with the 
development of it. Especially computer games are very 
popular in these days because of the development of 
hardware and computer graphics (Johnson, 2001). 
Different with board games such as chess and checkers, 
computer games provide more complex and dynamic 
environments so as to force players to decide diverse 
actions. Therefore, computer games give many chances to 
device fantastic strategies.  

Making a game more interesting requires to construct 
various strategies. Non-player characters (NPC) should 
have various patterns of behaviors within an environment. 
In recent, many artificial intelligence (AI) technologies 
are applied to design NPC’s behaviors. Since computer 
games offer inexpensive and flexible environments, it is 
challengeable for many researchers to apply AI to control 
characters (Laird, 2001). Finite state machines and rule-
based systems are the most popular techniques in 
designing the movement of characters, while neural 
networks, Bayesian network, and artificial life are 
recently adopted for flexible behaviors. ‘The Sims’ and 

‘Black and White’ are two very successful games, in 
which AI has been featured. The role of AI in games 
might be important to produce more complex and realistic 
games (Laird, 2001). 

It is very hard for game developers to develop many 
strategies. Not enough human expertise on games makes a 
strategy plain and tedious. Even if there is a developer 
with perfect expertise, it is limited in costs and time. After 
all, it will result in the increment of costs to develop the 
strategies of a game.  

Evolution has been recognized as a promising 
approach to generate strategies of games, and applied for 
board games (Chellapilla, 1999). The difficulty for 
designing handcraft strategies makes the evolution be 
much outstanding, since it generates useful strategies 
automatically. Moreover, many works have contributed 
that strategies generated by the evolution are excellent 
enough to compete with human. Because of the 
applicability, however, it is rare to apply evolution to 
computer games such as role playing, strategy, action, etc.  

In this paper, we propose a strategy generation 
method by evolution for simulation games. For the real-
time reactivity, a reactive behavior system composed of 
neural networks is presented, and the system is optimized 
by co-evolution. A real-time computer game is developed 
for the demonstration of the proposed method, and 
several simulations are conducted to verify the strategy 
generation method and the proposed reactive behavior 
system. This paper explores the overview of AI in games 
for character behaviors, co-evolution, and the reactive 
behavior system in section 2. Section 3 describes the 
proposed simulation game named “Build & Build.” The 
automatic generation of strategies by co-evolution is 
presented at section 4, and simulations and results will be 
shown in section 5. This paper concludes with a 
discussion on the proposed method and simulations. 

2 Related Work 

2.1 AI in games: Overview 
The early efforts on researching computer performance at 
games were limited to board games such as chess, 
checker, etc. Developing game-playing programs is a 
major research area of artificial intelligence, and hence 
most promising artificial intelligence techniques have 
been applied to AI of board games (Schaeffer, 2002). 
With the great development of computer games in a 
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number of recent years, the interest of applying AI in 
specific computer games such as action, simulation, and 
role playing has been encouraged. The main research on 
controlling behaviors has been conducted in the field of 
robot and agent research, and those techniques have been 
slowly adopted to control NPCs in games. AI in games 
requires high reactivity to environments and a player’s 
actions rather than that of robotics. A foolish behavior is 
apt to make a game player tedious so as to decrease the 
fun of the game. In this section some of the major AI 
techniques used in games are explored, the manner in 
which they been used in specific games and some of the 
inherent strengths and weaknesses. Conventional AI 
techniques in games are purely ‘rules based’, while in 
these days advanced AI techniques used in robot research 
are attempted for learning or adapting to environments or 
players’ behaviors. 
 
Rule based approach 
AI of many computer games is designed with rules based 
techniques such as finite state machines (FSMs) or fuzzy 
logic. Even if they are simple rather than the other 
methods, they are feasible to manage behaviors well 
enough and familiar to game developers, since they are 
easy to test, modify and customize (Gough, 2000). 

FSMs have a finite set Q of possible internal states, 
and a finite set of inputs I and outputs O. For a given 
internal state and inputs the automaton undergoes 
deterministically a transition to a new internal state and 
generates associated outputs. FSMs are formally defined 
by a transition function r. 

r: Q × I → Q × O 
A character modeled with FSMs has a distinct set of 

behaviors (outputs) for a given internal state. With a 
specific input the associated transition works to change its 
internal state and to output the associated behavior. They 
have often been used to control enemies in first person 
shooters (FPS) (e.g., Doom, Quake). FSMs have a weak 
point of its stiffness; however, the movement of a 
character is apt to be unrealistic. 

Being against the limitation of FSMs, there is a trend 
towards fuzzy state machine (FuSM) that is a finite state 
machine given a fuzzy logic. Many computer games aim 
to make a character more cognitive when it makes a 
decision. Highly rational decisions are not always 
required in those games, since they sometimes decrease 
the reality of behaviors. Fuzzy releases the tightness so as 
to be more flexible in making decisions. FuSMs were 
applied to the FPS game ‘Unreal’ to make enemies appear 
intelligent. Fuzzy logic estimates the battle situation to 
decide to make a specific action. ‘S.W.A.T. 2’ and 
‘Civilisation: Call to Power’ are other games using 
FuSMs (Johnson, 2001). 
 
Adaptation and learning: NNs, EAs, and Artificial life 
So far many game developers have let adaptation and 
learning in computer games unchallenged. Nevertheless, 
it is expected that the adaptation and learning in games 
will be one of the most major issues making games more 
interesting and realistic. Since players are apt to be 

tedious and easy to win because of the static strategies of 
NPCs, adaptation will change the strategies dynamically 
based on how to play. This might force the player to 
continually try new strategies rather than a perfect 
strategy so as to find interest rising.  

Even though many games do not adopt adaptation, 
because of the difficulty of applying adaptation to games, 
it might offer a number of benefits to game developers. In 
many cases, it is very difficult to find a strategy 
appropriate against an opponent in a specific battle map, 
while learning algorithm is manageable to discover an 
associated strategy with minimal human knowledge. 
Codemasters’ Colin McRae Rally 2.0 is a case that learns 
the movement by a neural network. While adaptation and 
learning can be applied to most genres of games with a 
degree of modeling, especially reactive games are suitable 
so that there are some works on applying learning to 
fighting games or shooting games (Johnson, 2001). 
Neural network, evolutionary algorithms, and artificial 
life are promising artificial intelligence techniques for 
learning in computer games.  

Neural network is good at updating the AI as the 
player progresses through a game. The network improves 
continuously, so that the game is manageable to change 
its strategies against a game player. There are several 
successful games, in which neural networks are applied, 
such as ‘Battlecruiser 3000AD’, ‘Dirt Track Racing’, and 
so on. However, it has some limitations of learning and 
adjusting. It requires the clear specification of inputs and 
outputs, and sometimes this task can be very difficult for 
game developers. Moreover, once the neural network is 
badly trained, there are any other methods only to reset 
the network (Johnson, 2001). 

Some game developers have started investigating 
evolutionary algorithms in computer games. Despite of 
cruel remarks from the game industrial world (Rabin, 
2002), the evolutionary approach has great potentialities 
AI in games. The genetic algorithm, one of popular 
evolutionary algorithms, is based on the evolution theory 
suggested by John Holland in the beginning of 1970s. It 
imitates the mechanism of nature’s evolution such as 
crossover, mutation, and the survival of the fittest, and 
applies to many problems of searching optimum solutions. 
But in the field of games, many developers have argued 
that the genetic algorithm required too many 
computations and were too slow to produce useful results. 
Nevertheless, evolutionary approaches might provide the 
adaptation of characters’ behaviors and generate emergent 
behaviors (Jin, 2004). The difficulties in designing many 
strategies are feasible to be dealt by the evolutionary 
algorithm. There are many works on applying evolution 
to generate useful strategies of board games or IPD games 
(Fogel, 2002). Reynolds applied genetic programming to 
the game of tag, and obtained interesting results 
(Reynolds, 1994). In computer games, ‘Creatures’ and 
‘Cloak, dagger, and DNA’ are the representative games 
using the genetic algorithm (Woodcock, 1999).  

Artificial life is the study of synthetic systems that 
appear a natural living life, but only recently it is looked 
by game developers to build better game AI. It tries to 
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develop high-level functionalities as results of the 
interaction between low-level of reactions, and hence 
exhibit emergent behaviors. Flocking is a standard 
example of artificial life, while it is now applied to many 
fields such as movies, games, etc (Carlson, 2000). 
‘Creature’, ‘Beasts’, ‘Ultima online’, ‘Half-life’, and 
‘Unreal’ are games using artificial life to control NPCs’ 
movements (Woodcock, 1999; Johnson, 2001). 

 
A new AI approach 
Generally recognizing that computer games are 
challenging applications of artificial intelligence, many 
advanced AI approaches have been investigated as AI in 
games. Bayesian network, which is used for rational 
reasoning with incomplete and uncertain information, was 
adopted for the real-time reactive selection of behaviors 
for an agent playing a first person shooter game (Hy, 
2004). Behavior-based approaches (Arkin, 1998) are 
often studied to realize efficient and realistic NPCs, and 
applied to a popular first-person shooter game ‘Half-life’ 
(Khoo, 2002). Hybrid models of neural networks and 
evolutionary algorithms have been tried in the field of 
game research (Nelson, 2004). The hybrid model has 
been actively investigated for generating strategies of 
board games (Fogel, 2002). 

2.2 Co-evolution 
Co-evolution is an evolving methodology to enrich the 
performance of evolutionary algorithms. By 
simultaneously evolving two or more species with 
coupled fitness, it allows the maintenance of sufficient 
diversity so as to improve the whole performance of 
individuals. Ehrlick and Raven mentioned co-evolution 
by describing the association between species of 
butterflies and their host plants (Delgado, 2004). 
Competitive co-evolutionary models, often called host-
parasite models, are a very general approach in co-
evolution, in which two different species interact. Each 
species evolves to increase the efficiency competing to 
the other, and all over both of them improve their ability 
for surviving. Even though competitive models are 
limited in their narrow range of applicability, they have 
been widely applied to evolving the behaviors of robots 
or agents, the strategies of board games, and many 
optimization solutions (Reynolds, 1994; Fogel, 2002). 

Computer games provide a good platform for the 
competitive co-evolution, since there are many 
competitions between strategies. Superior strategies for an 
environment have been discovered by co-evolutionary 
approaches. Fogel et al. generated a checker program that 
plays to the level of a human expert by using co-
evolutionary neural networks without relying on expert 
knowledge (Fogel, 2002). Othello strategies based on 
evolved neural networks were learned at the work of 
Chong (Chong, 2003), while Tic Tac Toe strategies were 
developed by the competitive co-evolution at Angeline’s 
work (Angeline, 1993). Shi and Krohling attempted to 
solve min-max problems with co-evolutionary particle 
swarm optimization (Shi, 2002). Reynolds presented 
interesting results by applying the competitive co-
evolution to the game of tag (Reynolds, 1994). 

2.3 Reactive behavior 
Reactive model is a representative behavior selection 
model of intelligent robots or agents. Agents using 
reactive model observe the information from sensors and 
decide behaviors reactively. For a situation hard to be 
described, it performs effectively since it considers the 
current situation only. The inputs and outputs are directly 
connected with simple weights, so it is feasible to react 
quickly on an input. As compensation, however, it does 
not guarantee an optimized behavior to perform a task 
and shows a drop in efficiency for complex tasks or 
environments. Subsumption model is a standard reactive 
model preventing a selection of multiple behaviors. 

Some genres of computer games request NPCs to 
reactively conduct a behavior. It keeps the tension of the 
game so as to increase the amusement of game players. 
Neural networks and behavior-based approaches are 
recently used for the reactive behavior of NPCs keeping 
the reality of behaviors. 

3 The game: Build & Build 

‘Build & Build’ developed in this research is a real-time 
strategic simulation game, in which two nations expand 
their own territory and take away the other. Each nation 
has soldiers who individually build towns and fight 
against the enemies, while a town continually produces 
soldiers for a given period. The motivation of this game is 
to observe multi-agents’ behaviors and to demonstrate 
AIs in computer games, especially the usefulness of 
evolutionary approaches. Fig. 1 shows the brief view of 
‘Build & Build’. 
 

 
Fig. 1.  The brief view of ‘Build & Build’ 
 

3.1 Designing the game environment 

The game starts two competitive units in a restricted land 
with an initial fund, and ends when a nation gets to be 
eliminated. There are two types of the land such as 
normal and rock, while units are able to take some actions 
at the normal land but not at the rock land. A unit can 
build a town when the nation has enough money, while 
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towns produce units using some money. The nation 
collects taxes from towns in a proportion of the 
possession. This structure is originally motivated from the 
SCV of the ‘StarCraft.’ 

For increasing the reality of the game, various 
interaction rules are designed and summarized in Table 1. 
Those rules are applied every unit period, and each rule 
has the effect on action and reaction for not causing a 
super strategy. Scores are calculated by several measures 
such as buildingTowns scores, attacking scores, 
producingUnits scores, and the summation of them. Since 
there are diverse measures to evaluate a strategy, various 
types of strategies might be explored by evolutionary 
approaches. 
 
Table 1. Various rules and information used in this game 

Basic game rule 
Gain resources 
per unit period Resource += Possession × ObtainRate 

Possession per 
unit period 

Possession += PossessionRate, 
until Possession = 500 

Build a town 
Build time: 1000 frames 
Cost: 500 
Energy: 30 

Produce a unit 
Produce time: 180 frames 
Cost: 500 
Energy: 30 

Unit period 30 frames 
ObtainRate 0.01 
PossessionRate 1.0 
Unit size 1×1 
Town size 2×2 

Unit interaction rule 

Attack a unit Damage = Attacker’s energy × DamageRate
Lost energy: Damage 

Attack a town Damage = Attacker’s energy × DamageRate
Lost energy: Damage 

DamageRate 0.1 
 
Table 2. variiables and basic actions of the NPC 

Variable 
Unit ID The distinct number of the NPC 
Energy The energy of the NPC 
Location The coordinates of the NPC (X,Y) 
Delay The frame left to make an action 

Action 
Left move Move to the left direction 
Right move Move to the right direction 
Up move Move to the up direction 
Down move Move to the down direction 
Build a town Build a town at the NPC’s location 
Attack a town Attack the opponent’s town 
Attack a unit Attack the opponent’s NPC 
Merge Combine into one with other NPCs 

3.2 Designing NPCs 

Even though a type of NPC is proposed in this game, 
there are various actions so as to construct many 
strategies. The NPC called as the soldier moves based on 
its energy. It can move by 4 directions as well as build 
towns, attack units or towns, and merge with other NPCs. 
When the land is not a rock, the move action is possible, 

while the attack actions are automatically executed when 
an opponent locates beside the NPC. The merging is a 
special ability that causes the synergism of interactions, 
but it has a side effect on reducing the parallel activity by 
multi agents. It is also automatically conducted when two 
NPCs cross each other. Table 2 presents the types of 
actions and some information of a NPC, and Fig. 2 shows 
some representative actions of the NPC. 

 

 
Build action (left: on building, right: after building) 

  
Attack actions (left: attack buildings, right: attck NPCs) 

 
Merge action (left: before merging, right: after merging) 

Fig. 2.  The basic actions of the NPC 
 

3.3 Discussion 

We have developed ‘Build & Build’, a real-time computer 
game with dynamics so as to be used as a test bed for 
studying various AI techniques in games, especially co-
evolving reactive behavior systems of game characters in 
this work. Since it provides a multi-agent architecture, 
emergent cooperation and competition can be also 
investigated. Many maps can be designed using the rock 
land. As a future work, we will expend the game that has 
various types of characters and landforms. In section 4, 
we will present a co-evolutionary method for evolving the 
reactive behavior system of NPC based on ‘Build & 
Build’ 

4 Evolving Reactive Behavior 

Conventional approaches to construct a character are 
almost handcrafted, so the developer should design the 
behavior of the character. Even though the manual design 
has some benefits, it is apt to make the character static 
and simple. In the field of autonomous robotics, it is very 
important to behave flexibly in dynamic and complex 
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environments, since it gives the realty of the robot’s 
behavior. Being the same as that, computer games 
become vary dynamic and complex, so flexible and 
reactive behaviors are promising to construct a character. 
Neural networks or behavior-based architectures are 
newly used in computer games for that. 

4.1 Basic behavior model 

The NPC has five actions excluding two attack actions 
and an emerge action (since they are executed 
automatically), and five neural networks are used to 
decide whether the associating action executes or not. 
Preventing the selection of multiple actions, the behavior 
model uses the subsumption model that is popular in the 
reactive system. The sequence of the neural networks is 
changeable so that an important action can have more 
chances to be evaluated. Fig. 3 shows the basic behavior 
model of the proposed method. Since the reactive 
behavior model considers only local information, it might 
be easily converged at a point. In order to actively seek a 
dynamic situation, the model selects a random action with 
a probability (in this paper, a = 0.2) in advance. 
 

 
Fig. 3.  The reactive behavior model of the NPC 
 

Implementing the reality of behaviors, the neural 
network gets the local information of the NPC as inputs, 
while it results yes or no as outputs. The situation besides 
the NPC is encoded into a string as shown in Fig. 4, and 
the coding scheme is described at Table 3. The code is 
composed of two parts: land and NPC, and hence the 
code is the double-size of local blocks. In this paper, two 
different grid scales are used for the input of the neural 
network such as 5×5 and 11×11. 

 
Table 3. Coding scheme for the input of neural networks 

Land State Value NPC State Value
Normal land 0 Opponent’s NPC 

greater than the NPC 
-2 

Opponent’s town -1 Opponent’s NPC less 
than the NPC 

-1 

Own town 1 Our forces 1 
Rock land 1   

 
Fig. 4.  The input-encoding for the neural network 
 

4.2 Co-evolutionary behavior generation 

Competition arises in nature when several species share 
the same limited resource, and it makes a species to adapt 
itself to the environment. Various strategies are necessary 
to survive in diverse environments, but the development 
of the strategies is very difficult in designing computer 
games. Even with different environment, we can meet a 
game that uses the same strategy and decreases the 
pleasure of playing. 
 

 
Fig. 5.  Two pair-wise competition patterns adopted in this 
research 
 

Co-evolutionary approaches have been investigated in 
recent, which effectively utilize the appearance of 
competition in games. In this paper, we adopt the co-
evolutionary method using the genetic algorithm to 
generate behavior systems that are accommodated to 
several environments. Since (N2-N)/2 competitions are 
necessary for a single species population of N individuals 
when using a simple competition pattern, two pair-wise 
competition patterns are adopted to effectively calculate 
the fitness of an individual as shown in Fig. 5. The first 
one has a target opponent, and especially in this paper a 
random strategy is used as the target. There are N 
competitions at each generation. The seond one divides 
the population into two species to compete between them 
by randomly selecting M opponents among the other 
species. This requires N×M/2 competitions. When a battle 
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map is asymmetric, this might be expected to produce two 
asymmetric strategies. 
 

 
Fig. 6.  The coding scheme of the chromosome 

 
The genetic algorithm is applied to evolve the reactive 

behavior systems, especially two objects: the sequence of 
the neural networks and the weights of each neural 
network. The chromosome is encoded as a string that 
represents a reactive behavior system as shown in Fig. 6. 
The crossover and mutation operations and the roulette 
wheel selection are used to reproduce a new population. 
As state above, the fitness is estimated based on two pair-
wise competition patterns.  

The fitness of an individual is measured by the scores 
against randomly selected M opponents. Since there are 
several score matrixes, a weighted summation of them is 
used to calculate the fitness of the individual as the 
following formula. For efficient evolution, the total frame 
of a battle is included in estimating the total score. The 
parameters of the genetic algorithm are set based on 
several pre-tests as shown in Table 4. 
 

∑
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=

×+×+×
=
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i i

i

TotalScoresOpponent
OpponentagainstTotalScoreOwn
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reProduceScoweAttackScorwBuildScorew
TotalScore
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'
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Table 4. Parameters of the genetic algorithm in this paper 

Parameter Value 
Selection type Roulette wheel 
Selection rate 0.7 
Crossover rate 0.7 
Mutation rate 0.2 
Population # 200 
Maximum generation # 1000 

5 Experiment and Results 

5.1 Simulation environments 

Four different battle maps are designed as shown in Fig. 7 
in order to demonstrate the proposed method in 
generating strategies adaptive to each environment: A 
plain, two symmetric lands with rocks, and an asymmetric 
land. The size of the maps is 20 × 20. The starting points 
of two teams are fixed at each corner of maps, and a battle 
is finished when a team is completely destroyed or it 
takes a time limit. At the latter case, the higher scoring 
team is decided to win the games. Table 5 shows the 
experimental environments. 
 

  

  
Fig. 7.  Battle maps used in this paper: Plain (1), two symmetric 
(2,3), one asymmetric (4) 
 
Table 5. Experiment environments 

Input 
block size

Co-evolutionary 
pattern Map type 

5×5, 11×11
Against a random 
strategy, random 
between species 

Plain, two symmetric 
lands, two asymmetric 
lands 

 

5.2 Experimental results 

In the first experiment, which estimates the performance 
based on the input block size of the neural network 
against a random strategy, the case with 11×11 shows 
more diverse behaviors than that with 5×5, since it 
observes information on a more large area.  As shown in 
Table 6, the behavior system with 5×5 obtains lower 
winning averages for complex environment, while it 
performs better when the environment is rather simple.  
 
Table 6. Winning averages by input block size against a random 
strategy 

Input block size 
5×5 11×11 

Map type Map type 
1 2 3 4 1 2 3 4 
0.86 0.64 0.17 0.35 0.82 0.65 0.36 0.41

 
Two input block size behavior systems have been co-

evolved by random between species. On map type 3, we 
made them compete each other and Fig. 8 shows the 
result. At the early stage of evolution, the smaller shows 
better optimization performance than the larger, while the 
larger beats the smaller at the latter of evolution. 
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Fig. 8. Winning rate between 5×5 behavior and 11×11 behavior 
at each generation on map type 

 

 
Fig. 9. A strategy obtained for the 5×5 behavior system on the 
plain map 
 

We have analyzed strategies obtained for each map 
type against a random strategy. For the plain map, 5×5 
behavior system shows a simple strategy that tries to build 
a town as much as possible. Building a town leads to 
generate many NPCs so as to slowly encroach on the 
battle map as showns in Fig. 9. When the starting point is 
the left-top position of the map, the NPCs move right or 
down, and build a town, but it does not show intentional 
movements to emerge. 

The result on the map type 3 (the second symetric 
map) shows the limitation of the reactive behavior 
systems with small size of the input block. The obtained 
strategy works well at the early stage of a battle, but after 
a middle point of the battle it does not act intelligently. 
That kind of map requests more than two strategies for 
the win as descripbed in Fig. 10, but the reactive system is 
hard to get them at the same time. The 11×11 shows the 
better performance than the 5×5, since it considers more 
various input conditions so as to generate diverse actions.  
 

 
Fig. 10. Multiple movement strategies for wining battles 
 

Asymetric maps restrict the flexibility of NPCs' 
movements so as to make it difficult to generate excellent 
winning strategies. 

5.3 Discussion 

We have explored evolving ractive behavior systems for 
various environments. The reactive system shows good 
performance on simple environments like the plain map, 
but it does not work well for complex environments. The 
experiments also shows that the amount of input 
information is important for the reactive system when the 
environment is not simple.  

As the future work, we will extend the experiments to 
more various environments such as various size of input 
blocks, map types, and co-evolving pattens. The hybrid 
behavior system also will be researched, since NPCs 
might be more intelligent when planning fuctions are 
hybrided into the reactive system. 

6 Conclusions 

In this paper, a new evolutionary computer game 
environment was described and the experiment results on 
the reactive behavior system of the NPC were presented. 
The game ‘Build & Build’ was developed to address 
several current issues in the field of AIs in games, and a 
reactive behavior system was presented for the flexible 
and reactive behavior of the NPC. Co-evolutionary 
approaches have shown the potentialities of the automatic 
generation of excellent strategies corresponding to a 
specific environment. 

This work will be extended by applying a deliberative 
behavior system to the game ‘Build & Build’, it might be 
beneficial to select an action to achieve a high-level goal. 
The hybrid model will provide the player much fun with 
clever strategies to win a battle. And then, multiple 
species and various characters and actions will be 
exploited for a more realistic computer game. Enhanced 
coding schemes for the input of neural networks will be 
also taken into consideration. 
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Abstract- This paper follows on from our previous work
focused on formulating an efficient generic measure
of user’s satisfaction (‘interest’) when playing preda-
tor/prey games. Viewing the game from the predators’
(i.e. opponents’) perspective, a robust on-line neuro-
evolution learning mechanism has been presented capa-
ble of increasing — independently of the initial behavior
and playing strategy — the well known Pac-Man game’s
interest as well as keeping that interest at high levels
while the game is being played. This mechanism has
also demonstrated high adaptability to changingPac-
Man playing strategies in a relatively simple playing
stage. In the work presented here, we attempt to test the
on-line learning mechanism over more complex stages
and to explore the relation between the interest measure
and the topology of the stage. Results show that the in-
terest measure proposed is independent of the stage’s
complexity and topology, which demonstrates the ap-
proach’s generality for this game.

1 Introduction

Over the last 25 years there have been major steps for-
ward in computer games’ graphics technology: from ab-
stract 2D designs to complex realistic virtual worlds com-
bined with advanced physics engines; from simple shape
character representations to advanced human-like charac-
ters. Meanwhile, artificial intelligence (AI) techniques (e.g.
machine learning) in computer games are nowadays still in
their very early stages, since computer games continue to
use simple rule-based finite and fuzzy state machines for
nearly all their AI needs [1], [2]. These statements are sup-
ported by the fact that we still meet newly released games
with the same 20-year old concept in brand new graphics
engines.

From another viewpoint, the explosion of multi-player
on-line gaming over the last years indicates the increas-
ing human need for more intelligent opponents. This fact
also reveals that interactive opponents can generate interest-
ing games, or else increase the perceived satisfaction of the
player. Moreover, machine learning techniques are able to
produce characters with intelligent capabilities useful to any
game’s concept. Therefore, conceptually, the absolute ne-
cessity of artificial intelligence techniques and particularly
machine learning and on-line interaction in game develop-
ment stems from the human need for playing against intelli-

gent opponents. These techniques will create the illusion of
intelligence up to the level that is demanded by humans [3].
Unfortunately, instead of designing intelligent opponents to
play against, game developers mainly concentrate and in-
vest in the graphical presentation of the game. We believe
that players’ demand for more interesting games will pres-
sure towards an ‘AI revolution’ in computer games in the
years to come.

Predator/prey games is a very popular category of com-
puter games and among its best representatives is the clas-
sical Pac-Man released by Namco (Japan) in 1980. Even
though Pac-Man’s basic concept — the player’s (PacMan’s)
goal is to eat all the pellets appearing in a maze-shaped
stage while avoiding being killed by four opponent char-
acters named ‘Ghosts’— and graphics are very simple, the
game still keeps players interested after so many years, and
its basic ideas are still found in many newly released games.
There are some examples, in the Pac-Man domain literature,
of researchers attempting to teach a controller to drivePac-
Man in order to acquire as many pellets as possible and to
avoid being eaten byGhosts[4].

On the other hand, there are many researchers who use
predator/prey domains in order to obtain efficient emergent
teamwork of either homogeneous or heterogeneous groups
of predators. For example, Luke and Spector [5], among
others, have designed an environment similar to the Pac-
Man game (the Serengeti world) in order to examine dif-
ferent breeding strategies and coordination mechanisms for
the predators. Finally, there are examples of work in which
both the predators’ and the prey’s strategies are co-evolved
in continuous or grid-based environments [6], [7].

Recently, there have been attempts to mimic human be-
havior off-line, from samples of human playing, in a specific
virtual environment. In [8], among others, human-like op-
ponent behaviors are emerged through supervised learning
techniques inQuake. Even though complex opponent be-
haviors emerge, there is no further analysis of whether these
behaviors contribute to the satisfaction of the player (i.e. in-
terest of game). In other words, researchers hypothesize —
by looking at the vast number of multi-player on-line games
played daily on the web — that by generating human-like
opponents they enable the player to gain more satisfaction
from the game. This hypothesis might be true up to a point;
however, since there is no explicit notion of interest defined,
there is no evidence that a specific opponent behavior gen-
erates more or less interesting games. Such a hypothesis
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is the core of Iida’s work on board games. He proposed a
general metric of entertainment for variants of chess games
depending on average game length and possible moves [9].

Similar to [5], we view Pac-Man from theGhosts’per-
spective and we attempt to off-line emerge effective team-
work hunting behaviors based on evolutionary computation
techniques, applied to homogeneous neural controlled [10]
Ghosts. However, playing a prey/predator computer game
like Pac-Man against optimal hunters cannot be interesting
because of the fact that you are consistently and effectively
killed. To this end, we believe that the interest of any com-
puter game is directly related to the interest generated by
the opponents’ behavior rather than to the graphics or even
the player’s behavior. Thus, when ‘interesting game’ is
mentioned we mainly refer to interesting opponents to play
against.

In [11], we introduced an efficient generic measure of
interest of predator/prey games. We also presented a ro-
bust on-line (i.e. while the game is played) neuro-evolution
learning approach capable of increasing — independently
of the initial behavior andPacMan’s playing strategy — the
game’s interest as well as keeping that interest at high levels
while the game is being played. This mechanism demon-
strated high robustness and adaptability to changing types of
PacManplayer (i.e. playing strategies) in a relatively simple
playing stage. In the work presented here, we attempt to test
the on-line learning mechanism over more complex stages
and furthermore to explore the relation between the interest
measure and the topology of the stage. Results show that
the interest measure introduced in [11] is independent of
the stage’s design which demonstrates the approach’s gen-
erality for this game.

The arcade version of Pac-Man uses a handful of very
simple rules and scripted sequences of actions combined
with some random decision-making to make theGhosts’be-
havior less predictable. The game’s interest decreases at the
point whereGhostsare too fast to beat [12]. In our Pac-Man
version we requireGhoststo keep learning and constantly
adapting to the player’s strategy instead of being opponents
with fixed strategies. In addition, we explore learning pro-
cedures that achieve good real-time performance (i.e. low
computational effort while playing).

2 The Pac-Man World

The computer game test-bed studied is a modified version
of the original Pac-Man computer game released by Namco.
The player’s (PacMan’s) goal is to eat all the pellets appear-
ing in a maze-shaped stage while avoiding being killed by
the fourGhosts. The game is over when either all pellets in
the stage are eaten byPacManor Ghostsmanage to killPac-
Man. In that case, the game restarts from the same initial
positions for all five characters. Compared to commercial
versions of the game a number of features (e.g. power-pills)
are omitted for simplicity; these features do not qualitatively
alter the nature of ‘interesting’ in games of low interest.

As stressed before, the Pac-Man game is investigated
from the viewpoint ofGhostsand more specifically how
Ghosts’emergent adaptive behaviors can contribute to the

interest of the game. Pac-Man — as a computer game
domain for emerging adaptive behaviors — is a two-
dimensional, multi-agent, grid-motion, predator/prey game.
The game field (i.e. stage) consists of corridors and walls.
Both the stage’s dimensions and its maze structure are pre-
defined. For the experiments presented in this paper we use
a 19 × 29 grid maze-stage where corridors are 1 grid-cell
wide. The snapshot of the Pac-Man game illustrated in Fig-
ure 1 constitutes one of the four different stages used for
our experiments. Information about the selected stages’ de-
sign and the criteria for their selection are presented in Sec-
tion 2.1.

The characters visualized in the Pac-Man game (as illus-
trated in Figure 1) are a white circle that representsPacMan
and 4 ghost-like characters representing theGhosts. Ad-
ditionally, there are black squares that represent the pellets
and dark grey blocks of walls.

Figure 1: Snapshot of the Pac-Man game

PacManmoves at double theGhosts’speed and since
there are no dead ends, it is impossible for a singleGhostto
complete the task of killing it. SincePacManmoves faster
than aGhost, the only effective way to killPacManis for a
group ofGhoststo hunt cooperatively. It is worth mention-
ing that one ofGhosts’properties is permeability. In other
words, two or moreGhostscan simultaneously occupy the
same cell of the game grid.

The simulation procedure of the Pac-Man game is as fol-
lows. PacManandGhostsare placed in the game field (ini-
tial positions) so that there is a suitably large distance be-
tween them. Then, the following occur at each simulation
step:

1. Both PacMan and Ghostsgather information from
their environment.

2. PacManandGhoststake a movement decision every
simulation step and every second simulation step re-
spectively. (That is howPacManachieves double the
Ghost’sspeed.)

3. If the game is over (i.e. all pellets are eaten,PacMan
is killed, or the simulation step is greater than a prede-
termined large number), then a new game starts from
the same initial positions.
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4. Statistical data such as number of pellets eaten, simu-
lation steps to killPacManas well as the totalGhosts’
visits to each cell of the game grid are recorded.

2.1 Stages

As previously mentioned, in this paper we attempt to test the
on-line learning mechanism’s ability to generate interesting
games (as presented in [11]) over more complex stages and,
furthermore, over stages of different topology.

Figure 2: The 4 different stages of the game. Increasing
complexity from left to right: Easy (A and B), Normal and
Hard.

2.1.1 Complexity

In order to distinguish between stages of different complex-
ity, we require an appropriate measure to quantify this fea-
ture of the stage. This measure is

C = 1/E{L} (1)

whereC is the complexity measure andE{L} is the average
corridor length of the stage.

According to (1), complexity is inversely proportional
to the average corridor length of the stage. That is, the
longer the average corridor length, the easier for theGhosts
to blockPacManand, therefore, the less complex the stage.

Figure 2 illustrates the four different stages used for the
experiments presented here. Complexity measure values for
the Easy A, Easy B, Normal and Hard stages are 0.16, 0.16,
0.22 and 0.98 respectively. Easy A stage is the test-bed used
in [11]. Furthermore, given that a) blocks of walls should
be included b) corridors should be 1 grid-square wide and c)
dead ends should be absent, Hard stage is the most complex
Pac-Man stage for theGhoststo play.

2.1.2 Topology

Stages of the same complexity, measured by (1), can differ
in topology (i.e. layout of blocks on the stage). Thus, in the
case of Easy A and Easy B (see Figure 2), stages have the
same complexity value but are topologically different.

The choice of these four stages is made so as to ex-
amine the on-line learning approach’s ability to emerge
interesting opponents in stages of different complexity
or equally complex stages of different topology. Results
presented in Section 6 show that the mechanism’s effi-
ciency is independent of both the stage complexity and

stage topology and, furthermore, illustrate the approach’s
generality for the game.

2.2 PacMan

Both the difficulty and, to a lesser degree, the interest of the
game are directly affected by the intelligence of thePacMan
player. We chose three fixedGhost-avoidance and pellet-
eating strategies for thePacManplayer, differing in com-
plexity and effectiveness. Each strategy is based on deci-
sion making applying a cost or probability approximation
to the player’s 4 neighbor cells (i.e. up, down, left and
right). Even though the initial positions are constant, the
non-deterministic motion ofPacManprovides lots of diver-
sity within games.

• Cost-Based (CB)PacMan: The CBPacManmoves
towards its neighbor cell of minimal cost. Cell costs
are assigned as follows:cp = 0, ce = 10, cng = 50,
cg = 100, wherecp: cost of a cell with a pellet (pellet
cell); ce: cost of an empty cell;cg: cost of a cell oc-
cupied by aGhost(Ghostcell); cng: cost of aGhost’s
4 neighbor cells. Wall cells are not assigned any cost
and are ignored byPacMan. In case of equal minimal
neighbor cell costs (e.g. two neighbor cells with pel-
lets), the CBPacManmakes a random decision with
equal probabilities among these cells. In other words,
the CBPacManmoves towards a cost minimization
path that produces effectiveGhost-avoidance and (to
a lesser degree) pellet-eating behaviors but only in the
local neighbor cell area.

• Rule-Based (RB)PacMan: The RBPacManis a CB
PacManplus an additional rule for more effective and
global pellet-eating behavior. This rule can be de-
scribed as follows. If allPacMan’sneighbor cells are
empty (c = 10), then the probability of moving to-
wards each one of the available directions (i.e. not to-
wards wall cells) is inversely proportional to the dis-
tance (measured in grid-cells) to the closest pellet on
that direction.

• Advanced (ADV) PacMan: The ADV PacMan
checks in every non-occluded direction forGhosts.
If there is at least oneGhostin sight, then the prob-
ability of moving towards each one of the available
directions is directly proportional to the distance to a
Ghostin that direction. If there is noGhostin sight,
then the ADVPacManbehaves like a RBPacMan.
The ADV moving strategy is expected to produce a
more globalGhost-avoidance behavior built upon the
RB PacMan’sgood pellet-eating strategy.

2.3 Neural Controlled Ghosts

A multi-layered fully connected feedforward neural con-
troller, where the sigmoid function is employed at each
neuron, manages theGhosts’motion. Using their sensors,
Ghostsinspect the environment from their own point of
view and decide their next action. EachGhost’s perceived
input consists of the relative coordinates ofPacManand the
closestGhost. We deliberately exclude from consideration
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any global sensing, e.g. information about the dispersion
of theGhostsas a whole, because we are interested specifi-
cally in the minimal sensing scenario. The neural network’s
output is a four-dimensional vector with respective values
from 0 to 1 that represents theGhost’s four movement op-
tions (up, down, left and right respectively). EachGhost
moves towards the available — unobstructed by walls —
direction represented by the highest output value. Available
movements include theGhost’s previous cell position.

2.4 Fixed Strategy Ghosts

Apart from the neural controlledGhosts, three additional
fixed non-evolving strategies have been tested for control-
ling theGhost’smotion. These strategies are used as base-
line behaviors for comparison with any neural controller
emerged behavior.

• Random (R):Ghoststhat randomly decide their next
available movement. Available movements have
equal probabilities to be picked.

• Followers (F):Ghostsdesigned to followPacMan
constantly. Their strategy is based on moving so
as to reduce the greatest of their relative distances
(∆x,P , ∆y,P ) from PacMan.

• Near-Optimal (O): AGhoststrategy designed to pro-
duce attractive forces betweenGhostsandPacManas
well as repulsive forces among theGhosts. For each
GhostX andY values are calculated as follows.

X = sign[∆x,P ]h(∆x,P , Lx, 0.25)
− sign[∆x,C ]h(∆x,C − 1, Lx, 10) (2)

Y = sign[∆y,P ]h(∆y,P , Ly, 0.25)
− sign[∆y,C ]h(∆y,C − 1, Ly, 10) (3)

where sign[z]=z/|z| and h(z, zm, p) = [1 −
(|z|/zm)]p. X and Y values represent the axis on
which the near-optimalGhostwill move. Hence, the
axis is picked from the maximum of|X| and |Y |
whereas, the direction is decided from this value’s
sign. That is, if|X| > |Y |, then go right if sign[X] >
0 or go left if sign[X] < 0; if |Y | > |X|, then go up
if sign[Y ] > 0 or go down if sign[Y ] < 0.

3 Interesting Behavior

In order to find an objective (as possible) measure of inter-
est in the Pac-Man computer game we first need to define
the criteria that make a game interesting. Then, second, we
need to quantify and combine all these criteria in a mathe-
matical formula — as introduced in [11]. The game should
then be tested by human players to have this formulation
of interest cross-validated against the interest the game pro-
duces in real conditions. This last part of our investigation
constitutes a crucial phase of future work and it is discussed
in Section 7.

To simplify this procedure we will ignore the graphics’
and the sound effects’ contributions to the interest of the
game and we will concentrate on the opponents’ behaviors.

That is because, we believe, the computer-guided opponent
character contributes the vast majority of features that make
a computer game interesting.

By being as objective and generic as possible, we believe
that the criteria that collectively define interest on the Pac-
Man game are as follows.

1. When the game is neither too hard nor too easy. In
other words, the game is interesting whenGhosts
manage to killPacMansometimes but not always. In
that sense, optimal behaviors are not interesting be-
haviors andvice versa.

2. When there is diversity in opponents’ behavior over
the games. That is, whenGhostsare able to find dif-
ferent ways of hunting and killingPacMan in each
game so that their strategy is less predictable.

3. When opponents’ behavior is aggressive rather than
static. That is,Ghoststhat move towards killingPac-
Man but meanwhile, move constantly all over the
game field instead of simply following it. This be-
havior gives player the impression of an intelligent
strategicGhosts’plan which increases the game in-
terest.

In order to estimate and quantify each of the aforemen-
tioned criteria of the game’s interest, we let the examined
group ofGhostsplay the gameN times and we record the
simulation stepstk taken to killPacManas well as the total
number ofGhosts’visits vik at each celli of the grid game
field for each gamek. Each game is played for a sufficiently
large evaluation period oftmax simulation steps which cor-
responds to the minimum simulation period required by the
RB PacMan(best pellet-eater) to clear the stage of pellets
— in the experiments presented heretmax is 300 for the
Easy stage, 320 for the Normal stage and 466 for the Hard
stage.

Given these, the quantifications of the Pac-Man game’s
three interest criteria can be presented as follows.

1. According to the first criterion, an estimate of how
interesting the behavior is, is given byT in (4).

T = [1− (E{tk}/max{tk})]p1 (4)

where E{tk} is the average number of simula-
tion steps taken to killPacManover theN games;
max{tk} is the maximumtk over theN games;p1 is
a weighting parameter (for the experiments presented
herep1 = 0.5);

The T estimate of interest demonstrates that the
greater the difference between the average number of
steps taken to killPacManand the maximum number
of steps taken to killPacMan, the higher the interest
of the game. Given (4), both poor-killing (‘too easy’)
and near-optimal (‘too hard’) behaviors get low inter-
est estimate values (i.e.E{tk} ' max{tk}).

2. The interest estimate for the second criterion is given
by S in (5).

S = (σ/σmax)p2 (5)
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where

σmax =
1
2

√
N

(N − 1)
(tmax − tmin) (6)

and σ is the standard deviation oftk over theN
games;σmax is an estimate of the maximum value of
σ; p2 is a weighting parameter (for the experiments
presented herep2 = 1); tmin is the minimum num-
ber of simulation steps required for the fixed strategy
Near-OptimalGhoststo kill PacMan(tmin ≤ tk). In
this paper,tmin is 33 simulation steps for the Easy
stage; 35 for the Normal stage and 63 for the Hard
stage.

The S estimate of interest demonstrates that the
greater the standard deviation of the steps taken to kill
PacManoverN games, the higher the interest of the
behavior. Therefore, by using (5) we promoteGhosts
that produce high diversity in the time taken to kill
PacMan.

3. A good measure for quantifying the third interest cri-
terion is through entropy of theGhosts’cell visits in a
game, which quantifies the completeness and unifor-
mity with which theGhostscover the stage. Hence,
for each game, the cell visits’ entropy is calculated
and normalized into[0, 1] via (7).

Hn =

[
− 1

logVn

∑

i

vin

Vn
log

(
vin

Vn

)]p3

(7)

whereVn is the total number of visits of all visited
cells (i.e.Vn =

∑
i vin) andp3 is a weighting param-

eter (for the experiments presented herep3 = 4).

Given the normalized entropy valuesHn for all N
games, the interest estimate for the third criterion can
be represented by their average valueE{Hn} over
the N games. This implies that the higher the av-
erage entropy value, the more interesting the game
becomes.

All three criteria are combined linearly (8)

I =
γT + δS + εE{Hn}

γ + δ + ε
(8)

whereI is the interest value of the Pac-Man game;γ, δ and
ε are criterion weight parameters (for the experiments pre-
sented hereγ = 1, δ = 2, ε = 3).

The measure of the Pac-Man game’s interest introduced
in (8) can be effectively applied to any predator/prey com-
puter game because it is based on generic features of this
category of games. These features include the time required
to kill the prey as well as the predators’ entropy throughout
the game field. We therefore believe that (8) — or a simi-
lar measure of the same concepts — constitutes a generic
interest approximation of predator/prey computer games
(see also [13] for a successful application on a dissimilar
prey/predator game). Moreover, given the two first inter-
est criteria previously defined, the approach’s generality is

expanded to all computer games. Indeed, no player likes
any computer game that is too hard or too easy to play and,
furthermore, any player would like diversity throughout the
play of any game. The third interest criterion is applicable
to games where spatial diversity is important which, apart
from prey/predator games, may also include action, strat-
egy and team sports games according to the computer game
genre classification of Laird and van Lent [14].

4 Off-line learning

We use an off-line evolutionary learning approach in order
to produce some ‘good’ (i.e. in terms of performance) initial
behaviors. An additional aim of this algorithm is to emerge
dissimilar behaviors of high fitness — varying from block-
ing to aggressive (see Section 6) — offering diverse seeds
for the on-line learning mechanism in its attempt to generate
emergentGhostbehaviors that make the game interesting.

The neural networks that determine the behavior of the
Ghostsare themselves evolved with the evolving process
limited to the connection weights of the neural network.
Each Ghost has a genome that encodes the connection
weights of its neural network. A population of 80 neu-
ral networks (Ghosts) is initialized randomly with initial
uniformly distributed random connection weights that lie
within [-5, 5]. Then, at each generation:

• Every Ghost in the population is cloned 4 times.
These 4 clones are placed in the Pac-Man game field
and play ten games oftmax simulation steps each.
The outcome of these games is to ascertain the time
taken to killPacMantk for each game.

• EachGhostis evaluated via (9) for each game and its
fitness value is given byE{f} over theNt games.

f = [1− (tk/tmax)]
1
4 (9)

By the use of (9) we promoteGhostbehaviors capa-
ble of achieving high performance on killingPacMan.

• A pure elitism selection method is used where only
the 10% fittest solutions are able to breed and, there-
fore, determine the members of the intermediate pop-
ulation. Each parent clones an equal number of off-
spring in order to replace the non-picked solutions
from elitism.

• Mutation occurs in each gene (connection weight) of
each offspring’s genome with a small probabilitypm

(e.g. 0.02). A uniform random distribution is used
again to define the mutated value of the connection
weight.

The algorithm is terminated when a predetermined num-
ber of generationsg is completed (e.g.g = 1000) and the
fittestGhost’sconnection weights are saved.

5 On-line learning (OLL)

This learning approach is based on the idea ofGhoststhat
learn while they are playing againstPacMan. In other
words,Ghoststhat are reactive to any player’s behavior and
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learn from its strategy instead of being the predictable and,
therefore, uninteresting characters that exist in all versions
of this game today. Furthermore, this approach’s additional
objective is to keep the game’s interest at high levels as long
as it is being played. This mechanism is first introduced
in [15] for an abstract prey-predator game called “Dead-
End” and in [11] for the Pac-Man game. In this paper, we
give a short description of OLL.

Beginning from any initial group of homogeneous off-
line trained (OLT)Ghosts, OLL attempts to transform them
into a group of heterogeneousGhoststhat are interesting to
play against as follows. An OLTGhost is cloned 4 times
and its clones are placed in the Pac-Man game field to play
against a selectedPacMantype of player in a selected stage.
Then, at each generation:

Step 1: EachGhost is evaluated everyt simulation steps
via (10), while the game is played —t = 50 simula-
tions steps in this paper.

f ′ =
t/2∑

i=1

{
dP,2i − dP,(2i−1)

}
(10)

wheredP,i is the distance between theGhostandPac-
Man at thei simulation step. This fitness function
promotesGhoststhat move towardsPacManwithin
an evaluation period oft simulation steps.

Step 2: A pure elitism selection method is used where only
the fittest solution is able to breed. The fittest parent
clones an offspring with a probabilitypc that is in-
versely proportional to the normalized cell visits’ en-
tropy (i.e.pc = 1−Hn) given by (7). In other words,
the higher the cell visits’ entropy of theGhosts, the
lower the probability of breeding new solutions. If
there is no cloning, then go back to Step 1, else con-
tinue to Step 3.

Step 3: Mutation occurs in each gene (connection weight)
of each offspring’s genome with a small probability
pm (e.g. 0.02). A gaussian random distribution is
used to define the mutated value of the connection
weight. The mutated value is obtained from (11).

wm = N (w, 1−Hn) (11)

wherewm is the mutated connection weight value and
w is the connection weight value to be mutated. The
gaussian mutation, presented in (11), suggests that the
higher the normalized entropy of a group ofGhosts,
the smaller the variance of the gaussian distribution
and therefore, the less disruptive the mutation process
as well as the finer the precision of the GA.

Step 4: The cloned offspring is evaluated briefly via (10)
in off-line mode, that is, by replacing the worst-fit
member of the population and playing an off-line
(i.e. no visualization of the actions) short game of
t simulation steps. The fitness values of the mutated
offspring and the worst-fitGhostare compared and

the better one is kept for the next generation. This
pre-evaluation procedure for the mutated offspring at-
tempts to minimize the probability of group behav-
ior disruption by low-performance mutants. The fact
that each mutant’s behavior is not tested in a single-
agent environment but within a group of heteroge-
neousGhostshelps more towards this direction. If
the worst-fitGhostis replaced, then the mutated off-
spring takes its position in the game field as well.

The algorithm is terminated when a predetermined num-
ber of games has been played or a game of high interest (e.g.
I ≥ 0.7) is found.

We mainly use short simulation periods (t = 50) in or-
der to evaluateGhostsin OLL aiming to the acceleration of
the on-line evolutionary process. The same period is used
for the evaluation of mutated offspring; this is based on two
primary objectives: 1) to apply a fair comparison between
the mutated offspring and the least-fitGhost(i.e. same eval-
uation period) and 2) to avoid undesired high computational
effort in on-line mode (i.e. while playing). However, the
evaluation function (10) constitutes an approximation of the
examinedGhost’s overall performance for large simulation
periods. Keeping the right balance between computational
effort and performance approximation is one of the key fea-
tures of this approach. In the experiments presented here,
we use minimal evaluation periods capable of achieving
good estimation of theGhosts’performance.

6 Results

Off-line trained (OLT) emergent solutions are the OLL
mechanisms’ initial points in the search for more interest-
ing games. OLT obtained behaviors are classified into the
following categories:

• Blocking (B): These are OLTGhoststhat tend to wait
for PacManto enter into a specific area that is easy
for them to block and kill. Their average normalized
cell visit’s entropy valueE{Hn} lies between 0.55
and 0.65

• Aggressive (A): These are OLTGhoststhat tend to
follow PacManall over the stage in order to kill it
(E{Hn} ≥ 0.65).

• Hybrid (H): These are OLTGhoststhat tend to behave
as a Blocking-Aggressive hybrid which proves to be
ineffective at killingPacMan(E{Hn} < 0.55).

6.1 OLL experiment

In order to portray the OLL impact on player’s entertain-
ment, the following experiment is conducted. a) Pick nine
different emergedGhosts’behaviors produced from off-line
learning experiments — Blocking (B), Aggressive (A) and
Hybrid (H) behaviors emerged by playing against each of 3
PacMantypes — for each one of the three stages; b) start-
ing from each OLT behavior, apply the OLL mechanism by
playing against the same type ofPacManplayer and in the
same stage theGhostshave been trained in off-line. Initial
behaviors for the Easy B stage are OLT behaviors emerged
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from the Easy A stage. This experiment intends to demon-
strate the effect of the topology of a stage in the interest of
the game; c) calculate the interest of the game every 100
games during each OLL attempt.

Interest is calculated by letting theGhostsplay 100 non-
evolution games in the same stage against thePacMantype
they were playing against during OLL. In order to minimize
the non-deterministic effect of thePacMan’s strategy on the
Ghost’s performance and interest values as well as to draw
a clear picture of these averages’ distribution, we apply the
following bootstrapping procedure. Using a uniform ran-
dom distribution we pick 10 different 50-tuples out of the
100 above-mentioned games. These 10 samples of data, of
50 games each, are used to determine the games’ average as
well as confidence interval values of interest. The outcome
of the OLL experiment is presented Figure 3 and Figure 4.

Figure 3: On-line learning effect on the interest of the
game. Best interest values achieved from on-line learning
on Ghoststrained off-line (B, A, H). Experiment Parame-
ters:t = 50 simulation steps,pm = 0.02, 5-hidden neurons
controller.
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Figure 4: On-line learning effect on interest of ADV Hybrid
initial behavior in all four stages. For reasons of computa-
tional effort, the OLL procedure is terminated when a game
of high interest (I ≥ 0.7) is found.

Since there are 3 types of players, 3 initial OLT behav-
iors and 4 stages, the total number of different OLL experi-
ments is 36. These experiments illustrate the overall picture

Play Against
Stage CB RB ADV

Easy A 0.5862 0.6054 0.5201
Easy B 0.5831 0.5607 0.4604
Normal 0.5468 0.5865 0.5231

R

Hard 0.3907 0.3906 0.3884
Easy A 0.7846 0.7756 0.7759
Easy B 0.7072 0.6958 0.6822
Normal 0.7848 0.8016 0.7727

F

Hard 0.7727 0.7548 0.7627
Easy A 0.6836 0.7198 0.6783
Easy B 0.6491 0.6725 0.6337
Normal 0.7297 0.7490 0.6855

F
ix

ed
B

eh
av

io
rs

O

Hard 0.6922 0.7113 0.4927

Table 1: Fixed strategyGhosts’(R, F, O) interest values.
Values are obtained by averaging 10 samples of 50 games
each.

of the mechanism’s effectiveness over the complexity and
the topology of the stage as well as thePacMantype and
the initial behavior (see Figure 3). Due to space considera-
tions we present only 4 (see Figure 4) out of the 36 experi-
ments in detail here, where the evolution of interest over the
OLL games (starting from the hybrid behavior emerged by
playing against the ADVPacManplayer) on each stage is
illustrated.

As seen from Figure 4, the OLL mechanism manages
to find ways of increasing the interest of the game regard-
less the stage complexity or topology. It is clear that the
OLL approach constitutes a robust mechanism that, starting
from suboptimal OLTGhosts, manages to emerge interest-
ing games (i.e. interestingGhosts) in all 36 cases. It is worth
mentioning that in 15 out of 36 different OLL attempts the
best interest value is greater than the respective Follower’s
value (see Table 1). Furthermore, in nearly all cases, the
interest measure is kept at the same level independently of
stage complexity or — in the case of Easy A and B stages
— stage topology. Given the confidence intervals (±0.05
maximum,±0.03 on average) of the best interest values,
it is revealed that the emergent interest is not significantly
different from stage to stage.

However, a number in the scale of103 constitutes an un-
realistic number of games for a human player to play. On
that basis, it is very unlikely for a human to play so many
games in order to notice the game’s interest increasing. The
reason for the OLL process being that slow is a matter of
keeping the right balance between the process’ speed and
its ‘smoothness’ (by ‘smoothness’ we define the interest’s
magnitude of change over the games). A solution to this
problem is to consider the initial long period of disruption
as an off-line learning procedure and start playing as soon
as the game’s interest is increased.

7 Conclusion & Discussion

Predator strategies in prey/predator computer games are
still nowadays based on simple rules which make the game
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rather predictable and, therefore, uninteresting (by the time
the player gains more experience and playing skills). A
computer game becomes interesting primarily when there is
an on-line interaction between the player and its opponents
who demonstrate interesting behaviors.

Given some objective criteria for defining interest in
predator/prey games, in [11] we introduced a generic
method for measuring interest in such games. We saw that
by using the proposed on-line learning mechanism, max-
imization of the individual simple distance measure (see
(10)) coincides with maximization of the game’s interest.
Apart from being fairly robust, the proposed mechanism
demonstrates high adaptability to changing types of player
(i.e. playing strategies).

Moreover, in this paper, we showed that interesting
games can be emerged independently of initial opponent be-
havior, playing strategy, stage complexity and stage topol-
ogy. Independence from these four factors portrays the
mechanism’s generality and provides more evidence that
such a mechanism will be able to produce interesting in-
teractive opponents (i.e. games) against even the most com-
plex human playing strategy.

As already mentioned, an important future step of this
research is to discover whether the interest value computed
by (8) for a game correlates with human judgement of in-
terest. Preliminary results from a survey based on on-line
questionnaires with a statistically significant sample of hu-
man subjects show that human players’ notions of interest of
the Pac-Man game correlate highly with the proposed mea-
sure of interest. More comprehensively, subjects are asked
to determine the most interesting of several pairs of games,
while their opponents are selected so as to produce signif-
icantly different interest values. Subsequently, a statistical
analysis is carried out which is based on the correlation be-
tween observed human judgement of interest of these games
and their respective interest values. Obtained results reveal
that the interest metric (8) is consistent with the judgement
of human players and will be part of a technical paper to be
published shortly.
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Abstract- Interactive computer games are widely seen
as a killer application domain for Artificial Intelligence
(AI) [8]. Quite apart from the significant size of the
games market in terms of revenue [3], computer games
provide complex, dynamic, uncertain and competitive
environments that are perfect for developing, testing and
deploying AI technologies. While many researchers cur-
rently focus on enhancing games with sophisticated AI,
most overlook the role that AI has to play in the develop-
ment of the games themselves. In this paper we present
an approach to building non-player characters (NPCs)
for a well-known computer game, Unreal Tournament1.
Specifically, we use decision trees induced from human
player strategies to define how an NPC in the game per-
forms in a highly dynamic environment. The benefits
of this approach are twofold. Firstly, it provides a ba-
sis for building competitive AI-based NPCs for interac-
tive computer games. Secondly, this approach eases the
development overhead of such characters. Our empiri-
cal evaluation demonstrates that the NPCs we create are
very competitive against hand-crafted ones in a number
of simulated gaming sessions.

1 Introduction

While the variety of genres of interactive computer games
is ever increasing, it is still the case that one of the most
popular is the “first person shooter”. The reason for this
is simple. The first person shooter is effectively the only
game genre in which the human player is emersed in a
virtual world and experiences this through the eyes of the
game character. However, in the past these games typically
provide human players with opponents that simply acted
as “cannon fodder” [6], and consequently little effort was
placed in developing complex behaviours for them.

However, recently the games industry has recognised
that game players have grown bored of this genre due to
the lack of sophistication of the opponents in many of these
games. Consequently, games companies have revitalised
this genre with a number of titles that attempt to overcome
this issue. These games boast opponents that have sophisti-
cated behaviours, largely due to the use of AI in their devel-
opment. Some examples of such games are: Half-Life2, No
One Lives Forever 23 and HALO4. Amongst the complex
behaviours exhibited by the characters in these games are
the ability to evade attacks from other players, the ability
to plan retreats in order to obtain support or to find a better

1http://www.unrealtournament.com
2http://www.valvesoftware.com
3http://www.lith.com
4http://www.bungie.net

tactical vantage point.
As a consequence of this increasing demand for more

sophisticated AI in interactive computer games [20], game
developers are always searching for techniques to build in-
telligent opponents that display human-like decision mak-
ing capabilities. It is well known that sophisticated AI is a
factor in ensuring a high replay rate for games [12]. Un-
fortunately, developing games with a high AI content often
involves a significant number of very complex and challeng-
ing software development issues.

In this paper we attempt to address these issues. We
present a approach that enables developers to incorporate AI
in games with minimal development overhead. The method
that we present demonstrates how one can build a purely
reactive character that has skills based upon the strategies
a human player would use if they were competing in the
game. Our approach involves decomposing the traditional
finite-state machine (FSM) architecture, typically used in
the types of games we are interested in here, by separat-
ing the implementation of the various states that a character
needs to reach and the conditions that determine the transi-
tions from one state to another. Specifically, the approach
uses a decision tree, induced from the strategies that hu-
man players would employ in various gaming scenarios as
a basis for defining the conditions under which each state is
reached. All the game developer needs to do is provide im-
plementations of each state, which is typically a much eas-
ier task than implementing a traditional FSM. The decision
tree defines the complex relationships between each state
giving rise to behaviour by re-evaluating the state (classi-
fication) suggested by the decision tree during game play.
Building game opponents in this way yields natural reac-
tive behaviour. We can relax the unnatural behaviours that
many game developers use in order to provide the illusion
of intelligence such as giving game players the ability to
see through walls or around corners, or to access internal
data structures describing the locations of advantageous po-
sitions [11].

Therefore, the contributions we make in this paper are as
follows:

1. We propose an approach to building complex, but re-
alistic, behaviour into game characters through the
use of decision trees induced from human strategies;

2. The proposed approach also reduces the software
development burden required to build complex be-
haviours into computer games.

The remainder of this paper is organised as follows. Sec-
tion 2 gives a brief overview of the literature in this area.
Section 3 gives an overview of decision tree learning. Sec-
tion 4 presents Unreal Tournament, the game used in this

102 CIG'05 (4-6 April 2005)



research, and describes the approach we used to integrate
with it. Section 5 presents an evaluation of our approach,
focusing specifically of the performance of the characters
that are built using our approach. Section 6 presents some
possible extensions and makes a number of concluding re-
marks.

2 Background

Incorporating AI in games is receiving significant atten-
tion from the mainstream AI community [5]. However,
Nareyek [12] highlights that most academic research in the
field of AI for computer games never makes it into com-
mercial releases. This is largely due to the heavy burden
that state-of-the-art research approaches place on game de-
velopers. Instead one of the most common AI techniques
that one finds in games isA∗, based on Dijkstra’s shortest-
path algorithm [2], which is used in path-finding.

There have been many attempts to build more sophis-
ticated AI into computer games, such as strategic plan-
ning [17], spatial reasoning [4] and case-based reason-
ing [16]. However, we discuss two particular pieces of work
in more detail since they are quite related to the approach we
present here.

Bain and Sammut [14, 1] have proposed an approach
known as “behavioural cloning” that can be used to cap-
ture human sub-cognitive skills and incorporate them into a
computer program. The approach uses logs of the actions
performed by human subjects in performing some task as
input to a learning program. The learning program produces
a set of rules that can reproduce the skilled behaviour. Be-
havioural cloning has been used to train a computer system
to fly an aircraft along a fixed route within a simulated en-
vironment using decision trees [15].

Geisler [6] demonstrated quite convincingly that Arti-
ficial Neural Networks (ANN) could be used to train an
NPC to learn a set of basic commands from an experienced
player: accelerate or decelerate, move forward or backward,
face forward or backward and jump or do not jump. The re-
sult being the development of an NPC that could play and
manoeuver successfully in a modified version of Soldier Of
Fortune 25.

The common element employed in both of the latter
techniques is the idea of training an NPC by monitoring
actual game play over a long period of time. In this pa-
per, inspired by these techniques, we show how one can use
learning to control an NPC in a computer video game such
as Unreal Tournament, but with significantly lower training
data requirements. We demonstrate how decision trees can
be used successfully for building competitive NPCs based
on human-provided responses to a number of gaming sce-
narios. Such responses can be gathered very cheaply in an
offline fashion, without game play and the need for devel-
oping sophisticated monitoring software for recording the
actions of players in a live context.

5http://www.ravensoft.com

3 Decision Tree Learning

Decision tree learning is a standard machine learning tech-
nique for approximating discrete-valued functions [13, 10].
Decision trees make classifications by sorting the features
of an instance through the tree from the root to some leaf
node. Each leaf node provides the classification of the in-
stance. At each node a test on some variable is performed,
and each branch descending from that node corresponds to
a possible outcome for that test. Upon reaching a leaf-node
a classification is made.

A decision tree is constructed in a top-down fashion
by adding a node that performs a test on a feature of the
problem that best classifies the set of training examples.
Based on the outcome of the test at the current node, the
set of training examples is partitioned across all possible
outcomes. The test for the next node on each path is de-
termined recursively until all training examples on some
branch of the tree are members of the same class. At that
point we can simply place a classification node (a leaf on
the tree) representing this class.

In this paper we construct decision trees usingITI, or In-
cremental Tree Inducer[19]. Contrary to the name, we use
this software in a non-incremental ordirect metricmode.
However, we can easily use the algorithm in incremental
mode in order to learn over time.

An example is presented below involving a decision tree
that predicts whether we should go outside or remain inside
based upon a set of example scenarios shown in Table 1,
that forms the set of training examples.

Table 1: Weather experiences.

Case Outlook Humidity Temp Choice
1 Sunny Normal High Go Outdoors
2 Rain Normal Low Stay Indoors
3 Rain Normal Medium Stay Indoors
4 Sunny Normal High Go Outdoors
5 Overcast Normal Low Stay Indoors
6 Overcast High High Stay Indoors
7 Sunny Normal Low Stay Indoors
8 Rain Normal Medium Stay Indoors
9 Sunny High High Go Outdoors
10 Sunny Normal High Go Outdoors
11 Normal Rain Low Stay Indoors
12 Sunny Normal Low Stay Indoors
13 Sunny Normal High Go Outdoors
14 Overcast Normal Low Stay Indoors
15 Overcast High High Stay Indoors

For each example in Table 1 we are presented with the
values of various features that characterise the weather on a
particular day, i.e. outlook, humidity and temperature. For
each example we have an associated choice (classification)
that specifies what we prefer to do on each day. Using the
set of training examples presented in Table 1, ITI builds the
decision tree presented in Figure 1.

Given the example〈Sunny,Normal,High〉 we can
determine the classification by following the appropriate
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Figure 1: The decision tree induced from the weather expe-
riences data in Table 1.

path through the decision tree. In this case, the root node
checks if the outlook is sunny, since this is true in our ex-
ample, we follow the branch labelled T (left hand side) to
the test on the temperature feature. The tree checks if the
temperature is low, but since in our example it is false, we
follow the branch labelled F to reach a classification node
(leaf) indicating that we should go outdoors (the classifica-
tion of our example).

In the next section we present how we integrate decision
tree learning with the Unreal Tournament game.

4 Integration with Unreal Tournament

Unreal Tournament is a first person shooter game developed
by Epic Games, Inc [7]. Within this game there are various
different game modes: death match, domination and capture
the flag, to mention but a few. For the purposes of this paper
we will be focusing on the death match mode of this game.
A screen-shot from this game mode is presented in Figure 2.

The objective in the death match game mode is sim-
ple. Several characters compete to achieve a target num-
ber of “frags” within a specified time-frame (typically 30
minutes). A frag is a score computed as the number of op-
ponents that are eliminated by the character less the number
of times that the character eliminated himself by using a
weapon inappropriately.

Figure 2: The death match mode of Unreal Tournament.

In Section 4.1 we present the underlying architecture
used to interface with Unreal Tournament.

4.1 Architecture for Controlling an NPC

The programming environment for controlling our NPCs
uses the client-server architecture that was first developed
at the University Of Southern California’s Information Sci-
ence Institute called GameBot [18]. This is an architecture
that is becoming very popular within the AI community in
order to evaluate and test new techniques for games.

The server-side provides sensory information about the
environment within the game as well as any events that are
occurring. For example we may wish to access the cur-
rent state of health of our NPC, the location of other op-
ponents that are currently visible, the positions of obstacles,
etc. Furthermore, the client-side provides the capability to
send messages to the server, in response to the sensory data
that is returned, thus specifying what action an NPC should
take, for example move, turn, shoot, etc.

Within the GameBot architecture two types of message
are defined that are sent from the server to the client. The
first type of message areasynchronous messagesthat are
dispatched immediately once an event has occurred, such as
an NPC being eliminated or one character seeing another.
The second type of messages aresynchronous messagesthat
are dispatched at predefined time intervals. These messages
can contain various pieces of information ranging from cur-
rent scores for a character within a game, to specific details
about it such as its current health level, ammunition level,
weapons equipped, full 3D location for the character, as
well as yaw, pitch, roll values for the character’s orienta-
tion, etc.

These messages can be parsed using any programming
language since all server-client and client-server messages
are sent as ASCII text strings. We chose to use a pre-
built package called JavaBot [9] which is built on top of
the GameBot infrastructure and thus allows us to create and
control NPCs easily using this interface without having to
worry about the underlying network protocols. Essentially
JavaBot enables the games developer to easily extend the
JavaBot application and provide a set of classes written us-
ing the Java programming language that defines how an
NPC should behave within the environment.

In Section 4.2 we discuss how we can use the JavaBot
infrastructure to define how an NPC is controlled using a
decision tree.

4.2 Using Decision Trees to Control NPCs

As mentioned above we use the JavaBot infrastructure to
develop and evaluate our approach. This required that we
extend the application in order to implement our own NPC.
The extensions that we developed involved changing the
standard structure of the JavaBot code. Typically JavaBot,
in its distributed state, implements a simple state changing
method to control an NPC. We extended this to a more so-
phisticated decision tree-based architecture. In this archi-
tecture we built several small simple independent states that
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would be triggered by classifications obtained from the de-
cision tree. These states provide very basic behaviours. For
example, our explore state simply tells the NPC to move
around the level using the in-game way-point node system,
while head-on attack simply instructs the NPC to attack the
enemy head-on while shooting.

In order to define the manner in which the basic states
were to be configured together we built a decision tree from
examples of how a human player would act in different sce-
narios in the game. This decision tree was then built into
the game to provide our NPC with human-like behaviour
and skill. We describe each phase in more detail below.

Acquiring strategies from a human player. In order to
acquire the behaviours that our NPC should exhibit, we cap-
tured the approach that a skilled human player would adopt
in various game scenarios. We used a form of user interview
by creating a questionnaire-based system which randomly
generates a series of scenarios that could occur within the
game, along with various statistics which we may have, e.g.
the level of health of the character, the state of its armour,
etc. The human selects one of several behavioural actions in
response to each scenario, e.g. the human user may choose
that attack, retreat, seek health are the best actions to follow.
The choice of actions that the user has available is based on
the set of basic behaviours that we can build into our NPC.
Typically, many scenarios are proposed to the user in order
to achieve a sufficiently large training set. An example of
one such questionnaire is displayed in Figure 3.

From experience we have found that even responding to
over 100 scenarios is not overly burdensome on the user.
Typically the time taken to answer this number of question
is approximately 15 minutes, which is an extremely short
time in terms of the overall amount of time involved in game
development, especially given that this process is all that is
required to complete the behaviour of an NPC.

Inducing the decision tree. Once the human user has re-
sponded to the set of scenarios, the scenarios themselves
and the user’s response forms a training set from which a
decision tree can be induced. As mentioned earlier, the de-
cision tree algorithm used for this purpose is ITI [19]. An
example of one such decision tree for Unreal Tournament
that models a human player’s responses to various game
scenarios is presented in Figure 4.

Exploiting the Decision Tree. The final phase of the inte-
gration with Unreal Tournament involved using the decision
tree built above to guide the behaviour of an NPC during the
game. This phase of the integration is described below.

As mentioned earlier, the game developer decides what
behaviours the NPC will have at its disposal, e.g. attack,
retreat, seek health, etc., and these are used in the process
of interviewing the human in order to ensure that only valid
behaviour states are specified in the decision tree. The pro-
cess through which a behaviour is determined for the NPC
during game play is as follows.

JavaBot provides real-time information from the game

Scenario 1 of 100. In this scenario what would you
do? These are your statistics and your possible
choices of behavior.

Health=Medium
Armour=Medium
Weapon=Long
Ammo=High
Enemy Present=True
Enemy State=Sees you
Enemy Distance=Near
Weapon Stronger=False

Your options are as follows.
Please enter the value of your choice:

0 : Head on Attack
1 : Turn & Run
2 : Retreat Shooting
3 : Run Pass them
4 : Retreat
5 : Seek Health
6 : Seek Weapons
7 : Seek Ammo
8 : Seek Armor
9 : Explore
10 : Switch Long Distance Weapon
11 : Switch Short Distance Weapon
12 : Switch to Weapon with most Ammo

Figure 3: Sample Questionnaire.

environment in the form of messages. These messages de-
scribe the state of our NPC, the presence and location of
opponents that are visible, the presence and location of ob-
stacles, etc. The majority of this data is in the form of con-
tinuous numerical values. Since decision trees do not work
on numerical values directly, a preprocessor is required to
discretise this data so that it can be readily processed by the
decision tree. This is a standard thing to do, and involves
grouping data into a set of sub-ranges that can be given a
discrete label. For example, for health points a value of 0-
40 might be considered ”Low”, 41-75 might be ”Medium”
and greater than 75 might be considered to be ”High”. This
is done for each sensory variable in a meaningful way, i.e.
ammunition obviously is gauged differently in that a value
of 40 for ammunition might be considered to be ”High”. It
should be noted that Bain and Sammut [1] have pointed out
that this sub-ranging can lead to dramatic changes in be-
haviour. Therefore, these values usually need to be consid-
ered carefully for each particular game that this technique is
being applied too. For our purposes the ranges mentioned
above, in the context of our evaluation we found the results
to be very satisfactory.

After we have preprocessed the data from JavaBot, it can
be used to determine a classification from the decision tree.
This is easy to do, as outlined earlier in this paper. Once
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Figure 4: An example decision tree for controlling an Unreal Tournament NPC.

we have reached a leaf node in the decision tree we can
conclude what action the character should take. This pro-
cess is then repeated at regular intervals in order to keep
the character as reactive to its environment as possible. It
should be noted that this “refresh” time period can also af-
fect the NPC’s performance quite dramatically. For exam-
ple, if this time period is very long (e.g. once every two
seconds) then the character will obviously be very slow to
respond to changes in its environment and will invariably
make decisions too late. Conversely, if this time period is
extremely short (ten times a second) then we are wasting re-
sources re-evaluating the decision tree unnecessarily since it
is unlikely that a different conclusion will be derived. For
the purposes of our work we found that seeking a reclas-
sification from the decision tree twice per second was ade-
quate. However, this time again will vary depending on the
game context to which this technique is being applied too.
For example in simulator games like Civilization or SimC-
ity, where the concept of time is condensed so that seconds
can represent days or weeks, this polling rate may need to
be increased.

5 Evaluation

To evaluate our approach to developing reactive NPCs for
dynamic gaming environments we set up a series of games
where we had a character built using decision trees compete
against a collection of nine other standard Unreal Tourna-
ment NPCs in a death-match context. In these experiments
we varied the number of questions used to build the decision
trees used in each case, selecting values of 10, 50, 75 and
100, giving us different sized training sets. Furthermore, we
varied the skill level of the opponent characters, comparing
against both novice and average skill levels in Unreal Tour-
nament.

For each combination of training set size and opponent

skill level, we built 5 different decision trees for each train-
ing set size and used each in 50 game sessions. Each game
session had a maximum time limit of 30 minutes and a target
frag count of 20. For each game we recorded the score and
position of the decision tree-driven character. We present
a summary of the averaged results in Table 2 in which for
each game configuration we present the percentage of times,
based on a weighted average over all decision trees and
game sessions in each case, that the decision tree-driven
NPC was ranked 5th or higher as well as the average posi-
tion of the character. Figures 5 and 6 present more detailed
positional information for each configuration showing the
percentage of times that our NPC was placed in each posi-
tion.

Table 2: Performance of the decision tree NPC.
% times at least 5th Average position

#Examples Novice Average Novice Average
10 94% 93% 2.04 1.98
50 95% 93% 1.76 1.98
75 86% 88% 2.63 2.67
100 82% 82% 3.06 3.23

We can immediately see from these results that the ap-
proach we propose is extremely successful. The NPC that
we produce is very competitive, consistently performing
better than both the standard novice and average skilled
characters in Unreal Tournament. Considering Table 2, we
can see that our character is, on the average, placed in the
top 3 positions in any configuration.

It is interesting to see that increasing the number of ex-
amples used to build the decision tree does not always trans-
late into better performance. In fact, if we consider the aver-
age position of the character, performance seems to degrade
once the number of examples exceeds 50. Considering the
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(a) Decision tree induced from 10 examples. (b) Decision tree induced from 50 examples.

(c) Decision tree induced from 75 examples. (d) Decision tree induced from 100 examples.

Figure 5: Performance of the NPC developed using a decision tree against novice skilled characters.

more detailed positional results presented in Figures 5 and
6, we can see that as the number of examples goes from 10
to 50, the character seems to do at least as well, if not a little
better. Once we increase the number of examples to 75 we
see a marked decrease in the number of first positions, how-
ever the dominance of the decision tree-driven character is
never compromised.

What causes this seemingly counter-intuitive drop in per-
formance as the number of examples increases? The answer
is easy. In a death match the primary objective is to elimi-
nate as many opponents as possible. Therefore, in order to
score well, players must tradeoff the risks associated with
staying in the centre of the battle with the risks of being
killed or killing one’s self inadvertently. As we increase
the number of examples we are more likely to be presented
with a larger number of examples that do not involve attack,
but rather seeking health, armour, ammunitions, and oppo-
nents. While these are necessary activities for survival, in
the case of seeking out health, armour and ammunitions,
these are activities that remove the character from the battle
zone where scores can be picked up.

From inspection of the decision trees generated by each
number of examples, we noticed that the performance of
the character was very sensitive to the number of non-attack
classifications in the decision tree. This raises a very in-
teresting issue. The issue here is that there is a successful

strategy that one can adopt to perform well in a death match
like the one we considered here: one should attack as much
as possible and only leave battle when it is absolutely nec-
essary.

We believe that it is possible to also learn good game
strategy with a decision tree in an automated fashion, such
as the one mentioned above. One speculative way of do-
ing this is to inform the decision tree induction process with
feedback about the performance of the resultant tree after a
particular size of training set has been used. One way of pro-
viding this feedback loop is to begin by generating a large
set of training data by interviewing a human user. Based
on this data, we can begin to induce a decision trees based
on some small number of examples, simulate the NPC in a
gaming context to record its performance, and then incre-
mentally extend the decision tree by adding new training
examples to the training set. As the number of examples
is increased slowly we may reach a point at which the per-
formance of the characters begins to fall-off. We then build
NPCs based on what we have found to be a good sized train-
ing set from the perspective of performance. Note that the
ITI tool that we used can support incremental decision tree
learning. Decision trees induced from a particular number
of training examples, for a particular game, giving some av-
erage level of performance, not only propose good actions
for an NPC to follow, they can also be regarded as making
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(a) Decision tree induced from 25 examples. (b) Decision tree induced from 50 examples.

(c) Decision tree induced from 75 examples. (d) Decision tree induced from 100 examples.

Figure 6: Performance of the NPC developed using a decision tree against average skilled characters.

choices at an appropriate level of detail, depending on the
number of nodes in the decision tree. This is a direction that
we plan to consider as part of our future work in this area.

In terms of the effect of opponent skill level on the per-
formance of the decision tree character, we can see from
our results that there is a slight degradation in performance
as we encounter more skilled opponents. This is most no-
tably the case if we consider the percentage of times that
our character is placed 1st in Figures 5 and 6. However, this
degradation in performance is by no means dramatic. From
Table 2 we see that our NPC is ranked at least 5th in the
majority, and a similar number, of cases in both cases.

6 Conclusions

In this paper we have described how NPCs can be created
in a logical and easy manner for a complex interactive com-
puter game. This approach regards the choice of action
that an NPC makes as a classification problem and, there-
fore, uses decision trees rather that traditional finite state
machines. Decision trees have many advantages. Firstly,
they are easy to build and apply, particularly since many
fine tools for generating them are available to use in an off-
the-shelf fashion. Secondly, they allow the game developer
to shift his focus from developing sophisticated state transi-
tions to only building a number of implementations of sim-

ple actions that a game character needs to perform. Decision
tree classification can be used to link these states together
in a way that we have shown results in competitive games
characters. This latter point has the potential to save a game
developer significant amounts of debugging, that goes with
the territory of building finite state machines. Therefore, we
have outlined a method of creating game character AI that is
easy to incorporate as well as being extremely lightweight
on resources, therefore having the potential to be applied in
real world reactive gaming development contexts.

This method also provides for a form of character “per-
sonality”. This essentially means that a developer can have
some control over the personality that a character can have.
For example, if a developer would like to develop a very
aggressive character, i.e. one that always attacks regardless
of its health or other statistics, this can be assisted by pro-
viding very aggressive responses to the scenarios presented
on the questionnaire described earlier. Conversely, if the
developer wanted to create a smarter more cautious charac-
ter they might prioritize to keep health and armour statistics
high. This situation could arise in a team-based game where
there is a “medic” character who visits the other players on
the team providing health upgrades, etc. It is important that
this character survives for as long as possible to aid the oth-
ers, so they can focus on achieving the objective of their
mission.

108 CIG'05 (4-6 April 2005)



It should also be mentioned that this system is easily
extendable in that to add new behaviours to the system
the games programmer simply has to write new behaviour
states, for example a retreat tactic. This new tactic can then
be included in the questionnaire used to generate the train-
ing set for the decision tree, through which it is available for
inclusion in the NPCs generated using our approach. It is
expected that with a larger number of states available than
the ones which we created (simply for experimental pur-
poses) much more complex behaviours can be achieved.

We would like to investigate how our approach might
be extended to the task of controlling a team of characters.
The key idea is that each character would behave similarly
to the one outlined in this paper except all characters would
be governed by a “commander” decision tree which would
determine how they behave as a group. For example, the
team’s task might be to “capture the flag” of an opponent at
a specified location. The commander tree initially informs
the characters that they must capture the flag (their goal).
However, the commander may also determine roles for the
individual characters so that they can achieve this goal effi-
ciently. For example, it may tell one character to flank the
enemy flag, another character to run towards the enemy to
create a distraction while a third character advances unno-
ticed to capture the flag. Inevitably some of these characters
may encounter resistance, therefore they might communi-
cate this to the commander who might then determine from
its decision tree that the next course of action might be for
all characters to retreat or that others should come to the aid
of some other individual.

Finally, the ultimate goal is to build these techniques into
a high level visualization tool and development environment
that developers can use to build and modify decision tree-
based NPCs. We believe that the techniques we have pre-
sented here are applicable to various other genre of games,
beyond the one focused on in this paper.

7 Acknowledgements

This research is funded by Enterprise Ireland under their
Basic Research Grant Scheme (Grant Number SC/02/289).
We would also like to thank Ger Lawlor of Kapooki Games,
Ireland, for providing us with useful feedback and com-
ments.

Bibliography

[1] M. Bain and C. Sammut. A Framework for Be-
havioural Cloning.Machine Intelligence, 5, 1995.

[2] E.W. Dijkstra. A note on two problems in connec-
tion with graphs.Numerische Mathematik, 1:269–271,
1959.

[3] ESA. Entertainment software association.
http://www.theesa.com.

[4] K. Forbus, J. Mahoney, and K. Dill. How qualitative
reasoning can improve strategy game AIs.IEEE Intel-
ligent Systems, 17(4):25–30, 2002.

[5] D. Fu, S. Henke, and J. Orkin, editors.Challenges in
Game Artificial Intelligence. AAAI Press, July 2004.
Papers from the AAAI Workshop.

[6] B. Geisler. Integrated machine learning for behaviour
modeling in video games. In Dan Fu, Stottler Henke,
and Jeff Orkin, editors,Proceedings of the AAAI-2004
Workshop on Challenges in Game Artificial Intelli-
gence, pages 54–62. AAAI Press, 2004.

[7] Epic Games Inc. Unreal Tournament, 1999.
http://www.unrealtournament.com.

[8] J. Laird and M. van Lent. Interactive Computer
Games: Human-Level AI’s Killer Application. AI
Magazine, 22(2):15–25, 2001.

[9] A. Marshall, R. Rozich, J. Sims, and J. Vaglia. Unreal
Tournament Java Bot.
http://sourceforge.net/projects/utBot/.

[10] T. Mitchell. Decision tree learning. InMachine Learn-
ing, chapter 3, pages 52–80. McGraw Hill, 1997.

[11] C. Moyer. How Intelligent is a Game Bot, Anyway?
http://www.tcnj.edu/ games/papers/Moyer.html
(online paper).

[12] A. Nareyek. AI in computer games.ACM Queue,
1(10):58–65, 2004.

[13] J.R. Quinlan. Induction of decision trees.Machine
Learning, 1(1):81–106, 1986.

[14] C. Sammut. Acquiring expert knowledge by learning
from recorded behaviours. InJapanese Knowledge
Aquisition Workshop, pages 129–144, 1992.

[15] C. Sammut. Automatic construction of reactive con-
trol systems using symbolic machine learning.The
Knowledge Engineering Review, 11(1):27–42, 1996.

[16] D. Sinclair. Using example-based reasoning for selec-
tive move generation in two player adversarial games.
In Proceedings of EWCBR, LNAI 1488, pages 126–
135, 1998.

[17] S.J.J. Smith, D.S. Nau, and T. Throop. Success in
spades: Using AI planning techniques to win the
world championship of computer bridge. InProceed-
ings of AAAI/IAAI, pages 1079–1086, 1998.

[18] ISI University Of Southern California. Gamebot API.
http://www.planetunreal.com/gamebots/index.html.

[19] P.E. Utgoff, N.C. Berkman, and J.A. Clouse. Deci-
sion tree induction based on efficient tree restructur-
ing. Machine Learning, 29:5–44, 1997.

[20] M. van Lent and J. Laird. Developing an artificial in-
telligence engine. InGame Developers Conference,
pages 577–588, 1999.109 CIG'05 (4-6 April 2005)



Adaptive Strategies of MTDAdaptive Strategies of MTDAdaptive Strategies of MTDAdaptive Strategies of MTD----f for Actual Gamesf for Actual Gamesf for Actual Gamesf for Actual Games    

 

Kazutomo SHIBAHARA          Nobuo INUI          Yoshiyuki KOTANI 
Tokyo University of Agriculture and Technology 

k-shiba@fairy.ei.tuat.ac.jp             nobu@cc.tuat.ac.jp           kotani@cc.tuat.ac.jp 

 

 

Abstract- MTD algorithm developed by Plaat is a variation 

of SSS* which uses the depth-first strategy to resolve the 

storage problem coming from the best-first strategy. Since 

MTD algorithm is based on the zero window search 

algorithm, the initial range of the searching windows plays 

an important role in the performance. In this paper, we 

show some basic experimental results of MTD algorithm. 

From considerations of the results, the performance of 

MTD algorithm is expected to be improved by the 

reduction of the number of times that zero window 

procedure is called. Then we propose two variations of 

MTD algorithm. Our purpose is the reduction of searching 

nodes by the setting of initial window ranges and the way 

of narrowing the range in the search. Experimental results 

show 6 percents improvement of searching nodes against 

MTD-f algorithm. 

 

1. Introduction 

In the current state of art, the fast game-tree searching 

algorithm is essential for the development of strong 

game-playing systems. Though, efficient algorithms like 

PN searching algorithm were developed for ending games, 

there are not efficient algorithms over alpha-beta method 

essentially for middle games. The best-first searching 

algorithms like SSS* are theoretically efficient, though the 

storage problem remains. The storage problem comes from 

the selection of an optimal successor among all nodes on 

the current searching tree. MTD algorithm [1][4] was 

developed for overcoming this problem. MTD algorithm 

uses zero window searching method [10] repeatedly. 

Concretely, MTD algorithm goes to find the optimal 

solution from a range of evaluation values specified before 

the execution of the algorithm. Zero window search is an 

alpha-beta searching algorithm which windows, defined by 

the alpha value and the beta value, is narrow enough to get 

the evaluation value with the reasonably short time. MTD 

algorithm was experimented for several games like checker, 

othello and chess, and showed better results than the 

traditional algorithms such as Nega-Scout method. 

  In this paper, we apply the MTD algorithm to game trees 

which are randomly generated or extracted from SHOGI 

games. The section 2 describes several variations of MTD 

algorithm. In the section 3, we argue the performance of 

MTD algorithms for random-generated game-trees. We 

propose the new variations of MTD algorithm, MTD-f-step 

and MTD-f-alpha-beta, which are developed for the 

reduction of total searching nodes, in the section 4 and 

show some experimental results in the section 5. We make 

a discussion of our method in the section 6 and make a 

conclusion in the section 7. 

 

2. Various Variations of MTD 

MTD algorithm extends “zero window alpha-beta 

algorithm” named by Pearl to finding optimal solutions. 

Fundamentally, zero window algorithm judges whether the 

minimax value of a subtree is in the window specified by 

the alpha and the beta value or not. The zero window 

searching algorithm is usually called NULL window 

searching algorithm. The purpose of game tree searching is 

usually to find the minimax value of a game-tree to 

evaluate the current position. MTD algorithm goes to find 

the minimax value of a whole game tree by narrowing an 

existing range of the true mini-max value. While searching 

by MTD algorithm, there are many subtrees which are a 

part of a whole game-tree and are possible to be duplicated 

each other. To avoid generating the same subtrees, a 

transposition table is used to judge whether a node is 

checked or not previously.  

  There are two parameters in MTD, which affect the 

performance: 

 

� A searching range which is set initially 

We expect that the true minimax value exists in 

this range. 

� A way of re-setting a searching range after an 

execution of zero window searching 

 

The paper [1] has shown the several possibilities as 

110 CIG'05 (4-6 April 2005)



described below: 

 

(a) MTD+infinity 

In MTD+infinity, an initial searching range is [-infinity, 

+infinity]. The upper bound of the range is used to search 

zero window algorithm. After the execution of the zero 

windows algorithm, the upper bound of the range is 

rewritten by returned value of zero window algorithm until 

the true minimax value is found. MTD+infinity is 

equivalent to SSS* [13]. 

 

(b) MTD-infinity 

In MTD-infinity, an initial searching region is [-infinity, 

+infinity] as same as MTD+infinity. The different point of 

MTD-infinity against MTD+infinity is that the lower 

bound of the range is rewritten after the execution of zero 

window algorithm. By this, the behavior of MTD-infinity 

is quite different from MTD+infinity. Simply speaking, 

MTD-infinity expands all MIN nodes (nodes for the 

opponent player) and a MAX node (self nodes) included in 

a game tree against MTD+infinity expands all MAX nodes 

and a MIN node. So when the search depth is odd, there 

are few nodes expanded by MTD-infinity. 

 

(c) MTD-f 

In MTD-f, an initial searching range is [-infinity, f] or [f, 

+infinity], where “f” approximates the true minimax value. 

MTD-f algorithm changes the region by the result of zero 

window algorithm. When the true minimax value is over 

“f”, the upper bound is rewritten as same as MTD+infinity 

and when the true minimax value is under “f”, the lower 

bound is rewritten as same as MTD-infinity. The range is 

expected to be set near the true minimax value in both 

cases. 

 

(d) Other MTDs 

Other models like MTD-bi, MTD-step and MTD-best 

have been proposed in [1]. A re-set value is an average 

value of the upper bound and the lower bound in MTD-bi. 

The true minimax value is searched in a binary search 

method in this case. In MTD-step, an initial range is 

[-infinity, +infinity] and the upper bound is rewritten by the 

value calculated by the subtraction of the fix value from 

the upper bound. In this case, the range is expected to be 

changed more rapid than other methods. MTD-best only 

explores the lower bound, not the true minimax value. 

MTD-best is possible to find the lower bound faster than 

the other method, since the subtree generated while the 

execution become small. But there is a risk to fail to find 

the true minimax value. 

   MTD-f is shown as the best method among the 

variation of MTD algorithm in [1]. So we try to improve 

MTD-f in this paper. 

 

3.  Preliminary Experiments of MTD-f for a Random 

Game Tree 

Before considering improvement of MTD-f, we 

investigated the performance of it. 

 

3.1. Experiment Set-up 

In our preliminary experiment, we compare MTD-f 

algorithm with NegaScout algorithm [12] and alpha-beta 

algorithm for 500 randomly generated trees of the fixed 

depth. We made the tree that is similar to actual game tree. 

Concretely, random numbers are first allocated to all nodes. 

Then, the evaluation value of the leaf node allocates the 

total of random numbers of ancestor's nodes. As a result, 

the tendency to the evaluation value of the leaves becomes 

congruent with that of actual game trees. The depth (D) is 

varied from 3 to 6 and neither the search extension nor the 

iterative deepening is introduced to the experimental 

systems. The initial value “f” of MTD-f is determined by 

the result of the shallow alpha-beta search (the depth of 

searching is D-2).  

 

3.2. Experimental Results 

The fig. 1 shows the relation of the search depth and the 

total number of search nodes. 
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Fig.1 The relation between tree depth and the number of 

search nodes 

 

  MTD-f showed higher performance than Nega-Scout 
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and alpha-beta algorithm. Moreover, in the execution time 

in the depth 6, MTD was 1.8 times as fast as Nega-Scout. 

Since the cost of evaluating positions cannot be ignored in 

actual games, MTD-f method would show the performance 

advantage clearly.  

 The number of times that zero window algorithm is called 

is 4 in average. Since, calling zero window algorithm is 

required twice at first, our experimental results means that 

MTD-f is very efficient for the random tree searching. 

 The minimum tree is defined as a game tree such that all 

the first successor is the best among brother successors. In 

this case, alpha-beta algorithm works well. The table 1 

shows the number of nodes searched for the minimum 

trees in this experiment. 

   

Table 1.  The Number of Searched Nodes the Minimum Tree 

depth MTD’s nodes NS’s nodes 

MTD’s 

time(s) 

NS’s 

time(s) 

5 135201 135196 0.11 0.093

6 385189 385182 0.313 0.281

7 6761030 6759788 2.532 2.343

8 19280065 19253820 12.875 12.641

9 338319068 337771768 123.813 117.922

 

We cannot find the difference between MTD-f and 

Nega-Scout from the table 1. This is because MTD-f 

algorithm only searches the minimum trees to find the 

solutions. The number of nodes searched for the minimum 

trees are increased for MTD-f algorithm, since the 

duplicate nodes must be searched at the first two searches 

to judge whether the true minimax value is over “f” or 

under “f”. MTD-f is the best method in another experiment 

that the best successor is placed the last among all 

successors. From these experimental results, we conclude 

that the number of nodes searched by MTD-f is not larger 

than the other method. So to improve the performance of 

MTD-f is only by the reduction of the times of calling zero 

window algorithm. 

 

4.  Improvement MTD-f 

In actual game tree search, especially SHOGI, the 

number of times of calling zero window algorithm is 

expected to be increased, because of the difference among 

evaluation values for each depth of a game tree. This 

means the shallow search used for determining an initial 

region is not so correct. If an approximate value “f” is 

precious, MTD-f can find true minimax value as same as in 

random-generated trees. Though game trees can be 

designed as the minimum trees, when advanced evaluation 

functions are available [3], it is not realistic in the current 

state of art. So the faster searching algorithms for searching 

nodes and depths are necessary. 

MTD-step mentioned in the section 2 is proposed for 

finding the true minimax value rapidly. However, the 

performance is almost same as MTD+infinity since the 

initial range is set as [-infinity, +infinity]. To improve the 

performance of MTD-f, the combination of MTD-f and 

MTD-step is a natural way for the improvement. In this 

section, we propose a new type of MTD algorithm, which 

we name “MTD-f-step”. In addition, we try the 

combination of MTD-f and the window search algorithm, 

called MTD-f-alpha-beta. 

 

4.1 MTD-f-step 

MTD-step uses the initial range [-infinity, +infinity]. 

Against this, our proposed MTD-f-step uses the initial 

range determined by the first solution of MTD-f. We 

expect the behavior of MTD-f-step is similar to MTD-f by 

this initial range. To use MTD-step, the step size should be 

determined in the next. 

In the MTD-f-step, the step size is varied by the history 

of searching. This method is based on the binary search 

algorithm. Initially, we set the step size as 100 and fix it 

while the true minimax value is in the range. When the true 

minimax value is in the outside of the range, the previous 

narrowing of a range is cancelled and the step size is made 

half (50 in the first time). MTD-step algorithm works in 

MTD-f-step until the step size becomes 0. When the step 

size is 0, MTD-f-step algorithm changes the searching 

strategy to MTD-infinity or MTD+infinity. The 

pseudo-code of MTD-f-step is shown in Fig 2. 

Though MTD-f-step mentioned above is not useful 

when the initial range is estimated preciously, we consider 

that MTD-f-step is efficient for the actual game trees. 

  

4.2 MTD-f-alpha-beta 

In this section, we describe MTD-f-alpha-beta algorithm 

which is the combination of MTD-f-step and the window 

search [11]. Window search algorithms are used in various 

SHOGI programs [2]. In the same way as MTD-f-step with 

the step size 100, the range is narrowed while the true 

minimax value is in the range. The algorithm stops when 

the true minimax value is in the outside of range. Then this 

causes the MTD-f-alpha-beta start the window search, 

which is alpha-beta algorithm with non-infinite alpha and 
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struct move MTD-f-step(){ 

  int UpperBound = +infinity; 

  int LowerBound = -infinity; 

  int f,r,step; 

  struct res Res; 

  // Res.V has minimax value  

  // Res.M has best move; 

   

  step = (stepsize); 

  f = (previous search result or search result with depth-2); 

 

  while(UpperBound != LowerBound){ 

    if(f==LowerBound) r=f+1; else r=f; 

    Res = ZeroWindowSearch(r-1,r); 

    if(Res.V<r) UpperBound = Res.V; 

    else LowerBound = Res.V; 

     

    if(UpperBound != +infinity && 

       LowerBound != -infinity){ 

 step = step / 2; 

 if(step<10) step = 0; 

    } 

 

    if(UpperBound == Res.V) f = Res.V - step; 

    else f = Res.v + step; 

    if(UpperBound < f) f=UpperBound; 

    if(LowerBound > f) f=LowerBound; 

  } 

  return Res.M; 

} 

Figure 2.  Pseudo-code of MTD-f-step 

 

beta values, ranged by the previous range of MTD-f-step. 

Since MTD-f-step algorithm guarantees the existence of 

the true minimax value in the range, the window search 

correct finds the true minimax value. A pseudo-code of 

MTD-f-alpha-beta is shown in Fig 3. 

 

4.3 Consideration for Transposition Table 

In the same way as MTD-bi and MTD-step, the two 

algorithms we proposed above are efficient, if a 

transposition table holds the lower and the upper bounds of 

positions. We implement our transposition table with one 

bound for the technical reason. Actually, the true minimax 

value is introduced if our transposition table holds a bound 

under the little sacrifice of the performance. A true value of 

either the upper limit or the lower limit is included in the 

transposition table. Moreover, the result of the newest  

struct move MTD-f-alpha-beta(){ 

  int UpperBound = +infinity; 

  int LowerBound = -infinity; 

  int f,step; 

  struct res Res; 

  // Res.V has minimax value  

  // Res.M has best move; 

   

  step = (stepsize); 

  f = (previous search result or search result with depth-2); 

 

  while(UpperBound == +infinity || 

        LowerBound == -infinity){ 

    Res = ZeroWindowSearch(f-1,f); 

    if(Res.V<f) UpperBound = Res.V; 

    else LowerBound = Res.V; 

 

    if(UpperBound == Res.V) f = Res.V - step; 

    else f = Res.v + step; 

  } 

  Res = alphabeta(LowerBound,UpperBound); 

  return Res.M; 

} 

Figure 3.  Pseudo-code of MTD-f-alpha-beta 

 

search is put until a true value is obtained. The Fig 4 and 5 

show the illustrations of changing “f” values in both 

algorithms. 

 

5. Experiments 

5.1 Experimental Environment 

In this experimentation, we apply the variations of MTD 

algorithm proposed the previous section to SHOGI. This 

section describes the experimental environment. 

  The SHOGI system "MATTARI YUCHAN" which we 

have been developing for a few past years is used for 

evaluating our proposed method. The system searches 

game trees, using the alpha-beta method with an iterative 

deepening method and a move ordering, a probabilistic 

extension of the depth of game trees and a singular 

extension method for middle games. But we used the old 

version in this experiment, so the probabilistic extension 

and iterative deepening method were not mounted in the 

system. Opening book is used for the beginning of games 

and PN search is used for endgames. The evaluation 

functions which evaluate positions of the middle games 

have several factors like the value of pieces and the 

positional values of each piece. To find the effect of our 
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proposed method, we fundamentally use the evaluation 

function and the search extension which controls the depth 

of game tree by the kind of move like taking pieces, check 

move and so on. 

 

 

Figure 4.  Convergence transitions of MTD-f-step 

 

 

Figure 5.  Convergence transitions of MTD-f-αβ 

 

MTD algorithms yield the best moves for given 

positions in the meaning of alpha-beta method. So the 

selected moves have to be the same exactly. However, we 

observed the different moves between the variations of 

MTD algorithms and alpha-beta method. This is because of 

the information held on the transposition table. Usually the 

size of game tree generated by MTD method is smaller 

than that generated by alpha-beta method. In this case, the 

positional information on the transposition table generated 

by alpha-beta method is informative. This phenomenon is 

caused by the probabilistic extension. 

 In our experiment, we compare the variation of MTD 

method with Nega-Scout method by the number of search 

nodes, search time, and the number of times of calling zero 

window algorithm. In addition, we evaluate these methods 

by games trying 255 games. Each game is done within 10 

minutes. The searching depth is limited to 15 for the 

normal positions and 25 for the capturing positions. 

Forward pruning that limits the number of candidate hands 

according to depth is used for the search. Moreover, 

important moves such as the checkmate are adjusted to 

search deeply. 

  MTD+infinity, MTD-infinity, MTD-f, MTD-f-step, and 

MTD-f-alpha-beta were evaluated. The evaluation value of 

a best move in previous search result was used as an 

approximate value “f”. Moreover, MTD-f-alpha-beta used 

Nega-Scout search as the window search. An error 

distribution with an approximate value and a mini-max 

value is shown in Fig. 6.  

 

 

Figure 6.  The error distribution of the approximate value and 

the mini-max value 

 

However, the information concerned with infinitely is 

excluded from this figure. The number of root position is 

2282. The average value of this error distribution is 0.2, 

and standard deviation is 65.0. Here, the value of a pawn in 

the evaluation function is about 20. MTD-f-step is 

expected for an evaluation function with the wide 

distribution of errors, since the next upper or lower bound 

is re-set over a return value of zero window searching. 

SHOGI is a game such that the design of evaluation 
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function is difficult. If it is possible to use an evaluation 

function with the narrow distribution of errors in SHOGI, 

MTD-f solves SHOGI positions within several times of 

calling zero window algorithm [3]. However, such an 

evaluation function generally is not available in SHOGI. 

  For MTD-f-step and MTD-f-alpha-beta, we also 

investigated the effect of the step size. We investigated the 

effect of the initial “f” in MTD-f-step. For the 

MTD-f-alpha-beta we try various step sizes like 100, 50, 

and 25. Since the difference of evaluation values between 

each depth is not ignored in SHOGI endgames, the number 

of times of calling zero window algorithm is expected to 

increase. So we limited the number of zero window 

algorithm to 1000. 

 

5.3 Result of Games 

  The data obtained from games are shown in the table 2. 

Since NegaScout algorithm is the most efficient algorithm 

used in state of the art game tree searching, it is meaningful 

to compare our method with it. The evaluation is done on 

the number of search nodes and the search time for actual 

SHOGI positions. 

 

Table 2.  Performance comparison with MTD+infinity, 

MTD-infinity, MTD-f, MTD-f-step, and MTD-f-alpha-beta 

  

When 

NegaScout's 

is 1 NS MTD  Average 

method AN 

Search 

time 

Nodes 

/s 

Nodes 

/s DBM 

Calls 

zero 

window 

mtd+infinity 1.482 0.849 84165 146990 40 43.32 

mtd-infinity 1.274 0.806 86487 136761 42 32.97 

mtd_f 0.900 0.646 85161 118700 43 12.00 

mtd_s_100 0.914 0.662 84720 117008 33 6.98 

mtd_s_50 0.878 0.634 83069 114937 40 6.50 

mtd_a_100 0.911 0.670 85753 116658 30 2.11 

mtd_a_50 0.872 0.637 83441 114166 48 2.35 

mtd_a_25 0.852 0.629 84135 113983 42 2.81 

In the table 2, “AN” is the number of search nodes, and 

“DBM” is a number which best move of the alpha-beta 

method disagrees with the variations of the MTD method. 

 

The average of number of nodes in NegaScout is about 

34000. MTD-f never returns the same result as the αβ 

search as noted above. DBM is the frequency. Moreover, 

this trial number of times is about 30000. And “mtd_s” is 

MTD-f-step and “mtd_a” means MTD-f-alpha-beta. The 

number of the right-hand side is the step size.  

 We find that the performances of the variations of MTD 

are higher than Nega-Scout. Some methods can search 

more nodes than Nega-Scout. Since MTD searches the 

same node two or more times, this is caused by calling 

position values from the transposition table. 

  For MTD-f-step and MTD-f-alpha-beta, the 

performances differ depending on the step size. As shown 

the table 2, the narrow step size causes better results. 

MTD-f-alpha-beta with the 25 step size shows the best 

performance among experimental algorithms.  

 

6. Discussions 

  Depending on the step size, MTD-f-step and 

MTD-f-alpha-beta search game-trees faster than MTD-f. 

This is considered to be related to the number of times of 

calling zero window algorithm. Although the number of 

the times in MTD-f is 12 times on an average, MTD-f-step 

calls it 7 times. Therefore, MTD-f-step and 

MTD-f-alpha-beta uses the values of “f” effectively. 

  For MTD-f-alpha-beta, when the number of times of 

calling zero window algorithm increases, the better 

performance is obtained, though the too much calls of zero 

window algorithm is not better. It is expected to be optimal 

from this discussion that the number of calling zero 

window algorithm is three. 

  Experimental results show that our methods improve the 

performance of MTD-f in SHOGI positions included little 

errors of estimating the true minimax value, as shown in 

the figure 5. We expect the drastic results, when the 

evaluation function is not useful for estimating values of 

future positions. 

  When we experimented deeper depth search shown in 

the preliminary experiment, there were no difference of 

performance between MTD-f and Nega-Scout. This can be 

the same for MTD-f-αβ. As the reason why the speed of 

search got worse, we start with an assumption that the 

overhead by the increase of the number of times of MT 

becomes severe because of deeper search.  

The table 3 shows the total number of search nodes and 

the total search time at the depth 6 and 7 random trees with 

forward pruning setup of SHOGI system. In the depth 6, 

the search speed of MTD is about 1.6 times for the 

Nega-Scout. On the other hand, it is about 1.8 times of the 

search speed when the forward pruning method is not 

introduced. From this, the forward pruning made the 

performance of MTD worse. In addition, since search 

extension is used in the SHOGI system, the number of 

successors decreases nodes in the deep depth of game trees. 
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So we consider that MTD method is not suitable for a 

system with strong forward pruning strategies. 

 

7. Conclusions 

 We proposed in this paper the new variation of MTD, 

MTD-f-step and MTD-f-alpha-beta, which are for the 

reduction of the searching nodes by the setting of the initial 

range and the way of re-set ranges after zero window 

algorithm. Our experiment is done for random-generated 

game trees and actual SHOGI game trees. We confirmed 

the improvement of our proposed method against the 

original MTD-f method.  

 As future works, the design of a transposition table for 

MTD-step is remained.  

 

Table 3.  The total number of search nodes and the total search 

time for the random tree with forward pruning 

  Total number of search nodes 

depth MTD NegaScout αβ 

6 343739537 628103273 1069207656 

7 1816564793 2806926235 5916587602 

  Total search time(s)   

depth MTD NegaScout αβ 

6 325.6 528.57 829.17 

7 1489.67 2319.56 4371.32 
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Abstract- Monte Carlo simulations have been success-
fully used in classic turn–based games such as backgam-
mon, bridge, poker, and Scrabble. In this paper, we ap-
ply the ideas to the problem of planning in games with
imperfect information, stochasticity, and simultaneous
moves. The domain we consider is real–time strategy
games. We present a framework — MCPlan — for Monte
Carlo planning, identify its performance parameters, and
analyze the results of an implementation in a capture–
the–flag game.

1 Introduction

Real–time strategy (RTS) games are popular commercial
computer games involving a fight for domination between
opposing armies. In these games, there is no notion of
whose turn it is to move. Both players move at their own
pace, even simultaneously; delays in moving will be quickly
punished. Each side tries to acquire resources, use them
to gain information and armaments, engage the enemy, and
battle for victory. The games are typically fast–paced and
involve both short–term and long–term strategies. The games
are well–suited to Internet play. Many players prefer to play
against human opponents over the Internet, rather than play
against the usually limited abilities of the computer artificial
intelligence (AI). Popular examples of RTS games include
WarCraft [1] and Age of Empires [2].

The AI in RTS games is usually achieved using script-
ing. Over the past few years, scripting has become the
most popular representation used for expressing character
behaviours. Scripting, however, has serious limitations. It
requires human experts to define, write, and test the scripts
comprised of 10s, even 100s, of thousands of lines of code.
Further, the AI can only do what it is scripted to do, result-
ing in predictable and inflexible play. The general level of
play of RTS AI players is weak. To enable the AI to be com-
petitive, game designers often give AI access to information
that it should not have or increase its resource flow.

Success in RTS games revolves around planning in var-
ious areas such as resource allocation, force deployment,
and battle tactics. The planning tasks in an RTS game can
be divided into three areas, representing different levels of
abstraction:

1. Unit control (unit micromanagement). At the low-
est level is the individual unit. It has a default be-
haviour, but the player can override it. For example, a
player may micromanage units to improve their per-
formance in battle by focusing fire to kill off individ-
ual enemy units.

2. Tactical planning (mid–level combat planning). At
this level, the player decides how to conduct an at-
tack on an enemy position. For example, it may be

possible to gain an advantage by splitting up into two
groups and simultaneously attacking from two sides.

3. Strategic planning (high–level planning). This in-
cludes common high–level decisions such as when to
build up the army, what units to build, when to attack,
what to upgrade, and how to expand into areas with
more resources.

In addition, there are other non–strategic planning issues
that need to be addressed, such as pathfinding.

Unit control problems can often be handled by simple re-
active systems implemented as list of rules, finite state ma-
chines, neural networks, etc. Tactical and strategic planning
problems are more complicated. They are real–time plan-
ning problems with many states to consider in the absence
of perfect information. It is apparent that current commer-
cial RTS games deal with this in a simple manner. All of the
AI’s strategies in the major RTS games are scripted. While
the scripts can be quite complex, with many random events
and conditional statements, all the strategies are still prede-
fined beforehand. This limitation results in AI players that
are predictable and thus easily beaten. For casual players,
this might be fun at first, but there is no re–playability. It is
just no fun to beat an AI player the same way over and over
again.

In RTS games, there are often hundreds of units that can
all move at the same time. RTS games are fast–paced, and
the computer player must be able to make decisions at the
same speed as a human player. At any point in time, there
are many possible actions that can be taken. Human play-
ers are able to quickly decide which actions are reasonable,
but current state–of–the–art AI players cannot. In addition,
players are faced with imperfect information, i.e. partial ob-
servability of the game state. For instance, the location of
enemy forces is initially unknown. It is up to the players
to scout to gather intelligence, and act accordingly based
on their available information. This is unlike the classical
games such as chess, where the state is always completely
known to both players. For these reasons, heuristic search
by itself is not enough to reason effectively in an RTS game.
For planning purposes, it is simply infeasible for the AI to
think in terms of individual actions. Is there a better way?

Monte Carlo simulations have the advantage of simplic-
ity, reducing the amount of expert knowledge required to
achieve high performance. They have been successfully
used in games with imperfect information and/or stochastic
elements such as backgammon [14], bridge [9], poker [5],
and Scrabble [11]. Recently, this approach has been tried
in two-player perfect-information games with some success
(Go [6]). A framework for using simulations in a game–
playing program is discussed in [10], and the subtleties of
getting the best results with the smallest sample sizes is dis-
cussed in [12].
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Can Monte Carlo simulations be used for planning in
RTS games? If so, then the advantages are obvious. Using
simulations would reduce the reliance on scripting, result-
ing in substantial savings in program development time. As
well, the simulations will have no or limited expert bias, al-
lowing the simulations to explore possibilities not covered
by expert scripting. The result could be a stronger AI for
RTS games and a richer gaming experience.

The contributions in this work are as follows:

1. Design of a Monte Carlo search engine for planning
(MCPlan) in domains with imperfect information, sto-
chasticity, and simultaneous moves.

2. Implementation of the MCPlan algorithm for decision
making in a real–time capture–the–flag game.

3. Characterization of MCPlan performance parameters.

Section 2 describes the MCPlan algorithm and the param-
eters that influence its performance. Section 3 discusses
the implementation of MCPlan in a real–time strategy game
built on top of the free ORTS RTS game engine [7]. Sec-
tion 4 presents experimental results. We finish the paper by
conclusions and remarks on future work in this area.

2 Monte Carlo Planning

Adversarial planning in imperfect information games with a
large number of move alternatives, stochasticity, and many
hidden state attributes is very challenging. Further compli-
cating the issue is that many games are played with more
than two players. As a result, applying traditional game–
tree search algorithms designed for perfect information games
that act on the raw state representation is infeasible. One
way to make look–ahead search work is to abstract the state
space. An approach to deal with imperfect information sce-
narios is sampling. The technique we present here combines
both ideas.

Monte Carlo sampling has been effective in stochastic
and imperfect information games with alternating moves,
such as bridge, poker, and Scrabble. Here, we want to apply
this technique to the problem of high–level strategic plan-
ning in RTS games. Applying it to lower level planning is
possible as well. The impact of individual moves — such
as a unit moving one square — requires a very deep search
to see the consequences of the moves. Doing the search at a
higher level of abstraction, where the execution of plan be-
comes a single “move”, allows the program to envision the
consequences of actions much further into the future (see
Section 2.2).

Monte Carlo planning (MCPlan) does a stochastic sam-
ple of the possible plans for a player and selects the plan to
execute that has the highest statistical outcome. The advan-
tage of this approach is that it reduces the amount of expert–
defined knowledge required. For example, Full Spectrum
Command [3] requires extensive military–strategist–defined
plans that the program uses — essentially forming an expert
system. Each plan has to be fully specified, including iden-
tifying the scenarios when the plan is applicable, anticipat-
ing all possible opponent reactions, and the consequences

of those reactions. It is difficult to get an expert’s time to
define the plans in precise detail, and more difficult to in-
vest the time to analyze them to identify weaknesses, omis-
sions, exceptions, etc. MCPlan assumes the existence of a
few basic plans (e.g. explore, attack, move towards a goal)
which are application dependent, and then uses sampling to
evaluate them. The search can sample the plans with differ-
ent parameters (e.g. where to attack, where to explore) and
sequences of plans—for both sides. In this section, we de-
scribe MCPlan in an application–independent manner, leav-
ing the application–dependent nuances of the algorithm to
Section 3.

2.1 Top–Level Search

The basic high–level view of MCPlan is as follows, with a
more formal description given in Figure 1:

1. Randomly generate a plan for the AI player.

2. Simulate randomly–generated plans for both players
and execute them, evaluate the game state at the end
of the sequence, and compute how well the selected
plan seems to be doing (evaluate plan, Section
2.3).

3. Record the result of executing the plan for the AI
player.

4. Repeat the above as often as possible given the re-
source constraints.

5. Choose the plan for the AI player that has the best
statistical result.

The variables and routines used in Figure 1 are described in
subsequent subsections.

The top–level of the algorithm is a search through the
generated plans, looking for the one with the highest evalu-
ation. The problem then becomes how best to generate and
evaluate the plans.

2.2 Abstraction

Abstraction is necessary to produce a useful result and main-
tain an acceptable run–time. Although this work is dis-
cussed in the context of high–level plans, the implementor
is free to choose an appropriate level of abstraction, even
at the level of unit control, if desired. However, since MC-
Plan relies on the power of statistical sampling, many data
points are usually needed to get a valid result. For best per-
formance, it is important that the abstraction level be chosen
to make the searches fast and useful.

In Figure 1, State represents an abstraction of the cur-
rent game state. The level of abstraction is arbitrary, and in
simple domains it may even be the full state.

2.3 Evaluation Function

As in traditional game–playing algorithms, at the end of a
move sequence an evaluation function is called to assess
how good or bad the state is for the side to move. This
typically requires expert knowledge although the weight or
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// Plan: contains details about the plan
// For example, a list of actions to take
class Plan {

// returns true if no actions remaining in the plan
bool is_completed();
// [...] (domain specific)

};

// State: AI’s knowledge of the state of the world
class State {

// return evaluation of the current state
// (domain specific implementation)
float eval();
// [...] (domain specific)

};

// MCPlan Top-Level
Plan MCPlan(

State state, // current state of the world
int num_plans, // number of plans to evaluate
int num_sims, // simulations per evaluation
int max_t) // max time steps per simulation

{
float best_val = -infinity;
Plan best_plan;

for (int i = 0; i < num_plans; i++) {
// generate plan using (domain-specific) plan generator
Plan plan = generate_plan(state);
// evaluate using the number of simulations specified
float val = evaluate_plan(plan, state, num_sims, max_t);
// keep plan with the best evaluation
if (val > best_val) {

best_plan = plan;
best_val = val;

}
}
return best_plan;

}

Figure 1: MCPlan: top–level search

importance of each piece of expert knowledge can be eval-
uated automatically, for example by using temporal differ-
ence learning [13]. For most application domains, including
RTS games, there is no easy way around this dependence
on an expert. Note that, unlike scripted AI which requires a
precise specification and extensive testing to identify omis-
sions, evaluation functions need only give a heuristic value.

2.4 Plan Evaluation

Before we describe the search algorithm in more detail, let
us define the key search parameters. These are variables that
may be adjusted to modify the quality of the search, as well
as the run–time required. The meaning of these parameters
will become more clear as the search algorithm is described.

1. max t: the maximum time, in steps or moves, to look
ahead when performing the simulation–based evalua-
tion.

2. num plans: the total number of plans to randomly
generate and evaluate at the top–level.

3. num sims: the number of move sequences to be con-
sidered for each plan.

The evaluate plan() function is shown in Figure 2.
Each plan is evaluated num sims times. A plan is eval-
uated using simulate plan() by executing a series of
plans for both sides and then using an evaluation function
to assess the resulting state. In the pseudo–code given, the
value of a plan is the minimum of the sample values (a pes-
simistic assessment). Other metrics are possible, such as

// Evaluate Plan Function. Takes minimum of num_sims
// plan simulations (pessimistic)
float evaluate_plan(Plan plan, State state,

int num_sims, int max_t)
{
float min = infinity;
for (int i = 0; i < num_sims; i++) {

float val = simulate_plan(plan, state, max_t);
if (val < min) min = val;

}
return min;

}

Figure 2: MCPlan: plan evaluation

// Simulate Plan. Perform a single simulation with the given
// plan and return the resulting state’s evaluation.
float simulate_plan(Plan plan, State state, int max_t)
{
State bd_think = state;
Plan plan_think = plan;

// generate a plan for the opponent (domain specific)
Plan opponent_plan = generate_opponent_plan(state);

while (true) {
// simulate a single time step in the world
// (domain specific)
simulate_plan_step(plan_think, opponent_plan, bd_think);

// check if maximum time steps has been simulated
if (--max_t <= 0) break;

// check if plan has been completed
if (plan_think.is_completed()) break;

// check if the opponent’s plan has been completed
if (opponent_plan.is_completed()) {

// if so, generate a new opponent plan
opponent_plan = generate_opponent_plan(bd_think);

}
}
return bd_think.eval();

}

Figure 3: MCPlan: plan simulation

taking the maximum over all samples, the average of the
samples, or a function of the distribution of values. Also, in
the presented formulation of MCPlan information about the
plan chosen by the player is implicitly leaking to the oppo-
nent. This turns a possible imperfect information scenario
into one of perfect information leading to known problems
[8]. We will address this problem in future work. Here,
we restrict ourselves to a simple form which nevertheless
may be adequate for many applications. Each data point
for a plan evaluation is done using simulate plan().
Both sides select a plan and then executes it. This is re-
peated until time runs out. The resulting state of the game
is assessed using the evaluation function. Note that oppo-
nent plans can cause interaction; how this is handled is ap-
plication dependent and it is discussed in Section 3. The
evaluate plan() function calls simulate plan()
num sims times, and takes the minimum value. Figure 3
shows the simulate plan() function.

2.5 Comments

MCPlan is similar to the stochastic sampling techniques used
for other games. The fundamental difference — besides
obvious semantic ones such as not requiring players to al-
ternate moves — is that the “moves” can be executed at
an abstract level. Abstraction is key to getting the depths
of search needed to have long–range vision in RTS games.
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MCPlan lessens the dependence on expert–defined knowl-
edge and scripts. Expert knowledge is needed in two places:

1. Plan definitions. A plan can be as simple or as detailed
as one wants. In our experience, using plan building blocks
is an effective technique. Detailed plans are usually com-
posed of a series of repeated high–level actions. By giving
MCPlan these actions and allowing it to combine them in
random ways, the program can exhibit subtle and creative
behaviour.

2. Evaluation function. Constructing accurate evaluation
functions for non–trivial domains requires expert knowl-
edge. In the presence of look–ahead search, however, the
quality requirements can often be lessened by considering
the well–known trade–off between search and knowledge.
A good example is chess evaluation functions, which —
combined with deep search — lead to World–class perfor-
mance, in spite of the fact that the used features have been
created by programmers rather than chess grandmasters. Be-
cause RTS games have much in common with classical games,
we expect a similar relationship between evaluation quality
and search effort in this domain, thus mitigating the depen-
dency on domain experts.

3 Capture the Flag

Commercial RTS games are complex. There are many dif-
ferent variations, some involving many RTS game elements
such as resource gathering, technology trees, and more. To
more thoroughly evaluate our RTS planners, we limit our
tests to a single RTS scenario, capture–the–flag (CTF). Our
CTF game takes place on a symmetric map, with vertical
and horizontal walls. The two forces start at opposing ends
of the map. Initially the enemy locations are unknown. The
enemy flag’s location is known — otherwise much initial
exploration would be required. This is consistent with most
commercial RTS games, where the same maps are used re-
peatedly, and the possible enemy locations are known in ad-
vance.

The rules of our CTF game are relatively simple. Each
side starts with a small fixed number of units, located near
a home base (post), and a flag. Units have a range in which
they can attack an opponent. A successful attack reduces the
nearby enemy unit’s hit–points. When a unit’s hit–points
drops to zero, the unit is “dead” and removed from the game.

The objective of CTF is to capture the opponent’s flag.
Each unit has the ability to pick–up or drop the enemy flag.
To win the game, the flag must be picked up, carried, and
dropped at the friendly home base. If a unit is killed while
carrying the flag, the flag is dropped at the unit’s location,
and can later be picked up by another unit. A unit cannot
pick up its own side’s flag at any time.

Terrain is very important to CTF. For most of our tests
we keep it simple and symmetric to avoid bias towards ei-
ther side. However, even with more complex terrains, while
there may be a bias towards one side, it is expected that
planners that perform better on symmetric maps will also
perform better on complex maps. While CTF does not cap-
ture all the elements involved in a full RTS game — such

as economy and army–building — it is a good scenario for
testing planning algorithms. Many of the features of full
RTS games are present in CTF — including scouting and
base defense.

Before we discuss how we applied MCPlan to a CTF
game we first describe the simulation software we used.

3.1 ORTS

ORTS (Open RTS) is a free software RTS game engine which
is being developed at the University of Alberta and licensed
under the GNU General Public License. The goal of the
project is to provide AI researchers and hobbyists with an
RTS game engine that simplifies the development of AI sys-
tems in the popular commercial RTS game domain. ORTS
implements a server–client architecture that makes it im-
mune to map–revealing client hacks which are a widespread
plague in commercial RTS games. ORTS allows users to
connect whatever client software they wish — ranging from
distributed RTS game AI to feature–rich graphics clients.
The CTF game which we use for studying MCPlan per-
formance has been implemented within the ORTS frame-
work. For more information on the status and development
of ORTS we refer readers to [4][7].

3.2 CTF Game State Abstraction

In the state representation, the map is broken up into tiles
(representing a set of possible unit locations). Units are lo-
cated on these tiles, and their positions are reasoned about
in terms of tiles, rather than exact game coordinates. The
state also contains information about the units’ hit–points,
as well as locations of walls and flags.

3.3 Evaluation Function

We tried to keep our evaluation function simple and ob-
vious, without relying on a lot of expert knowledge. The
evaluation function for our CTF AI has three primary com-
ponents: material, exploration/visibility, and capture/safety.
The first two components are standard to any RTS game.
The third component is specific to our CTF scenario. With-
out it, the AI would have no way to know that it was actually
playing a CTF game, and it would behave as if it was a reg-
ular battle. In each component the difference of the values
for both players is computed. In the following we briefly
give details of the evaluation function.

Material
The most important part of any RTS game is material. In
most cases, the side with the most resources — including
military units, buildings, etc. — is the victor. Thus, maxi-
mizing material advantage is a good sub–goal for any plan-
ning AI. This material can later be converted into a decisive
advantage such as having a big enough army to eliminate the
enemy base. There is a question of how to compare healthy
units to those with low hit–points. For example, while it
may be clear that two units each with 50% health are better
than one unit with 100% health, which would be better, one
unit with 100% health, or two units with 25% health? While
the two units could provide more firepower, they could also
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be more quickly killed by the enemy. There are different
situations where the values of these units may be different.
For our tests, we provide a simple solution: each unit pro-
vides a bonus of

√
0.01× hp. The maximum hp (hit–point)

value is 100. Thus, each live unit has a value of between
0.1 and 1. The value for friendly units is added to our eval-
uation, and enemy units values are subtracted. Taking the
square root prefers states which — for a constant hit–point
total — have a more balanced hit–point distribution.

Exploration and Visibility
When not doing something of immediate importance, such
as fighting, exploring the map is very important. The side
with more information has a definite advantage. Keeping
tabs on the enemy, finding out the lay of the land, and dis-
covering the location of obstacles are all important. The
planner cannot accurately evaluate its plans unless it has a
good knowledge of the terrain and of enemy forces and their
locations. The value of information is reflected by these
evaluation function sub–components:

• Exploration bonus: 0.001× # of explored tiles, and

• Vision bonus: 0.0001× # visible tiles.

Note that the bonus values can be changed or even learned.

Flag Capture and Safety
To win a CTF game, the opponent’s flag has to be captured.
It is important to encourage the program to go after the en-
emy’s flag, while at the same time ensuring that the pro-
gram’s flag remains safe:

• Bonus for being close to enemy flag: +0.1 per tile,

• Bonus for possession of enemy flag: +1.0,

• Bonus for bringing enemy flag closer to our base:
+0.2 per tile, and

• Similar penalties apply if the enemy meets these con-
ditions.

Note that all these heuristic values have been manually tuned.
Machine learning would be a way to more reliably set these
values.

Combining the Components
The simplest thing to do, and what we do right now, is have
constant factors for adding the three components together.
There are exceptions where this is not the best approach.
For example, if we are really close to capturing the enemy
flag, we may choose to ignore the other components, such
as exploration. Such enhancements are left as future work.
In our experiments we give each component equal weight.

Evaluation Function Quality
We can perform experiments to test the effectiveness of our
evaluation function. For example, we could measure the
time it takes to capture the flag if there are no enemy units.
This removes all tactical situations and focuses on testing
that the evaluation function is correctly geared towards cap-
turing the enemy flag. Playing the MCPlan AI against a
completely random AI also provides a good initial test of the
evaluation function. A random evaluation function would
perform on the same level as the random AI, whereas a bet-
ter evaluation function would win more often.

3.4 Plan Generation

There are two types of plan generation used in this project:
random and scripted. The random plans are simple and are
described below. The scripted plans are slightly more so-
phisticated, but still quite simple. Only the random plans
are used in this implementation, as we do not have many
scripted plans implemented.

Random Plans
A random plan consists of assigning a random nearby des-
tination for each unit to move to. That is, for each unit, a
nearby unoccupied destination tile is selected. The maxi-
mum distance to the destination is determined by the max -
dist variable. The A* pathfinding algorithm is then used
to find a path for each unit. Note that collisions are pos-
sible between the units, but are ignored for planning pur-
poses. We did not implement any group–based pathfinding,
although it is a possible enhancement.

Scripted Plans
We have implemented a small number of action scripts which
provide test opponents for the MCPlan algorithm. As pre-
viously mentioned, scripted plans have many disadvantages
— most notably, the need to have an expert define, refine
and test them. However, there is the possibility that given
a set of scripted plans, applying the search and simulation
algorithms described in this paper can result in a stronger
player.

3.5 Plan Step Simulation

Simulation must be used because when the planner evalu-
ates an action, the result of that action cannot be perfectly
determined because of hidden enemy units, unknown en-
emy actions, randomized action effects, etc. Also, as our
simulation acts on an abstracted state description, the com-
putation should be much faster. The plan step simulation
function takes the given plans for the friend and enemy sides
and executes one–tile moves for each side. Unit attacks are
then simulated by selecting the nearest opposing unit for
each unit, and reducing its hit–points. The attacks may not
match what would happen in the actual game, due to many
reasons. For example, units may seem to be in range but
actually they are not, due to the abstracted distances. Also,
in some games, the attack damage is random, so the damage
results may not be exactly the same as what will happen in
the game. However, it is expected that with a large enough
value of num evals, the final result should be more statis-
tically accurate.

3.6 Other Issues

In this subsection we discuss some implementation issues
related to developing and testing a search/simulation based
RTS planning algorithm such as MCPlan.

Map Generation
It is clear that in performing the tests, map generation is a
hard problem. To produce an unbiased map, the map should
be completely symmetric. A more complex asymmetric
map could favor one side. In addition, it is possible that
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different types of maps could favour different AI’s. For our
tests we use a simple symmetric map, to avoid most of these
issues. It is expected — and to be confirmed — that on more
complex and on randomly generated maps, the conclusions
we draw from our experiments should still hold.

Server Synchronization
The tests should be run with server synchronization turned
on. This option tells the ORTS server to wait for replies
from both clients before continuing on to the next turn. In
the default mode with synchronization off, the first player to
connect may possibly have an advantage, due to being able
to move while the second player’s process is still initializing
its GUI, etc. The server synchronization option eliminates
this possible source of bias, as well as reducing the random-
ness caused by random network lag.

Interactions and Replanning
As players interact previous planning may quickly become
irrelevant. In many cases, replanning must occur. Not every
interaction should result in replanning. This would result in
too frequent replanning, which would slow down the com-
putation while perhaps not improving the decision quality
much. Instead, only important interactions should result in
replanning. Possible such interactions are: “a unit is de-
stroyed,” “a unit is discovered,” or “a flag is picked up.”
Note that attacks, while important, happen too frequently
and thus should not trigger replanning.

4 Experiments

In this section, we investigate the performance issues of
MCPlan on our CTF game.

4.1 Experimental Design

Each experimental data point consisted of a series of games
between two CTF programs. The experiments were per-
formed on 1.2 GHz PCs with 1 GB of RAM. Note that
because the experiments were synchronized by the ORTS
server the speed of the computer does not affect the results.
Each data point is based on the results of matching two pro-
grams against each other for 200 games. For a given map,
two games are played with the programs playing each side
once. A game ends when a flag is captured, or one side has
all their men eliminated. A point is awarded to the winning
side. Draws are handled depending on the type of draw. If
the game times out and there is no winner, then neither side
gets a point. If both sides achieve victory at exactly the same
time, then both sides get a point. The reported win percent-
age is one side’s points divided by the total points awarded
in that match. In a match with no draws the total points is
equal to the number of games (200).

Maps
Figure 4 shows the maps that have been used in the experi-
ments. Their dimensions are 20 by 20 tiles. By default each
side starts with five men.

Search Parameters
The max dist parameter is the maximum distance that a
unit can move from its current position in a randomly gen-

Figure 4: Maps and unit starting positions used in the ex-
periments: map 1 (upper left): empty terrain (this is the de-
fault), map 2: simple terrain with a couple of walls, map 3:
complex terrain, map 4: complex terrain with dead–ends,
map 5: simple terrain with a bottleneck, map 6: intermedi-
ate complexity.

erated plan. In all these experiments, the max dist pa-
rameter is set to 6 tiles, unless otherwise stated. The unit’s
sight radius is set to 10 tiles, and unit’s attack range is set
to 5 tiles. To reduce the number of experiments needed, the
number of simulations (num sims) is set to be equal to the
number of plans (num plans). This makes sense as the
number of simulations is also the number of opponent plans
considered.

Players
There are two opponents tested in these experiments other
than the MCPlan player: Random and Rush–the–Flag. Ran-
dom is equivalent to MCPlan running with num plans =
1. It simply generates and executes a random plan, using the
same plan generator as the MCPlan player. Rush–the–Flag
is a scripted opponent which behaves as follows:

1. If the enemy flag is not yet captured, send all units
towards the enemy flag and attempt to capture it.

2. If the enemy flag is captured, have the flag carrier re-
turn home. All other units follow the flag carrier.

While simple in design, the Rush–the–Flag opponent proves
to be a strong adversary.

4.2 Results

We now investigate the performance of MCPlan against a
variety of opponents and using different combinations of
search parameters.

Increasing Number of Plans
In Figure 5, the performance of the MCPlan algorithm on
the default map is evaluated as a function of the number of
plans considered. Each data point represents the result of
a player considering p plans playing against one that con-
siders 2p plans. This results show that the program’s play
improves as the number of plans increases, but with dimin-
ishing returns. Eventually, the sample size is large enough
that adding more plans results in marginal performance im-
provements, as expected.
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Figure 5: Increasing Number of Plans
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Figure 6: Different Number of Units. MCPlan vs. Random

Number of Units
Figure 6 shows the results when the number of units is var-
ied. The results in the figure are for MCPlan against Ran-
dom on the default map. As expected, regardless of the
number of units aside, increasing the number of plans im-
proves the performance of the MCPlan player. With a larger
number of units per side, MCPlan wins more often. This is
reasonable, as the number of decisions increases with the
number of units, and there is more opportunity to make
“smarter” moves.

Different Maps
The previous results were obtained using the same map. Do
the results change significantly with different terrain? In
this experiment, we repeat the previous matches using a va-
riety of maps. Figure 7 shows the results. Note that one
map has 7 men aside. The results indicate that MCPlan is
a consistent winner, but the winning percentage depends on
the map. The more complex the map, the better the ran-
dom player performs. This is reasonable, since with more
walls, there is more uncertainty as to where enemy units are
located. This reduces the accuracy of the MCPlan player’s
simulations. In the tests using the map with a bottleneck
(map 5), the performance was similar to the tests with sim-
ple maps without the bottleneck. This shows that the sim-
ulation is capable of dealing with bottlenecks, at least in
simple cases.

Unbalanced Number of Units
Figure 8 illustrates the relative performance between MC-
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Plan and Random when Random is given more men. The
results show that given a sufficient number of plans to eval-
uate, MCPlan with less men and better AI can overcome
Random with more men but a poorer AI. The results suggest
that using MCPlan is strong enough to overcome a signifi-
cant material advantage possessed by the weaker AI (Ran-
dom). The figure shows the impressive result that 5 units
with smart AI defeat 7 units with dumb AI 60% of the time
when choosing between 128 plans.

Optimizing Max–Dist
A higher max dist value results in longer plans, which
allows more look–ahead, as well as a higher number of pos-
sible plans. The higher number of possible plans may in-
crease the number of plans required to find a good plan.

More look–ahead should help performance. However,
with too much look–ahead, noise may become a problem.
The noise is due to errors in the simulation — which uses
an abstracted game state — and incorrect predictions of the
opponent plan. The longer we need to guess what the oppo-
nent will do, the more likely we are to make an error. So,
more simulations are required to have a good chance of pre-
dicting the opponent’s plan or something close enough to
it.

In this experiment we vary the max dist parameter to
optimize the win percentage against the Random opponent
on map 1 and the Rush–the–Flag opponent on map 2 (see
Figure 9). The planner playing against random achieves
its best performance of 94% at dist=6. Note that although
one may expect MCPlan to score 100% against Random, in

7
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practice this will not happen. A lone unit may unexpectedly
encounter a group of enemy units. Once engaged in a los-
ing battle, it is difficult to retreat, since all units move at the
same speed.

Rush–the–Flag Opponent
Figure 10 shows MCPlan playing against Rush–the–Flag.
The playing strength of Rush–the–Flag is very map depen-
dent, as it has a fixed strategy. On the first map, Rush–the–
Flag wins nearly every game. Rushing is a near–optimal
strategy on an empty map. On map 2, where the direct
path to the other side is blocked, Rush–the–Flag is much
weaker. MCPlan wins more than 60% of the time even with
num plans=1. With num plans=32, MCPlan wins more
than 80% of the time. However, on map 3, where the map is
more complex and all paths to the other side are long, Rush–
the–Flag again becomes a challenging opponent. However,
with num plans=32, MCPlan wins more than 55% of the
games.

Run–Time for Experiments
In order to get more statistically valid results, the exper-
iments were not run in real–time. Rather, they were run
much faster than real–time, about 100 times faster.

While the run–time depends on the parameters, using
typical parameters (map 1, 16 plans, 5 men per side) a 200–
game match runs in about 80 minutes on our test machines.
The average time per game is less than 30 seconds. As the
planner re–plans hundreds of times per game, this results in
planning times of a fraction of a second.

5 Conclusions and Future Work
This paper has presented preliminary work in the area of
sampling–based planning in RTS games. We have described
a plan selection algorithm – MCPlan – which is based on
Monte Carlo sampling, simulations, and replanning. Ap-
plied to simple CTF scenarios MCPlan has shown promis-
ing initial results. To gauge the true potential of MCPlan
we need to compare it against a highly tuned scripted AI,
which was not available at the time of writing. We intend
to extend MCPlan in various dimensions and apply it to
more complex RTS games. For instance, it is natural to
add knowledge about opponents in form of plans that can
be incorporated in the simulation process to exploit possi-
ble weaknesses. Also, the top–level move decision routine
of MCPlan should be enhanced to generate move distribu-
tions rather than single moves which is especially important
in imperfect information games. Lastly, applying MCPlan
to bigger RTS game scenarios requires us to consider more
efficient sampling and abstraction methods.
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Abstract- The A* algorithm is the de facto standard used
for pathfinding search. IDA* is a space-efficient version
of A*, but it suffers from cycles in the search space (the
price for using no storage), repeated visits to states (the
overhead of iterative deepening), and a simplistic left-
to-right traversal of the search tree. In this paper, the
Fringe Search algorithm is introduced, a new algorithm
inspired by the problem of eliminating the inefficiencies
with IDA*. At one extreme, the Fringe Search algo-
rithm expands frontier nodes in the exact same order
as IDA*. At the other extreme, it can be made to ex-
pand them in the exact same order as A*. Experimental
results show that Fringe Search runs roughly 10-40%
faster than highly-optimized A* in our application do-
main of pathfinding on a grid.

1 Introduction

Pathfinding is a core component of many intelligent agent
applications, ranging in diversity from commercial com-
puter games to robotics. The ability to have autonomous
agents maneuver effectively across physical/virtual worlds
is a key part of creating intelligent behavior. However, for
many applications, especially those with tight real-time con-
straints, the computer cycles devoted to pathfinding can rep-
resent a large percentage of the CPU resources. Hence,
more efficient ways for addressing this problem are needed.

Our application of interest is grid-based pathfinding. An
agent has to traverse through a two-dimensional world.
Moving from one location in the grid to another has a
cost associated with it. The search objective is to travel
from a start location in the grid to a goal location, and
do so with the minimum cost. In many commercial com-
puter games, for example, pathfinding is an essential re-
quirement for computer agents (NPCs; non-player charac-
ters) [Stout, 1996]. For real-time strategy games, there may
be hundreds of agents interacting at a time, each of which
may have pathfinding needs. Grid-based pathfinding is also
at the heart of many robotics applications, where the real-
time nature of the applications requires expensive pathfind-
ing planning and re-planning [Stentz, 1995].

A* [Hart et al., 1968] and IDA* [Korf, 1985] (and their
variants) are the algorithms of choice for single-agent opti-
mization search problems. A* does a best-first search; IDA*
is depth-first. A* builds smaller search trees than IDA* be-
cause it benefits from using storage (the Open and Closed
Lists), while IDA* uses storage which is only linear in the
length of the shortest path length. A*’s best-first search does
not come for free; it is expensive to maintain the Open List
in sorted order. IDA*’s low storage solution also does not

come for free; the algorithm ends up re-visiting nodes many
times. On the other hand, IDA* is simple to implement,
whereas fast versions of A* require a lot of effort to imple-
ment.

IDA* pays a huge price for the lack of storage; for a
search space that contains cycles or repeated states (such
as a grid), depth-first search ends up exploring all distinct
paths to that node. Is there any hope for the simplicity of a
depth-first search for these application domains?

A* has three advantages over IDA* that allows it to build
smaller search trees:

1. IDA* cannot detect repeated states, whereas A* ben-
efits from the information contained in the Open and
Closed Lists to avoid repeating search effort.

2. IDA*’s iterative deepening results in the search re-
peatedly visiting states as it reconstructs the frontier
(leaf nodes) of the search. A*’s Open List maintains
the search frontier.

3. IDA* uses a left-to-right traversal of the search fron-
tier. A* maintains the frontier in sorted order, expand-
ing nodes in a best-first manner.

The first problem has been addressed by a transposition
table [Reinefeld and Marsland, 1994]. This fixed-size data
structure, typically implemented as a hash table, is used to
store search results. Before searching a node, the table can
be queried to see if further search at this node is needed.

The second and third problems are addressed by intro-
ducing the Fringe Searchalgorithm as an alternative to
IDA* and A*. IDA* uses depth-first search to construct
the set of leaf nodes (the frontier) to be considered in each
iteration. By keeping track of these nodes, the overhead of
iterative deepening can be eliminated. Further, the set of
frontier nodes do not have to be kept in sorted order. At
one extreme, the Fringe Search algorithm expands frontier
nodes in the exact same order as IDA* (keeping the fron-
tier in a left-to-right order). At the other extreme, it can be
made to expand them in the exact same order as A* (through
sorting).

This paper makes the following contributions to our un-
derstanding of pathfinding search:

1. Fringe Search is introduced, a new algorithm that
spans the space/time trade-off between A* and IDA*.

2. Experimental results evaluating A*, memory-
enhanced IDA*, and Fringe Search. In our test
domain, pathfinding in computer games, Fringe
Search is shown to run significantly faster than a
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highly optimized version of A*, even though it
examines considerably more nodes.

3. Insights into experimental methodologies for compar-
ing search algorithm performance. There is a huge
gap in performance between “textbook” A* and opti-
mized A*, and a poor A* implementation can lead to
misleading experimental conclusions.

4. Fringe Search is generalized into a search framework
that encompasses many of the important single-agent
search algorithms.

Section 2 motivates and discusses the Fringe Search al-
gorithm. Section 3 presents experimental results comparing
A*, memory-enhanced IDA*, and Fringe Search. Section 4
illustrates the generality of the Fringe Search idea by show-
ing how it can be modified to produce other well-known
single-agent search algorithms. Section 5 presents future
work and the conclusions.

2 The Fringe Search Algorithm

We use the standard single-agent notation: g is the cost of
the search path from the start node to the current node; h is
the heuristic estimate of the path cost from the current node
to the goal node; f = g + h; and h∗ is the real path cost to
the goal.

Consider how IDA* works. There is a starting thresh-
old (h(root)). The algorithm does a recursive left-to-right
depth-first search, where the recursion stops when either a
goal is found or a node is reached that has an f value bigger
than the threshold. If the search with the given threshold
does not find a goal node, then the threshold is increased
and another search is performed (the algorithm iterates on
the threshold).

IDA* has three sources of search inefficiency when com-
pared to A*. Each of these is discussed in turn.

2.1 Repeated states

When pathfinding on a grid, where there are mul-
tiple paths (possibly non-optimal) to a node, IDA*
flounders [Korf and Zhang, 2000]. The repeated states
problem can be solved using a transposition table
[Reinefeld and Marsland, 1994] as a cache of visited states.
The table is usually implemented as a (large) hash table to
minimize the cost of doing state look-ups. Each visit to
a state results in a table look-up that may result in further
search for the current sub-tree being proven unnecessary.

A transposition table entry can be used to store the min-
imal g value for this state and the backed-up f value ob-
tained from searching this state. The g values can be used
to eliminate provably non-optimal paths from the search.
The f values can be used to show that additional search at
the node for the current iteration threshold is unnecessary.
In this paper, IDA* supplemented with a transposition table
is called Memory-Enhanced IDA* (ME-IDA*).

2.2 Iterating

Each IDA* iteration repeats all the work of the previous
iteration. This is necessary because IDA* uses essentially
no storage.

Consider Figure 1: each branch is labeled with a path
cost (1 or 2) and the heuristic function h is the number
of moves required to reach the bottom of the tree (each
move has an admissible cost of 1). The left column illus-
trates how IDA* works. IDA* starts out with a threshold
of h(start) = 4. Two nodes are expanded (black circles)
and two nodes are visited (gray circles) before the algorithm
proves that no solution is possible with a cost of 4. An
expanded node has its children generated. A visited node
is one where no search is performed because the f value
exceeds the threshold. The f threshold is increased to 5,
and the search starts over. Each iteration builds a depth-
first search, starting at start, recursing until the threshold
is exceeded or goal is found. As the figure illustrates, all
the work of the previous iteration i must be repeated to re-
construct the frontier of the search tree where iteration
i + 1 can begin to explore new nodes. For domains with
a small branching factor, the cost of the iterating can domi-
nate the overall execution time. In this example, a total of 17
nodes have to be expanded (start gets expanded 3 times!)
and 27 nodes are visited.

IDA∗ Fringe Search flimit
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Figure 1: Comparison of IDA∗ and Fringe Search on an
example graph. Visited nodes (gray) and expanded nodes
(black) are given for each iteration
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There exist IDA* variants, such as IDA* CR
[Sarkar et al., 1991], that can reduce the number of it-
erations. However, IDA* could be further improved if the
repeated states overhead of iterating could be eliminated all
together. This can be done by saving the leaf nodes (the
frontier) of the iteration i search tree and use it as the
starting basis for iteration i + 1.

The middle column of Figure 1 illustrates how this algo-
rithm works. It starts with start and expands it exactly as in
IDA*. The two leaf nodes of the first iteration are saved, and
are then used as the starting point for the second iteration.
The second iteration has 3 leaf nodes that are used for the
third iteration. For the last iteration, IDA* has to visit ev-
ery node in the tree; the new algorithm only visits the parts
that have not yet been explored. In this example, a total of
9 nodes are expanded and 19 nodes are visited. Given that
expanded nodes are considerably more expensive than vis-
ited nodes, this represents a substantial improvement over
IDA*.

This new algorithm is called the Fringe Search, since the
algorithm iterates over the fringe (frontier) of the search
tree1. The data structure used by Fringe Search can be
thought of as two lists: one for the current iteration (now)
and one for the next iteration (later). Initially the now list
starts off with the root node and the later list is empty. The
algorithm repeatedly does the following. The node at the
head of the now list (head) is examined and one of the fol-
lowing actions is taken:

1. If f(head) is greater than the threshold then head is
removed from now and placed at the end of later.
In other words, we do not need to consider head on
this iteration (we only visited head), so we save it for
consideration in the next iteration.

2. If f(head) is less or equal than the threshold then we
need to consider head’s children (expand head). Add
the children of head to the front of now. Node head
is discarded.

When an iteration completes and a goal has not been found,
then the search threshold is increased, the later linked list
becomes the now list, and later is set to empty.

When a node is expanded, the children can be added to
the now list in any order. However, if they are inserted at
the front of the list and the left-to-right ordering of the chil-
dren is preserved (the left-most child ends up at the front of
the list), then the Fringe Search expands nodes in the exact
same order as IDA*. The children can be added in different
ways, giving rise to different algorithms (see the following
section).

2.3 Ordering

IDA* uses a left-to-right traversal of the search frontier. A*
maintains the frontier in sorted order, expanding nodes in a
best-first manner.

1Note that Frontier Search would be a better name, but that name has
already been used [Korf and Zhang, 2000].

The algorithm given above does no sorting — a node is
either in the current iteration (now) or the next (later). The
Fringe Search can be modified to do sorting by having mul-
tiple later buckets. In the extreme, with a bucket for every
possible f value, the Fringe will result in the same node
expansion order as A*. The Fringe Search algorithm does
not require that its now list be ordered. At one extreme one
gets the IDA* left-to-right ordering (no sorting) and at the
other extreme one gets A*’s best-first ordering (sorting). In
between, one could use a few buckets and get partial order-
ing that would get most of the best-first search benefits but
without the expensive overhead of A* sorting.

2.4 Discussion

The Fringe Search algorithm essentially maintains an Open
List (the concatenation of now and later in the previous
discussion). This list does not have to be kept in sorted or-
der, a big win when compared to A* where maintaining the
Open List in sorted order can dominate the execution cost
of the search. The price that the Fringe Search pays is that it
has to re-visit nodes. Each iteration requires traversing the
entire now list. This list may contain nodes whose f values
are such that they do not have to be considered until much
later (higher thresholds). A* solves this by placing nodes
with bad f values at/near the end of the Open List. Thus,
the major performance differences in the two algorithms can
be reduced to three factors:

1. Fringe Search may visit nodes that are irrelevant for
the current iteration (the cost for each such node is a
small constant),

2. A* must insert nodes into a sorted Open List (the cost
of the insertion can be logarithmic in the length of the
list), and

3. A*’s ordering means that it is more likely to find a
goal state sooner than the Fringe Search.

The relative costs of these differences dictates which algo-
rithm will have the better performance.

2.5 Implementation

The pseudo-code for the Fringe Search algorithm is shown
in Figure 2. Several enhancements have been done to make
the algorithm run as fast as possible (also done for A* and
ME-IDA*). The now and later lists are implemented as
a single double-linked list, where nodes in the list before
the current node under consideration are the later list, and
the rest is the now list. An array of pre-allocated list nodes
for each node in the grid is used, allowing constant access
time to nodes that are known to be in the list. An additional
marker array is used for constant time look-up to determine
whether some node is in the list. The g value and iteration
number (for ME-IDA*) cache is implemented as a perfect
hash table. An additional marker array is used for constant
time look-up to determine whether a node has already been
visited and for checking whether an entry in the cache is
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Initialize:
Fringe F ← (s)
Cache C[start] ← (0, null),
C[n] ← null for n �= start
flimit ← h(start)
found ← false

Repeat until found = true or F empty
fmin ← ∞
Iterate over nodes n ∈ F from left to right:

(g, parent) ← C[n]
f ← g + h(n)
If f > flimit

fmin ← min(f, fmin)
continue

If n = goal
found ← true
break

Iterate over s ∈ successors(n) from right to left:
gs ← g + cost(n, s)
If C[s] �= null

(g′, parent) ← C[s]
If gs ≥ g′

continue
If F contains s

Remove s from F
Insert s into F after n
C[s] ← (gs, n)

Remove n from F
flimit ← fmin

If found = true
Construct path from parent nodes in cache

Figure 2: Pseudo-code for Fringe Search

valid. As for ME-IDA* (see below), the marker arrays are
implemented with a constant time clear operation.

If the successors of a node n are considered from right-
to-left, then they get added to the Fringe list F such that the
left-most one ends up immediately after n. This will give
the same order of node expansions as IDA*.

3 Experiments

In this section we provide an empirical evaluation of the
Fringe Search algorithm, as well as comparing its perfor-
mance against that of both Memory-Enhanced IDA* (ME-
IDA*) and A*. The test domain is pathfinding in computer-
game worlds.

3.1 Algorithm Implementation Details

For a fair running-time comparison we need to use the
“best” implementation of each algorithm. Consequently,
we invested a considerable effort into optimizing the algo-
rithms the best we could, in particular, by use of efficient
data structures. For example, the state spaces for game and
robotics grids are generally small enough to comfortably fit
into the computer’s main memory. Our implementations

take advantage of this by using a lookup table that pro-
vides a constant-time access to all state information. Ad-
ditional algorithm-dependent implementation/optimization
details are listed below. It is worth mentioning that the most
natural data structures for implementing both Fringe Search
and ME-IDA* are inherently simple and efficient, whereas
optimizing A* for maximum efficiency is a far more in-
volved task.

3.1.1 A∗ Implementation.

The Open List in A∗ is implemented as a balanced binary
tree sorted on f values, with tie-breaking in favor of higher
g values. This tie-breaking mechanism results in the goal
state being found on average earlier in the last f -value pass.
In addition to the standard Open/Closed Lists, marker ar-
rays are used for answering (in constant time) whether a
state is in the Open or Closed List. We use a “lazy-clearing”
scheme to avoid having to clear the marker arrays at the be-
ginning of each search. Each pathfinding search is assigned
a unique (increasing) id that is then used to label array en-
tries relevant for the current search. The above optimiza-
tions provide an order of magnitude performance improve-
ment over a standard “textbook” A∗ implementation.

3.1.2 ME-IDA* Implementation.

Memory-Enhanced IDA* uses a transposition table that is
large enough to store information about all states. The ta-
ble keeps track of the length of the shortest path found
so far to each state (g value) and the backed-up f -value.
There are three advantages to storing this information. First,
a node is re-expanded only if entered via a shorter path
(g(s) < gcached(s)). Second, by storing the minimum
backed-up f -value in the table (that is, the minimum f -
value of all leaves in the sub-tree), the algorithm can detect
earlier when following a non-optimal path (e.g., paths that
lead to a dead-end). Combining the two caching strategies
can drastically reduce the number of nodes expanded/visited
in each iteration.

There is also a third benefit that, to the best of our knowl-
edge, has not been reported in the literature before. When
using non-uniform edge costs it is possible that ME-IDA*
reduces the number of iterations by backing up a larger f -
limit bound for the next iteration. We show an example of
this in Figure 3. The current iteration is using a limit of
10. In the tree to the left transpositions are not detected (A
and A’ are the same node). Nodes with a f -value of 10 and
less are expanded. The minimum f -value of the children is
then backed up as the limit for the next iteration, in this case
min(12, 14) or 12. In the tree to the right, however, we de-
tect that A’ is a transposition into A via an inferior path, and
we can thus safely ignore it (back up a f -value of inf to B).
The f -limit that propagates up for use in the next iteration
will now be 14.

3.2 Testing Environment

We extracted 120 game-world maps from the popular fan-
tasy role-playing game Baldur’s Gate II by Bioware Inc.

128 CIG'05 (4-6 April 2005)



f=12

f=14 f=14

next_limit=min(12,14)=12

limit=10 limit=10

next_limit=14

f=10 A A’

B B

A A’

Figure 3: Caching reducing the number of iterations

Rectangular grids were superimposed over the maps to
form discrete state spaces ranging in size from 50 × 50 to
320 × 320 cells, depending on the size of the game worlds
(with an average of approximately 110 × 110 cells). A typ-
ical map is shown in Figure 4.

For the experiments we use two different grid-movement
models: tiles, where the agent movement is restricted to the
four orthogonal directions (move cost = 100), and octiles,
where the agent can additionally move diagonally (move
cost = 150). To better simulate game worlds that use
variable terrain costs we also experiment with two different
obstacle models: one where obstacles are impassable, and
the other where they can be traversed, although at threefold
the usual cost. As a heuristic function we used the mini-
mum distance as if traveling on an obstacle-free map (e.g.
Manhattan-distance for tiles). The heuristic is both admis-
sible and consistent.

On each of the 120 maps we did 400 independent
pathfinding searches between randomly generated start and
goal locations, resulting in a total of 48,000 data points
for each algorithm/model. We ran the experiments on a
1GHz Pentium III computer (a typical minimum required
hardware-platform for newly released computer games), us-
ing a recently developed framework for testing pathfinding
algorithms [Björnsson et al., 2003].

3.3 Fringe Search vs. ME-IDA*

The main motivation for the Fringe Search algorithm was
to eliminate IDA*’s overhead of re-expanding the internal
nodes in each and every iteration. Figure 5 shows the num-
ber of nodes expanded and visited by Fringe Search rela-
tive to that of ME-IDA* (note that the IDA* results are not
shown; most runs did not complete). The graphs are plot-
ted against the initial heuristic estimate error, that is, the
difference between the actual and the estimated cost from
start to goal (h∗(start) − h(start)). In general, the error
increases as the game maps get more sophisticated (larger
and/or more obstacles). We can see that as the heuristic

Figure 4: Example map

error increases, the better the Fringe Search algorithm per-
forms relative to ME-IDA*. This can be explained by the
observation that as the error increases, so will the number
of iterations that IDA* does. The data presented in Tables
1 and 2 allows us to compare the performance of the al-
gorithms under the different pathfinding models we tested.
They are based on pathfinding data on maps with impass-
able and passable obstacles, respectively. The tables give
the CPU time (in milliseconds), iterations (number of times
that the search threshold changed), visited (number of nodes
visited), visited-last (number of nodes visited on the last it-
eration), expanded (number of nodes expanded), expanded-
last (number of nodes expanded on the last iteration), path
cost (the cost of the optimal path found), and path length
(the number of nodes along the optimal path).

The data shows that Fringe Search is substantially faster
than ME-IDA* under all models (by roughly an order of
magnitude). The savings come from the huge reduction in
visited and expanded nodes.

3.4 Fringe Search vs. A*

The A* algorithm is the de factostandard used for pathfind-
ing search. We compared the performance of our new algo-
rithm with that of a well-optimized version of A∗. As we
can seen from Tables 1 and 2, both algorithms expand com-
parable number of nodes (the only difference is that because
of its g-value ordering A∗ finds the target a little earlier in
the last iteration). Fringe Search, on the other hand, vis-
its many more nodes than A*. Visiting a node in Fringe
Search is an inexpensive operation, because the algorithm
iterates over the node-list in a linear fashion. In contrast
A* requires far more overhead per node because of the ex-
tra work needed to maintain a sorted order. Time-wise the
Fringe Search algorithm outperforms A* by a significant
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Figure 5: Comparison of nodes expanded/visited by Fringe Search vs. ME-IDA*

Table 1: Pathfinding statistics for impassable obstacles
Octiles Tiles

A* Fringe ME-IDA* A* Fringe ME-IDA*

CPU/msec 1.7 1.3 33.7 1.2 0.8 5.6
Iterations 25.8 25.8 26.9 9.2 9.2 9.2
N-visited 583.4 2490.7 91702.9 607.0 1155.3 11551.3
N-visited-last 27.7 79.5 620.1 54.5 103.8 276.9
N-expanded 582.4 586.5 14139.1 606.0 613.2 4327.6
N-expanded-last 26.7 30.7 115.9 53.5 60.7 127.8
P-Cost 5637.7 5637.7 5637.7 6758.6 6758.6 6758.6
P-Length 46.1 46.1 46.1 68.6 68.6 68.6

margin, running 25%-40% faster on average depending on
the model.

Note that under the passable obstacle model, there is
a small difference in the path lengths found by A* and
Fringe/ME-IDA*. This is not a concern as long as the costs
are the same (a length of a path is the number of grid cells
on the path, but because under this model the cells can have
different costs it is possible that two or more different length
paths are both optimal cost-wise).

Our implementation of Fringe Search is using the IDA*
order of expanding nodes. Using buckets, Fringe Search
could do partial or even full sorting, reducing or eliminat-
ing A*’s best-first search advantage. The expanded-last row
in Tables 1 and 2 shows that on the last iteration, Fringe
Search expands more nodes (as expected). However, the
difference is small, meaning that for this application do-
main, the advantages of best-first search are insignificant.

The ratio of nodes visited by Fringe Search versus A* is
different for each model used. For example, in the impass-
able and passable obstacles model these ratios are approx-
imately 4 and 6, respectively. It is of interest to note that
a higher ratio does not necessarily translate into worse rel-
ative performance for Fringe Search; in both cases the rel-
ative performance gain is the same, or approximately 25%.
The reason is that there is a “hidden” cost in A* not reflected
in the above statistics, namely as the Open List gets larger
so will the cost of maintaining it in a sorted order.

4 Related Algorithms

The Fringe Search algorithm can be seen either as a variant
of A* or as a variant of IDA*.

Regarded as a variant of A*, the key idea in Fringe
Search is that the Open List does not need to be fully sorted.
The essential property that guarantees optimal solutions are
found is that a state with an f -value exceeding the largest f -
value expanded so far must not be expanded unless there is
no state in the Open List with a smaller f -value. This obser-
vation was made in [Bagchi and Mahanti, 1983], which in-
troduced a family of A*-like algorithms based on this prin-
ciple, maintaining a record of the largest f -value of nodes
expanded to date. This value, which we will call Bound,
is exactly analogous to the cost bound used in iterative-
deepening (f -limit); it plays the same role as and is updated
in an identical manner.

Analogous to the FOCAL technique (pp. 88-89,
[Pearl, 1984]) it is useful to distinguish the nodes in the
Open List that have a value less than or equal to Boundfrom
those that do not. The former are candidates for selection to
be expanded in the present iteration, the latter are not.

This is a family of algorithms, not an individual algo-
rithm, because it does not specify how to choose among
the candidates for expansion, and different A*-like algo-
rithms can be created by changing the selection criterion.
For example, A* selects the candidate with the minimum f -
value. By contrast algorithm C [Bagchi and Mahanti, 1983]
selects the candidate with the minimum g-value.
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Table 2: Pathfinding statistics for passable obstacles
Octiles Tiles

A* Fringe ME-IDA* A* Fringe ME-IDA*

CPU/msec 2.5 1.9 52.2 1.9 1.1 11.6
Iterations 14.2 14.2 14.2 5.0 5.0 5.0
N-visited 741.7 4728.3 132831.0 800.5 1828.3 23796.2
N-visited-last 27.0 119.7 1464.2 54.8 143.2 817.0
N-expanded 740.7 748.4 18990.1 799.5 816.3 7948.1
N-expanded-last 26.0 33.7 226.1 53.8 70.6 290.1
P-Cost 5000.6 5000.6 5000.6 5920.1 5920.1 5920.1
P-Length 39.5 39.5 39.5 56.3 56.5 56.5

If the heuristic being used is admissible, but not consis-
tent, A* can do an exponential number of node expansions
in the worst case, even if ties are broken as favorably as
possible [Martelli, 1977]. By contrast, C can do at most
a quadratic number of expansions, provided that ties in its
selection criterion are broken in favor of the goal (but oth-
erwise any tie-breaking rule will do)2. If the heuristic is
not admissible, C maintains this worst-case speed advan-
tage and in some circumstances finds superior solutions to
A*.

Fringe Search is also a member of this family. It chooses
the candidate that was most recently added. This gives it a
depth-first behaviour mimicking IDA*’s order of node gen-
eration.

Among the variants of IDA*, Fringe Search is most
closely related to ITS [Ghosh et al., 1994]. ITS is one of
several “limited memory” search algorithms which aim to
span the gap between A* and IDA* by using whatever mem-
ory is available to reduce the duplicated node generations
that make IDA* inefficient. As [Ghosh et al., 1994] points
out, ITS is the only limited memory algorithm which is
not “best first”. SMA* [Russell, 1992], which is typical of
the others, chooses for expansion the “deepest, least-f -cost
node”. ITS, by contrast, is left-to-right depth first, just like
IDA* and Fringe Search. New nodes are inserted into a data
structure representing the search tree, and the node chosen
for expansion is the deepest, left-most node whose f -value
does not exceed the current cost bound. ITS requires the
whole tree structure in order to retract nodes if it runs out of
memory. Because Fringe Search assumes enough memory
is available, it does not need the tree data structure to sup-
port its search, it needs only a linked list containing the leaf
(frontier) nodes and a compact representation of the closed
nodes.

5 Conclusions

Large memories are ubiquitous, and the amount of mem-
ory available will only increase. The class of single-agent
search applications that need fast memory-resident solu-
tions will only increase. As this paper shows, in this case,
A* and IDA* are not the best choices for some applica-

2“Exponential” and “quadratic” are in terms of the parameter N defined
in [Bagchi and Mahanti, 1983].

tions. For example, Fringe Search out-performs optimized
versions of A* and ME-IDA* by significant margins when
pathfinding on grids typical of computer-game worlds. In
comparison to ME-IDA*, the benefits come from avoid-
ing repeatedly expanding interior nodes; compared to A*,
Fringe Search avoids the overhead of maintaining a sorted
open list. Although visiting more nodes than A* does, the
low overhead per node visit in the Fringe Search algorithm
results in an overall improved running time.

Since we ran the above experiments we have spent sub-
stantial time optimizing our already highly-optimized A*
implementation even further. Despite of all that effort A*
is still not competitive to our initial Fringe implementation,
although the gap has closed somewhat (the speedup is ca.
10% for octiles and 20% for tiles). This is a testimony of
one of Fringe search greatest strengths, its simplicity.

As for future work, one can possibly do better than
Fringe Search. Although the algorithm is asymptotically
optimal with respect to the size of the tree explored (since
it can mimic A*), as this paper shows there is much to be
gained by a well-crafted implementation. Although our im-
plementation strove to be cache conscious, there still may
be performance gains to be had with more cache-friendly
data structures (e.g., [Niewiadomski et al., 2003]). Also,
our current implementation of the Fringe Search algorithm
traverses the fringe in exactly the same left-to-right order
as IDA* does. Fringe Search could be modified to traverse
the fringe in a different order, for example, by using buckets
to partially sort the fringe. Although our experimental data
suggests that this particular application domain is unlikely
to benefit much from such an enhancement, other domains
might.
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Abstract-

Group utility functions are an extension of the

common team utility function for providing multi-
ple agents with a common reinforcement learn-

ing signal for learning cooperative behaviour.

In this paper we describe what group utility

functions are and suggest using them to pro-

vide non-player computer game character be-

haviours. As yet, reinforcement learning tech-

niques have very rarely been used for computer

game character specification.

Here we show the results of using a group

utility function to learn an equilibrium between

two computer game characters and compare this

against the performance of the two agents learn-

ing independently. We also explain how group

utility functions could be applied to learn equi-

libria between groups of agents.

We highlight some implementation issues aris-

ing from using a commercial computer game en-

gine for multi-agent reinforcement learning ex-

periments.

1 Introduction

Multi-agent reinforcement learning has not often been
used for computer game non-player character develop-
ment. Why is this? There are several possible reasons
including the perceived (and often real) complexity in-
volved with learning to use any new technology, and the
inflexibility and lack of control over the final behaviours
learned. One major problem is the wide ranging com-
plaint that “academic” artificial intelligence techniques
are only concerned with optimality of behaviour and
ignore problems where the solution is a mixture of aes-
thetics and performance. Here we introduce methods
for using reinforcement learning to allow agents to learn
to play computer games not just optimally but to the
ability level required and in a manner aligned with the
game structure.

Behaviours for non-player game characters are usu-
ally specified using rule based systems [29]. Commonly,
finite state machines are used with fuzzy logic. Even
with clever modularisation and combination of behaviour

specification rules it takes a lot of human effort to de-
sign each character. Hence, behaviour specification is
often copied across several characters and this is of-
ten very obvious to human game players. Despite this,
hand coded rules are currently the chosen way for game
producers to specify behaviour for non-player charac-
ters. With the recent popularisation of massively mul-
tiplayer games the number of non-player game charac-
ters required for a typical game is increasing. Thus the
proliferation of non-player characters showing remark-
ably similar behaviours is set to become more of a prob-
lem. Reinforcement learning is another possible way to
specify behaviours for multiple characters. Reinforce-
ment learning is more reusable than hand coding finite
state machines. That is, the reward function and state
representation can be reused for training many char-
acters. The characters behaviour will depend on their
abilities and their experiences whilst learning. Thus we
can get more unique behaviours for less human design
time. The reinforcement learning somewhat automates
the behaviour production process. Of course, human
time still needs to be spent designing the characters’
state representations, the reward function(s) and find-
ing appropriate learning parameters.

So reinforcement learning in general and multi-agent
reinforcement learning in particular, should be useful
tools for computer game producers but so far only sin-
gle agent reinforcement learning has featured in any
commercial games and then, only in a few commer-
cial games. The only game of real note is Black &
White [15] in which one non-player character exhibited
a small amount of learning [6]. This was described as a
“gamble” by the game’s designer, Peter Molyneux [17].
We believe that by introducing multi-agent reinforce-
ment learning methods suitable for and applicable to
computer games, we can provide technology that could
be used for a massively multiplayer computer game in
the foreseeable future.

The main inspiration behind this work is the group
nature of computer game character societies. Charac-
ters are usually largely defined by which group they
belong to. For example are they a goody or a baddy?
What type of baddy are they? What species are they?
There are usually groups of characters and also groups

1
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within groups. Which group or groups an agent be-
longs to usually determines its behaviour to a large
extent. The relationship between these groups pro-
vides the structure of many games, obvious examples
being good and evil groups, sports teams and groups
within sports teams (such as defence). For this reason,
we have incorporated a group structure into standard
multi-agent reinforcement learning methods. The only
existing simple group learning mechanism for multi-
agent reinforcement learning is the well known team
utility function (see [27, 26], for discussion and criti-
cism).

A team utility function rewards each agent in a
group with the sum of all the group’s agents’ rewards
(we use the term modified reward to refer to the reward
that an agent receives after any processing). In this way
a notion of teamwork is achieved with agents hopefully
learning that what is good for the team is good for
them. There exist a number of unexplored group util-
ity functions other than the team utility function, that
provide a modified reward to individual agents that is
derived from the agents’ performances. The way in
which the individual agents’ rewards are combined de-
termines the relationship they have with each other.
Team utility sums all the agents’ rewards which implies
that each agent is on the same team (hence the name)
with the same goals, whereas other utility functions
introduced here use different reward combining func-
tions to specify different relationships between agents.
For example later we introduce a combining function
(note: for team utility the combining function is sum-
mation) that gives the negative standard deviation of
the agents’ rewards. By using this combining function
we can make agents in a group learn to perform ap-
proximately only as well as each other. This could be
useful in a computer game if we need several agents to
compete and draw at some task. For example, we could
use this combining function to provide non-player driv-
ing characters in a race game if we wanted the result
to be close.

For team utility we have a flat structure. That is,
all the agents rewards are summed by one team utility
function and given back to them as modified reward.
Using group utility functions we can create a hierarchy
of groups, each with their own utility function. Later
we show that it is possible to have groups within groups
in a hierarchical structure (Note that this is entirely
unrelated to hierarchical reinforcement learning meth-
ods). For example, using one balance inducing com-
bining function (i.e. the negative standard deviation)
with two team utility functions “beneath” it, it is pos-
sible to train two teams of agents to perform equally
as well. (Also, there is no reason why agents cannot
belong to more than one group at a time. One can
imagine a crooked character, or group of characters,
whose allegiances can change. This is left for future
work.)

We believe that this novel use of combining func-

A 1

Balance

Collaboration

A 2
A 3

Figure 1: The agents individually collected reward be-
ing sent up through the group utility functions is shown
with thin arrows. The modified reward is shown as
thick lines coming from the topmost group utility func-
tion. With this setup we can make the three agents
learn to perform as two teams that will perform equally
as well as each other.

tions to produce different group utility functions al-
lows us to have more control over agents’ learnt be-
haviours. The system is shown abstractly in Figure 1.
In Figure 1, agents 1 and 2 have the same group utility
function which has a combining function encouraging
collaboration or team work. Agent 3 is in its own sin-
gle member group. Both the collaborative group and
agent 3 “belong to” a group utility function that en-
courages equal or balanced performance among its chil-
dren groups. So, with this set up we should be able to
make the three agents learn to perform as two teams
that will perform equally as well as each other. In
essence we are gaining more control over multi-agent
reinforcement learning by modifying the reinforcement
signal of each agent based on the group(s) it belongs
to. We believe this to be novel research that is a natu-
ral extension of the team utility function that, for some
reason, has not been investigated before.

2 Background

Game theory allows us to describe computer games as
stochastic extensive-form games with (semi-)situated
agents. One of the goals of our research is to present
reinforcement learning in a simple way. Thus we do
not follow fully the strictest definitions from game the-
ory. Instead preferring to use a more rudimentary ap-
proach [1, 3, 24]. In detail, a stochastic multi-agent
game is represented by a tuple: (n, S,A1...n, T,R1...n),
where:

• n is the number of agents (agents and characters
are interchangeable terminology here),

• S is a set of states.

2
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• Ai is the set of actions available to agent i (and
A is the joint action space A1 £ ... £ An). In
this work we use probabilistic action-selection un-
less purposefully selecting an exploratory action.
That is, the actions with the largest utility will
most likely be executed, and similarly the action
with the second largest utility will be the second
most likely action to be executed, and so on. Our
reasons for using probabilistic action selection is
given later in Section 5.

• T is the transition function S £ A £ S → [0, 1],
that is, the state will change according to the
joint actions of all the agents. Extensive-form
means that agents do not act simultaneously. A
lot of reinforcement learning research simplifies
agent movement by synchronising agents’ time
steps. This cannot be done in computer games
as the resulting multi-character behaviour looks
ridiculous. This is an aesthetic issue not nor-
mally addressed. Our solution to it, is shown in
Section 5.

• and Ri is a reward function for the ith agent,
S £A→ <. In our changes to this model shown
later (Section 3) we do not actually change the
reward function directly but insert one or more
functions in between the reward function and the
receiving agent(s). These functions are the com-
bining functions associated with the group utility
functions.

Above we say “semi-situated” agents, as although
computer game characters can be thought of as em-
bodied agents, acting in real-time in a well defined en-
vironment, there are several restrictions we do not have
to deal with that affect truly situated agents (see [12]
for a good explanation of what it means for an agent
to be truly situated). There is negligible cost for com-
munication between agents and centralised communi-
cation is easily possible. Also, whereas truly situated
agents can have a strict time limit for learning, game
agents can be run in simulated games for as long is
necessary. Also, if we wanted to we could have per-
fect knowledge. However, we do not utilise or propose
the use of perfect knowledge in this work for two rea-
sons: the high processing requirements and to maintain
perceptual honesty [10]. Firstly games, remember, are
supposed to be implemented on home machines, not
academic super computers. The processing power of
home games machines, whilst increasing fast, is still
limited [28]. Secondly, adversarial characters in com-
puter games are often accused of “cheating” by human
players because they clearly have use of more informa-
tion than the human player does. By not gathering
perfect knowledge we deny our agents one way of be-
coming cheats.

The group utility function introduced below is based
on achieving balanced performance which can then be
modified by weightings. What do we mean by “bal-

anced performance?” As a definition for this work,
we take a balanced performance to mean that each
agent, or group of agents, will achieve the same, or
similar, amount of reward over a period of time. For
instance, if no agent makes any move for the length
of an episode then the performance of each agent can
be said to be balanced as each agent will presumably
receive the same reward. However, this is a degen-
erate and useless case as no agent does anything at
all! We will show more useful balancing later. A more
precise definition of balance cames from game theory
which gives us the Nash equilibrium [18] (and several
associated best response points such as correlated-Q
learning [8], Nash-Q [9] and minimax-Q [16]). Sim-
ply (and ignoring a large amount of game theory), a
multi-agent system can be said to be in equilibrium
when each agent can do no better given the actions
of the other agents. Our work in this paper could be
surmised as practically attaining an approximate equi-
librium through simple reinforcement learning. Also
of interest when considering balanced performance be-
tween agents is work on homo egualis societies [20].
The homo egualis approach works on the same prob-
lem as we address in this paper and is described as
applying to, “multi-agent problems where local compe-
tition between agents arises, but where there is also the
necessity of global cooperation.” The homo egualis so-
ciety method affects the action sets of agents so that if
they are doing comparatively well then they are denied
the use of certain actions until balance is attained. By
affecting the action sets for periods of time, agents of a
homo egualis society can be said to be using a periodic
policy. In this paper agents select actions probabilisti-
cally and therefore learn a mixed policy.

Methods of achieving an equilibrium between groups
of agents have before been classed as naive and sophisti-
cated [24]. Naive methods usually ignore the fact that
there are other agents in the system. Sophisticated
methods often model the other agents explicitly. We
are placing our approach at the naive end of the spec-
trum. We include other agents in an agent’s state but
model their actions in the world only through the mod-
ified (by group utility functions) reinforcement signal
and the joint state space. This is why we refer to group
utility functions as a simple multi-agent reinforcement
learning method.

Game theory provides a theoretical framework for
expressing multi-agent learning. However, often real-
world problems are not easily described strictly in game
theory. If we call truly game theoretic based algorithms
that explicitly learn equilibria, equilibria learners, then
we can call other approaches (and our approach) best
response learners. That is, by learning a best response
to the environment, including other agents in the envi-
ronment and their disruption to the environment, then
when multiple agents converge due to learning they do
so to an equilibrium [1]. Best response learners can be
thought of as a more casual form of equilibria learners

3
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that are often easier to implement for complex, real-
world, temporally dependent tasks, such as computer
games. (It has been noted before that computer games
are usually sufficiently complex enough to make them
difficult to model in game theory [24]).

2.1 Multi-agent Reinforcement Learning in Com-

puter Games

To the best of our knowledge, research on multi-agent
reinforcement learning for computer games characters
has not been presented before. As noted in the in-
troduction, we believe only Black & White [15] has
used reinforcement learning and only in a limited ca-
pacity for one character. Our development of a re-
inforcement learning system for computer games has
stumbled many times because of unforeseen practicali-
ties that are not well documented because of a lack of
existing research material.

In a wider sense, research using computer games
is now quite common (see [14, 13] for a call to arms
and [7, 19] for an overview). There are several other
researchers and departments pushing the use of com-
puter games as research tools. Use of artificial intel-
ligence techniques in commercial computer games is
growing very quickly [21, 28, 4, 30, 11, 5], however the
techniques are usually limited to finite state machines.
However, the technology used in computer games is
advancing quickly so this will not remain the case for
long.

3 Group Utility Functions

It is easiest to think of group utility functions as an
extension of the well known team utility function. It
is implicit when using a team utility function that all
agents share the same goal. However, this is not the
case with computer games that have many groups of
agents that, whilst sharing the overall goal of providing
the game playing experience, have differing goals at
differing levels of abstraction.

We are making the assumption throughout our work
that a balanced game is a good game. That is, it is
the aim of this part of our work to be able to cre-
ate agents and groups of agents that can be made to
compete equally well at tasks (even though the groups
may differ in their actual capabilities or resources). Af-
ter that we can place agents in more than one group
and use group weightings to affect the behaviour of
agents and groups of agents more radically). So we are
skipping the troubling notion of what exactly makes a
good computer game. We will leave this decision to
the experts in game design. We believe that, given the
ability to train agents and groups of agents to give a
certain balanced performance and given that we can
then affect this balance later by weighting the groups,
this is sufficient technology for game designers wishing
to use reinforcement learning to create behaviour spec-
ification. As a practical example, using group utilities

we may hope to train two armies to fight each other
so that the battle is very close and either army could
win. Maybe this scenario is what is needed for some
part of a game. We could use three group utilities, two
with sum combining functions and one with a balance
inducing combining function. All of the agents (sol-
diers) of one army would have their reward modified
by one of the summative utility functions. The agents
in the other army would “belong to” the other sum-
mative utility function. The two summative combin-
ing functions should be “placed under” the balancing
group utility function. These group utilities modify an
agents reward signal. How an agent’s modified reward
is calculated is explained below in Section 3.2.

To allow an element of balance, an agent’s state rep-
resentation must contain information indicating their
performance, or their group’s performance, relative to
other agents or groups. An agent must know if they are
currently performing too well or not well enough. It is
not possible to learn an equilibrium without this in-
formation. Without being able to distinguish between
winning or losing the agent is unable to make sense
of the reward signal changes that occur when an im-
balance occurs. Other equilibrium learners use rela-
tive performance indicators in the state representation
also [2, 3, 20].

3.1 Combining Functions

The team utility function works by summing all the
agents’ rewards for the previous time step and then
giving each agent the total group reward. We call the
reward the agent gets after the summation the modified
reward (notation, r′i is the modified reward for agent i).
We call the summation function a combining function.
The summation function lets us express a teammate
relationship. Section 3.2 describes how the agents re-
wards’ are related to the their modified rewards. Here
we consider a few combining functions:

• Individual. Each agent receives the reward it
should receive as a result of its actions. If an
agent somehow collects 10 reward units then that
is the reward that is passed on to the agent. This
just implements naive single agent learning. We
include it here to show how group utility func-
tions can implement this.

• Sum.

r′i =

n
∑

i=1

ri

This implements team utility. As above it is in-
cluded to show how group utility functions can
achieve team work.

• Average. Similar to sum but not often consid-
ered. It is different from the sum combining func-
tion because the modified reward is scaled down.
This can interact with the actual magnitude of
rewards received by the agents.

4
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r′i =

∑n
i=1 ri

n

• Negative standard deviation. If we take the stan-
dard deviation at one time step of all the agents’
rewards then we have a measure of how well bal-
anced the performance of the agents is at that
time step. We take the negative result because
then, the closer we come to no deviation, the
higher the modified reward will be.

r′i = ¡

√

∑

(ri ¡ avg(r1...rn))2

n

• Negative range. Again here we are looking at
how well balanced the agents’ performances are.
We can further investigate here by looking at the
inter-quartile range. This combining function has
not been used in experimentation yet but is here
to signify that there are several suitable functions
to measure balance.

r′i = ¡range +
n

∑

i=1

ri

= ¡(max(r1...rn)¡min(r1...rn)) +

n
∑

i=1

ri

• There are any number of other possibly interest-
ing functions to consider.

3.2 Calculating Agents’ Modified Rewards

In the results below we only show the case with two
agents under one group utility. We introduce a group
affiliation parameter that scales the group utility. An
agent’s reward is the sum of its individually received re-
ward and its group utility value scaled by the group af-
filiation value (if it only has one group utility, as it odes
in our initial experiments presented below). The scal-
ing is very important and has been difficult for us to set
properly for the negative standard deviation group util-
ity function. For our experiments (section 5), agents
receive a reward of minus one for each action not lead-
ing to a reward or, zero when a reward is picked up.
If the agents are in a group with the negative stan-
dard deviation combining function then the negative
standard deviation needs to be scaled to interact ap-
propriately with their typical rewards. So if two agents
in a group with the negative standard deviation com-
bining function have both failed to pick up any reward
in the episode so far they will get a modified reward

of ¡1 or, ¡1 + (¡

√

∑

(ri¡avg(r1...rn))2

n ). If one of the
agents picks up a reward we need to reflect that it was
good to pick up a reward but bad to unbalance the
agents’ performance. The negative standard deviation
is taken of the number of rewards picked up by each

agent. After one reward is picked up the negative stan-
dard deviation will be ¡0.5. We discovered that a value
of ¡0.5 is not enough to discourage unbalanced perfor-
mance. Therefore we could set the group affiliation to
be 2.5 or 3. This gives the group utility with a negative
standard deviation combining function more presence
in the agents modified reward.

We have found that for the negative standard devi-
ation (and presumably for other combining functions)
the interaction between the group affiliation value and
° (° is the learning rate, for sarsa(λ), see below for
an explanation of the learning algorithm) is critically
important. We need the group affiliation to be set so
that the negative punishment for becoming unbalanced
does not overcome the positive reward for picking up
a reward that makes the performance only slightly un-
balanced. However, if the imbalance becomes large we
do want the negative punishment to be larger in magni-
tude than any positive reward for picking up rewards.
Also, we need the agents to be a little short sighted
so that they will pick up reward without realising that
they will eventually be punished for unbalancing the
system. We do this by setting a low discount rate.

3.2.1 The Learning Algorithm

The learning algorithm is quite standard sarsa(λ), as
taken from [23].

• ∀ agents

• Place agent randomly

• Set initial-², initial-®, ° and λ

• ∀ s ∈ S, a ∈ A, Q(s, a) = 0

• Place rewards randomly.

• ∀ agents

• ² = initial-²£





number of episodes
2

¡episode

number of episodes
2





• ® = initial-®£





number of episodes
2

¡episode

number of episodes
2





• ri
t Ã Ri (Remove any rewards if picked up

and replace with another reward)

• ai
t+1 Ã ¼i

t using ²-greedy selection (with
the actions chosen probabilistically accord-
ing to their utility values when not choosing
to perform a random action)

• r′i
t = agents own reward +(first group above’s

reward£group affiliation) + (second group
above’s reward£group affiliation2) + ...

• δ = r′i
t + °Q(st+1, at+1)¡Q(st, at)

• e(st, at) = 1 (Replacing trees)

• ∀ e(s, a)

• Q(st, at) = Q(st, at) + ®δe(st, at)

• e(st, at) = °λe(st, at)
5

137 CIG'05 (4-6 April 2005)



4 Asynchronous Time-steps in a Multi-

agent Reinforcement Learning System

Using Group Utility Functions

Team utility assigns the same reward to each agents at
each time step. It does this by summing each agents’
privately collected reward for the current time step and
giving the total to each agent as its modified reward.
A subtle change is introduced if the agents’ actions are
asynchronous. The problem is that it is possible for
an agent to complete more than one of its own time
steps during only one time step of another agent. In
this work for the purposes of group utility we will take
an agent’s last reported privately collected reward as
its assumed last time step reward. This is shown in
Figure 2. Existing literature presents team utility being
used with synchronised actions or, whether the actions
are synchronised is not made clear.

T
im

e

Agent2

−1

AgentAgent

−1

31

Private Reward

−1

0

−1

−1

−1 −1

Reward
Modified

−3

−3

−2

−2

−3

−3

Figure 2: Shows the relationship between privately col-
lected reward (what the agent actually collects in the
environment) and modified reward (what the agent re-
ceives from its group utility functions) for the sum com-
bining function (essentially the team utility. Remem-
ber that the team utility is the sum of all the agents’
rewards). Here all agents start with an assumed reward
value of -1 as in all our experiments.

5 Experiments

We have used a foraging task for all our experiments
so far. The agents are placed randomly as are three
rewards. When an agent picks up a reward another re-
ward is placed randomly until thirty rewards have been
picked up. An agent receives a reward of minus one for
each action not leading to picking up a reward and zero
if a reward is picked up (this is before modification by
the group utility function). The agents have a total
of five hundred action steps shared between them to

complete the task. An episode ends when all thirty re-
wards have been picked up or five hundred action steps
are reached. Each experiment ran for four thousand
episodes. The Torque [25] game engine was used. It
is our intention to use only computer game engines for
our learning experiments. This brings up some running
time issues for large experiments. We ran the Torque
game engine as a dedicated server on a linux box. A
four thousand episode experiment takes approximately
one and a half hours with some wide variation. We
were able to distribute many experiments over many
machines to gather large number results of the same
experiment for averaging. All results in this paper are
averaged over one hundred runs.

The state representation contains the distance, di-
rection and nearest agent to the two nearest rewards.
There are four discrete distances and eight directions.
The state also contains a variable stating whether the
agent is winning, losing or drawing with other agents or
whether the agent’s group is winning, losing or draw-
ing with the other groups. By organising the rewards
by distance and taking only the nearest two we are
learning a simpler task than we are actually achieving.
This state representation is inspired by work on robot
football [22] and we think this is the best method of
presenting potentially complex and especially dynamic
computer game worlds to agents in a concise way.

Actions available to the agents are: move towards
a reward, move away from a reward, circle left relative
to a reward and circle right relative to a reward. Com-
puter games allow us to use these high level actions and
make the agents actions appear much more realistic.
Originally we used the traditional north, south, east
and west actions in our experiment but aesthetically
this is very poor as the game characters’ movements
looked very unrealistic. By using high level actions we
can allow game designers to still control the behaviour
of the characters to a certain degree.

Through somewhat ad hoc search, for our results
shown below we used sarsa(λ) [23] with the following
learning parameters: initial ® = 0.5, ° = 0.6, λ = 0.9
and group affiliation = 3. ²-greedy action selection was
used with an initial ² of 0.6. ² and ® were degraded
linearly from their initial values at the first episode to
zero at half-way through the number of episodes (as
shown in the learning algorithm - Section 3.2.1).

In may be clear to the reader why we need to choose
actions probabilistically, but if not: If we choose ac-
tions deterministically then an agent will always pick
the action with the highest Q-value. This method of
action-selection does not have enough subtlety to dif-
ferentiate between two actions that are very nearly as
useful as each other in the same situation. Therefore
it is not possible for an agent to learn that it should
pick up reward but at the same time be wary of pick-
ing up too much in comparison to other agents. This
requires that the action-selection method can choose
actions probabilistically so that it takes into account

6
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exactly how worthy an action is of being executed.

6 Results
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Figure 3: Compares the performance of two agents
under an individual group utility function and under
a negative standard deviation group utility function.
The drop in final performance for balanced behaviours
is approximately only 10 action steps extra.

6.1 Evaluation

As the reader can see from Figures 3 and 4, when the
agents belong to the group utility with a negative stan-
dard deviation combining function, they pick up ap-
proximately the same number of rewards each episode.
In can be said that the agents have an inequality aver-
sion [20]. On the other hand when the two agents be-
long to the group utility with an individual combining
function (i.e. their individually received rewards are
left untouched), the amount of reward each agent picks
up per episode has a high variance.

Group utility functions with the sum and average
combining functions are not shown on the graph. They
have almost exactly the same performance as the indi-
vidual combining function.

7 Conclusions

We can see from Figures 3 and 4 that we are able to
maintain a balance between the performance of two
agents whilst learning a task and that the final poli-
cies maintain that balance. This is in comparison to
two agents acting individually. The results show that
what you can gain in balance you have to lose in per-
formance. This makes intuitive sense. With randomly
placed agents and rewards, a certain amount of extra
travelling will be needed by the agents to maintain an
equal number of collected rewards.
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Two Agents Under Individual or Negative Standard Deviation Group Utility Functions
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Figure 4: Shows that the negative standard deviation
group utility function can keep the two agents close in
performance. The lines show the absolute difference
between the number of rewards each agent has picked
up. Both lines start near zero because neither agent has
learnt to pick up rewards yet. As the agents’ ability to
pick up rewards improves, the lines diverge.

Besides the main result of achieving a simple equi-
librium through the use of a group utility function, we
have also discovered much about how to implement re-
inforcement learning in a computer game. We have
shown that an agent centered, feature based state rep-
resentation and feature related actions can generalise
learning experience in a dynamic environment. We
have also shown that group utility functions can be
used with asynchronous actions.

For future work we are immediately turning to achiev-
ing similar results but on a grander scale. Most equi-
librium learners have been described working at the
agent level but group utility functions should scale to
learning equilibriums between groups as well as agents.
Indeed, in more recent research we have used group
utility functions to learn an equilibrium between a team
of two agents and a single agent. We found that each
agent needed an affiliation parameter for each group it
belonged to. An individual group affiliation parameter
allows us to easily scale the group utility values so that
we can indicate to the agents, via their modified re-
ward signal, the relative importance of the groups they
belong to.

Bibliography

[1] Bowling, M., and Veloso, M. Existence of
multiagent equilibria with limited agents. Tech-
nical report CMU-CS-02-104, Computer Science
Department, Carnegie Mellon University, 2002.

7

139 CIG'05 (4-6 April 2005)



[2] Bowling, M., and Veloso, M. Multiagent
learning using a variable learning rate. Artificial
Intelligence (2002).

[3] Bowling, M., and Veloso, M. Simultaneous
adversarial multi-robot learning. In Proceedings of
IJCAI’03 (2003).

[4] Dybsand, E. Game developers conference 2001:
An AI perspective. www.gamasutra.com/ fea-
tures/20010423/dybsand 01.htm, 2001.

[5] Dybsand, E. AI roundtable moderator’s report.
www.gameai.com/cgdc04notes.dybsand.html,
2004.

[6] Evans, R., and Lamb, T. B. Gdc
2002: Social activities: Implementing wittgen-
stein. www.gamasutra.com/features/20020424/
evans 01.htm, 2002.

[7] Fairclough, C., Fagan, M., Namee, B. M.,

and Cunningham, P. Research directions for
AI in computer games. In Proceedings of the
Twelfth Irish Conference on Artificial Intelligence
and Cognitive Science (2001).

[8] Greenwald, A., and Hall, K. Correlated q-
learning. In Proceedings of the Twentieth Interna-
tional Conference on Machine Learning (2003).

[9] Hu, J., and Wellman, M. Nash q-learning for
general-sum stochastic games. Journal of Machine
Learning Research, 4 (2003).

[10] Isla, D., Burke, R. C., Downie, M., and

Blumberg, B. A layered brain architecture for
synthetic creatures. In IJCAI (2001), pp. 1051–
1058.

[11] Kirby, N. AI roundtable moderator’s report
2004. www.gameai.com/cgdc04notes.kirby.html.

[12] Konidaris, G. D., and Hayes, G. M. An ar-
chitecture for behavior-based reinforcement learn-
ing. To appear in the Journal of Adaptive Behavior
(2003).

[13] Laird, J. E. Research in human-level AI using
computer games. Communications of the ACM,
2002.

[14] Laird, J. E., and van Lent, M. Human-level
AI’s killer
application: Interactive computer games, 2000.
ai.eecs.umich.edu/people/laird/papers/AAAI-
00.pdf.

[15] Lionhead Studios. Black and White. blackand-
white.ea.com, 2001.

[16] Littman, M. L. Friend-or-foe q-learning
in general-sum games. In Proceedings of the
Eighteenth International Conference on Machine
Learning (2001).

[17] Molyneux, P. Postmortem: Lionhead Stu-
dios’ Black & White. www.gamasutra.com /fea-
tures/20010613/molyneux 01.htm, 2001.

[18] Nash, J. F. Equilibrium points in n-person
games. PNAS, 1950.

[19] Niederberger, C., and Gross, M. H. To-
wards a game agent. Tech. Rep. 377, Institute of
Scientific Computing, ETH Zürich, 2002.
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Abstract- Artificial intelligence research and
video games are a natural match, and academia
is a fertile place to blend game production and
academic research. Game development tools and
processes are valuable for applied AI research
projects, and university departments can create
opportunities for student-led, team-based
project work that draws on students’ interest i n
video games.  The Digital Media Collaboratory
at the University of Texas at Austin has
developed a project in which academic AI
research was incorporated into a video game
production process that is repeatable in other
universities. This process has yielded results
that advance the field of machine learning as
well as the state of the art in video games.
This is a case study of the process and the
project that originated it, outlining methods,
results, and benefits in order to encourage the
use of the model elsewhere.

1 Introduction

Video game technology can provide a rich platform for
validating and advancing theoretical AI research (Adobbati
et al. 2001, Laird 2001, Isla & Blumberg 2002, Fogel
2003). Therefore, projects that can bring the areas of
artificial intelligence research and video game technology
together can uniquely benefit academia. These benefits can
sometimes extend to industry as well. A research and
development team at the Digital Media Collaboratory
(DMC) in the IC2 Institute at the University of Texas at
Austin has developed a process for utilizing video game
production techniques to both apply and advance academic
AI research.  The process has yielded successful results and
demonstrates one way to bring the two domains together.
In the NeuroEvolving Robotic Operatives (NERO) project,
a team of student artists and programmers has created a
prototype game based on a Ph.D. candidate’s novel
neuroevolution (i.e. the evolution of neural networks with
a genetic algorithm) method. Although this ongoing
project has not been funded by an industry group, it has
incorporated industry needs into its goals. It is possible to
blend game development and research, and building ‘killer

apps’ for industry is within reach for academia, without
sacrificing research results. In fact, this project produced
dissertation-level research that could not have been
accomplished without the use of an off-the-shelf game
engine as a test-bed.

Projects like NERO are repeatable. Currently there is a
unique confluence of the ideas, people, tools, and
technology required to implement similar projects. Many
AI researchers today have grown up playing video games
and are motivated to improve them, and at the same time
many university departments are beginning to see video
games as a legitimate medium, worthy of study and
research (Laird & van Lent 2000). These schools are
bringing people from the game industry to their programs
so that game industry veterans and academic research
students can work alongside each other. Simultaneously,
some game development tool companies have forged new
business models that allow them to price their products in
ways that university programs can afford. And finally,
exponential increases in processor power have enabled
advanced AI to run in real time on personal computers.

Thus there is an opportunity to create projects in
academia that yield potential benefits for both research and
commercial interests. Current university projects reflect
this interest in using computer games as a test-bed for AI
research (Adobbati et al. 2001, Geisler 2002, McLean
2003). These articles report results in applied AI research,
however few articles document the development processes
used in obtaining the results. Discussing project
development processes can aid groups in other universities
to conduct applied artificial intelligence research projects
with video game test beds successfully. This article
outlines the process the DMC has employed to develop
such a project. It describes the approaches used, challenges
encountered, and makes suggestions for implementing
projects such as these in other academic environments.

2 Background

When initiating NERO, the project team was motivated by
simultaneous goals: 1) achieve tangible academic research
results, and 2) create an application that could demonstrate
and advance the state of the art of artificial intelligence in
the video game industry. The project leaders hypothesized
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that video game production techniques combined with
academic research methods could achieve these goals.

Computer and video game entertainment software
originally evolved from both action-oriented digital games
played in arcades and from fantasy role-playing gamers
who used the computer as a digital storytelling medium
(Garriott 2002, King 2003). These games were small and
could be programmed by one person or a team of a few
people. Over the past 20 years, computer and video games
have gained enough popularity to be considered a
mainstream entertainment medium provided for by an
industry with revenues of 7 billion US dollars in 2003
(ESA 2004). The most popular video games today are
complex systems, and developing them requires large
project teams of up to 100 people (Bethke 2003) with the
associated project management infrastructure. Large teams
producing complex projects require management processes
in order to reliably produce results within the constraints
of a schedule and budget. Formal software engineering
processes have been applied as useful paradigms for
projects in the commercial sector, including video game
development.

In the NERO project, the team attempted to use
standard software development models utilized in video
game production with varying success as discussed in
Section 3.2.2. The examples defined here provide clarity in
the discussion of NERO:

•  Waterfall method. This model was first introduced by
Royce (1970) as software projects grew in size and
complexity. It stipulates that projects follow distinct
phases of requirements gathering, preliminary program
design, analysis, coding, and testing, with
documentation produced at the end of each phase. Each
phase is completed before the next phase begins.

•  Spiral model. Boehm (1988) developed the spiral
model as a way to manage the risk that arises from
uncertainties in a project. The spiral begins with well-
defined exploratory phases in which risks are assessed
and mitigations determined. As more definition for the
software is achieved, a series of prototypes may be
developed iteratively or it may be appropriate to
transition to a waterfall or other model.

• Incremental method. This is a parallel process method
used primarily on large projects. Rather than an entire
project team following the waterfall method, the
coding of separate segments of an application’s
system are begun according to when requirements can
be defined for them.

Additional concepts from management science for the
commercial sector are also useful in understanding the
circumstances in which the NERO project was developed:

•  Interdisciplinary teams. Also known as cross-
functional teams, these are comprised of members
with expertise from a variety of domains relevant to
the project.

• Skunkworks. This term refers to a process engineering
method innovation pioneered in the 1940s at Lockheed
Martin (Brown 2001). It is characterised by the use of
a small group completing a prototype or project from

beginning to end (Wolff 1987). The team is given its
own independent space and autonomy from the
bureaucratic norms of the larger organization.

The waterfall method has been a useful tool for the
game industry as game projects coordinate the efforts of
designers, programmers, and artists to create products that
are both functional and engaging for game-playing
audiences. All groups contribute to the design of the
product and group understanding of the final design is
crucial to the success of the project. However, a video
game can consist of numerous sub-systems within the
larger product, and risk management strategies like those
in the spiral method are sometimes utilized, as well as
incremental strategies allowing different systems modules
to develop within their own time cycles inside the larger
project  (Gattis & Waldrip 2004). The NERO project
leadership experimented with all of these software
development models. Some proved useful, while others
presented unique challenges in an academic environment.

3 Project NERO

3.1  From NEAT to NERO
Laird (2000) listed three reasons that the closer ties and
working relationships between the video game industry and
the artificial intelligence research community that many
parties identify as mutually beneficial has recently seen an
increase in activity: 1) advancing technology with better
processor power, 2) student gamers now in universities are
doing AI research, and 3) players are demanding better AI
in video games.

This change was the impetus for a workshop held by
the DMC in August of 2003 on the topic of AI in Video
Games, where University of Texas at Austin researchers
and game industry developers presented their research in a
single conference track. One of the researchers was then
Ph.D. candidate Kenneth O. Stanley (completed August,
2004), who presented his method for evolving neural
networks called NeuroEvolution of Augmenting
Topologies (NEAT; Stanley & Miikkulainen 2002). Mat
Buckland, in his 2002 book AI Techniques for Game
Programming posited the potential for NEAT to improve
AI in video games. By the time of the workshop Stanley
had conceived of a game that would require machine
learning capabilities that intelligent agents trained with the
NEAT method could provide. In breakout sessions for
game design he proposed the game idea and then presented
it to the conference. After the conference, the DMC decided
to create a prototype of Stanley’s game idea, instantiating
an applied research project that would build on Stanley’s
basic NEAT research and create a real-time implementation
of it (Stanley et al. 2004).  This project came to be called
NERO, based on the game concept of training and battling
robotic armies: NeuroEvolving Robotic Operatives.

Video game prototypes or demos often function as a
demonstration of the fully developed game and as a proof
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of concept for the technology behind the game (Bethke
2003). The NERO project was envisioned similarly, and
by conducting the implementation of the AI method into a
game software environment, the project generated tangible
research, real-time NEAT (rtNEAT), a new derivative of
NEAT which was reported in Stanley’s dissertation
(Stanley 2004).

3.2  Development Methods
3.2.1 Environment/Context
The skunkworks construct (Section 2) has many
similarities to the project circumstances and environment
at the DMC. The physical location of the project has
always been the DMC lab, where team members meet and
work individually and collaboratively. The DMC is part of
a university research unit, not a department in a college,
and thus does not need to follow departmental norms. The
DMC director has given few directives to the project staff
except for requesting a target milestone date to have a
functional prototype completed. The core leadership of the
NERO team has been the same since the inception, as in
Wolff (1987), described in Section 2. The team’s work has
been design and prototyping.
3.2.2 Process
The DMC team’s original hypothesis was that applying
game development team structures and typical game
software development methods (Bethke 2003) to an applied
AI research project would yield constructive results. Thus
the leadership began with the waterfall method, as most
video game industry projects do, to confirm requirements
and create a preliminary design. However, the team
immediately encountered difficulty with the waterfall
method, since it was unclear who would be the ultimate

customer of this technology, and whether the DMC would
release NERO as a game eventually. Similar problems
arose when attempting high-level game design because at
the beginning the team did not have enough knowledge
about how NEAT would work in the game engine, or if it
could be made to work in real time. Thus starting with the
typical waterfall phases of requirements and preliminary
design, as game projects normally would, was not
appropriate for the NERO project.

As noted by McCormack and Verganti (2003) in their
discussion of uncertainty in projects and how they affect
the development process, “different types of projects carried
out in different environments are likely to require quite
different development processes if they are to be
successful.” This is echoed by game developers who
acknowledge that video games, for which custom software
systems are often built, frequently require a custom mix of
development approaches (Gattis & Waldrip 2004).

The NERO leadership team evolved an approach suited
to the research and development challenges the project has
faced. The team adapted the spiral method, defining specific
intermediate goals for research and production, and
choosing target completion dates. Since the university
semester schedule imposes long breaks and team turnover
among student participants, semesters provide natural
milestones for the project in which the team can evaluate
progress, identify the next round of goals and tasks, and
evaluate which tasks to tackle immediately and which to
postpone based on current resources.

Implementing the NEAT AI technique in a 3D game
engine required crafting a series of experiments that would
both validate and advance the capabilities of NEAT. At the
same time, choosing the commercial engine Torque

Figure 1: A screenshot from a training scenario in the NERO prototype in which AI agents learn to find their
way around obstacles to a goal
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(Garage Games) as a development platform and research
test-bed required many modifications to accommodate
rtNEAT and implement the NERO game design around it.
NERO has incorporated academic research goals, alongside
concurrent production involving engine coding and art
creation. The team leadership also has adapted an
incremental approach to the project by having some
programmers work individually or in small groups on
different parts of the prototype, some conducting research
experiments, while others work on the user interface or
other game-engine related tasks. The research aspect of the
project has taken a large percentage of the total effort and
often drives the other development tasks. As the project
progressed, the application increasingly took on the
appearance of a game while research simultaneously
advanced (Figure 1).  
3.2.3 Team Structure
The game industry relies on interdisciplinary teams
(Section 2) to develop complex entertainment software
products. The NERO project has used team structure and
development methods borrowed from the game industry,
but on a much smaller scale and in an academic
environment. Thus for NERO a team-based structure has
been employed, with subteams and associated team leads
for programming, art, and design. Almost all of the team
members have been undergraduate student volunteers with
no professional experience in industry.  Of those who are
not volunteers, the project producer and the lead designer
are staff members of the DMC, and the AI researchers
Kenneth Stanley and Bobby D. Bryant, Ph.D. candidate,
are both on fellowships. The project was not prohibitively
costly to implement since volunteers and staff members
completed much of the work.

For the art team and programming team leadership
positions, which sometimes change, the producer tapped
willing volunteers. They usually had only classroom
experience in project work and leadership. However the
result of giving undergraduates positions of responsibility
has been that they perform beyond expectations, carrying
out research and solving difficult problems (Kanter 1985).

The programming and art leads make up half of the
project leadership team. Stanley and Bryant, the producer,
and the designer make up the rest of the leadership team,
who meet weekly to make decisions and coordinate all
aspects of the project. These meetings are crucial for
directing the production work, staying abreast of the
research progress, and continually evaluating how the
advancing research impacts the design and production. The
DMC lab has been the center of operations for all
meetings and most of the project work.
3.2.4  Design Considerations
For the NERO project, there have been two distinct but
related areas of design – the game design aspect of the
prototype and the research design. The game designer has
created a context for Stanley’s game concept, which
included background fiction, a visual design concept, and
some game design elements. This vision is a motivator for
the volunteer team, who are excited to work toward a real

game. The two AI researchers have had the responsibility
of designing the series of experiments that document and
validate the success or lack thereof of implementing NEAT
into the Torque game environment and exhibiting the
desired capabilities (Figure 2 shows an example of an
experiment series). The game design and the research
design have been intertwined throughout development
because what has been possible in the game depended on
the capabilities of the artificial intelligence. As research
and production have continued, new possibilities have
presented themselves, based on what has been
accomplished in the research. Sometimes new research
directions have appeared, which implied accompanying
shifts in the game design. This has contributed to the
usefulness of the spiral development method for this
project, where design choices are made iteratively,
prototypes are produced to reflect the new choices, and
risks are evaluated at each turn (Boehm 1998).
3.2.5 Results
The NERO project has resulted in a playable video game
prototype, now its second version. An exciting result is
that the novel aspect of rtNEAT has yielded novel
gameplay in the prototype (NERO will be presented in the
Experimental Gameplay Workshop at the 2005 Game
Developers Conference).

In NERO, a player trains a group of ignorant robot
soldiers by setting learning objectives for the group
through an interface. After the objective is set, the robots
learn in real time to achieve their goal. The player can
incrementally increase the challenge for the robot soldiers
though the learning objective interface and by customizing
the training arena, thus creating increasingly sophisticated

Experiments -
E1 – Learn to move to approach some stationary
target.
For convenience, just use an enemy for the target.
E2 – Learn to acquire and shoot to hit a stationary
target.
May not require a factory.
  b – Ditto, except with a mobile target.
E3 – Learn to approach a stationary turret that is
firing in an oscillating pattern, without getting killed.
  b – Ditto, except against two turrets.
E4 – Learn basic assault tactics: move across the map
into firing range and destroy a stationary turret that is
firing in an oscillating pattern, without getting killed.
  b – Ditto, except against two turrets.
E5 – Deploy two teams trained as in E4b in a combat
area, and show that they display appropriate behavior.
No evolution involved.
Use teams trained to different behaviors, e.g. “move a
lot” vs. “don’t move much”, “disperse a lot” vs. “stay
bunched up”,  or “approach the enemy” vs. “avoid the
enemy”.

 Figure 2: An excerpt from the first plan of experiments
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behavior in the group. Once the real-time training is
completed to the player’s satisfaction, the player can save
the team. Then the player can battle the team against the
computer’s or a human opponent’s team, observing the
results of the training in a battle situation, where learning
is no longer taking place. The real-time training in NERO,
powered by rtNEAT, is a type of gameplay that currently
does not exist in commercial games. This new style of
gameplay could lead to new video game genres.

NERO has been a successful project because it has
resulted in innovations in terms of both research and what
is possible in games. NEAT first had to be reengineered to
work in real time, producing one of the first genetic
algorithm systems to do so. Stanley created rtNEAT, an
innovation that he included in his doctoral dissertation
(Stanley 2004), and with the undergraduate lead
programmer implemented the method into the Torque 3D
engine. Sensors had to be engineered to enable the agents
to perceive elements of the environment such as enemies
or walls. The agents perceive the world differently than
typical non-player characters in a video game that are fed
information about the environment through the game
system. NERO agents sense the environment
egocentrically, more like robots in the physical world, and
thus had to be equipped with egocentric sensors.

Another essential element of the training function of
the game is the interface where players, from their
perspective, assign objectives to the agents during
training, such as approaching the on-field enemy or
avoiding getting hit by fire. This interface gives players
access, without their explicit knowledge, to the fitness
functions of the agents, allowing them to interact with the
evolution of the networks in real time, another innovation
enabled by rtNEAT (Stanley et al. 2004).

Additionally, art students have created robot models to
embody the agents, and game level environments to more
aptly demonstrate the agents’ capabilities. Thus at this
point NERO is a successful demonstration of NEAT, and
as such has generated considerable interest from both
companies in the game industry and groups in the
military. A provisional patent has been filed on rtNEAT,
an SDK is being developed, and licensing options are
being investigated. NERO has been an experiment on
multiple levels: artificial intelligence research, process
management, and video game design. At each level
interesting results have emerged.

4 Discussion

4.1  Project-Based Considerations
Over the yearlong course of developing the NERO project,
there has been no road map to tell the leadership how to
direct a project of this kind. Some of the solutions the
leadership has developed may be generalizable to other
projects.

4.1.1 Industry Input
Other projects of this kind would benefit from getting
input from industry early in the project. Whether through
casual conversations or formal presentations with industry
professionals, input concerning what would be desirable or
innovative is essential if a goal is to eventually
commercialize the research. It would be undesirable for
academic groups who are unfamiliar with video games to
attempt to solve problems that are considered already
solved in the game industry. Posing a question such as “If
our group had a technology that could do [X technology
functionality], what would you expect it to be capable of
in a game environment?” would yield valuable information
that a team could use to guide the development of the
project by comparing industry interests to the group’s own
research interests.
4.1.2 The Research and Production Mix
In a project where the goal is to create a technology that
interests industry while at the same time advancing
research in an academic field, maintaining awareness of
those sometimes opposing goals is important. In the
NERO project the leadership team has experienced the
tension between those goals, and that has been an
occasional source of conflict. In any project phase, there is
a limit to the resources available to apply to project tasks,
and choices must be made and priority given to some tasks
over others. Transition points between phases are the best
time to evaluate the meta-goals of the project for the
upcoming phase.
4.1.3 Technology Considerations
Using an existing game engine (Torque) as a platform for
applying new artificial intelligence methods has been very
helpful for the NERO team. It has allowed the team to
develop a functional prototype fairly quickly after the effort
of making NEAT workable in Torque. Additionally, using
a commercial engine gives our undergraduate programmers
the experience of working with an industry quality engine,
which is valuable for industry hopefuls. However, it is
also important to be aware of the limitations of the chosen
engine or platform. The Torque engine is designed for the
first-person shooter game genre, a very different kind of
game than NERO is intended to be; thus some
functionality that would ideally already exist does not. For
instance, the training aspect of NERO requires the player
to build training environments, and an engine similar to
the one used in the video game SimCity would have that
functionality built in. Currently there is not an affordable
engine for every existing game genre, and thus much
functionality may need to be built from scratch.

Alongside functionality considerations are other
technical concerns that should be understood when
evaluating engine platforms. In Torque, the STL (Standard
Template Library) is not supported, which required that the
NEAT code be rewritten so as not to use that library. This
was a surmountable challenge, but non-trivial, and has
kept some researchers from wanting to use the engine.
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4.1.4 Process
When dealing with research experiments it is much more
difficult to create a reliable schedule based on the estimated
level of effort, as would be done with a commercial
project. Encountering unexpected difficulties when
conducting experiments can extend the time to complete
them far beyond what a team lead might imagine or plan.
The NERO leadership has found it more productive to
create a milestone list of experiments and production work
based on the semester, without assigning specific
completion dates. Together the leads create an agreed-upon
list of goals and track the completion of them throughout
the semester.
4.1.5 Team
The primary difficulties encountered when working with an
undergraduate student volunteer team are inexperience and
turnover. The NERO project leadership has developed
processes and techniques for bringing on new students and
retaining them:
1. Recruiting process. It is most efficient to bring on new
programmers and train them as a group rather than
individually. That also gives them camaraderie as new
members of the team.
2. High expectations from the outset. Too many
uncommitted people on the team are an administrative
overload for the lead. By broadcasting the need for
commitment to the project, people know what to expect
and the lead can limit participation to members who are
likely to stay on the project and contribute significantly
(Botkin 1985).
3. Weekly meetings. These are important for each subteam
to keep people on track and help them understand their
contributions in a group context. Meetings are especially
important for team members who lack experience working
in a group toward a common goal.
4. Mentorship. Create an environment where the more
senior members can advise newer ones; with new members
joining the team each semester, it can take some of the
burden off the lead to establish times where most members
are in the work space, thus enabling mentoring
opportunities.
5. Communication. Project leaders improve morale by
communicating the meta-goals for the project phase and
gathering team members' input. As implementers, team
members have valuable insights and perspectives of which
the project leadership needs to be aware.
6. Fun. Project leaders can demonstrate their appreciation
to the team by hosting game nights, bringing in industry
speakers, and recognizing accomplishments whenever
possible.

While some might be concerned that having volunteers
on the project is exploitative, it is apparent that the
experience on the project has proved beneficial for
undergraduate team members. Game projects appeal to
undergraduates, and many students hope to find
employment in the game industry, which is notoriously
difficult to enter. Working on a game engine with a team
provides valuable experience toward that goal. Other

students who are less driven by game industry goals value
the opportunity to work with Ph.D.-candidate-level
graduate students doing innovative research, which many
undergraduates find inspiring. Undergraduates are a
frequently overlooked group; however, they have proved to
be crucial contributors to the NERO project team. NERO
project veterans have gone on to create their own lines of
research based on the project or, following their
graduation, have found employment with local game
development studios. The lessons learned with NERO are
serving the project team well as it goes forward into a
second year of development, reducing the time spent on
administrative necessities such as student recruiting, and
allowing more time for research and game production
work.

4.2  Institutional Considerations
Accompanying the project-based considerations in
conducting a project like NERO, there are also issues at
the institutional level. There is an increasing movement in
academia, in the US, Europe, and elsewhere, to
commercialize university research, a movement that has
created controversy in the academic community.
Proponents cite the important benefits for society, such as
bringing technology improvements to the public, job
creation, and funding for universities. However, there are
serious concerns among academic leaders that market-
driven influences will corrupt academic research processes
with conflicts of interest and manipulated research agendas
(see McMaster 2002, Bok 2003). Nevertheless, NERO has
shown that it is possible to create university/industry
collaborations that can provide educational benefits to
students as well as financial benefits to departments,
without compromising basic research.

Dr. George Kozmetsky, the founder of the University
of Texas at Austin’s IC2 Institute, promoted an agenda of
capitalism for the public good. The Institute has a long
history of technology commercialization with groups
under its umbrella such as the Austin Technology
Incubator and the Masters of Science in Science and
Technology Commercialization degree program. The DMC
is the newest organization within the IC2 Institute, created
in part to apply basic research with the University of
Texas’ faculty and students and bring it to the
public/commercial sector. The DMC is an obvious
organization to implement projects of this kind, and the
NERO project has been an initial implementation of Dr.
Kozmetsky’s vision.

The DMC has provided a fertile ground for
implementing NERO as an academic applied research
project that supplies some of the project’s research goals
by observing industry needs. University departments
anywhere can develop similar projects by creating the
necessary infrastructure to implement them. Departments
can create opportunities for applied research projects
outside of students’ normal classwork,  supplementing
their knowledge acquisition with collaborative, project-
based educational  experiences. Creating this infrastructure
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does not require a large investment of departmental
resources.

The purpose of having a structure in which projects
occur outside of  classes is to provide an avenue for the
creation of projects that develop for longer than a semester.
It also allows students to be driven by motivations other
than external class-related measures, such as receiving
grades.

In order to create such an infrastructure, university
departments could institute processes such as these:

• Create a process to invite applied research project
ideas, requiring a group implementation, from
graduate students and faculty, based on their research.

•  Have a committee that includes faculty and industry
members to choose the best ideas based on industry
interests and advancements in the relevant academic
field.

• Choose a project manager to create teams based on the
chosen project ideas. This coordinator could be a
student in the department, a faculty member, or a
student from another major such as business.  This
role requires commitment,  deep interest in the
research area,  and organizational and communication
skills. It may be advisable to assign a departmental
staff member the job of supervising these project
coordinators to provide mentorship and guidance.

•  Give students autonomy in how they develop their
projects by allowing project leaders to set goals in
collaboration with the other team leads.

•  Have a review process at appropriate milestones with
team members, faculty members, and industry
members in order to assess project progress.

To broaden the participation of students from other
disciplines, invite students from departments such as
communications, art, business, design, and information
sciences. All of these departments represent roles in game
industry projects, which can increase  the real world impact
of the project.

5 Implications and Future Work

The NERO project is an example of the advantages of
leveraging existing technology (e.g. off-the-shelf game
engine applications) for advancing academic research.
Such technologies, which have become increasingly more
affordable for university department budgets, can supply
one researcher or a team with the foundation to relatively
quickly implement research technologies such as machine
learning, robotics, databases, or other areas. These
technologies provide platforms for visualization and
validation, and because they support high-quality
demonstrations, these platforms can be a bridge to
commercialization of research technologies.

After implementing rtNEAT in the NERO game, other
potential applications have become apparent, even within
the realm of video game technology. The rtNEAT method
could be implemented in a persistent online 3D
environment. Massively multiplayer online games

(MMOGs) are one possibility for such an implementation.
In a multiplayer persistent virtual world, the agents, as
non-player characters, could evolve new behaviors by
reacting to players’ choices. Non-player-characters with
true adaptive, not scripted, behavior are very desirable for
game developers and players alike (Ilsa & Blumberg 2002,
Fogel 2003). Non-player-characters in current MMOs have
predictable behaviors with a limited ability to provide
players with new challenges. To address game designer
needs, a back-end interface to the evolution similar to the
NERO interface would ensure that designers had the
necessary control over the agents’ behavior, which is an
important industry consideration.  

There are also implications for non-game
environments. By modeling the agents as animals or other
biological entities and giving them appropriate
animations, the adaptation ability shown in NERO might
result in artificial life agents who could evolve for weeks,
months, or perhaps years, based on the concept of open-
ended evolution (Taylor 1999). This sort of artificial
ecology experiment would be an exciting next step that
could provide a test-bed for exploring the limits of
rtNEAT’s complexification characteristics.

Another conclusion of this case study is that closer
collaboration with the video game industry could bring
significant benefits to the academic community. One of
these benefits is in the area of applied research problems.
Most AI machine learning researchers who have worked
with games until recently have used board games such as
checkers or Go (Furnkranz 2000) as research areas. In
contrast, the video game industry offers complex and novel
application challenges, which have “real world" status that
can motivate student teams who are interested in advancing
the state of the art in game technology.

Game companies might be persuaded to provide funding
to departments engaged in projects that could produce
usable technologies if they understood the benefit of
having highly specialized academic research applied to the
video game domain on problems they need solved. Again,
departments must always weigh industry interests against
the interests of advancing the research in the relevant
academic field, and attempt to find areas of commonality.

6 Conclusions

Video game technology has given the rtNEAT method a
platform to demonstrate its capabilities, which has proved
invaluable for introducing it to the world. Projects such as
NERO can be repeated in other universities where there is
support for innovative ways of conducting applied research
in computer science or interdisciplinary departments.
Universities can use video game technology to accelerate
research advancement as well as reveal commercialization
opportunities. These projects provide motivating
challenges for students who are highly interested in doing
innovative work, even as undergraduates.
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University departments can draw on students’ intense
interest in video games. Research conducted by the DMC
in 2003 shows that, among middle school students in
Texas, 75% of boys and 50% of girls were found to play
video games (Gold et al. 2005). With so many university
students engaged as users of this medium, there is a large
pool of potential team members for game-related projects.

Ultimately, as innovative artificial intelligence
techniques are implemented in commercial video games
and AI students and professors leverage video game
technology as applied research platforms, everyone
benefits.
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Abstract- We present a case-injected genetic algorithm
player for Strike Ops, a real-time strategy game. Such
strategy games are fundamentally resource allocation
optimization problems and our previous work showed
that genetic algorithms can play such games by solving
the underlying resource allocation problem. This pa-
per shows how we can learn to better respond to oppo-
nent actions (moves) by using case-injected genetic algo-
rithms. Case-injected genetic algorithms were designed
to learn to improve performance in solving sequences
of similar problems and thus provide a good fit for re-
sponding to opponent actions in Strike Ops which re-
sult in a sequence of similar resource allocation prob-
lems. Our results show that a case-injected genetic algo-
rithm player learns from previously encountered prob-
lems in the sequence to provide better quality solutions
in less time for the underlying resource allocation prob-
lem thus improving response time by the genetic algo-
rithm player. This improves the responsiveness of the
game and the quality of the overall playing experience.

1 Introduction

The computer gaming industry now has more games sales
than movie ticket sales and both gaming and entertainment
drive research in graphics, modeling and many other ar-
eas. Although AI research has in the past been interested
in games like checkers and chess [1, 2, 3, 4, 5], popular
computer games like Starcraft and Counter-Strike are very
different and have not yet received much attention from evo-
lutionary computing researchers. These games are situated
in a virtual world, involve both long-term and reactive plan-
ning, and provide an immersive, fun experience. At the
same time, we can pose many training, planning, and sci-
entific problems as games where player decisions determine
the final solution. This paper uses a case-injected genetic al-
gorithm to learn how to play Strike Ops a Real-Time Strat-
egy (RTS) computer game [6].

Developers of computer players (game AI) for popu-
lar First Person Shooters (FPS) and RTS games tend to
use finite state machines, rule-based systems, or other such
knowledge intensive approaches. These approaches work
well - at least until a human player learns their habits and
weaknesses. The difficulty of the problem means that com-
petent Game AI development requires significant player
and developer resources. Development of game AI there-
fore suffers from the knowledge acquisition bottleneck well
known to AI researchers.

Since genetic algorithms are not knowledge intensive
and were designed to solve poorly understood problems
they seem well suited to RTS games which are fundamen-
tally resource allocation games. However, genetic algo-
rithms tend to be slow, requiring many evaluations of can-
didate solutions in order to produce satisfactory allocation
strategies.

To increase responsiveness and to speed up gameplay,
this paper applies a case-injected genetic algorithm that
combines genetic algorithms with case-based reasoning to
provide player decision support in the context of domains
modeled by computer strategy games. In a case-injected
genetic algorithm, every member of the genetic algorithm’s
evolving population is a potential case and can be stored
into a case-base. Whenever confronted with a new re-
source allocation problem (Pi), the case-injected genetic
algorithm learns to increase performance (playing faster
and better) by periodically injecting appropriate cases from
previously attempted similar problems (P0, P1, . . . , Pi−1)
into the genetic algorithm’s evolving population on Pi.
Case-injected genetic algorithms acquire domain knowl-
edge through game play and our previous work describes
how to choose appropriate cases, how to define similarity,
and how often to inject chosen cases to maximize perfor-
mance [6].

Players begin Strike Ops with a starting scenario and
the genetic algorithm player attempts to solve P0, the un-
derlying resource allocation problem. During game play,
an opponent’s action changes the scenario creating a new
resource allocation problem P1 and triggering the genetic
algorithm to attempt to solve P1. Combined with case-
injection, the genetic algorithm player uses past experience
at solving the problem sequence generated by opponent ac-
tions, P1, P2, . . . , Pi−1, to increase performance on current
and subsequent problems, Pi, Pi+1, . . . , Pi+n. Preliminary
results show that our case-injected genetic algorithm player
indeed learns to play faster and better.

The next section introduces the strike force planning
game and case-injected genetic algorithms. We then de-
scribe previous work in this area. Section 4 describes
the specific strike scenarios used for testing, the evalua-
tion computation, our system’s architecture, and our encod-
ing. The subsequent two sections explain our test setup and
our results with using case-injected genetic algorithm to in-
crease our performance at playing the game. The last sec-
tion provides conclusions and directions for future research.
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2 Strike Ops

A Strike Ops player wins by destroying opponents’ installa-
tions while minimizing damage to the player’s own installa-
tions and assets. An attacking player allocates a collection
of strike assets on flying platforms to a set of opponent tar-
gets and threats on the ground. The problem is dynamic;
weather and other environmental factors affect asset perfor-
mance, unknown threats can popup and become new tar-
gets to be destroyed. These complications as well as the
varying effectiveness of assets on targets make the game in-
teresting and the underlying resource allocation problems
difficult and thus suitable for genetic and evolutionary com-
puting approaches. Figure 1 shows a screenshot from the
game.

Figure 1: Game Screen-shot

Our game involves two sides: Blue and Red, both seek-
ing to allocate their respective resources to minimize dam-
age received while maximizing the effectiveness of their as-
sets. Blue plays by allocating a set of assets on aircraft
(platforms), to attack Red’s buildings (targets) and defen-
sive installations (threats). Blue determines which targets
to attack, which weapons (assets) to use on them, as well as
how to route each platform to the targets, trying to minimize
risk presented while maximizing weapon effectiveness.

Red has defensive installations (threats) which protect
its targets by attacking enemy platforms that come within
range. Red plays by placing these threats to best protect
targets. Potential threats and targets can also ”pop-up” on
Red’s command in the middle of a mission, allowing a range
of strategic options. By cleverly locating threats Red can
feign vulnerability and lure Blue into a deviously located
popup trap, or keep Blue from exploiting such a weakness
out of fear of a trap. The many possible offensive and de-
fensive strategies make the game exciting and dynamic.

In this paper, a human plays Red while a Genetic Algo-
rithm Player (GAP) plays Blue. The fitness of an individual
in GAP’s population solving the underlying allocation prob-
lem is evaluated by running the game. GAP develops strate-
gies for the attacking strike force, including flight plans and
weapon targeting for all available aircraft. When confronted
with popups or other changes in situation, GAP responds by
replanning with the case-injected genetic algorithm in order
to produce a new plan of action that responds to changes.

2.1 Case-Injected Genetic Algorithms for RTS games

The idea behind a case-injected genetic algorithm is that
as the genetic algorithm component iterates over a prob-
lem it selects members of its population and caches them
(in memory) for future storage into a case base [6]. Cases
are therefore members of the genetic algorithm’s population
and represent an encoded candidate strategy for the current
scenario. Periodically, the system injects appropriate cases
from the case base, containing cases from previous attempts
at other, similar problems, into the evolving population re-
placing low fitness population members. When done with
the current problem, the system stores the cached popula-
tion members into the case base for retrieval and use on new
problems.

A case-injected genetic algorithm works differently than
a typical genetic algorithm. A genetic algorithm randomly
initializes its starting population so that it can proceed from
an unbiased sample of the search space. We believe that
it makes less sense to start a problem solving search at-
tempt from scratch when previous search attempts (on sim-
ilar problems) may have yielded useful information about
the search space. Instead, periodically injecting a genetic
algorithm’s population with relevant solutions or partial so-
lutions to similar previously solved problems can provide
information (a search bias) that reduces the time taken to
find a quality solution. Our approach borrows ideas from
case-based reasoning (CBR) in which old problem and solu-
tion information, stored as cases in a case-base, helps solve
a new problem [7, 8, 9]. In our system, the data-base, or
case-base, of problems and their solutions supplies the ge-
netic problem solver with a long term memory. The system
does not require a case-base to start with and can bootstrap
itself by learning new cases from the genetic algorithm’s at-
tempts at solving a problem.

The case-base does what it is best at – memory orga-
nization; the genetic algorithm handles what it is best at –
adaptation. The resulting combination takes advantage of
both paradigms; the genetic algorithm component delivers
robustness and adaptive learning while the case-based com-
ponent speeds up the system.

The Case-Injected Genetic Algorithm (CIGAR) used
in this paper operates on the basis of solution similarity.
CIGAR periodically injects a small number of solutions
similar to the current best member of the GA population
into the current population, replacing the worst members.
The GA continues searching with this combined population.
The idea is to cycle through the following steps. Let the GA
make some progress. Next, find solutions in the case base
that are similar to the current best solution in the population
and inject these solutions into the population. If injected so-
lutions contain useful cross problem information, the GA’s
performance will be significantly boosted. Figure 2 shows
this situation for CIGAR when it is solving a sequence of
problems, Pi, 0 < i ≤ n, each of which undergoes periodic
injection of cases.

We have described one particular implementation of
such a system. Other less elitist, approaches for choosing
population members to replace are possible, as are different
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P0 P
nP1 P2

Store intermediate solutions

Periodically inject cases

Figure 2: Solving problems in sequence with CIGAR. Note
the muliple periodic injections in the population as CIGAR
attempts problem Pi, 0 < i ≤ n.

strategies for choosing individuals from the case base. We
can also vary the injection percentage; the fraction of the
population replaced by chosen injected cases.

Note that CIGAR periodically injects cases into the
evolving population. We have to periodically inject solu-
tions based on the makeup of the current population be-
cause we do not know which previously solved problems
are similar to the current one. That is, we do not have a
problem similarity metric. However, the hamming distance
between binary encoded chromosomes provides us a sim-
ple and remarkably effective solution similarity metric. By
finding and injecting cases in the case-base that are similar
(hamming distance) to the current best individual in the pop-
ulation, we are assuming that similar solutions must have
come from similar problems and that these similar solutions
retreived from the case base contain useful information to
guide genetic search. Results on design, scheduling, and al-
location problems show the efficacy of this similarity metric
and therefore of CIGAR [6].

An advantage of using solution similarity arises from the
string representations typically used by genetic algorithms.
A chromosome is, after all, a string of symbols. String sim-
ilarity metrics are relatively easy to come by, and further-
more, are domain independent. For example, in this paper
we use hamming distance between binary encoded chromo-
somes for the similarity metric.

What happens if our similarity measure is noisy and/or
leads to unsuitable retrieved cases? By definition, unsuit-
able cases will have low fitness and will quickly be elimi-
nated from the GA’s population. CIGAR may suffer from
a slight performance hit in this situation but will not break
or fail – the genetic search component will continue mak-
ing progress towards a solution. In addition, note that di-
versity in the population - “the grist for the mill of genetic
search [10]” can be supplied by the genetic operators and
by injection from the case-base. Even if the injected cases
are unsuitable, variation is still injected. CIGAR is robust.

The system that we have described injects individuals in
the case-base that are deterministically closest, in hamming
distance, to the current best individual in the population. We
can also choose schemes other than injecting the closest to
the best. For example, we have experimented with injecting
cases that are the furthest (in the case-base) from the current
worst member of the population. Probabilistic versions of
both have also proven effective.

Reusing old solutions has been a traditional performance

improvement procedure. This work differs in that 1) we at-
tack a set of tasks, 2) store and reuse intermediate candi-
date solutions, and 3) do not depend on the existence of a
problem similarity metric. More details about CIGAR are
provided in [6].

Genetic algorithms can be used to robustly search for ef-
fective strategies inside our game. A genetic algorithm can
generate an initial resource allocation (a plan) to start the
game. No plan survives contact with the enemy, however,
as the dynamic nature of the game requires re-planning in
response to opponent decisions (moves) and the ever chang-
ing game-state. Replanning must be done fast enough to
keep the game lively and responsive, while plans produced
must be effective enough to produce a competent opponent.
Can genetic algorithms satisfy these speed and quality con-
straints?

We have shown that case-injected genetic algorithms
learn to increase performance with experience at solving
similar problems [6, 11, 12, 13, 14]. For the case-injected
genetic algorithm, re-planning is simply solving a similar
planning problem arising from opponent actions and this pa-
per shows that when used for re-planning in Strike Ops, a
case-injected genetic algorithm quickly produces better new
plans in response to changing game dynamics. In our game,
aircraft break off to attack newly discovered targets, reroute
to avoid new threats, and re-prioritize to deal with changes
to the game state.

2.2 Previous Work

Previous work in strike force asset allocation has been done
in optimizing the allocation of assets to targets, the majority
of it focusing on static pre-mission planning. Griggs [15]
formulated a mixed-integer problem (MIP) to allocate plat-
forms and assets for each objective. The MIP is augmented
with a decision tree that determines the best plan based upon
weather data. Li [16] converts a nonlinear programming for-
mulation into a MIP problem. Yost [17] provides a survey
of the work that has been conducted to address the opti-
mization of strike allocation assets. Louis [18] applied case
injected genetic algorithms to strike force asset allocation.

From the computer gaming side, a large body of work
exists in which evolutionary methods have been applied
to games [2, 19, 4, 20, 3]. However the majority of this
work has been applied to board, card, and other well de-
fined games. Such games have many differences from pop-
ular real time strategy (RTS) games such as Starcraft, Total
Annihilation, and Homeworld[21, 22, 23]. Chess, check-
ers and many others use entities (pieces) that have a limited
space of positions (such as on a board) and restricted sets of
actions (defined moves). Players in these games also have
well defined roles and the domain of knowledge available
to each player is well identified. These characteristics make
the game state easier to specify and analyze. In contrast, en-
tities in our game exist and interact over time in continuous
three dimensional space. Entities are not directly controlled
by players but instead sets of parametrized algorithms con-
trol them in order to meet goals outlined by players. This
adds a level of abstraction not found in more traditional
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games. In most such computer games, players have incom-
plete knowledge of the game state and even the domain of
this incomplete knowledge is difficult to determine. John
Laird [24, 25, 26] surveys the state of research in using Ar-
tificial Intelligence (AI) techniques in interactive computers
games. He describes the importance of such research and
provides a taxonomy of games. Several military simulations
share some of our game’s properties [27, 28, 29], however
these attempt to model reality while ours is designed to pro-
vide a platform for research in strategic planning, knowl-
edge acquisition and re-use, and to have fun. The next sec-
tion describes the scenario (mission) being played.

3 Missions

Figure 3: The Scenario

Figure 3 shows one of the missions being played by our
GA. This mission takes place in north-west Nevada, Lake
Tahoe is just off the lower left hand side of the screen. The
rings represent the radii of the various threats, the darker
colored rings represent threats that are currently inactive -
they are waiting to surprise attackers. The square looking
objects are targets and there are a number of them. The blue
lines represent routes in a plan designed by a human playing
blue. The human player has organized platforms into two
wings and plans to thread through gaps in defense coverage
to attack undefended targets. Evaluating a plan, or com-
puting a plan’s fitness is dependent on the representation of
entities’ states inside the game, and our way of computing
fitness and representing this state is described next.

3.1 Fitness

We evaluate the fitness of an individual in GAP’s popula-
tion by running the game and checking the game outcome.
Blue’s goals are to maximize damage done to red targets,
while minimizing damage done to its platforms. Shorter
simpler routes are also desirable, so we include a penalty
in the fitness function based on the total distance traveled.
This gives the fitness calculated as shown in Equation 1

fit(plan) = Damage(Red)−Damage(Blue)−d∗c (1)

d is the total distance traveled by Blue’s platforms and c is
chosen such that d ∗ c has a 10-20% effect on the fitness

(fit(plan)). Total damage done is calculated below.

Damage(P layer) =
∑

E∈F

Ev ∗ (1−Es)

E is an entity in the game and F is the set of all forces
belonging to that side. Ev is the value of E, while Es is the
probability of survival for entity E. We use probabilistic
health metrics to evaluate entity damage.

3.2 Probabilistic Health Metrics

In many games, entities (platforms, threats, and targets in
our game) posses hit-points which represents their ability to
take damage. Each attack removes a number of hit-points
and when reduced to zero hit-points the entity is destroyed
and cannot participate further. However in reality, weapons
have a more hit or miss effect, destroying entities or leav-
ing them functional. A single attack may be effective while
multiple attacks may have no effect. Although more realis-
tic, this introduces a large degree of stochastic error into the
game.

To mitigate stochastic errors, we use probabilistic health
metrics [30, 31]. Instead of monitoring whether or not an
object has been destroyed we monitor the probability of its
survival. Being attacked no longer destroys objects and re-
moves them from the game, it just reduces their probability
of survival according to Equation 2 below.

S(E) = St0(E) ∗ (1−D(E)) (2)

E is the entity being considered: a platform, target, or
threat. S(E) is the probability of survival of entity E after
the attack. St0(E) is probability of survival of E up until
the attack and D(E) is the probability of that platform being
destroyed by the attack and is given by equation 3 below.

D(E) = S(A) ∗E(W ) (3)

Here, S(A) is the attackers probability of survival up un-
til the time of the attack and E(W ) is the effectiveness of
the attackers weapon as given in the weapon-entity effec-
tiveness matrix. This method gives us the expected values
of survival for all entities in the game within one run of the
game, thereby producing a representative evaluation of the
value of a plan. As a side effect, we also gain a smoother
gradient for the GA to search as well as consistently repro-
ducible evaluations.

3.3 Encoding

To play the game, players get the starting scenario and have
some initialization time to prepare strategy. GAP applies the
case injected genetic algorithm to the underlying resource
allocation and routing problem and chooses the best plan to
play against Red. The game then begins. During the game,
Red can activate popup threats detectable upon activation
by GAP. GAP then runs the case-injected genetic algorithm
producing a new plan of action, and so on.
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GAP must produce routing data for each of Blue’s plat-
forms. We use the A* algorithm [32] to build routes be-
tween locations platforms wish to visit. A* finds the cheap-
est route, where cost is a function of route length and route
risk.

We parameterize the routing algorithm in order to pro-
duce routes with specific characteristics and allow GAP to
tune this parameter. For example, we have shown that to
avoid traps, GAP must be able to specify that it wants to
avoid areas of potential danger. In our game, traps are most
effective in areas confined by other threats. If we artifi-
cially inflate threat radii, threats expand to fill in potential
trap corridors and A* produces routes that go around these
expanded threats. We thus introduce a parameter, rc that
increase threats’ effective radii. Larger rc’s expand threats
and fill in confined areas, smaller rc’s lead to more direct
routes. rc is currently limited to the range [0, 3] and en-
coded with eight (8) bits at the end of our chromosome. We
encoded a single rc for each plan but are investigating the
encoding of rc’s for each section of a route.

Most of the encoding specifies the asset to target alloca-
tion with rc encoded at the end as described above. Figure 4
shows how we represent the allocation data as an enumer-
ation of assets to targets. The scenario involves two plat-
forms (P1, P2), each with a pair of assets, attacking four
targets. The left box illustrates the allocation of asset A1
on platform P1 to target T3, asset A2 to target T1 and so
on. Tabulating the asset to target allocation gives the table
in the center. Letting the position denote the asset and re-
ducing the target id to binary then produces a binary string
representation for the allocation.

Figure 4: Allocation Encoding

4 Learning from Experience

Previous work has taught us that we can play the game with
a GA [30, 31]. Our goal has since become to play the game
faster and better. Even on a computer cluster the time re-
quired to respond to a change in state is slow compared to
the fast pace of the game. We achieve our goal of playing
faster and better through case injection.

Case-injected GA’s have been shown to increase per-
formance at similar problems as they gain experience. In
strategic games such situations occur often. Every oppo-
nent action and situational change is a change in game state.
However, these changes are often minor as few opponent
actions are worth redeveloping your entire strategy. Case
injection maintains some information from previous strat-
egy development, allowing us to keep our current strategy
in mind when developing new ones in response to changes
in game state. Case injection thus allows the GA to adapt
old strategies to new situations, maintaining past knowledge

that is still applicable, and redeveloping new strategies as
unforeseen situations arise.

5 Results

In this work we explore how we can improve genetic algo-
rithm performance through case injection. We analyze how
case-injection impacts re-planning with respect to game
complexity and re-planning scope. Except for the large mis-
sion (below), we used a steady-state population size of 20
run for 20 generations with a single-point crossover proba-
bility of 0.9 and a mutation probability of 0.1. We injected
two individuals every generation chosen using a probabilis-
tic closest to the best strategy where the probability of being
picked for injection from the case-base was directly propor-
tional to hamming similarity. The large mission used a pop-
ulation size of 40 run for 40 generations. The algorithm
stopped either when it exceeded the set number of iterations
(20 or 40) or when there was no improvement for over ten
generations or when fmax/favg was less than 1.01. Here
fmax is the population maximum fitness and favg is the
population average fitness.

5.1 Game Complexity

Game complexity refers to the complexity of the individ-
ual mission being played. Increasing the resources available
for each side to allocate increases the strategic search space
presented to each player. How does this increase in search
space alter the effect of case injection on the genetic search?

To test this, we first constructed 3 missions of increas-
ing complexity. More complex missions have more attack-
ing aircraft loaded with more weapons to attack more tar-
gets. The mission’s general character does not change. The
defending player follows a script activating popup threats
early in the mission leading the attacking player (GAP)
to replan attacking strategy. Scripting keeps the analysis
straightforward and repeatable. We then let the GA play
this game multiple times, with and without case injection
and analyze the GA’s response. We provide mission pro-
files below

• Simple Mission

– 4 platforms

– 8 assets

– 8 targets

– 30 bits per chromosome

• Medium Mission

– 6 platforms

– 12 assets

– 20 targets

– 66 bits per chromosome

• Large Mission (population size 40)

– 10 platforms
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– 20 assets

– 40 targets

– 114 bits per chromosome

We run a GA with and without case injection on the
three missions ten time with different random seeds and plot
the average number of evaluations made in Figure 5. Note
the Case-Injected Genetic AlgoRithm (CIGAR) greatly re-
duces the number of evaluations (time) to converge out-
performing the non-injected GA, especially as the mission
becomes more complex. On more complicated missions
CIGAR retains more information, giving it a larger advan-
tage over the GA.

Figure 5: Mission Complexity — Evaluations Made

We can also see that although CIGAR takes less time to
converge, the quality of solutions produced by CIGAR does
not suffer. Figure 6 plots the average of the maximum fit-
ness found by the GA or CIGAR over ten runs and shows
that CIGAR seems to produce better quality solutions; al-
though we need to have more runs to prove the improvement
is statistical significant.

5.2 Replanning Scope

GAP re-plans whenever the situation changes. These
changes range from minor events like discovering a poorly
valued target to big events like highly time-critical and im-
portant targets appearing. Case-injection exploits informa-
tion gained in previous searches, and the scope of the situ-
ation change determines how much of that previous knowl-
edge is pertinent to the current situation. How does case-
injection work under these different kinds of changes?

We again construct three missions, this time with differ-
ent defending layouts and scripted actions for the defend-
ing player. In each mission the defending player makes five

Figure 6: Mission Complexity — Fitness of Solution

changes, these changes having an increasing impact on the
attacking players strategy. We summarize the missions and
GAP’s response below.

• Simple Replan - Small threats popup on the way to
targets (same as previous 3 missions).

– GA reroutes to avoid new threats

– Minor changes to weapon-target allocation

• Moderate Replan - Medium threats popup around a
handful of targets

– Moderate changes in allocation

– Avoids newly protected low value threats

– Redirects additional attackers to newly pro-
tected high value targets

– Significant routing changes to avoid new threats
and reach new targets

• Complex Replan - Large popups occur defending a
large cluster of targets

– Large changes of allocations

– Wings (groups) of aircraft diverted from new
hot zones

– Focusing of aircraft towards the most highly
valued targets

– Rerouting of most aircraft for each replan

Figure 7 shows the number of evaluations required as a
function of the number of re-plans for the above missions.
As the scope of the replan increases, case-injection’s ad-
vantage decreases. In other words, case-injection focuses
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search towards previously successful solutions, as the new
solution moves further from the old solution the advantage
provided by case-injection decreases. Figure 8 shows once
again that CIGAR’s speed advantage does not come at the
expense of lower quality solutions. On the contrary the fig-
ure shows that CIGAR produces better quality plans.

Figure 7: Replanning Size — Evaluations Taken

5.3 Statistical Significance

CIGAR’s speedup over the GA is statistically significant.
Using CIGAR, we can expect significant speedup with no
loss in quality of solution produced. In fact, our results
lead us to believe that we should also expect better qual-
ity solutions. These results fit well with previous work that
shows case-injected genetic algorithms more quickly deliv-
ering better quality solutions [6].

6 Conclusions and Future Work

We have shown that a genetic algorithm can play computer
strategy games by solving the sequence of underlying re-
source allocation problems. Case-injection statistically sig-
nificantly improved the speed with which our case-injected
genetic algorithm player (GAP) responds to opponent ac-
tions and other changes, while improving the fitness of so-
lutions produced. We explored the effects of mission com-
plexity and replanning scope, showing that the advantage
provided by case injection increases as the mission becomes
more complicated, and decreases as the difference between
new and old situations grows. Note that case injection still
provides a significant improvement even when the game sit-
uation changes drastically. Playing RTS games with a GA
presents a good application of case injection, and we have
explored how case-injection impacts the dynamics of the

Figure 8: Replanning Size — Fitness of Solution

game, showing significant improvement in response time as
well as some improvement in response quality.

We are exploring several avenues for further improving
response times. One possibility is to use a reduced surro-
gate to quickly approximate fitness evaluations. Finally, the
game itself is several stages from being human playable and
we are currently working on making the game much more
playable.
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Abstract- The aim of developing an agent that is able to 
adapt its actions in response to their effectiveness within 
the game provides the basis for the research presented in 
this paper. It investigates how adaptation can be applied 
through the use of a hybrid of AI technologies. The system 
developed uses the pre-defined behaviours of a finite state 
machine and fuzzy logic system combined with the 
learning capabilities of a neural network. The system 
adapts specific behaviours that are central to the 
performance of the bot in the game, with the main focus 
being on the weapon selection behaviour; selecting the 
best weapon for the current situation. As a development 
platform, the project makes use of the Quake 3 Arena 
engine, modifying the original bot AI to integrate the 
adaptive technologies. 

1 Introduction 

With graphics at an almost photo-realistic level and 
complex physics systems becoming commonplace, AI is 
becoming more important in providing realism in games. 
In the past, game AI has used techniques that are suited to 
the restricted computational power available to it, but 
which still produced believable, but limited, non-player 
characters (NPC's) – AI technologies such as Finite State 
Machines (FSM) and Rule Based Systems (RBS). These 
techniques were also used due to their relative simplicity 
which did not require much development time to 
implement and were easy to debug, especially as the 
programmers generally didn’t specialise in AI. 

With the increase in computational power available for 
AI, more complex techniques can be incorporated into 
games creating more complex behaviours for NPC's. The 
increasing importance of AI in games has meant that 
specialised AI programmers are becoming part of 
development teams bringing techniques from academia 
[Laird, 2000]. One of the areas of AI which has gathered 
interest is that of using machine learning techniques to 
create more complex NPC behaviours. 

Most players develop styles of play that take 
advantage of certain weaknesses inherent in the NPC AI 
that become apparent as they become more proficient at 
the game. Once discovered, these deficiencies in the pre-
programmed AI mean the competitive edge is lost making 
the player lose interest in the now all too easy game. If the 
NPC developed new tactics, adapting to the players style, 
uncovered their hiding places or even discovered tactics 

that exploited weaknesses in the players’ play then this 
would add immeasurably to the enjoyment and prolong 
the life of the game [Palmer, 2003]. 

This paper describes a method of implementing a first 
person shooter (FPS) bot, a computer controlled player 
that imitates a human adversary, which uses machine 
learning to adapt its behaviour to the playing style of its 
opponent. It uses a combination of small, focussed, 
artificial neural networks and pre-defined behaviours that 
allow the bot to exhibit changes in those behaviours to 
compensate for different player styles. For the purposes of 
this paper, only a single behaviour is focused on, that of 
weapon selection, although it could be used for other 
behaviours and even other genres of game. 

2 Foundation Technologies 
2.1 Fuzzy Logic 
Whereas traditional logic describes concepts in terms of 
‘true’ or ‘false’, fuzzy logic provides a way of describing 
values by the degree with which they correspond to a 
certain category within the concept, called the degree of 
membership in a set. Linguistic variables are collections 
of sets that represent real concepts, for example the 
variable health could be made up of the sets Near Death, 
Good and Excellent, as shown in  [Zarozinski, 
2001].  

Figure 1

Figure 1: Sets Defining the Linguistic Variable ‘Health’ 
 

Fuzzy logic provides a way of combining more than 
one variable to give a single output value, making 
decisions based on multiple criteria. For example, the 
aggression of a game character based on its health and the 
distance to the enemy. 
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Figure 2: Sets Defining the Output Variable ‘Aggressiveness’ 

 
Using fuzzy logic to derive decisions based on the 

input values for a number of variables requires that a 
sequence of steps be carried out. 

1. Selection of sets that comprise the linguistic 
variables for the inputs and output. As with the 
input variables, the output variable consists of a 
number of sets defined by a range of values (see 
Figure 2). The difference is in the way they are 
used to calculate the final out value (see step 6, 
Defuzzification). 

2. Creation of fuzzy rules corresponding to the 
different combinations of inputs. The rules 
determine the output set for the different 
combinations of inputs. Using the previous 
example, if health is ‘Good’ and distance is 
‘Close’, the rule could be ‘Fight Defensively’.   

3. Fuzzification of the crisp inputs into fuzzy values 
giving the degree of membership for the inputs 
sets. Figure 1 shows the fuzzification of the crisp 
value 20.1 resulting in the DOM for each set of 
Near Death=0.6, Good=0.17 and Excellent=0.0. 

4. Use inference to evaluate which rules are active 
based on the degree of membership of the input 
sets that make up that rule. Each combination of 
sets (for each input variable) is compared with the 
rulebase to determine which output sets are active. 
The DOM of the output set is determined, in this 
case, using the lowest DOM of the inputs (there 
are a number of methods for calculating the 
DOM). This results in a number of possible DOMs 
for each set of the ouput variable. 

5. Combine the multiple DOMs for each rule into the 
output sets using composition. This results in a 
single DOM for each of the output sets, as shown 
in Figure 2. 

6. Defuzzification of the output sets to give a single 
crisp value. This is done by calculating the centre 
of the area under the graph defined by the degree 
of membership in each set. Figure 2 shows an 
example for the output variable ‘Aggressiveness’ 
with DOMs of 0.18 for ‘Fight Defensively’ and 
0.53 for ‘All out Attack’. There are a number of 
methods, of varying complexity and accuracy, for 
determining the output value. One of the least 

expensive, in terms of computation, is the mean of 
maximum method, the equation for which is shown 
in . Equation 1

Equation 1: Calculation of Mean of Maximum 

 
(RAmax * RAdom + FDmax * FDdom + AAmax * AAdom) / 

(RAdom + FDdom + AAdom) 
where,   

 RAmax – crisp value for centre of ‘Run Away’ set 
(where fuzzy value =1). 

 RAdom – fuzzy value for degree of membership for 
Run Away set. 

 FDmax and FDdom – as above for ‘Fight 
Defensively’ set. 

 AAmax and AAdom – as above for ‘All-out Attack’ 
set. 

 
2.1.1 Combs Method 
In traditional fuzzy logic a rule needs to be defined for 
every combination of set for all the input variables. This 
can result in combinatorial explosion as the number of 
rules required grows exponentially according to the 
number of fuzzy sets for each linguistic variable, e.g. 2 
variables each with 5 sets = 52 = 25 rules and 5 variables 
with 5 sets = 55 = 3,125 rules. This can make large 
systems slow, confusing and difficult to maintain which, 
particularly in games, can make fuzzy logic impractical 
[Zarozinski, 2001]. 

The main difference between Combs method and the 
traditional method is in the way the rule-set is defined. It 
builds rules based on each individual set’s relationship to 
the output, considering one variable at a time, rather than 
creating rules for every combination of set for all the 
variables. This reduces the exponential growth of the 
number of rules into a linear growth, so that a system with 
10 variables and 5 sets per variable would have 50 rules 
as opposed to 9,765,625 with the traditional system. 
 

2.2 Artificial Neural Networks 
There are many forms of artificial neural nets (ANN) of 
varying complexity which attempt to mimic the biological 
operation of the brain artificially by modelling the inter-
connected cells that enable the brain to process 
information. The simplest form of ANN, the one used 
here, is the Perceptron which is modelled as a single 
neuron with a set of weighted inputs mapping to a single 
output [Champandard, 2004].  
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2.3 Quake 3 Arena 

 

In order to implement the adaptable AI a suitable 
environment was required that provided all the features of 
a FPS so that the capabilities of the bot can be tested. The 
Quake 3 Arena (Q3A) game engine [Id Software, 1999] 
provided the framework for the development of the bot 
AI. The new AI was integrated with the original AI, 
reusing many of its features. For more information 
regarding the Q3A engine, specifically in relation to the 
interface between the AI and the game engine, [van 
Waveren, 2003] provides the most comprehensive 
documentation. 

Figure 3: Architecture of a Perceptron Using the original bot AI provided the opportunity to 
be able to define the characteristics of the bot using text 
files that determine the style of play of the bots within the 
game. This proved helpful in the evaluation of the new 
AI, which was carried out in matches against the 
‘standard’ Q3A bots. By defining specific characteristics, 
situations could be set up that required the bot to adapt its 
behaviour.  

The inputs (X1 to Xn) to the perceptron can vary in 
number and value (binary or real numbers) depending on 
the application. Each input is multiplied by its 
corresponding weight (W1 to Wn) and the weighted inputs 
are then added together, along with the bias, giving the 
output value. The bias represents a constant offset and can 
be treated as another input with a constant value of 1. By 
adjusting its weights the perceptron can be trained to 
recognise specific combinations of inputs and generalise 
for similar inputs. 

3 System Design 

 A number of features are required of the adaptable AI 
system in order to achieve the aim of a bot that is able to 
adapt to the play of an adversary: 

2.2.1 Training the Perceptron 
Initially, the perceptrons use a default value for all of their 
weights. This, in effect, means that the perceptrons will 
not have any influence over the effectiveness rating for 
the weapons, only the characteristics and fuzzy logic will 
affect the value. Once adaptation has begun, occurring 
every time there is feedback, the following training 
procedure is performed. 

• Be able to play competitively from the first game 
(out of the box). 

• Adapt its behaviour as the game is being played 
(online).  

• Be computationally inexpensive. 
 

The training of perceptrons described here uses an 
incremental approach, computing the adjustments to the 
weights by way of the steepest descent technique 
[Champandard, 2004]. The delta rule algorithm calculates 
the change required ∆wi for each weight wi by taking the 
difference between the actual y and the desired t output 
and multiplying it by the input value xi for that weight and 
by a, typically small, learning rate η (see Equation 2). 

The system makes use of the indirect adaptation 
technique, using a conventional AI layer to control the 
bot, with the adaptation AI modifying the behaviours of 
the bot in response to feedback according to its actions. 
This enables the bot to be competitive immediately by 
giving it a priori knowledge, as recommended by 
[Manslow, 2001]. 

 

 
∆wi = η(t-y)xi 

Equation 2: Computation of Required Adjustment for Each 
Weight 

The new weight for each input can then be found using 
the steepest descent technique, as shown in Equation 3, 
changing the weights as result of feedback. 
 

wi  ← wi + ∆wi 

Equation 3: Computation of Adjusted Weight Value 

 
The incremental nature of the algorithm means that it 

can be performed as the game is being played using 
feedback from actions performed.  

Figure 4: Adaptation System Overview 

The adaptation system incorporates a number of 
components that combine to rate the effectiveness of a 
choice within a behaviour and adapt the value to reflect 
how well the chosen action performs in the game. Figure 
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4 shows how the separate elements are linked together to 
calculate the rating and allow adaptation to occur. 

The system utilises a hybrid of 2 AI technologies – 
fuzzy logic and perceptrons. The fuzzy logic acts as the 
prior knowledge enabling the bot to perform in the game 
at a competitive level. The perceptron is used to facilitate 
the adaptation, acting as a form of memory enabling the 
bot to ‘remember’ the effectiveness of actions in certain 
situations, altering its weights based on the feedback it 
receives from game. By using perceptrons, rather than  
more complex multi-layer networks, the computational 
requirements are kept as low as possible whilst retaining 
the basic features of a neural net.  

The system is composed of 2 main mechanisms: 
• The Effectiveness Rating Mechanism – used to 

determine how effective a certain choice is 
according to the input values. 

• The Adaptation Mechanism – used to change the 
effectiveness rating according to feedback from 
the game on how effective it was. 

The effectiveness of a choice is predicted using a 
combination of the characteristics of the bot, defined in 
the characteristic files, a fuzzy logic component and a 
perceptron component. This system is used for each of the 
choices within a behaviour. The effectiveness is 
calculated by multiplying the outputs from the fuzzy logic 
component and the perceptron together with the 
characteristic for the choice 

The adaptation mechanism uses feedback from the 
game to determine how successful the choice was 
compared to the perceptron’s predicted effectiveness of 
the choice. The feedback and output of the perceptron are 
then used to train the perceptron, increasing or decreasing 
the weight values according to the delta rule training 
algorithm discussed in section 2.2.1. Adjusting the 
weights of the perceptron changes its output impacting on 
the effectiveness rating for the action, thus making it more 
or less likely to be used. 

 

3.1 Adaptation of Weapon Selection Behaviour  
Modern FPS games, such as Quake 3 Arena, make use of 
complex 3D environments for their game worlds which, 
in turn, means that the NPC's that inhabit them must have 
complex AI to interact with them, and the player, 
convincingly. Bots must be able to exhibit a number of 
behaviours, specialising in particular actions or strategies 
that contribute to the overall aim of winning the game. 
Due to the nature of the game, the aim being to kill the 
opponent more times than they kill you, the behaviours 
that would benefit most from adaptation are those that 
relate to combat with opponents, either directly or 
indirectly. One such behaviour is that of selecting the 
most effective weapon for the current situation. The rest 
of the paper will focus on this behaviour to demonstrate 
how the system can be applied.  

The aim of adapting the selection of weapons is to 
enable the bot to change its weapon preferences 
depending on its success in particular situations. By 
changing the ‘effectiveness’ or ‘fitness’ of each weapon, 

by way of changing the perceptron weights according to 
the input values, different play styles can be adapted to. 

The selection of information used as inputs for the 
system components is vital to their efficiency at 
performing actions in the game. The following sections 
detail the inputs for the fuzzy logic and perceptron 
components. 

 
3.1.1 Fuzzy Logic for Weapon Selection 
Each of the weapons have a set of data defined for the 
variables (inputs) that represent the range of values that 
are significant to that weapon. The variables used for the 
fuzzy logic component are: 

• Distance to the enemy – each of the weapons 
available is better or worse at different distances. 
For example, the Lightning Gun has a maximum 
range of 768 and the Rocket Launcher risks splash 
damage when used at close distance. The distance 
needs to be broken down into fuzzy sets defining 
the effectiveness of each weapon for the distance 
range represented by that set. 

• Ammunition amount for each weapon – each of 
the weapons have different firing rates. For 
example, the Machine Gun fires a shot every 1/10th 
of a second whilst the Railgun can only fire a shot 
every 1 ½ seconds. Running out of ammo in a 
fight means changing to another weapon, which 
takes time, reducing the damage that can be 
inflicted on the enemy. The ammo level needs to 
be represented as a number of fuzzy sets spanning 
the maximum amount of ammo (200). Each 
weapon requires a unique collection of set data 
defining the relative ranges of ammo depending on 
their rates of fire – 10 ammo for the Railgun is 
different to the same amount for the Machine Gun. 

 
3.1.2 Perceptron for Weapon Selection 
Each weapon is represented by a perceptron, each having 
a unique set of weight values for that weapon. The inputs 
to the perceptron are the same for each of the weapons, 
although weapon specific inputs, i.e. the amount of 
ammo, will result in certain inputs having slightly 
different values. Some of the variables investigated are: 

• Distance to the enemy – by adapting the distance 
at which the weapon should be used the weapons 
will increase/decrease the range at which they are 
used. An example of a use for this is if the enemy 
is very aggressive and continues attacking when 
low on health. Normally the Rocket Launcher may 
not be used at close range due to the danger of 
splash damage, selecting a less damaging, and less 
successful, weapon instead. The system could 
adapt the lower range of the Rocket Launcher so 
that it is selected over the less useful weapon, 
incurring damage to the bot but also killing the 
opponent with one shot.  

• Ammo – the amount of ammo for each weapon 
can be adapted to make use of weapons that the 
opponent is more susceptible to being damaged by. 
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Used by the fuzzy logic component, it has a large 
influence on the selection of weapons and by 
adjusting the ranges the bot will be more likely to 
stick with a successful weapon even though the 
ammo is running low in the hope of killing them 
before the weapon needs to be switched.  

• Visibility of enemy – it would be useful to adapt 
the weapon selection based on the visibility of the 
enemy so that areas that contain obstacles, creating 
cover for the enemy to hide behind, can influence 
the selection to favour weapons that have splash 
damage enabling the weapon to inflict damage 
around corners. 

• Height difference – like the visibility of the enemy, 
the height difference between the bot and its 
opponent could be used to influence the use of 
weapons that have splash damage. If the opponent 
is below the bot it can aim at the floor near to the 
enemy, hitting with radial damage. If the opponent 
is higher, making it difficult to hit them with 
splash damage then Grenades can be launch onto 
the higher area or more precise weapons used. 
Adapting the relative strengths of weapons when 
there is a height difference will select the most 
effective weapons in those situations. 

3.2 Feedback for Perceptron Training 
The feedback that is used to train the perceptrons for the 
weapon selection behaviour is focused on the criteria of 
causing as much damage as possible whilst avoiding 
inflicting damage to oneself. This means that it must 
account for a combination of health lost by the enemy and 
by the bot itself as a result of its own attack (not damage 
sustained from enemy attack). A timed aspect is required 
to allow for the different characteristics of each of the 
weapons (firing rate and damage per shot) and enable the 
performance of the weapons to be compared. To reward 
weapons that have the capability of ‘finishing off’ 
enemies (for example Railguns are very good at one-shot 
kills) a bonus is also required when the opponent is killed 
by the current weapon. This increases the overall 
feedback value thus increasing the weight values when 
training.  

3.3 Categorisation of Perceptron Inputs 
Due to the linear nature of perceptrons (they are unable to 
handle non-linear problems) difficulties arise with inputs 
that can be effective at high and/or low values. One 
problem is that higher input values will always output 
higher ratings and so if the lower values are better they 
will not be able to represent it. Another problem is if the 
weapon is more effective with an input value that is in the 
middle range, such as the Grenade Launcher that can 
cause splash damage close up but has a limited range. 
This is compounded by the training mechanism that 
changes the weight of the input depending on the input 
value. This means that high values will always be 
penalised more than low values. 

To allow adaptation to occur independently for 
different levels of the same input, its range of values 

needs to be categorised into ranges. The fuzzy logic 
component can be utilised to achieve this. It is able to take 
a single value and assign a degree of membership for each 
of the categories by fuzzifying the input value. Each of 
the categories represents an input into the perceptron, 
splitting the single input value into the number of sets that 
represents that input, as shown in Figure 5. The advantage 
of this approach is that it will categorise the input into 
continuous values for each set, rather than the imprecise 
method of just determining whether the value is in a 
category or not. It also uses functionality that is already 
within the system so no new component needs to be 
developed. 

 
Figure 5: Categorisation of perceptron inputs 

One of the main advantages with using fuzzy logic to 
categorise the input value is that the fuzzy values will 
represent the degree of membership for the set. This 
means that the low category can have a high input value 
and the high a low value – 0 (100% membership of the 
low category) could input a 1. When training the 
perceptron this will be useful in correctly rewarding or 
punishing the value range responsible for the action 
selected. Another advantage is that the maximum 
membership of a set is 100%, in effect normalising the 
input values for each set to a value between 0 and 1. 
Although the input value can be in multiple sets, the 
combined fuzzy values will approximate 1 (fuzzy values 
needn’t add up to 1 but are usually near to this value, 
depending on the set data). 

4 Evaluation 
For the purposes of testing the adaptation system, the 
fuzzy logic component was designed to mimic the 
selections made by the original Q3A AI as closely as 
possible. This was done so that the changes in behaviour 
of the bot due to adaptation during a match could be 
directly compared with the behaviour exhibited by the 
original AI.  

4.1 Adaptation of Weapon Selection 
In order to test whether the bot is able to change 

weapon preferences within the game its preferences were 
set up so that it had a high preference for a certain 
weapon but also low accuracy. By assigning another 
weapon a high accuracy but normal preference, the 
system’s ability to change preferences was tested. The 
adaptable bot’s preferences and accuracy levels were set 
up as follows: 

• Plasma Gun: Accuracy=0.1, Preference=300. 
• Rocket Launcher: Accuracy=0.9, 

Preference=200. 
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• Grenade Launcher: Accuracy=0.8, 
Preference=100. 

• Shotgun: Accuracy=0.7, Preference=150. 
 
Figure 6 shows the output of the weapon selection 

choices, comparing the Q3A AI with the adaptable AI. 
The graph shows how the adaptable AI and Q3A AI make 
very similar selections at the start of the match, with only 
slight variations in the choice of weapon. Towards the 
end of the match the differences of choice become more 
evident with regards to the Plasma Gun (weapon 8) in 
particular; seen clearly in Figure 7 which shows a close 
up of the last part of the match. 
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Figure 6: Graph of Weapon Selection Comparison between 
Adaptable AI and Q3A AI for Low Accuracy and High 

Preference of Plasma Gun 
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Figure 7: Extract of Comparison of Weapon Selection for Low 

Accuracy and High Preference, showing Difference Due to 
Adaptation 

This clearly demonstrates the adaptation occurring on 
the Plasma Gun’s use as, due to its very low accuracy, the 
negative feedback lowers its effectiveness rating over the 
course of the match until the other weapons effectiveness 
scores make them a better choice. The rating of the 
Plasma Gun falls so low that the Grenade Launcher (4), 
with only a third the preference rating of the Plasma Gun, 
is preferred over it in some situations. The Rocket 
Launcher (5) is shown to be preferred to the Plasma Gun 

in almost all situations, and those times when it is not can 
be accounted for by the Rocket Launcher running out of 
ammo. 

The graphs showing the adaptation of the perceptrons 
for the Plasma Gun (Figure 8) and the Rocket Launcher 
(Figure 9) illustrate how rating of the Plasma Gun drops 
and the Rocket Launcher rises to a point were the 
preferences change for the weapons. Whereas, the Plasma 
Gun’s medium range drops to around 0.2, the Rocket 
Launcher’s rises, albeit only slightly, to 0.55. This is 
enough of a variation to cause the change in weapon 
selection to occur. 
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Figure 8: Adaptation of Plasma Gun Distance Due to Low 

Accuracy and High Preference 
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Figure 9: Adaptation of Rocket Launcher Distance Due to High 
Accuracy and Medium Preference 

4.2 Validity of Input Choices for Perceptron 
The inputs chosen for the perceptron resulted in varying 
degrees of success in their ability to affect the selection of 
weapons due to adaptation. The distance input was 
successful in reflecting the feedback of the weapon’s 
strengths and weaknesses in the adaptation of its weights. 
Trends can be identified from the adjustments made 
during training that relate to the performance of the 
weapon in the game. 

Another input that demonstrated an effect on the 
selection process was the height difference, although not 
to the extent of the distance input. It showed a higher 
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effectiveness for when the enemy is below the bot and 
lower for enemies above. 

The ammo input showed little influence over 
determining the correct weapons by adapting its values. 
This is caused by there being no direct link between the 
effectiveness of the weapon and the amount of 
ammunition, therefore the feedback could not influence 
the ammunition training. The only direct influence of the 
ammo on the weapon selection came when the level fell 
to 0, causing the weapon to be changed to another. All 
other levels had no bearing on how the weapon 
performed, indicating that categorisation was not 
required. Possibly, restricting the ammo input to a ‘low 
ammo’ input would better serve the selection of weapons. 

The evaluation of the inputs shows that certain types 
of input lead to better performance of the adaptation of 
the perceptron while others contribute little. Generally, 
the most effective inputs: 

• Directly influence the behaviour – the ammo input 
had no direct influence over the effectiveness of 
the weapon, whereas the distance changed how 
well it performed. 

• Are reflected in the feedback – there was no 
feedback that reflected the effect of ammo at levels 
other than 0, when the weapon needed to change. 
The amount of damage that could be inflicted was 
not affected by larger or smaller amounts of 
ammunition. 

5 Conclusions 

This paper has shown how, by combining traditional AI 
techniques, a system can be developed that enables the 
choices made by a conventional AI layer to be altered in 
response to feedback from the actions selected. Although 
the development was limited to just the weapon selection 
behaviour, so limiting the effect on the game that is 
visible from testing, evidence was found that the system is 

capable of adapting to feedback by a significant enough 
amount to change the actions that prove unsuccessful to 
those that are successful. The results showed interesting 
trends that indicate that, with more development and 
testing to determine optimum settings, the system 
developed could form the basis of a useable adaptable AI 
system. 
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Abstract- Decomposition search is a divide and conquer
approach that splits a game position into sub-positions
and computes the global outcome by combining results
of local searches. This approach has been shown to be
successful to play endgames in the game of Go. This pa-
per introduces dynamic decomposition search as a way of
splitting a problem dynamically during search. Our re-
sults in solving one-eye problems in the game of Go show
the promise of this approach. Additionally, we propose
relaxed decomposition, a more ambitious way of splitting
positions.

1 Introduction

In two-player games with perfect information, programs
typically employ lookahead search to determine which
move to play. Traditional brute-force search algorithms ex-
plore all possible moves as deeply as possible in order to
improve the strength of a program. Such approaches have
been very successful, enough to reach the strength of the
best human players in games such as chess and checkers
[2, 8]. However, the game of Go has been resistant to a
pure search-based approach because of its difficult position
evaluation and large search space. Current computer Go
programs use a combination of exact and heuristic rules in-
stead of brute-force search.

One clear defect of heuristic approximations is that they
sometimes fail. As a result, all current computer Go pro-
grams show weaknesses in assessing the life and death sta-
tus of groups, the so-called tsume-Go problem. In general,
search is the only way to reliably determine the life and
death status of stones. Therefore we need to find effective
ways to tackle the large branching factor of Go.

One approach to overcome the large search space is to di-
vide a position into independent subpositions and combine
the outcome of local searches. This way, we can not only
achieve a large reduction of the search space, but also guar-
antee correctness. Decomposition search is such a divide
and conquer approach for Go endgames [5]. Using this ap-
proach, programs can solve a much larger class of endgame
problems than with classical minimax-based solvers. How-
ever, in basic decomposition search a problem is split into
subproblems only at the root node of a search. There are no
further splits during the search, so the method fails for ex-
ample when there is just a single large undivided area in the
beginning. In applications such as tsume-Go, it seems nec-
essary to do decomposition dynamically within the search

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Figure 1: Example of a one-eye problem (Black to live).

tree.
This paper presents a dynamic divide and conquer ap-

proach to the problem of making one eye in an enclosed re-
gion. Experimental results show that our approach achieves
better performance on average. Also, we introduce the no-
tion of relaxed decomposition, which achieves a more fine-
grained division into sub-problems.

The structure of the paper is as follows: Section 2 briefly
describes the one-eye problem in Go. Section 3 reviews pre-
vious work. Section 4 presents the dynamic decomposition
algorithm. Section 5 discusses empirical results. Section
6 introduces relaxed decomposition search, and Section 7
presents some conclusions and discusses future work.

2 The One-Eye Problem in Tsume-Go

The one-eye problem in Go is a special case of Life and
Death (tsume-Go). It addresses the question of whether a
player can create an eye connected to the player’s stones
in a given region. A problem can be investigated for ei-
ther player moving first. Although this problem is simpler
than full tsume-Go, which is concerned with making two
eyes, there are many similarities. For example, every tsume-
Go problem in which the group under attack has already
surrounded one eye in some region reduces to the one-eye
problem on the rest of the board.

A one-eye problem in a given Go position is defined by
the following input:

� The two players, called the defender and the attacker.
The defender tries to make an eye and the attacker
tries to prevent it.

� The region, a subset of the board. At each turn, a
player must either make a legal move within the re-
gion or pass.
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� One or more blocks of crucial stones of the defender.
The defender wins a one-eye problem by creating an
eye connected to all the crucial stones inside the re-
gion. The attacker can win by either capturing at least
one crucial stone, or by preventing the defender from
creating a connected eye in the region.

� Safe attacker stones, which surround the region to-
gether with crucial defender stones.

In the remainder of this paper, whenever we briefly say
“make one eye” we mean “create an eye connected to all the
crucial stones inside the region”, as above.

Figure 1 shows an example of a one-eye problem. Black
is the defender and White is the attacker. Crucial stones are
marked by triangles and the region is marked by crosses.
Black must make an eye inside the region, while White tries
to prevent that. There are unsafe stones at C6, E7, and H6.
If these stones are captured, a player might play at such a
point later, so they are part of the region.

3 Related Work

3.1 Decomposition Search

In decomposition search, a position is split into subpo-
sitions, which are surrounded by safe stones [5]. Local
searches, based on combinatorial game theory [1], are then
used to analyze each subposition. If all subproblems have
loop-free values, then the combinatorial game values of the
subproblems can be combined to achieve globally optimal
play. As mentioned above, all decomposition happens at the
root and there is no further decomposition during search.

3.2 Previous Work on Our One-Eye Solver

The previous version of our one-eye solver is described in
[3]. It uses a modified version of Nagai’s depth-first proof-
number (df-pn) search algorithm [7] which can deal with ko
repetitions. The solver checks each point in a given region
to find all potential eye points. If a complete eye connected
to crucial stones is found, the defender wins. If no potential
eye point exists, the attacker wins. In all other cases, df-
pn search is performed. The basic solver generates all legal
moves including a pass. The solver therefore guarantees
correctness for enclosed positions. An improved version
adds some simple and correct Go-specific knowledge, such
as detecting connections to safe stones and forced moves
that safely prune other moves. Despite a relatively small
amount of Go-specific knowledge, this solver succeeded in
solving hard problems that are not solved by the best gen-
eral tsume-Go solvers in a reasonable time.

3.3 Related Work on Tsume-Go

Wolf’s GoTools is currently the best tsume-Go solver that
specializes in solving completely enclosed positions [10].
GoTools contains a sophisticated evaluation function that
includes look-ahead aspects, powerful rules for life and
death recognition, and learning dynamic move ordering
from the search [11]. Most competitive Go programs also
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Figure 2: A position to which a divide and conquer ap-
proach is applicable. (Black to play.)

contain a tsume-Go module. The commercial database
Tsume-Go Goliath uses a proof-number search engine to
check the user’s inputs. Vilà and Cazenave presented a static
approach to detect large eye shapes [9]. Such eye shapes
guarantee life by either dividing it into two eyes or living in
seki.

4 Dynamic Decomposition Search for the One-
Eye Problem

4.1 Basic Idea

The basic idea of our divide and conquer approach is simple.
For example, assume that Black needs to make the second
eye in Figure 2. A naive algorithm would generate moves
at all marked points in its search. This is clearly inefficient,
since the marked region is already split into two separate
areas. With the exception of ko fights, no move played in
one area can affect the result of whether there is an eye in
the other area. Instead of performing a global search, a di-
vide and conquer approach performs two local searches that
can be combined into a global result. This approach can re-
duce the branching factor and depth of the search by a large
margin.

However, if ko fights are involved in a local solution, this
approach can change the ko status because formerly local ko
threats become non-local. Figure 3 presents such a case. In
this example, White can capture the ko first but Black has a
local ko threat at 2. White needs one external ko threat to
win. However, if the region is divided into two parts, and
the solver looks only for eyes, it will miss the ko threat at
2 in the other region, and the ko becomes one where Black
needs an external ko threat.

To fix this problem, the solver would need to be extended
to search for ko threats in all subregions whenever the result
of the one eye search is a ko. This is currently not imple-
mented. There are further complications, for example if two
or more subregions end up as some kind of complex multi-
step or multi-stage ko. For simplicity, in this paper we con-
centrate only on eyes for which the defender does not need
to fight ko. Our solver correctly deals with double ko etc.
as long as all ko are in the same region.

4.2 The Dynamic Decomposition Search Algorithm

Let
�

be the region at the root position, and
���

be the work-
ing region that the algorithm is currently searching in. At

165 CIG'05 (4-6 April 2005)



A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

1

2
3

4

5 pass 6 at 1

Figure 3: Interacting regions in ko with the divide and conquer approach.

the start, set
� ��� �

. Then dynamic decomposition search
(DDS) works as follows:

1. If there is an eye in
� �

, the defender wins.

2. Otherwise, if no eye space remains in
���

, the at-
tacker wins in

� �
.

3. Before generating moves, the region
���

is tested for
a possible split into subpositions. Both safe attacker
stones and crucial defender stones are used for split-
ting. This check is done at every newly encountered
nonterminal position.

4. Suppose that a position is already partitioned into sev-
eral subpositions

� ������� ��� . If the defender is to play
and a move in

�
	
is chosen by the search control (see

the next subsection), then the working region
���

is
restricted to

�
	
. Below this position, moves are gen-

erated only in
�
	

, or an even smaller region when fur-
ther decompositions occur. This reduces the number
of possible moves and the search depth to reach ter-
minal positions. If the defender finds an eye in one
of the subregions

� � ����� ��� , the defender wins. If no
eye is found in any subregion, the attacker wins.

5. If the attacker is to play, all moves in
���

are tried.

4.3 Search Control

If there are several subregions, the defender must select one
to expand the search in. Df-pn with DDS selects the move
to play based on proof and disproof numbers. This dynami-
cally selects a most promising working region at each step.
Figure 4 shows an example. Let the defender be a player
to prove a position, and the numbers on the board be proof
numbers. In this figure, Black plays at B6, because it has
the smallest proof number. The working region is narrowed
to the left side. White answers only in the left subregion
after Black’s B6. Assume that the proof number at B6 is
changed to 5 after exploring positions below Black’s play at
B6. Then, Black plays at G6 because it becomes the small-
est proof number. The working region switches to the right
subregion.

4.4 Using the Transposition Table in DDS

In a normal transposition table, Zobrist hashing [12] maps
a full board position to its hash key. However, in DDS we
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Figure 4: Example of using proof numbers to select the
working region.

must distinguish between different working regions. For ex-
ample, if a position contains two subregions


and � , there

can be three cases for move generation: only in


, only in
� , and in both


and � . In order to differentiate these cases,

we encode the working region into the hash key as well.

5 Experimental Results

5.1 Setup of Experiments

Even though there is a large amount of literature on tsume-
Go, there are almost no specialized collections of one-eye
problems. Landman [4] has a collection of small examples.
We created our own test collection with more challenging
instances, available at http://www.cs.ualberta.
ca/˜games/go/oneeye/. Each test problem can be
solved for either color moving first. Some problems are
only interesting if one particular player goes first, and are
very easy for the other.

We used two test suites in the experiments. The first test
suite, the toy problem collection (TOY), contains 13 test po-
sitions (26 problems) that are already completely or mostly
split into independent problems at the root. Figure 5 illus-
trates an example of this kind of problem. These problems
were used mainly to verify that the decomposition approach
works. The second test suite is the standard problem collec-
tion (STANDARD), an extension of the test collection used
in [3]. It contains 81 test positions (162 problems). Some
problems are hard for our previous one-eye solver. Figure 6
shows a representative example.

We compare two versions of our solver, with and without
dynamic decomposition search (DDS). The version without
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Figure 6: Example of a hard problem (oneeyee.1.sgf, Black
lives with B2).

DDS, no-DDS, is based on the solver described in [3]. It
is improved by adding heuristic initialization of proof and
disproof numbers at leaf nodes. All experiments were per-
formed on an Athlon XP 2800+ with a 300 MB transposi-
tion table. The time limit was 5 minutes per problem.

5.2 Results

Tables 1 and 2 compare the solving abilities of DDS and
no-DDS. More positions are solved by using DDS in TOY.
Moreover, all problems solved by no-DDS were also solved
by DDS. On the other hand, both versions solved the
same subset of problems in STANDARD. The improvement
achieved by DDS is a factor of 66 in TOY and 1.2 in STAN-
DARD in total execution time. This indicates that DDS sur-
passes the abilities of our previous df-pn solver.

On average, DDS is about 13% slower in terms of node

Table 1: Performance comparison for DDS and no-DDS in
TOY. All statistics are computed for 23 problems solved by
both program versions.

Number of Total Total Nodes
problems time nodes expanded

solved (sec) expanded per second

No-DDS 23 52 2,169,239 41,636
DDS 26 0.79 49,433 62,573

Total Problems 26 - - -

Table 2: Performance comparison for DDS and no-DDS in
STANDARD. All statistics are computed for 157 problems
solved by both program versions.

Number of Total Total Nodes
problems time nodes expanded

solved (sec) expanded per second

No-DDS 157 1,975 84,084,752 42,573
DDS 157 1,645 62,129,738 37,774

Total Problems 162 - - -
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Figure 7: Node expansions for toy problems solved by both
versions.

expansions per second (see Table 2). However, sometimes
DDS is faster, especially in TOY (see Table 1). In particular,
with decompositions at or near the root, DDS can concen-
trate on a smaller region, which speeds up basic operations
such as detecting potential eye points and move generation.

Figure 7 compares node expansions of both solvers for
each problem in TOY. The number of nodes explored by
DDS is plotted on the X-axis against no-DDS on the Y-axis
on logarithmic scales. In points above the diagonal DDS
performed better. Except for one problem DDS expanded
at most as many nodes as no-DDS, and often dramatically
less. The performance of DDS scales exponentially better
in the size of problems. For example, DDS solved the po-
sition in Figure 5 in 1,075 nodes, while no-DDS needed
334,718 nodes. This is not surprising, since all positions
in this set are ideal for DDS, while no-DDS suffers from
combinational explosion.

Figures 8 and 9 present the results for STANDARD. None
of these problems were designed with decomposition in
mind. In contrast to Figure 7, there are more problems
where DDS was slower. However, on average DDS explores
less nodes and needs less execution time. This is especially
true for the larger problems, so DDS seems to scale bet-
ter. DDS sometimes improves the performance by a large
margin. For example, DDS needed 360,163 nodes in 7.5
seconds for the position in Figure 6, whereas no-DDS ex-
plored 1,732,845 nodes in 35.6 seconds. In this position,
decompositions triggered by black crucial stones and white
safe stones reaching the borders of the board seem to occur
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Figure 8: Execution time for standard problems solved by
both versions.
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Figure 9: Node expansion for standard problems solved by
both versions.

frequently.
In the hard problems of this set, the percentage of nodes

in which decompositions are possible varies from 16% to
50%. In Figure 6, DDS detected 127,479 (35.3%) decom-
positions.

6 A Relaxed Decomposition Model

DDS is limited in the way that splits are recognized. The
only points used to split positions are those occupied by safe
attacker and crucial defender stones. In this section we in-
troduce a less rigid decomposition that uses “almost safe”
attacker stones as well. Figure 10 shows an example. If
we assume that the two white stones marked by squares are
safe, then we can split the area into two subregions, a left
subregion marked by small grey squares and a right region
marked by crosses. The attacker can always make the two
marked white stones safe by following a simple miai con-
nection strategy: Whenever the defender plays either con-
nection point


or � , reply on the other point. In our re-
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Figure 10: Relaxed decomposition.

laxed decomposition model, we use such stones for splitting
a position. However, during the search we must handle the
case where a miai connection is attacked by the defender.

In this case, our approach extends the search to the union
of the affected subregions. We explain the algorithm in de-
tail with the help of Figure 10. In this figure, let region

� �
consist of the empty point


and all points marked by filled

squares. Region
���

contains � and all points marked by
crosses. The connection points


and � together form a

miai connection from safe attacker stones to an almost safe
attacker block. Without loss of generality, assume that the
defender starts playing in

� � . Then Relaxed Decomposi-
tion Search (RDS) defines the strategies of both players as
follows:

1. If both


and � are empty, both players are restricted
to play moves in

� � .
2. If either


or � contains a stone of the attacker, the

relaxed decomposition has changed into a normal de-
composition. Both players keep playing in

� � .
3. Otherwise, if at least one of


and � contains a stone

of the defender, and the other point is empty or also
occupied by the defender, the region is extended and
both players continue playing in

� ��� � � .
In RDS, as long as the defender does not play at


, both

players stick to play in
� � . However, if the defender plays

at


and the attacker does not respond at � , then the de-
fender can invade

� �
. As in DDS, the defender can switch

between trying moves in
� � and

� �
at the root. This process

is controlled by proof numbers.
The following lemma is needed to prove correctness of

RDS.
Lemma 6.1 Assume the following:

1. Position � contains region
�

which is split into two
subregions

� � and
� �

by relaxed decomposition.

2. The attacker is to play in � .

3. Two connection points


in
� � and � in

� �
are

empty.

4. If the attacker plays at


in � , the defender can still
create an eye unconditionally (without ko) in

� � .
Then, the defender can create an eye in

� � unconditionally
for the position after the attacker plays a move in

���
for � .168 CIG'05 (4-6 April 2005)



We give a proof sketch for the case of a DAG. Let � �
be the node after the attacker plays a move at


for � , and

� � be the node after the attacker plays a move in
���

for
� . We prove that the defender can make an eye for � � by
following the winning strategy for � � . The lemma is proven
by induction on the maximum depth � of a terminal node in
the proof graph of � � .
Case 0: ����� If � � is a terminal position, the same eye

exists in both � � and � � .
Case 1: ����� The defender can create an eye by making

move �
	� 
in
� � for � � . Since � � is identical to

� � within
� ���� ��

, � is legal in � � and also creates
an eye there.

Case 2: induction step Assume that Lemma 6.1 holds for
all ����� . We prove that the lemma also holds for
� � ����� . Let ��� � ���� ��

be the winning
defender move in � � , � � be � � ’s child after play-
ing � for � � , and � � � � � � ����� � �"! be � � ’s children.
Let � � be the node after the attacker passes for � � .
Since �#� � � �$ ��

, � is legal for � � . Let � �
be � � ’s child by playing � , % � be � � ’s child after
the attacker plays at


, % � ����� %'& be � � ’s children af-

ter moves in
� �

, and %(&*) � ����� %'&+)-, be � � ’s children
from moves in

� � . The defender can make an eye for
%'&+) ������� %'&*)., by the assumption of Lemma 6.1.

� �
is completely separated from

� �
in % � and � � . More-

over, since % � and � � are identical positions in
� � , the

defender can create an eye in % � . By induction, since
% � has depth �/�0� , the defender can create an eye
for % � ����� % & . Thus, the lemma is proven for the case
of ���/� .

The following theorem guarantees the correctness of
RDS in the case that an eye is found.
Theorem 6.1 Assume that

�
is split into two subregions

� �
and

� �
by RDS. If the result of RDS shows that the defender

can create an eye unconditionally (without ko) in either
� �

or
� �

, then that eye can always be made against any at-
tacker strategy in

� � � � � .
In the following, we call the proof graph created by RDS

the RDS proof graph, and a proof graph for the whole region� ��� � � an original proof graph.
We present a proof sketch which shows that each RDS

proof graph can be converted into an original proof graph,
for the case where the RDS proof graph is a DAG. We use
induction on depth of a terminal node in the RDS proof
graph. We only explain the first case of RDS with the help of
Figure 10. The other two cases are trivial, because search-
ing either with completely separated subregions or with the
whole region is performed in those cases.

Assume without loss of generality that the first defender
move is in

� � . As above, if the RDS graph contains only
a terminal node, an eye already exists and the RDS proof
graph also works as an original proof graph.

Otherwise, let � be the root of the RDS proof graph. As-
sume that by induction � ’s descendants in the RDS graph
have been converted to original proof graphs.

� If � is an OR node, � ’s move � leading to � ’s child
�-1 in the RDS proof graph is also legal for search-
ing in

� � � � � . � 1 ’s RDS proof graph can be con-
verted to � 1 ’s original proof graph by the induction
assumption. Hence, we can construct � ’s original
proof graph by adding a branch � from � to � 1 ’s
original proof graph.

� If � is an AND node, assume that � ’s children
� 132 � ����� � � 154 in

� � have proof graphs. Let � 132
be � ’s child after the attacker plays a move at


,

�-1 476 2 ����� �-158 be � ’s children by playing in
� �

. We
need to prove that �.1 496 2 ����� �-158 have original proof
graphs. �.1 2 guarantees that an eye can be made in

� � ,
since

� � is completely separated from
� �

. By apply-
ing Lemma 6.1 to �.1 496 2 ����� �-158 based on �-1 2 ’s proof
graph, the defender can make an eye for �:1 476 2 ����� �-158 .
Hence, �-1 496 2 ����� �-158 have original proof graphs.

We believe that our lemma and theorem also hold for
cyclic graphs in the case where the eye can be made uncon-
ditionally. However, we need a different approach to prove
our conjecture for cyclic graphs, because we use a property
of DAGs in proving the theorem by induction. The induc-
tion in our proof uses the fact that children have a depth that
is at least 1 smaller than their parents. This property does
not hold for cycles.

RDS can split positions more frequently than DDS. The
approach can be generalized to more than two relaxed split
subregions, as long as all the miai connections to safe at-
tacker stones are disjoint. However, the completeness of the
relaxed decomposition algorithm is not known yet. To prove
that no eye is possible, the worst case scenario might require
re-searches in the whole region. In this case, we must devise
an efficient way for re-searches.

7 Conclusions and Future Work

In this paper, we presented a method that dynamically de-
composes a position into sub-positions during search. The
results of this dynamic decomposition search are encour-
aging. In many problems, DDS is able to reduce the search
space by a large margin, thereby enabling the one-eye solver
to solve harder problems more quickly. However, there are
still a lot of unexplored topics such as:

� The current version of DDS is limited to dealing with
ko fights only in the same region. To overcome this
problem, we need to find a detailed ko status and
ko threat status of each divided region, and combine
them.

� Investigating relaxed decomposition search is a chal-
lenging topic from both the theoretical and practical
point of view. Furthermore, splitting a position in a
more aggressive way such as by using divider pat-
terns [6] is an interesting extension of this research
topic.

� Applying the ideas to other parts of Go, such as con-
nections, territories, and tsume-Go, or other games
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Figure 11: Decomposition for tsume-Go.

such as Hex will be a challenging topic. In particu-
lar, tsume-Go is an interesting domain for further in-
vestigations. In tsume-Go, the decomposition will be
more complicated. Suppose that a region is split into
two completely separated rooms


and � . There are

several possibilities to be considered, such as making
(1) two eyes at


, (2) one eye at


and the other eye at

� , (3) two eyes at � , or (4) one eye either at


or at �
if one eye already exists. Local searches must distin-
guish between sente and gote. For example, the posi-
tion in Figure 11 has two subregions, a left subregion� � marked by small grey squares and a right subre-
gion

� �
marked by crosses. Move B6 in

� � makes
one and a half eye and move D6 in

� �
makes half an

eye. Black can live with B6, since White cannot play
both B4 and D6. To solve such a problem with two
separate searches in

� � and
� �

, return values such as
“1.5 eyes” or “0.5 eyes” [4] must be recognized by
the search.

� Incorporating DDS into a complete Go-playing pro-
gram is an important topic. We will probably have
to heuristically decompose positions, since many po-
sitions in the real games are not closed off by safe
attacker stones.
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Abstract- We present a way to integrate search and
Monte-Carlo methods in the game of Go. Our program
uses search to find the status of tactical goals, builds
groups, selects interesting goals, and computes statistics
on the realization of tactical goals during the random
games. The mean score of the random games where a se-
lected tactical goal has been reached and the mean score
of the random games where it has failed are computed.
They are used to evaluate the selected goals. Experimen-
tal results attest that combining search and Monte-Carlo
significantly improves the playing level.

1 Introduction

Monte-Carlo Go has been invented in 1993 [1]; it is a sim-
ple way to program a decent computer Go program using
very little knowledge. It has been recently the subject of re-
newed interest [2, 3, 4]. The combination of Monte-Carlo
with traditional Go programming techniques is promising
and gives good results, as can be seen from recent computer
Go events. In this paper we show that an original combi-
nation of Monte-Carlo methods with tactical search outper-
forms Monte-Carlo alone. The resulting program is about
50 points above standard Monte-Carlo on the 9x9 board,
and 26 points above the previous version of Golois.

The program starts with performing searches for each
possible tactical goal and for each color starting first, in or-
der to find unsettled problems. Examples of tactical goals
are capturing a string, connecting two strings or making an
eye. In a second phase, the program selects interesting goals
related to unsettled problems. In a third phase, it computes
statistics on the selected goals.

In standard Monte-Carlo Go, the means of the random
games where an intersection has been played first by a
player are computed for each intersection. What is done for
the intersections can also be done for tactical goals. There-
fore, we define the following unification of the notion of a
goal: a goal can be either related to an empty intersection
(in which case the success of the goal depends only on who
has played first on the intersection), or it can be related to
a tactical goal. We handle these two different classes of
goals in a similar way: we compute the mean of the results
of the random games where the goal has been reached and
the mean of the results of the random games where it has
failed. The value of the goal is the difference between the
two means. We choose the goal of highest value. If this goal
is an intersection goal we play at the intersection; if it is a
tactical goal we play a move that reaches the goal. In case

several moves reach the goal, we choose the one having the
highest intersection value.

The second section presents Monte-Carlo methods for
games; the third section details the different search algo-
rithms used in our program; the fourth section presents the
statistics our program computes in the random games; the
fifth section deals with the combination of Monte-Carlo and
search; the sixth section presents experimental results.

2 Monte-Carlo methods and Games

Monte-Carlo methods in games use statistics on more or
less random games in order to find the best move. The
first application of Monte-Carlo methods to Go was written
by B. Bruegmann [1]. Recently, other Go programs have
started using it, and improved it, simplifying the method
and proposing basic improvements [2] or combining it with
a knowledge based program that selects a few number of
moves that are later evaluated by the Monte-Carlo method
[3].

There are several slightly different ways to write a
Monte-Carlo Go program [2]. In this paper, we call stan-
dard Monte-Carlo Go the following algorithm. The pro-
gram plays a large number (usually 1,000 to 10,000) of
random games starting at the current position. The moves
of the random games are chosen almost randomly among
the legal moves, except that they must not fill the player’s
eyes. A player passes in a random game when his only le-
gal moves are on his own eyes. The game ends when both
players pass. In the end of each random game, the score of
the game is computed using Chinese rules (in our case, it
consists in counting one point for each stone and each eye
of the player’s color, and subtracting the player’s count to
its opponent count). The program computes, for each inter-
section, the mean results of the random games where it has
been played first by one player, and the mean for the other
player. The value of a move is the difference between the
two means. The program plays the move with the highest
value.

Monte-Carlo simulations have also been used in other
games such as Bridge [5], Poker [6], Tarok [7] and Scrabble
[8] for example. In the games of Bridge and Tarok, a com-
bination of Monte-Carlo and search is usual. Statistics are
performed on open deals that are solved by search. How-
ever, in our approach, searches are performed only once, in-
dependently of the random games, and the tactical problems
that are solved by search are used to choose the statistics that
will be computed during the random games.
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Our approach of combining search and Monte-Carlo is
new and orthogonal to the previous approaches used in Go:
it is very likely that it also improves their performances.

3 Search

We use search algorithms to solve tactical problems such as
capturing/saving a string or connecting/disconnecting two
strings. In this section, we present five tactical search al-
gorithms that are used in our program. The first one is a
capture search, the second one is a connection search, we
follow with search for the connection between a string and
an empty intersection, eye search and life and death search.

3.1 Capture Search

For each string on the board a capture search is tried. If the
capture search fails, no other search is performed. If a cap-
turing move is found, a search that tries to save the string, by
playing first a move of the color of the string, is performed.
If none of the possibly saving moves works, the string is
captured even if the color of the string plays first, and cap-
ture searches for this string are stopped. On the contrary,
if a saving move exists, other searches are performed. The
program tries to find all the possible capturing moves, and
all the possible saving moves.

At the end of the process, for each string on the board, its
capture status and its save status are known, and for strings
that can both be captured by one player and saved by the
other, multiple capturing and saving moves are found when
possible.

3.2 Connection Search

For each string on the board, the program looks for the
strings that can be connected to the first string by playing
at most four moves in a row. Then, for each pair of strings,
it searches for a connection. When a connecting move is
found, it also searches for a disconnection. When a discon-
necting move is also found, it searches for all the connecting
and disconnecting moves.

After connection search, the program has a list of pos-
sible connections, and for each connection the connection
status and the disconnection status, as well as multiple con-
necting and disconnecting moves for strings that can both
be connected by one player and disconnected by the other.

3.3 Empty Connection Search

The empty connection goal is based on the connection goal.
It involves a string and an empty intersection. The goal
of the game is to connect the empty intersection to the
string. In practice, in order to find unsettled empty con-
nection problems, the program plays a move of the color of
the string on the empty intersection, then the disconnection
search is called for the string containing the played empty
intersection and the string to connect to. If they cannot be
disconnected the empty connection problem is unsettled and
the associated move consists in playing on the empty inter-
section.

3.4 Eye Search

For each intersection on the board, it searches if an eye can
be made on the intersection or on any of the direct neigh-
bors.

3.5 Life and Death Search

Life and death search uses Generalized Widening [9] for
non enclosed groups. Life and death search is called for
each group of strings. Groups are built using the results of
the connection search between strings.

4 Statistics on random games

In this section, we describe the different statistics that are
computed during random games. Statistics are related to
goals. We compute the mean of the results of the random
games where a goal has been reached and the mean of the
results of the random games where it has failed.

Among the unsettled goals found by search, the program
chooses some interesting ones and computes statistics on
them.

The different types of goals we use for the statistics are :

� The goal of playing first on an intersection. It is the
only goal used in the standard Monte-Carlo approach.

� The goal of owning an intersection at the end of a
game.

� The goal of capturing a string. The goal is considered
to be lost as soon as the string has more than four
liberties.

� The goal of connecting two strings. It is possible that
the two strings are captured after being connected in
a random game, but we still consider this as a success
for the connection.

� The goal of connecting a string and an empty inter-
section.

� The goal of making an eye on an intersection or on
any of its neighbors.

5 Combining Search and Monte-Carlo

There are usually different problems in the initial position,
i.e. capture, connection, empty connection, eyes and life
and death problems. In this section we detail the combina-
tion of search and Monte-Carlo. We start explaining why
all the problems are not taken into account and how we se-
lect the problems that will be used to compute statistics on.
We follow with the statistics collected during the random
games. We describe how a move is chosen. Then, we dis-
cuss on the usefulness of collecting statistics on unsettled
problems, and we define positive and negative goals.
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Figure 1: Choosing the simplest connection

5.1 Selecting problems

In order to avoid playing bad moves and overestimating
the importance of a problem, the program needs selecting
among the unsettled problems the ones that will be used to
compute statistics.

Strings that cannot be disconnected are amalgamated in
groups. Groups are used to select the unsettled connection
problems that will be used to gather statistics.

It can happen that a string
�

is connected with a com-
plex search to string � , that string � is connected with a
complex search to string � , and that

�
and � are connected

but that the search to find it is too complex. In this case the
program can think there is an unsettled connection between�

and � and add a useless move. In order to avoid this
behavior, complex unsettled connection problems between
two strings of the same group are not taken into account.

Furthermore, when there are multiple connection prob-
lems that connect the same groups, only the simplest con-
nection problem is retained. The simplicity of a connection
problem is measured by the number of moves in a row that
are needed to connect the two string in the initial position.
For example, in the figure 1 the strings � and � belong to
the same group. The connection between

�
and � can be

prevented by White, capturing
�

for example. The connec-
tion between � and

�
can also be prevented by capturing

�
,

but the white move at � also prevents the connection. How-
ever, � is not the kind of move that we want the program
to consider to disconnect the black group from

�
. Here the

connection between
�

and � is simpler than the connection
between

�
and � , so the program will only retain the con-

nection between
�

and � for gathering statistics. The prob-
lem of only retaining the simplest connection is not only a
problem of avoiding moves like � , it is also a matter of cor-
rectly evaluating the value of the connection between two
groups. The mean of the games where

�
and � have been

connected is larger than the mean of the games where
�

and � have been connected. So keeping only the simplest
connection avoids overestimating connections.

Empty connections between strings and empty intersec-
tions follow a similar pattern. In the figure 2, the triangle
empty intersection can connect to the triangles string. How-
ever, it can also connect to the circled string. The mean of

Figure 2: Empty connection

the games containing the connection to the circled string is
higher than the mean of the games with the connection to
the triangles string. In order to avoid overestimating empty
connections, the program only selects the simplest empty
connection when there are multiple empty connections of
the same color to the same empty intersection.

Empty connections are also used to find long distance
connections between groups that are too complex to be
found by the connection search. If an empty intersection
is connected to two different groups, and that there is no un-
settled connection problem between these two groups, then
a new unsettled connection problem is created that joins the
two groups, playing on the common connected empty inter-
section. There are some exceptions to this rule that can be
found using a search for transitivity of connection [10].

5.2 Gathering statistics on selected problems

After the program has selected the interesting goals, it plays
many random games and for each selected goal, it computes
the mean score of the random games where the goal has
succeeded, and the mean score of the random games where
it has failed.

We call raw mean of a move the value of the intersection
goal associated to the move.

The statistics on the final color of an intersection are
used to evaluate the importance of playing moves related
to life and death. The mean score of a life problem re-
lated to a string is the mean score of the games which ended
with an intersection of the string keeping its original color.
The mean score of the associated death problem is the mean
score of the games which ended with the intersection of the
other color.

5.3 Choosing a move

For the selected goals, we compute the value of the goal
which is the difference between the mean score of the games
where it succeeds and the mean score of the games where it
fails. The program chooses to play the goal with the highest
value. Among all the moves associated to the selected goal,
the program chooses the one with the highest raw mean.
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useful connection useless connection

Figure 3: connections

5.4 Why are statistics on unsettled problems useful?

It is useful to compute statistics in the random games on
goals related to unsettled problems. The raw mean of a
move is different from the mean of the games where the goal
associated to the move has been reached. Figure 3 explains
the difference between the two means for the connection
goal. We see in the useful connection diagram that the move
at

�
connects the two strings. In the random games where

a black move at
�

has been played first, the two strings will
only be connected three times out of four. But the program
knows, with the connection search, that it is possible to al-
ways connect the two strings. The mean of the results of
the games where the two strings have been connected give
an evaluation of the move at

�
, which is better than the raw

mean of the move at
�

because it takes into account the fact
that the two strings are connected after

�
.

Another example is given in the useless connection dia-
gram of figure 3. This time the games where the two black
strings have been connected have a mean which is less than
the mean of all the games since the connection move is al-
ways useless. Therefore the mean associated to the connec-
tion is less than the mean of the best move, and the program
does not play the connection. It finds out by itself that it is
a useless connection.

Figure 4 shows the symmetric example. The two white
strings are disconnected three times out of eight, and the
disconnecting move results in a disconnection of the two
strings only three times out of four in the random games. On
the contrary, the search tells us that they can always be dis-
connected. To evaluate the disconnecting move, it is more
accurate to use the mean of the games where the two strings
have been disconnected, than to use the mean of the games
where the disconnecting move has been played first.

5.5 Positive and negative goals

We introduce the notion of positive and negative goals. Pos-
itive goals are goals we have confidence they can be reached
if the search algorithm returns so. For example, when the
search algorithm finds a capturing move, we have confi-
dence that the string can be captured. Examples of posi-
tive goals are capture, connection and life. On the contrary

Figure 4: disconnection

negative goals are not sure. For example, when the capture
search finds a move that saves a string, we are not assured
that the string cannot be captured latter: the string might
have gained five liberties but may be completely surrounded
by alive enemy groups and therefore be bound to capture
anyway. Example of negative goals are saving a string, dis-
connecting two strings or killing a group.

For negative goals the statistics tend to over-estimate the
interest of playing in the related problems. For example,
statistics on disconnection measure the mean of the games
where two strings have not been connected. It means the
program does not count the games where the strings have
been disconnected according to the search at a time in the
game, but have been connected later in the game because of
the capture of a common adjacent string that had temporar-
ily gained five liberties. In order to avoid this behavior we
have used the connection game evaluation function to detect
the disconnection found by the search at any time in the ran-
dom games. This way we count for the disconnection mean
the games were the evaluation function sends back lost in
the game even if at the end of the game the two strings end
being connected. Similarly, for the save goal, our program
counts all the games where the string had more than four
liberties during the game.
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6 Experimental results

In order to test our combination of tactical search with
Monte-Carlo, we have played 9x9 games between two pro-
grams. The first program is the standard Monte-Carlo al-
gorithm. The second program combines tactical search and
Monte-Carlo. They both play 10,000 random games before
choosing a move. Each program played twenty 9x9 games
against the other: ten games with black and ten games with
white. The games were scored using Chinese rule.

The capture, connection and eye search use Generalized
Threats Search [11]. The threat used is the (6,3,2,0) threat.
Life and death search uses Generalized Widening [9] for
non enclosed groups.

The program that combines search and Monte-Carlo
wins on average by 52.1 points against the standard Monte-
Carlo method on the 9x9 board, the standard deviation being
34.2 points. On a Celeron 1.8 GHz, the standard Monte-
Carlo algorithm plays a move in five seconds on average for
10,000 9x9 random games. The combination of search and
Monte-Carlo plays a move in ten seconds for 10,000 9x9
random games.

In order to compensate for the additional time used by
the combination of Monte-Carlo and search, we played the
combination program with 1,000 random games against the
standard Monte-Carlo with 10,000 games. The combination
is then twice as fast as the standard Monte-Carlo. Still, the
combination program wins on average by 24.6 points on the
9x9 board, the standard deviation being 40 points.

The combination of Monte-Carlo and search with 10,000
random games has also been tested against Golois. Golois
uses exactly the same tactical search algorithm as the pro-
gram based on Monte-Carlo and search. Golois uses a depth
one global search and hand tuned heuristics to evaluate the
strength of groups and the moves. Forty 9x9 games have
been played between the two programs and the combination
of search and Monte-Carlo wins on average by 26 points.
Given that the two programs have the same tactical Go
knowledge, it appears that the use of Monte-Carlo to assess
the importance of tactical goals is a promising alternative to
hand tuned evaluation knowledge.

7 Conclusion and Future Work

We have presented a way to integrate search with the Monte-
Carlo method in Go. Our program computes statistics dur-
ing the random games on the goals searched in the initial
position, in order to improve the accuracy of the evaluation
of the moves related to the goal. The resulting program im-
proves the average result of Monte-Carlo methods against a
standard Monte-Carlo Go program by more than 50 points
in 9x9 games.

Future work includes using search and statistics on other
goals and combinations of goals. It may be possible to
better handle the different results of the search for nega-
tive goals, and to improve the evaluation of these goals.
We could also improve the confidence in the statistics on
the random games, by taking into account the moves that
threaten the won tactical goals, and replying them inside

the random games so as to keep the important tactical goals
won. This would prevent the program to overestimate the
value of threats and it would result in a better evaluation of
the position.
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Cité Scientifique - BP 48, 59651 Villeneuve d’Ascq Cedex
email: chaslot.guillaume@ec-lille.fr

Abstract- This paper describes the generation and util-
isation of a pattern database for 19x19 go with the K-
nearest-neighbor representation. Patterns are gener-
ated by browsing recorded games of professional play-
ers. Meanwhile, their matching and playing probabil-
ities are estimated. The database created is then inte-
grated into an existing go program, INDIGO, either as an
opening book or as an enrichment of other pre-existing
hand-crafted databases used by INDIGO move genera-
tor. The improvement brought about by the use of this
pattern database is estimated at 15 points on average,
which is significant on go standards.

1 Introduction
Because the branching factor and the game length forbid
global tree search in go, and because evaluating non termi-
nal go positions is hard [16], computer go remains a difficult
task for computer science [17, 15]. In addition, computer
go is an appropriate testbed for AI methods [8]. INDIGO
[7] is made up of the Monte Carlo (MC) module and the
knowledge module. The MC module has been described
recently [9, 4], and the knowledge module was described
before 2003 [8, 5, 6]. To briefly present the current INDIGO
move decision process, the knowledge module provides the
MC module with ns moves, and, in order to select the best
move, the MC module plays out a lot of complete random
games starting with these moves and computes mean values.

The knowledge module includes various pattern
databases built manually. Hand-crafted databases have
many downsides: they contain errors, they have holes, and
they cannot be easily updated. Furthermore, the various
pattern bases in INDIGO do not share the same format: the
first one (FORME M) includes domain-dependent features
used by the conceptual evaluation function, the second
one (FORME 3X3) contains 3x3 patterns optimized for
fast simulations, and the last one is dedicated to large
patterns useful at the beginning of the game (FORME B and
FORME C). Due to the success of the MC module within
INDIGO, we aimed at using statistics in the knowledge
module too. Thus, it was the right time to test the automatic
creation of a new pattern database and observe its positive
effects within the INDIGO architecture. The automatic
creation of patterns avoids errors and holes in the database.
The automatic creation is performed by browsing recorded
professional games to create patterns and to estimate both
their matching probabilities and their playing probabilities

when matching. In other words, the approach we adopted
is a bayesian approach.

In order to avoid any limitation due to the size of pat-
terns, particularly at the beginning of the game, we used
the K-nearest-neighbor representation in which the relevant
neighbors are the occupied intersections and the edges. For
this reason, this database is named FORME K.

Section 2 is a summary of works related to the current
paper. Section 3 defines the K-nearest-neighbor representa-
tion used. Then, section 4 describes the creation of patterns
and their probabilistic features. Section 5 underlines the ex-
periments performed to integrate this work within INDIGO,
and assesses the improvements. Before conclusion, some
interesting perspectives are highlighted by section 6.

2 Related work
Despite of its importance within go programs, the litter-
ature about pattern acquisition, local move generation or
recorded professional games is not very abundant. [2] by
Mark Boon was the first paper to describe a pattern-matcher
in great details: the 5x5 window pattern-matching algo-
rithm of Goliath, best program in 1990. But this paper did
not deal with the pattern acquisition. Recently, Erik van
der Werf described a neural network approach using profes-
sional recorded games to generate local moves [19], predict
life and death [21], or score final positions [20]. Since it also
browses recorded games to produce local moves, the current
work is similar to Erik van der Werf’s approach, but it is less
sophisticated because it uses the K-nearest-neighbor repre-
sentation instead of a neural network. Moreover, it is not
intended to predict life and death or to score positions. Tris-
tan Cazenave worked on automatic acquisition of tactical
patterns for eyes or connections [11], even including liber-
ties [12]. The current work is similar to Cazenave’s work
because it consists in automatic acquisition of patterns but
it is quite different because Cazenave’s patterns were gen-
erated in a specific tactical context: connecting or making
eyes, by using explanation-based learning. Finally, [3] was
an attempt to generate 4x4 patterns by retrograde analysis.
Although it dealt with automatic acquisition of patterns, this
work was completely different from the present work be-
cause it was limited to small boards. Furthermore, it did
not use the bayesian approach but retrograde analysis. Fi-
nally, the approach used by Franck de Groot [14] to build
his game analyser software is not far from our approach
because it also consists in browsing professional games.
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However, it is different because the patterns representation
remains window-based, and because the number of games
used by his approach is significantly higher (50,000 instead
of 2,000).

3 K-nearest-neighbor representation
The K-nearest-neighbor representation is common in pat-
tern recognition [1]. This section defines the K-nearest-
neighbor representation used in this work.

3.1 K-nearest-neighbor patterns
The picture below shows an example a K-nearest-neighbor
pattern.

+@+
+++++
++*+O
+++++
++@

The pattern always advises to move in its center marked
by a ’*’. ’+’ represents an empty intersection. ’O’ repre-
sents a white stone. ’@’ represents a black stone. ’+’ is
an unimportant fact in this representation. ’e’ represents an
empty intersection located on the edge of the board. A black
or white stone, an edge or a corner are important facts. A
pattern contains a number of important facts, named K. In
the example above, K=3.

The center of the pattern being given, we assume the
neighboring intersections are ordered according to a dis-
tance. Moreover, we assume that this pre-defined order
avoids ties between intersections situated at the same dis-
tance from the center of the pattern. With such assumption,
the pattern matching principle remains simple and can be
programed efficiently.

The upside of this representation lies in the lack of lim-
itation on the size of the patterns. In go, many moves are
played in the neighborhood of stones and edges. To simplify
the work we constrained the patterns to advise one move in
its center only, and not elsewhere.

Other go pattern representations usually contain “don’t
care” points [2], i. e. points called ’#’ that can be either ’+’,
’O’, ’@’ or ’e’. The K-nearest-neighbor representation does
not explicitly contain such points. However, the points situ-
ated far from the center of a pattern are “don’t care” points.
Thus, the K-nearest-neighbor representation implicitly con-
tains such points. Besides, not managing these points ex-
plicitly simplifies the pattern matching algorithm. More-
over, because replacing a pattern containing a “don’t care”
point by four patterns containing one of the four explicit val-
ues (black, white, empty, edge) is still possible, this repre-
sentation does not lose generality provided that the memory
space is sufficient.

Pattern-matching must deal with the symmetries, rota-
tions and black and white inversions of board pieces in a
way or another. Upon the 16 patterns that belong the same
equivalence class when considering the symmetries, rota-

tions, and black and white inversions, a first approach to
match a given pattern with a piece of board consists in
storing one pattern only in memory, and let the pattern-
matching algorithm compare the actual piece of board with
the 16 patterns equivalent to the given pattern. The other ap-
proach consists in storing explicitly the 16 patterns equiva-
lent to a pattern, and lightens the pattern-matcher algorithm
with the symmetries, rotations and black and white inver-
sions. In our first release, not yet concerned with memory
limitation but with fast development, we have chosen the
second approach.

3.2 Creating patterns
For a given set of games, the creating process is straightfor-
ward. It corresponds to the following pseudo-code:

createPatterns() {
For k = 1 up to Kmax

For each game
For each move i of the game

createPattern(k, i);
}

If the pattern does not exist yet, the function
createPattern(k, i) creates the pattern centered on i with
k neighbors following the predefined order between inter-
sections. The patterns are stored in a tree whose nodes have
four children: the node “if empty”, the node “if black”, the
node “if white” and the node “if edge”. Thanks to such a
tree pattern-matching is efficient.

4 Bayesian generation
This section describes the bayesian aspect of the work, clas-
sical in classification tasks [1]. First, we define and name
the relevant probabilities with the bayesian properties of a
pattern. We show how we compute the pattern probabili-
ties. Finally, we discuss the way our system eliminates bad
patterns.

4.1 Definitions
P names a probablility. i names either an intersection or a
move being played on it. p names a pattern. P (p) is the
probability that pattern p matches on an arbitrary intersec-
tion. P (i) is the probability that the move is being played
on i. P (i, p) is the probability that the move is being played
on i and that pattern p matches on i. P (i|p) is the proba-
bility that the move is being played on i given that pattern
p matches on i. Finally, P (p|i) is the probability that pat-
tern p matches on i given that the move is being played on
i. P (i) and P (p) are prior probabilities. P (i|p) and P (p|i)
are posterior probabilities.

At playing-time, the underlying idea remains to perform
pattern-matching on every i intersection of the board, and
to use P (i|p) as an estimation of the urgency of the move
played on i. At building-time, we adopt a frequentist ap-
proach, a probability that an event arises is approximated
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by the number of times that the event arises divided by the
number of tests performed. We say that a pattern is fre-
quent when P (p) is high, good when P (i|p) is high, and
useful when P (p|i) is high. Therefore, we defined a class
FORME K whose bayesian properties are specified below.
The term “static” is a C++ keyword which refers to a fea-
ture of the whole class.

class Forme_k {
static int n_test;
static int n_play;
int n_match; // p.n_match
int n_play; // p.n_play
static float p_play; // P(i)
float p_match; // P(p)
float p_play_given_match; // P(i|p)
float p_match_given_play; // P(p|i)
...

};

The formula to approximate the probabilities by count-
ing the events are:

P(i) = n_play/n_test;
P(p) = p.n_match/n_test;
P(i|p) = p.n_play/p.n_match;
P(p|i) = p.n_play/n_play;

With such definitions, the Bayes formula remains valid.

4.2 Computing the pattern probabilities
For a given set of games and a given set of patterns, the
bayesian process corresponds to the following pseudo-code:

computeProbabilities() {
n_play = n_test = 0;
For each pattern p,
p.n_match = p.n_play = 0;

For each game {
For each move of the game {

n_play++;
For each intersection i,

test(i);
}

}
For each pattern p,
p.p_play = p.n_play/p.n_match;

}

test(i) {
n_test++;
patternMatching();
For each matched pattern p on i {
p.n_match++;
if move played on i then

p.n_play++;
}

}

A test on an i intersection on a given position of a given
game answers the two questions: is the move played on i,
and which patterns are matching on i ? On 19x19 boards,
200 or 300 tests are performed by position and a game lasts
approximately 200 moves, thus 50,000 tests are performed
during one game. With the 2,000 professional games we
currently have, we reach about 100,000,000 tests.

4.3 Eliminating bad patterns
The underlying idea of this subsection consists in eliminat-
ing the patterns which are not good enough or computed
with too low a confidence level. First, because the low play-
ing probability patterns are less interesting than the high
playing probability patterns, the extracting process only
kept p patterns such as P (i|p) > 0.01. Second, we can es-
timate the confidence on the computed probabilities P (be-
ing P (i|p)) computed at building-time. Basic statistics [13]
yield σ =

√

P (1− P ). For most patterns we have P <<

1, thus σ ≈
√

P . The relevant quantity to assess the confi-
dence level is s(i|p) = σ/

√
Nmatch =

√

Nplay/Nmatch

Then, the system may eliminate p patterns such as
P (i|p) < A × s(i|p). However, in practice, we decided
to apply this rule only when our set of games is larger. With
such pragmatic decision, our system extracted K-dependent
databases, K being the maximal number of neighbors con-
sidered during generation. Table 1 provides the number of
patterns generated for some values of K.

K 6 9 15
patterns encountered 200,000 700,000 2,400,000

patterns kept 8,000 27,000 85,000

Table 1: Number of generated patterns for K = 6, 9, 15.

In the following experiments, the value of K is set to
15. Because, at this stage we only have 2,000 professional
games, the number of patterns kept is linear in the number
of games.

5 Experiments
There are two possible ways of using FORME K: direct play
as an opening book without MC verification (subsection
5.1), and integration with MC verification (subsection 5.2).

For each way, we set up experiments to assess the ef-
fect of FORME K. One experiment consists in a 100-game
match between the program to be assessed, KATIA, and the
experiment reference program, the 2004 release of INDIGO
that attended the 2004 Computer Olympiads, each program
playing 50 games with Black. The result of one experi-
ment is a set of relative scores provided by a table assum-
ing that KATIA is the max player. A positive number in
a cell corresponds to a successful integration. Given that
the standard deviation of 19x19 games played by our pro-
grams is roughly 75 points, 100 games enable our experi-
ments to lower σ down to 7.5 points (only) and to obtain
a 95% confidence interval of which the radius equals 2σ,
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i.e., 15 points. We have used 2.4 GHz computers. INDIGO
and KATIA both use the handcrafted databases FORME B,
FORME C, FORME M and FORME 3X3. Besides, KATIA
uses FORME K.

5.1 Using Forme K as an opening book without MC ver-
ification

The initial idea was to replace FORME B and FORME C by
FORME K. FORME B and FORME C are parts of the MC
preprocessor, implying that their moves are verified by the
MC module. However, to assess the effect of the FORME K
more frankly and quickly, we decided that KATIA will di-
rectly play the move advised by FORME K, using it as an
opening book without MC verification. Figure 1 yields the
first 40 moves of a go opening self-played by KATIA in such
a way. This opening is played with a very good style in-
deed, and may appear as very smart by human go players.
One should believe that this opening is produced by strong
human players. In fact, this appearance can be misleading.
Against weak opponents that do not play with professional
style, KATIA would not be able to confirm the good be-
havior shown by Figure 1. As shown in the following, the
result of this book approach decreases rapidly after move
forty. However, this good opening reflects the strength of a
bayesian approach on a K-nearest-neighbor representation
in go.

After this qualitative assessment, it is now important to
assess FORME K in terms of quantitative results. Table 2
shows the results between KATIA(K, BEGIN) and INDIGO.
During the first begin moves, the move played by KATIA
is the move advised by FORME K. After the opening stage,
KATIA keeps using the same move selection as INDIGO.

6 9 15
20 -9 -2 -5
30 -9 -8 +3
40 -30 -10 -6

Table 2: Average result of KATIA(K, BEGIN) against IN-
DIGO for k = 6, 9, 15 and begin = 20, 30, 40.

As expected, the result is improved when K increases,
but until K = 15 the results remain negative. At this point,
KATIA(K=15, BEGIN=30) is the only positive result. We
wondered why the results were not satisfactory. In fact, re-
placing FORME B and FORME C by FORME K was mis-
leading. Actually, FORME B and FORME C do have impor-
tance in INDIGO, and it was better to keep them in KATIA
as well.

Thus, giving up the initial idea to replace FORME B and
FORME C by FORME K, we have added FORME K in KA-
TIA and we have kept both FORME B and FORME C. This
addition gave better results provided by Table 3. Moreover,
the correct value of begin remained to be determined. First,
this result shows that KATIA was not weaker than INDIGO.
Second, because KATIA(BEGIN=40) plays instantly during
the first forty moves of the game, she saves about 30% of
the thinking process throughout one game. Therefore, at

this point, the integration already showed a positive effect
in terms of both playing level and time.

0 10 20 30 40 50
+1.0 +5.4 +0.6 +3.5 -11.1

Table 3: Average result of KATIA(BEGIN) also using
FORME B and FORME C against INDIGO for begin = 0, 10,
20, 30, 40, and 50.

5.2 Integrating Forme K with MC verification
Within INDIGO, the knowledge-based preprocessor uses
several databases along with the conceptual evaluation func-
tion to select ns moves for the MC module. The idea de-
veloped by this subsection is then to integrate FORME K
within the MC preprocessor.

We name KATIA(NK) the release of KATIA that selects
nk moves with FORME K, and selects ns− nk moves with
the existing preprocessor, finally providing them to the MC
module for verification. If both FORME K and the exist-
ing pre-processor select the same moves, extra moves are
taken from the existing preprocessor. Moves selected by
FORME K are filtered by heuristics using the tactical re-
sults available in the preprocessor. In 2004, INDIGO used
ns = 7. Because life and death knowledge is necessary to
a go program, and because FORME K does not contain life
and death knowledge, we expected results for nk to vary
from 0 up to 4, to keep at least 3 moves concerning life and
death. Table 4 shows these results.

0 10 20 30 40 50
0 +1.0 +5.4 +0.6 +3.5 -11.1
1 -1.3 +4.9 +1.8 +3.6 +2.1 -2.9
2 +9.6 +15.8 +10.0 +6.1 +5.8 -13.0
3 +3.9 +8.6 -0.7 -1.5 -6.7 -20.1
4 +5.1 -2.5 +6.7 -4.2 +1.0 -16.9

Table 4: Average result of KATIA(BEGIN, NK) against IN-
DIGO for begin = 0, 10, 20, 30, 40 and 50 and for nk = 0, 1,
2, 3, 4.

Some of these results are then clearly positive. KA-
TIA(BEGIN=10,NK=2) averages about fifteen points better
than INDIGO. It is interesting to comment upon the KA-
TIA(NK=2) results. First, the KATIA(BEGIN=0,NK=2) re-
sult shows the effect of integrating FORME K with MC ver-
ification independently of using FORME K as an opening
book. It is interesting to point out the 10 point improvement
resulting from the insertion of 2 FORME K moves within
the 7 moves selected by the pre-processor. This fact re-
flects the lack of patterns within the hand-crafted databases,
and the presence of these patterns within FORME K. Sec-
ond, the KATIA(BEGIN=10,NK=2) result is also amazing.
It shows that KATIA improves by 5 points on average by
playing the first 5 moves by using FORME K as an opening
book. The first 5 moves corresponds to the very early be-
ginning in go standards. This result shows that appropriate
first 5 moves can already show a positive effect. Third, the

179 CIG'05 (4-6 April 2005)



Figure 1: Katia first 40 moves during a self-play opening

KATIA(BEGIN=20,NK=2) result corresponds to a compro-
mise between time and average playing level. The playing
level is about the same than KATIA(BEGIN=0,NK=2), but
about 20% of thinking time is saved by playing the first 10
moves instantly. Finally, KATIA(BEGIN=30 OR 40,NK=2)
can be considered as possible compromises between time
and playing level, but due to its very negative result KA-
TIA(BEGIN=50,NK=2) cannot be. Besides, the results can
be commented by column. The best results are obtained for
nk = 2. FORME K does not include any life and death
information, while the conceptual evaluation function does.
It is then normal to observe that a module including life
and death is more useful (it provides 5 moves upon 7) than
FORME K which provides 2 moves upon 7.

Finally, by copying the appropriate release of KA-
TIA into INDIGO, may be KATIA(BEGIN=20,NK=2), we
can conclude that FORME K can be successfully inte-
grated into INDIGO. However, we have tested KA-
TIA(BEGIN=20,NK=2) against GNU Go 3.2 [10] and no
improvement was observed.

6 Perspectives
We plan to re-generate the FORME K database with a num-
ber of games greater than 2,000. For instance, the GoGod
CDROM contains about 30,000 professional games, and
has the appropriate size for the next assessment. This re-
generation would refine the probabilities estimation, and
consequently the move urgencies at playing time. An im-
provement should be observed. Although numerous 9x9
and 13x13 professional games are not massively available,
checking the non-regression results of KATIA on 9x9 or
13x13 boards is a mandatory task. Taking the symmetries,
rotations and black and white inversions into account within
the pattern matching and probability estimations is also an
important perspective that will enhance the confidence level

of probability estimations. Besides, we also plan to extend
the patterns by allowing moves being played not only in the
center of the pattern but also on the intersections situated
near the center.

Moreover, we have two other interesting perspec-
tives: first, integrating a relevant subset of FORME K
within the conceptual evaluation function module to re-
place FORME M, and, second, integrating another appro-
priate subset of FORME K within the MC engine to re-
place FORME 3X3. The first integration should be a diffi-
cult knowledge engineering task because FORME M is used
by the conceptual evaluation function in a very intricated
way. The second one should be possible provided the pat-
terns are limited to a pre-defined neighborhood of the cen-
ter of the pattern, because speed considerations are crucial
within the MC engine. Another interesting challenge of this
second integration is the off-line computation of move ur-
gencies. This can be done either by using a function of the
probabilities computed by browsing recorded games, or by
reinforcement learning technique [18].

7 Conclusion
We have suggested a method to extract patterns automat-
ically from professional recorded games. This method
uses basic probability estimations, and does not assume
any domain-dependent knowledge. To this extent, it is a
good continuation of a MC go program. The represen-
tation used is the K-nearest-neighbor representation. The
bayesian generation of K-nearest-neighbor patterns gives
an opening book that produces very good openings indeed.
This work experimentally demonstrates that the strength of
this method lies in the K-nearest-neighbor representation
adapted to the game of go. Its weakness lies in its lack of life
and death understanding, life and death being the corner-
stone of any strong go program. Thus, this approach cannot
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be used as such, and must be combined with other existing
approaches.

We have integrated the database built along such a
method into the go playing program INDIGO. The results
are positive. Adding the database within the preprocessor
of the MC module enables INDIGO to improve by 15 points
on 19x19 boards on average, which is significant in go stan-
dards. Furthermore, in the opening of games, the quality of
the twenty or thirty first moves provided by the database al-
lows INDIGO to play these moves directly without MC veri-
fication. Consequently, 20% of the thinking time of INDIGO
can be saved, allowing room for other future improvements.
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Abstract- In most modern video games, character be-
havior is scripted; no matter how many times the player
exploits a weakness, that weakness is never repaired.
Yet if game characters could learn through interacting
with the player, behavior could improve during game-
play, keeping it interesting. This paper introduces the
real-time NeuroEvolution of Augmenting Topologies (rt-
NEAT) method for evolving increasingly complex arti-
ficial neural networks in real time, as a game is being
played. The rtNEAT method allows agents to change
and improve during the game. In fact, rtNEAT makes
possible a new genre of video games in which the player
teachesa team of agents through a series of customized
training exercises. In order to demonstrate this concept
in the NeuroEvolving Robotic Operatives (NERO) game,
the player trains a team of robots for combat. This
paper describes results from this novel application of
machine learning, and also demonstrates how multiple
agents can evolve and adapt in video games like NERO
in real time using rtNEAT. In the future, rtNEAT may
allow new kinds of educational and training applications
that adapt online as the user gains new skills.

1 Introduction
The world video game market in 2002 was between $15
billion and $20 billion, larger than even that of Hollywood
(Thurrott 2002). Video games have become a facet of many
people’s lives and the market continues to expand. Because
there are millions of players and because video games carry
perhaps the least risk to human life of any real-world ap-
plication, they make an excellent testbed for techniques in
artificial intelligence and machine learning (Laird and van
Lent 2000). In fact, Fogel et al. (2004) argue that such tech-
niques can potentially both increase the longevity of video
games and decrease their production costs.

One of the most compelling yet least exploited technolo-
gies in the video game industry is machine learning. Thus,
there is an unexplored opportunity to make video games
more interesting and realistic, and to build entirely new gen-
res. Such enhancements may have applications in education
and training as well, changing the way people interact with
their computers.

In the video game industry, the termNon-player-
character (NPC) refers to an autonomous computer-
controlled agent in the game. This paper focuses on train-
ing NPCs as intelligent agents, and the standard AI term
agentsis therefore used to refer to them. The behavior of
agents in current games is often repetitive and predictable.

In most video games, scripts cannot learn or adapt to control
the agents: Opponents will always make the same moves
and the game quickly becomes boring. Machine learning
could potentially keep video games interesting by allowing
agents to change and adapt. However, a major problem with
learning in video games is that if behavior is allowed to
change, the game content becomes unpredictable. Agents
might learn idiosyncratic behaviors or even not learn at all,
making the gaming experience unsatisfying. One way to
avoid this problem is to train agents offline, and then freeze
the results into the final game. However, if behaviors are
frozen before the game is released, agents cannot adapt and
change in response to the tactics of particular players.

If agents are to adapt and change in real-time, a powerful
and reliable machine learning method is needed. This paper
describes a novel game built around a real-time enhance-
ment of the NeuroEvolution of Augmenting Topologies
method (NEAT; Stanley and Miikkulainen 2002b, 2004).
NEAT evolves increasingly complex neural networks, i.e.
it complexifies. Real-time NEAT (rtNEAT) is able to com-
plexify neural networksas the game is played, making it
possible for agents to evolve increasingly sophisticated be-
haviors in real time. Thus, agent behavior improves visibly
during gameplay. The aim is to show that machine learning
is indispensable for some kinds of video games to work, and
to show how rtNEAT makes such an application possible.

In order to demonstrate the potential of rtNEAT,
the Digital Media Collaboratory (DMC) at the Uni-
versity of Texas at Austin initiated the NeuroEvolving
Robotic Operatives (NERO) project in October of 2003
(http://dev.ic2.org/nero public ). This project
is based on a proposal for a game based on rtNEAT de-
veloped at the2nd Annual Game Development Workshop
on Artificial Intelligence, Interactivity, and Immersive Envi-
ronmentsin Austin, TX (presentation by Kenneth Stanley,
2003). The idea was to create a game in which learning
is indispensable, in other words, without learning NERO
could not exist as a game. In NERO, the player takes the
role of a trainer, teaching skills to a set of intelligent agents
controlled by rtNEAT. Thus, NERO is a powerful demon-
stration of how machine learning can open up new possibil-
ities in gaming and allow agents to adapt.

This paper describes rtNEAT and NERO, and reviews
results from the first year of this ongoing project. The next
section briefly reviews learning methods for games. NEAT
is then described, including how it was enhanced to create
rtNEAT. The last sections describe NERO and summarize
the current status and performance of the game.
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2 Background
This section reviews several machine learning techniques
that can be used in games, and explains whyneuroevolution
(NE), i.e. the artificial evolution neural networks using a ge-
netic algorithm, is the ideal method for real-time learning in
NERO. Because agents in NERO need to learn online as
the game is played, predetermined training targets are usu-
ally not available, ruling out supervised techniques such as
backpropagation (Rumelhart et al. 1986) and decision tree
learning (Utgoff 1989).

Traditional reinforcement learning (RL) techniques such
as Q-Learning (Watkins and Dayan 1992) and Sarsa(λ)
with a Case-Based function approximator (SARSA-CABA;
Santamaria et al. 1998) can adapt in domains with sparse
feedback (Kaelbling et al. 1996; Sutton and Barto 1998)
and thus can be applied to video games as well. These
techniques learn to predict the long-term reward for taking
actions in different states by exploring the state space and
keeping track of the results. However, video games have
several properties that pose significant challenges to tradi-
tional RL:

1. Large state/action space. Since games usually have
several different types of objects and characters, and
many different possible actions, the state/action space
that RL must explore is high-dimensional. Not only
does this pose the usual problem of encoding a high-
dimensional space (Sutton and Barto 1998), but in
a real-time game there is the additional challenge of
checking the value of every possible action on every
game tick for every agent in the game.

2. Diverse behaviors. Agents learning simultaneously
should not all converge to the same behavior because
a homogeneous population would make the game
boring. Yet since RL techniques are based on con-
vergence guarantees and do not explicitly maintain
diversity, such an outcome is likely.

3. Consistent individual behaviors. RL depends on
occasionally taking a random action in order to ex-
plore new behaviors. While this strategy works well
in offline learning, players do not want to see an in-
dividual agent periodically making inexplicable and
idiosyncratic moves relative to its usual behavior.

4. Fast adaptation. Players do not want to wait hours
for agents to adapt. Yet a complex state/action repre-
sentation can take a long time to learn. On the other
hand, a simple representation would limit the ability
to learn sophisticated behaviors. Thus, choosing the
right representation is difficult.

5. Memory of past states. If agents remember past
events, they can react more convincingly to the
present situation. However, such memory requires
keeping track of more than the current state, ruling
out traditional Markovian methods.

While these properties make applying traditional RL
techniques difficult, NE is an alternative RL technique that
can meet each requirement: (1) NE works well in high-
dimensional state spaces (Gomez and Miikkulainen 2003),

and only produces a single requested action without check-
ing the values of multiple actions. (2) Diverse popula-
tions can be explicitly maintained (Stanley and Miikkulai-
nen 2002b). (3) The behavior of an individual during its
lifetime does not change. (4) Arepresentationof the solu-
tion can be evolved, allowing simple behaviors to be discov-
ered quickly in the beginning and later complexified (Stan-
ley and Miikkulainen 2004). (5) Recurrent neural networks
can be evolved that utilize memory (Gomez and Miikkulai-
nen 1999). Thus, NE is a good match for video games.

The current challenge is to achieve evolution inreal time,
as the game is played. If agents could be evolved in a
smooth cycle of replacement, the player could interact with
evolution during the game and the many benefits of NE
would be available to the video gaming community. This
paper introduces such a real-time NE technique, rtNEAT,
which is applied to the NERO multi-agent continuous-state
video game. In NERO, agents must master both motor con-
trol and higher-level strategy to win the game. The player
acts as a trainer, teaching a team of robots the skills they
need to survive. The next section reviews the NEAT neu-
roevolution method, and how it can be enhanced to produce
rtNEAT.

3 Real-time NeuroEvolution of Augmenting
Topologies (rtNEAT)

The rtNEAT method is based on NEAT, a technique for
evolving neural networks for complex reinforcement learn-
ing tasks using a genetic algorithm (GA). NEAT combines
the usual search for the appropriate network weights with
complexificationof the network structure, allowing the be-
havior of evolved neural networks to become increasingly
sophisticated over generations. This approach is highly
effective: NEAT outperforms other neuroevolution (NE)
methods e.g. on the benchmark double pole balancing task
(Stanley and Miikkulainen 2002a,b). In addition, because
NEAT starts with simple networks and expands the search
space only when beneficial, it is able to find significantly
more complex controllers than fixed-topology evolution, as
demonstrated in a robotic strategy-learning domain (Stanley
and Miikkulainen 2004). These properties make NEAT an
attractive method for evolving neural networks in complex
tasks such as video games.

Like most GAs, NEAT was originally designed to run
offline. Individuals are evaluated one or two at a time, and
after the whole population has been evaluated, a new popu-
lation is created to form the next generation. In other words,
in a normal GA it is not possible for a human to interact
with the multiple evolving agentswhile they are evolving.
This section first briefly reviews the original offline NEAT
method, and then describes how it can be modified to make
it possible for players to interact with evolving agents in real
time. See e.g. Stanley and Miikkulainen (2002a,b, 2004) for
a complete description of NEAT.

NEAT is based on three key ideas. First, evolving net-
work structure requires a flexible genetic encoding. Each
genome includes a list ofconnection genes, each of which
refers to twonode genesbeing connected. Each connec-
tion gene specifies the in-node, the out-node, the connection
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weight, whether or not the connection gene is expressed (an
enable bit), and aninnovation number, which allows finding
corresponding genes during crossover. Mutation can change
both connection weights and network structures. Connec-
tion weights mutate as in any NE system, with each con-
nection either perturbed or not. Structural mutations, which
allow complexity to increase, either add a new connection
or a new node to the network. Through mutation, genomes
of varying sizes are created, sometimes with completely dif-
ferent connections specified at the same positions.

Each unique gene in the population is assigned a unique
innovation number, and the numbers are inherited during
crossover. Innovation numbers allow NEAT to perform
crossover without the need for expensive topological analy-
sis. Genomes of different organizations and sizes stay com-
patible throughout evolution, and the problem of matching
different topologies (Radcliffe 1993) is essentially avoided.

Second, NEAT speciates the population, so that individ-
uals compete primarily within their own niches instead of
with the population at large. This way, topological innova-
tions are protected and have time to optimize their structure
before competing with other niches in the population. The
reproduction mechanism for NEAT isexplicit fitness shar-
ing (Goldberg and Richardson 1987), where organisms in
the same species must share the fitness of their niche, pre-
venting any one species from taking over the population.

Third, unlike other systems that evolve network topolo-
gies and weights (Gruau et al. 1996; Yao 1999) NEAT be-
gins with a uniform population of simple networks with no
hidden nodes. New structure is introduced incrementally as
structural mutations occur, and only those structures survive
that are found to be useful through fitness evaluations. This
way, NEAT searches through a minimal number of weight
dimensions and finds the appropriate complexity level for
the problem.

In previous work, each of the three main components
of NEAT (i.e. historical markings, speciation, and start-
ing from minimal structure) were experimentally ablated in
order to demonstrate how they contribute to performance
(Stanley and Miikkulainen 2002b). The ablation study
demonstrated that all three components are interdependent
and necessary to make NEAT work. The next section ex-
plains how NEAT can be enhanced to work in real time.

3.1 Running NEAT in Real Time

In NEAT, the population is replaced at each generation.
However, in real time, replacing the entire population to-
gether on each generation would look incongruous since ev-
eryone’s behavior would change at once. In addition, behav-
iors would remain static during the large gaps between gen-
erations. Instead, in rtNEAT, a single individual is replaced
every few game ticks (as in e.g. (µ,1)-ES; Beyer and Paul
Schwefel 2002). One of the worst individuals is removed
and replaced with a child of parents chosen from among the
best. This cycle of removal and replacement happens con-
tinually throughout the game (figure 1). The challenge is to
preserve the usual dynamics of NEAT, namely protection of
innovation through speciation and complexification.

The main loop in rtNEAT works as follows. Letfi be

2 high−fitness agents

1 low−fitness agent
Cross over

New agent

Mutate

X   

Figure 1:The main replacement cycle in rtNEAT. Robot game
agents (represented as small circles) are depicted playing a game in
the large box. Every few ticks, two high-fitness robots are selected
to produce an offspring that replaces another of lower fitness. This
cycle of replacement operates continually throughout the game,
creating a constant turnover of new behaviors.

the fitness of individuali. Fitness sharing adjusts it tofi

|S| ,
where|S| is the number of individuals in the species. In
other words, fitness is reduced proportionally to the size
of the species. This adjustment is important because se-
lection in rtNEAT must be based on adjusted fitness rather
than original fitness in order to maintain the same dynamics
as NEAT. In addition, because the number of offspring as-
signed to a species in NEAT is based on its average fitness
F , this average must always be kept up-to-date. Thus, af-
ter everyn ticks of the game clock, rtNEAT performs the
following operations:

1. Remove the agent with the worstadjustedfitness
from the population assuming one has been alive suf-
ficiently long so that it has been properly evaluated.

2. Re-estimateF for all species

3. Choose a parent species to create the new offspring

4. Adjust compatibility thresholdCt dynamically and
reassignall agents to species

5. Place the new agent in the world

Each of these steps is discussed in more detail below.

3.1.1 Step 1: Removing the worst agent

The goal of this step is to remove a poorly performing agent
from the game, hopefully to be replaced by something bet-
ter. The agent must be chosen carefully to preserve specia-
tion dynamics. If the agent with the worstunadjustedfitness
were chosen, fitness sharing could no longer protect innova-
tion because new topologies would be removed as soon as
they appear. Thus, the agent with the worstadjustedfitness
should be removed, since adjusted fitness takes into account
species size, so that new smaller species are not removed as
soon as they appear.

It is also important not to remove agents that are too
young. In original NEAT,age is not considered since net-
works are generally all evaluated for the same amount of
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time. However, in rtNEAT, new agents are constantly being
born, meaning different agents have been around for dif-
ferent lengths of time. It would be dangerous to remove
agents that are too young because they have not played for
long enough to accurately assess their fitness. Therefore, rt-
NEAT only removes agents who have played for more than
the minimum amount of timem.

3.1.2 Step 2: Re-estimatingF

Assuming there was an agent old enough to be removed, its
species now has one less member and therefore its average
fitnessF has likely changed. It is important to keepF up-
to-date becauseF is used in choosing the parent species in
the next step. Therefore, rtNEAT needs to re-estimateF .

3.1.3 Step 3: Choosing the parent species

In original NEAT the number of offspringnk assigned to

speciesk is Fk

F tot
|P |, whereFk is the average fitness of

speciesk, F tot is the sum of all the average species’ fit-
nesses, and|P | is the population size.

This behavior needs to be approximated in rtNEAT even
thoughnk cannot be assigned explicitly (since only one off-
spring is created at a time). Given thatnk is proportional to
F , the parent species can be chosen probabilistically using
the same relationship:

Pr(Sk) =
Fk

F tot

. (1)

The probability of choosing a given parent species is pro-
portional to its average fitness compared to the total of all
species’ average fitnesses. Thus, over the long run, the ex-
pected number of offspring for each species is proportional
tonk, preserving the speciation dynamics of original NEAT.

3.1.4 Step 4: Dynamic Compatibility Thresholding

Networks are placed into a species in original NEAT if they
are compatible with a representative member of the species.
rtNEAT attempts to keep the number of species constant by
adjusting a threshold,Ct, that determines whether an indi-
vidual is compatible with a species’ representative. When
there are too many species,Ct is increased to make species
more inclusive; when there are too few,Ct is decreased to
be stricter. An advantage of this kind ofdynamic compat-
ibility thresholding is that it keeps the number of species
relatively stable.

In rtNEAT changingCt alone cannot immediately affect
the number of species because most of the population sim-
ply remains where they are. Just changing a variable does
not cause anything to move to a different species. There-
fore, after changingCt in rtNEAT, the entire population
must be reassigned to the existing species based on the new
Ct. As in original NEAT, if a network does not belong in
any species a new species is created with that network as its
representative.1

1Depending on the specific game,Ct does not necessarily need to be
adjusted and species reorganized as often as every replacement. The num-
ber of ticks between adjustments is chosen by the game designer.

3.1.5 Step 5: Replacing the old agent with the new one

Since an individual was removed in step 1, the new off-
spring needs to replace it. How agents are replaced depends
on the game. In some games, the neural network can be
removed from a body and replaced without doing anything
to the body. In others, the body may have died and need
to be replaced as well. rtNEAT can work with any of these
schemes as long as an old neural network gets replaced with
a new one.

Step 5 concludes the steps necessary to approximate
original NEAT in real-time. However, there is one remain-
ing issue. The entire loop should be performed at regular
intervals, everyn ticks: How shouldn be chosen?

3.1.6 Determining Ticks Between Replacements

If agents are replaced too frequently, they do not live long
enough to reach the minimum timem to be evaluated. For
example, imagine that it takes 100 ticks to obtain an ac-
curate performance evaluation, but that an individual is re-
placed in a population of 50 on every tick. No one ever lives
long enough to be evaluated and the population always con-
sists of only new agents. On the other hand, if agents are
replaced too infrequently, evolution slows down to a pace
that the player no longer enjoys.

Interestingly, the appropriate frequency can be deter-
mined through a principled approach. LetI be the fraction
of the population that is too young and therefore cannot be
replaced. As before,n is the ticks between replacements,m
is the minimum time alive, and|P | is the population size. A
law of eligibility can be formulated that specifies what frac-
tion of the population can be expected to be ineligible once
evolution reaches a steady state (i.e. after the first few time
steps when no one is eligible):

I =
m

|P |n
. (2)

According to Equation 2, the larger the population and the
more time between replacements, the lower the fraction of
ineligible agents. Based on the law, rtNEAT can decide on
its own how many ticksn should lapse between replace-
ments for a preferred level of ineligibility, specific popula-
tion size, and minimum time between replacements:

n =
m

|P |I
. (3)

It is best to let the user chooseI because in general it is most
critical to performance; if too much of the population is in-
eligible at one time, the mating pool is not sufficiently large.
Equation 3 allows rtNEAT to determine the correct number
of ticks between replacementsn to maintain a desired el-
igibility level. In NERO, 50% of the population remains
eligible using this technique.

By performing the right operations everyn ticks, choos-
ing the right individual to replace and replacing it with an
offspring of a carefully chosen species, rtNEAT is able to
replicate the dynamics of NEAT in real-time. Thus, it is
now possible to deploy NEAT in a real video game and in-
teract with complexifying agents as they evolve. The next
section describes such a game.

185 CIG'05 (4-6 April 2005)



Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls Battle

Figure 2: A turret training sequence. The figure depicts a sequence of increasingly difficult and complicated training exercises in
which the agents attempt to attack turrets without getting hit. In the first exercise there is only a single turret but more turrets are added
by the player as the team improves. Eventually walls are added and the turrets are given wheels so they can move. Finally, after the team
has mastered the hardest exercise, it is deployed in a real battle against another team.

4 NeuroEvolving Robotic Operatives (NERO)
NERO is representative of a new genre that is only possible
through machine learning. The idea is to put the player in
the role of atrainer or adrill instructor who teaches a team
of agents by designing a curriculum.

In NERO, the learning agents are simulated robots, and
the goal is to train a team of robots for military combat. The
robots begin the game with no skills and only the ability to
learn. In order to prepare for combat, the player must design
a sequence of training exercises and goals specified with a
set of sliders. Ideally, the exercises are increasingly diffi-
cult so that the team can begin by learning a foundation of
basic skills and then gradually building on them (figure 2).
When the player is satisfied that the team is prepared, the
team is deployed in a battle against another team trained by
another player (possibly on the internet), making for a cap-
tivating and exciting culmination of training. The challenge
is to anticipate the kinds of skills that might be necessary
for battle and build training exercises to hone those skills.
The next two sections explain how the agents are trained in
NERO and how they fight an opposing team in battle.

4.1 Training Mode

The player sets up training exercises by placing objects on
the field and specifying goals through several sliders (fig-
ure 3). The objects include static enemies, enemy turrets,
rovers (i.e. turrets that move), and walls. To the player, the
sliders serve as an interface for describing ideal behavior.
To rtNEAT, they represent coefficients for fitness compo-
nents. For example, the sliders specify how much to reward
or punish approaching enemies, hitting targets, getting hit,
following friends, dispersing, etc. Each individual fitness
component is normalized to a Z-score so that each fitness
component is measured on the same scale. Fitness is com-
puted as the sum of all these normalized components mul-
tiplied by their slider levels. Thus, the player has a natural
interface for setting up a training exercise and specifying
desired behavior.

Robots have several types of sensors. Although NERO
programmers frequently experiment with new sensor con-
figurations, the standard sensors include enemy radars, an
“on target” sensor, object rangefinders, and line-of-fire sen-
sors. Figure 4 shows a neural network with the standard set
of sensors and outputs. Several enemy radar sensors divide

Figure 3:Setting up training scenarios. This screenshot shows
items the player can place on the field and sliders used to control
behavior. The robot is a stationary enemy turret that turns back
and forth as it shoots repetitively. Behind the turret is a wall. The
player can place turrets, other kinds of enemies, and walls any-
where on the training field. On the right is the box containing
slider controls. These sliders specify the player’s preference for
the behavior the team should try to optimize. For example the “E”
icon means “approach enemy,” and the descending bar above it
specifies that the player wants to punish robots that approach the
enemy. The crosshair icon represents “hit target,” which is being
rewarded. The sliders represent fitness components that are used
by rtNEAT. The value of the slider is used by rtNEAT as the co-
efficient of the corresponding fitness component. Through placing
items on the field and setting sliders, the player creates training
scenarios where learning takes place.

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

Figure 4: NERO input sensors and action outputs. Each
NERO robot can see enemies, determine whether an enemy is cur-
rently in its line of fire, detect objects and walls, and see the direc-
tion the enemy is firing. Its outputs specify the direction of move-
ment and whether or not to fire. This configuration has been used
to evolve varied and complex behaviors; other variations work as
well and the standard set of sensors can easily be changed.
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the 360 degrees around the robot into slices. Each slice acti-
vates a sensor in proportion to how close an enemy is within
that slice. Rangefinders project rays at several angles from
the robot. The distance the ray travels before it hits an ob-
ject is returned as the value of the sensor. The on-target
sensor returns full activation only if a ray projected along
the front heading of the robot hits an enemy. The line of fire
sensors detect where a bullet stream from the closest enemy
is heading. Thus, these sensors can be used to avoid fire.
Robots can also be trained with friend radar sensors that
allows them to see what each other are doing. The com-
plete sensor set supplies robots with sufficient information
to make intelligent tactical decisions.

Training mode is designed to allow the player to set up
a training scenario on the field where the robots can contin-
ually be evaluated while the worst robot’s neural network
is replaced every few ticks. Thus, training must provide a
standard way for robots to appear on the field in such a way
that every robot has an equal chance to prove its worth. To
meet this goal, the robots spawn from a designated area of
the field called thefactory. Each robot is allowed a limited
time on the field during which its fitness is assessed. When
their time on the field expires, robots are transported back
to the factory, where they begin another evaluation. Neural
networks are only replaced in robots that have been put back
in the factory. The factory ensures that a new neural network
cannot get lucky by appearing in a robot that happens to be
standing in an advantageous position: All evaluations begin
consistently in the factory. In addition, the fitness of robots
that survive more than one deployment on the field is up-
dated through a diminishing average that gradually forgets
deployments from the distant past.

Training begins by deploying 50 robots on the field.
Each robot is controlled by a neural network with random
connection weights and no hidden nodes, as is the usual
starting configuration for NEAT. As the neural networks are
replaced in real-time, behavior improves dramatically, and
robots eventually learn to perform the task the player sets
up. When the player decides that performance has reached
a satisfactory level, he or she can save the team in a file.
Saved teams can be reloaded for further training in different
scenarios, or they can be loaded into battle mode. In battle,
they face off against teams trained by an opponent player,
as will be described next.

4.2 Battle Mode

In battle mode, the player discovers how training paid off. A
battle team of 20 robots is assembled from as many differ-
ent training teams as desired. For example, perhaps some
robots were trained for close combat while others were
trained to stay far away and avoid fire. A player can com-
pose a heterogeneous team from both training sessions.

Battle mode is designed to run over a server so that two
players can watch the battle from separate terminals on the
internet. The battle begins with the two teams arrayed on
opposite sides of the field. When one player presses a “go”
button, the neural networks obtain control of their robots
and perform according to their training. Unlike in train-
ing, where being shot does not lead to a robot body being

Figure 5: Running away backwards. This training screen-
shot shows several robots backed up against the wall after running
backwards and shooting at the enemy, which is being controlled
from a first-person perspective by a human trainer using a joy-
stick. Robots learned to run away from the enemy backwards dur-
ing avoidance training because that way they can shoot as they
flee. Running away backwards is an example of evolution’s ability
to find novel and effective behaviors.

damaged, the robots are actually destroyed after being shot
several times in battle. The battle ends when action ceases
either because one team is completely eliminated, or be-
cause the remaining robots will not fight. The winner is the
team with the most robots left standing.

The basic battlefield configuration is an empty pen sur-
rounded by four bounding walls, although it is possible to
compete on a more complex field, with walls or other ob-
stacles. Players train their robots and assemble teams for
the particular battlefield configuration on which they intend
to play. In the experiments described in this chapter, the
battlefield was the basic pen.

The next section gives examples of actual NERO training
and battle sessions.

5 Playing NERO
Behavior can be evolved very quickly in NERO, fast enough
so that the player can be watching and interacting with the
system in real time. The game engine Torque, licensed from
GarageGames (http://www.garagegames.com/ ),
drives NERO’s simulated physics and graphics. An im-
portant property of the Torque engine is that its physics
simulation is slightly nondeterministic, so that the same
game is never played twice.

The first playable version of NERO was completed in
May of 2004. At that time, several NERO programmers
trained their own teams and held a tournament. As exam-
ples of what is possible in NERO, this section outlines the
behaviors evolved for the tournament, the resulting battles,
and the real-time performance of NERO and rtNEAT.

NERO can evolve behaviors very quickly in real-time.
The most basic battle tactic is to aggressively seek the en-
emy and fire. To train for this tactic, a single static enemy
was placed on the training field, and robots were rewarded
for approaching the enemy. This training required robots to
learn to run towards a target, which is difficult since robots
start out in the factory facing in random directions. Starting
from random neural networks, it takes on average 99.7 sec-
onds for 90% of the robots on the field learn to approach the
enemy successfully (10 runs,sd = 44.5s).
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Figure 6:Avoiding turret fire. The arrow points in the current
direction of the turret fire (the arrow is not part of the NERO dis-
play and is only added for illustration). Robots in training learn to
run safely around the enemy’s line of fire in order to attack. No-
tice how they loop around the back of the turret and attack from
behind. When the turret moves, the robots change their attack tra-
jectory accordingly. Learning to avoid fire is an important battle
skill. The conclusion is that rtNEAT was able to evolve sophisti-
cated, nontrivial behavior in real time.

Figure 7:Navigating a maze. Incremental training on increas-
ingly complex wall configurations produced robots that could nav-
igate this maze to find the enemy. The robots spawn from the left
side of the maze and proceed to an enemy at the right.

Robots were also trained to avoid the enemy. In fact, rt-
NEAT was flexible enough todevolvea population that had
converged on seeking behavior into a completely opposite,
avoidance, behavior. For avoidance training, players con-
trolled an enemy robot with a joystick and ran it towards
robots on the field. The robots learned to back away in or-
der to avoid being penalized for being too near the enemy.
Interestingly, robots preferred to run away from the enemy
backwards because that way they could still shoot the en-
emy (figure 5).

By placing a turret on the field and asking robots to ap-
proach the turret without getting hit, robots were able to
learn to avoid enemy fire (figure 6).

Other interesting behaviors were evolved to test the lim-
its of rtNEAT rather than specifically prepare the troops for
battle. For example, robots were trained to run around walls
to approach the enemy. As performance improved, players

incrementally added more walls until the robots could nav-
igate an entire maze without any path-planning (figure 7)!

In a powerful demonstration of real-time adaptation with
implications beyond NERO, robots that were trained to ap-
proach a designated location (marked by a flag) through a
hallway were then attacked by an enemy controlled by the
player (figure 8). After two minutes, the robots learned to
take an alternative path through an adjacent hallway in or-
der to avoid the enemy’s fire. While such training is used
in NERO to prepare robots for battle, the same kind of
adaptation could be used in any interactive game to make
it more realistic and interesting. Such fast strategic ad-
justment demonstrates that rtNEAT can be used in existing
video game genres as well as in NERO.

In battle, some teams that were trained differently were
nevertheless evenly matched, while some training types
consistently prevailed against others For example, an ag-
gressive seeking team from the tournament had only a slight
advantage over an avoidant team, winning six out of ten bat-
tles, losing three, and tying one. The avoidant team runs in a
pack to a corner of the field’s enclosing wall. Sometimes, if
they make it to the corner and assemble fast enough, the ag-
gressive team runs into an ambush and is obliterated. How-
ever, slightly more often the aggressive team gets a few
shots in before the avoidant team can gather in the corner. In
that case, the aggressive team traps the avoidant team with
greater surviving numbers. The conclusion is that seeking
and running away are fairly well-balanced tactics, neither
providing a significant advantage over the other. The inter-
esting challenge of NERO is to conceive strategies that are
clearly dominant over others.

One of the best teams was trained by observing a phe-
nomenon that happened consistently in battle. Chases
among robots from opposing teams frequently caused
robots to eventually reach the field’s bounding walls. Partic-
ularly for robots trained to avoid turret fire by attacking from
behind (figure 6), enemies standing against the wall present
a serious problem since it is not possible to go around them.
Thus, training a team against a turret with its back against
the wall, it was possible to familiarize robots with attack-
ing enemies against a wall. This team learned to hover near
the turret and fire when it turned away, but back off quickly
when it turned towards them. The wall-based team won the
first NERO tournament by using this strategy. The wall-
trained team wins 100% of the time against the aggressive
seeking team. Thus, it is possible to learn sophisticated tac-
tics that dominate over simpler ones like seek or avoid.

6 Discussion
Participants in the first NERO tournament agreed that the
game was engrossing and entertaining. Battles were excit-
ing for all the participants, evoking plentiful clapping and
cheering. Players spent hours honing behaviors and assem-
bling teams with just the right combination of tactics.

The success of the first NERO prototype suggests that
the rtNEAT technology has immediate potential commer-
cial applications in modern games. Any game in which
agent behavior is repetitive and boring can be improved by
allowing rtNEAT to at least partially modify tactics in real-
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(a) Robots approach flag (b) Player attacks on left (c) Robots learn new approach
Figure 8:Video game characters adapt to player’s actions. The robots in these screenshots spawn from the top of the screen and
must approach the flag (circled) at the bottom left. White arrows point in the direction of mass motion. (a) The robots first learn to take
the left hallway since it is the shortest path to the flag. (b) A human player (identified by a square) attacks inside the left hallway and
decimates the robots. (c) Even though the left hallway is the shortest path to the flag, the robots learn that they can avoid the human
enemy by taking the right hallway, which is protected from the human’s fire by a wall. rtNEAT allows the robots to adapt in this way to
the player’s tactics in real time.

time. Especially in persistent video games such as Massive
Multiplayer Online Games (MMOGs) that last for months
or years, the potential for rtNEAT to continually adapt and
optimize agent behavior may permanently alter the gaming
experience for millions of players around the world.

7 Conclusion
A real-time version of NEAT (rtNEAT) was developed to
allow users to interact with evolving agents. In rtNEAT,
an entire population is simultaneously and asynchronously
evaluated as it evolves. Using this method, it was possible
to build an entirely new kind of video game, NERO, where
the characters adapt in real time in response to the player’s
actions. In NERO, the player takes the role of a trainer and
constructs training scenarios for a team of simulated robots.
The rtNEAT technique can form the basis for other similar
interactive learning applications in the future, and eventu-
ally even make it possible to use gaming as a method for
training people in sophisticated tasks.
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Abstract. Real-Time Strategy games present an 
interesting problem domain for Artificial Intelligence 
research. We review current approaches to developing 
AI systems for such games, noting the frequent 
decomposition into hierarchies similar to those found 
in real-world armies. We also note the rarity of any 
form of learning in this domain – and find limitations 
in the work that does use learning. Such work tends to 
enable learning at only one level of the AI hierarchy. 
We argue, using examples from real-world wars and 
from research on coevolution in evolutionary 
computation, that learning in AI hierarchies should 
occur concurrently at the different strategic and 
tactical levels present. We then present a framework 
for conducting research on coevolving the AI  

1 Introduction 

In recent years advances in computing power have enabled 
the development of simulations and models in which 
(very) large numbers of individual agents are explicitly 
modelled – allowing individual based models to be used 
alongside more traditional mathematical modelling 
techniques in a variety of scientific disciplines (see, for 
example, the range of papers presented in Adami et al. 
1998). Other uses have been found in the entertainment 
industries – for computer generated mobs, masses and 
armies in films (recently used to great effect in the Lord of 
the Rings film trilogy), and to create interactive mobs, 
masses and armies in computer and video games (such as 
the hugely successful Total War series of games). 

However, where traditional approaches to agent based 
modelling usually require that agent activity, 
communication and coordination is done within an 
autonomous framework, for example (Rebollo et al. 2003), 
commercial games generally have no such requirements. 
The goal of such Artificial Intelligence (AI) is to entertain, 
and it is of no concern if principles of autonomy or 
embodiment are broken, as noted by (Buro 2004). 

However, ignoring the demand for the AI to be 
entertaining, there are some interesting research problems 
in developing AI for Real-Time Strategy (RTS) games – 
including planning in an uncertain world with incomplete 
information; learning; opponent modelling and spatial and 
temporal reasoning (Buro 2004). 

In a similar vein, (Corruble et al. 2002) discuss the 
different AI problems that exist in computer-based war-
games, and generally consider the difficulty inherent in 
designing AI systems for such games. Particular problems, 

they argue, are caused by the large search spaces – 
environments consisting of many thousands of possible 
positions for each of hundreds, possibly thousands, of 
units – and the parallel nature of the problem – unlike 
traditional games, any number of moves may be made 
simultaneously. 

In this paper we review some of the current approaches 
to building AI systems for RTS games, and propose a 
framework for developing learning-AI for RTS games in 
which adaptation occurs at different tactical and strategic 
levels, which coevolve over time. 

2 Hierarchical AI in RTS Games 

Hierarchical approaches to developing AI systems are not 
new. For example, Brooks’ famous subsumption 
architecture uses a hierarchy of behaviours within a single 
agent (Brooks 1991). The application of hierarchies for 
military organisation is considerably older. Throughout 
human history armies have long been organised along very 
strictly defined hierarchical principles – the ancient 
Roman armies providing but one good example. 

Hierarchies are also very natural control structures for 
use in RTS games, allowing the development of separate 
AI systems for controlling high level strategic behaviours 
of the army as a whole and for low level tactical 
behaviours which can be given to individual units (Kent 
2004). Hierarchal AI can also be used more generally in 
other games in which very large organisations are 
modelled (Wallace 2004), and in games which might only 
model small groups of units but in which there is some 
form of group command (van der Sterren 2002b). 

In an RTS AI hierarchy, the uppermost level will be 
some form of command agent with overall strategic 
control. The lowest level will be a – potentially very 
simple – agent AI responsible for the control of an 
individual soldier (tank, horse, etc.), and there may be any 
number of intermediary layers of AI representing 
command over groups of individual soldiers (such as 
squads) and progressively larger groupings of combat 
units. 

Within this problem domain we will not currently 
concern ourselves with problems such as path planning or 
terrain evaluation, which remain problems of interest. 
Instead we will concentrate on the problems raised by, and 
on the benefits of, attempting to build adaptive learning AI 
systems which may exist at multiple levels of the 
command hierarchy, and which coevolve over time. 
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3 Current Hierarchical AI in Video Games 

A number of hierarchical AI architectures for use in video 
games have already been proposed and documented. 

For control of small squads, (van der Sterren 2002b) 
considers a de-centralized approach whereby squad agents 
communicate and form emergent strategies, such as for 
fire-and-move behaviours, illustrating how team tactics 
can emerge from interactions between a number of agents. 
The advantages and disadvantages of the decentralized 
approach are illustrated using an example of having the 
squad wait in ambush. The key limitation appears to be 
that there is no single AI responsible for the strategic 
deployment of the squad: a solution to this is presented in 
the following paper, (van der Sterren 2002a), which 
modifies the architecture from a self-organising one into a 
simple hierarchical one. This presents two distinct 
command styles: Authoritarian, where the member agents 
always perform the actions they are commanded to do; and 
Coach, where a higher level squad AI (not an explicit 
agent commanding the squad, but some strategic controller 
AI) sends requests to the agents, which then evaluate them 
in light of their current circumstances before deciding 
which action to perform. It is suggested that a third style, 
which combines elements of the first two might be the 
most successful. 

This idea of using command hierarchies for controlling 
units of agents is also used by (Reynolds 2002), again for 
the control of small squads of agents. For controlling 
larger numbers of agents, (Kent 2004) provides an 
architecture for a non-adaptive hierarchical 
strategic/tactical AI to control armies in a RTS game. The 
principal behind the architecture is to mirror the 
hierarchical structure of real armies in the simulated one. 

At the top level is a human or AI game player, which 
makes the highest level decisions; below this are AIs for 
individual armies, divisions, brigades, companies, platoons 
and squads as required by the sizes of the forces involved 
and the complexity of the game. Finally, at the bottom 
level of the hierarchy are AIs to control individual 
soldiers. 

(Ramsey 2004) presents a similar approach, less 
specifically focussed on military organisation, which he 
calls the ‘Multi-Tiered AI Framework’, MTAIF. This 
contains four levels of intelligence: strategic, operational, 
tactical and individual unit. Within this more generalised 
framework, the AI approach is similar to that advocated by 
Kent, but the tasks to be carried out by the different units 
can vary more, including resource gathering and city and 
empire building. This paper, like that of Kent (2004), 
devotes much discussion to solving the problems of 
message passing and coordination with large hierarchies. 
One notable aspect of these AI architectures is the absence 
of any form of learning.   One of the rare occurrences of 
learning in wargames is in an online report, (Sweetser et 
al. 2003) which presents work on developing command 
agents for strategy simulations using Cognitive Work 
Analysis and Machine Learning approaches – but here the 
learning is only to aid the decisions of the overall 
commander, not for the subordinate units. 

A hierarchical learning example is presented by  
(Madeira et al. 2004), who focus on the problem of 
partially-automating the design of AI for strategy games, 
proposing a system in which the AI learns how to play the 
game during development, rather than having the AI 
manually programmed. While their work uses 
reinforcement learning in a strategy game environment, 
they note that in principal a wider range of machine 
learning techniques may be used. 

It is noted that strategy games currently primarily use 
rule-based systems. Advantages and disadvantages of such 
an approach are discussed, before reinforcement learning 
and machine learning are introduced as alternatives. 

Again, the problem is decomposed using the natural 
hierarchical decomposition of the command-structure, 
allowing decision making to be carried out on several 
different levels. They repeat the observation that this 
allows higher levels to focus on more abstract strategic 
reasoning, leaving fine-grained tactical reasoning to units 
involved in combat. 

They train a reinforcement learning AI player against a 
rule-based AI player, allowing learning to take place over 
thousands of games. 

Madeira et al. note that enabling learning at different 
levels simultaneously can be problematic, with a reference 
to the difficulty of concurrent layered learning (Whiteson 
and Stone 2003), and instead train a single level of their 
AI hierarchy at a time. Accordingly, they initialise their 
learning AI with Rule-Based System controllers for each 
level of the AI hierarchy and train the top level only. Once 
training of the top-level is complete, its AI is fixed and 
training of the AI for the next level down is started – and 
so on down to the soldier level. While this work is still in 
progress, with learning yet to be extended to levels below 
the top level player, we can note that by limiting learning 
to a single layer at a time, (Madeira et al. 2004) limit the 
search space available to their learning AI – this, and the 
potential benefits of enabling simultaneous adaptation at 
multiple levels is what we consider next. 

4 Adaptation at Multiple Levels in Battle 
Strategies 

It is actually quite easy to find real-world examples that 
highlight the limitations of the approach proposed by 
(Madeira et al. 2004). Whenever new technology is 
introduced into the battlefield, or new formations and 
methods of organising units at a low level are developed, 
high level strategies must adapt to make good use of the 
new opportunities. New formations may be ineffective 
without a new strategy for using them, and new strategies 
might simply not be available without the new formations 
or technologies they depend on – as the following two 
examples demonstrate. 

World War I featured the first large scale use of 
machine guns – yet tactics for infantry assault remained 
unchanged. These typically entailed sending large lines of 
men marching steadily towards enemy positions – an ideal 
target for opposing machine gunners. It was only towards 
the end of the war that General Oskar von Hutier of 
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Germany introduced new tactics for his attacking units – 
and a strategy (‘Infiltration’) for using them: having loose 
formations of lightly encumbered soldiers (Storm 
Troopers) rapidly advance over and beyond the enemy 
lines, bypassing then attacking strong-points from the rear. 
This finally allowed infantry to effectively attack enemy 
lines despite the presence of the deadly machine guns, 
enabling the Central Powers to briefly make significant 
advances against the Allies (Makepeace and Padfield 
2004). 

In the middle ages, spearmen were often used 
defensively against cavalry. The schiltrom was a 
particularly effective defensive formation – presenting 
bristling spear points in every direction, a deadly barrier 
for oncoming cavalry. At Bannockburn, Robert the Bruce 
trained his spearmen to charge as a phalanx, and to change 
formation between schiltrom and phalanx at command 
(Bingham 1998, p. 222), and the strategic use of these new 
tactics aided his decisive victory at that battle. 

This clearly implies that we should make use of a 
coevolutionary approach. However, the advantages of 
using a coevolutionary method are not necessarily clear 
cut – and there are some potential disadvantages that we 
need to be aware of. 

5 Problems with Coevolution 

It has been known for some time that coevolution can lead 
to the development of sub-optimal solutions (van Valen 
1973, Cliff and Miller 1995), and that these conflict with 
the advantages of coevolutionary processes. (Watson and 
Pollack 2001) provide several concrete examples of 
coevolution leading to suboptimal solutions. One 
particular cause of this is that in typical coevolution 
scenarios, where the coevolving populations and 
individuals are competing for resources, the fitness of 
agents is relative. Rather than having an external objective 
measure of fitness (as typically used in evolutionary 
computation), fitness is found by determining which of a 
number of competitors is best. 

One consequence of this is that the best solution may 
drift into worse solutions, as long as it remains the best of 
the solutions available – and if a chance mutation does 
improve the best strategy, it may not be selected for as it 
will not actually improve its fitness. One solution to this 
problem is to keep examples of previous best solutions in 
the population (Cliff and Miller 1995). 

Another problem investigated by (Watson and Pollack 
2001) is that caused by Intransitive Superiority. 
Intransitive Superiority exists in any situation where for 
three (or more) strategies or players no single strategy or 
player is the best; instead, and rather like scissors-paper-
stone, some form of circular superiority relationship exists 
between them. E.g. Strategy A beats B and B beats C but 
C beats A. In such a situation it is may be troublesome 
even to find the fittest individuals in populations of 
coevolving strategies. 

Of particular note, (Watson and Pollack 2001) show 
that coevolution with intransitive superiority can not only 
allow best solutions to drift to poorer ones, but can in 

some cases drive the evolution towards poorer general 
performance. This is of particular concern to the domain 
of RTS games, where intransitive superiority is often 
deliberately designed into the game (Rollings and Morris 
1999). 

A variety of algorithms and techniques are able to 
overcome problems caused by intransitive superiority, and 
the possibility of cycling that can exist even where 
superiority is transitive (de Jong 2004b). Solutions 
generally involve the addition of some form of memory or 
archive to the underlying evolutionary computational 
technique used. 

We are particularly interested in the application of 
Artificial Immune Systems (AIS) (Dasgupta 2000), a 
biologically inspired approach in which memory of 
previous good solutions is a core feature. One recent work 
has demonstrated the successful application of AIS to the 
problem of unit selection in RTS, where an intransitive 
superiority relationship exists between the available unit 
types (Fyfe 2004). 

6 Coevolution in AI Hierarchies 

It should be noted that all of the problems described 
assume that the coevolution occurs between competing 
players or populations. In our case we are actually 
interested in a quite different situation – where the 
coevolving strategies are not opponents, but partners 
operating at different levels. This is somewhat similar to 
the problem of concurrent layered learning in individual 
agents, explored by (Whiteson and Stone 2003). While the 
difficulties of such an approach were cited by (Madeira et 
al. 2004) as a reason not to coevolve the different levels in 
an AI hierarchy (Section 3), the point made in (Whiteson 
and Stone 2003) is that concurrent layered learning is 
beneficial in certain situations and can outperform 
traditional, one layer at a time, layered learning (as we 
argue it may be in Section 4). 

In our case we can potentially avoid some of the 
problems of coevolving opponent AI by pitting our 
evolving hierarchical AI against fixed, non-evolving 
opponents. In doing so we may lose some of the 
advantages of co-evolving against another hierarchical AI, 
such as having an opponent that presents a ‘hittable’ 
target, or allowing for more open-ended evolution instead 
of having evolution merely drift once the fixed AI has 
been beaten (Watson and Pollack 2001). 

But issues remain. Let A be the set of possible high 
level strategies and B the set of low level tactics. Further, 
let a1 and a2 be two high level strategies and b1 and b2 be 
two low level strategies. We can easily imagine a situation 
where, against a fixed opponent, the fitness, f, of these 
strategies is such that f(a2,b2) > f(a1,b1). Now what if, as 
suggested in Section 4, the fitness advantages of a2 and b2 
only exists when these strategies are used together. In 
other terms, there exists a linkage between the variables 
(de Jong 2004a). Then we may also have f(a1,b1) > 
f(a1,b2) and f(a1,b1) > f(a2,b1). The fitness landscape 
presented by coevolving hierarchical AI is likely to be 
high-dimensional and feature many sub-optimal maxima 
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and may feature hard-to-find global maxima, presenting a 
significant challenge. 

(de Jong 2004a) note that if the order of linkage – the 
maximum number of linked variables – is small and some 
exploitable structure exists, a Hierarchical Genetic 
Algorithm  is most likely able to find the globally optimal 
solution, given that such a solution exists. 

7 Proposal for Coevolutionary Hierarchical 
AI for RTS Games 

We are currently developing a simple RTS environment 
for testing the coevolution of strategies within a 
hierarchical AI. Given the concerns and issues mentioned 
within this review, we plan to proceed according to the 
following experimental framework. 

Our initial experiments will use only two levels of 
learning. For the first experiments the two coevolving 
strategies will control, at the lower level, the individual 
soldier units and, at the higher level, formations and flocks 
of soldiers. The formation controller will be able to select 
formations and set formation parameters – such as 
preferred spacing. Alternative two-level coevolution could 
focus on high level strategies, such as unit selection and 
deployment, and formation control – with no evolution at 
the individual soldier level.  We intend to use AIS for both 
levels in the initial experiments – particularly to exploit 
the benefit of memory. The experience here will be useful 
in guiding later work. 

In evolving the hierarchical AI, we will have it compete 
against a small set of fixed AI opponents of differing 
difficulty. In this way we hope to always present a hittable 
target for improvement. A population of hierarchical AI 
will be so tested, allowing relative evolution of the 
hierarchical AIs against one another alongside the 
objective measure of their performance against the fixed 
AI opponents. This will hopefully also enable some open 
ended evolution beyond the capabilities of the fixed AI as 
from the population a hall of fame can also be kept – with 
performance against both the fixed and evolving AI being 
the criteria for membership. 

Evolving and testing the AI players will involve playing 
thousands of games between fixed and evolving AI 
players, and accordingly the RTS testbed will allow games 
to be run faster than real-time, without graphical updates 
during game play. Further, as well as developing our own 
RTS test bed for our experimental work, we are currently 
evaluating third-party open-source RTS environments, 
such as ORTS (Buro 2004). 

8 Conclusions 

RTS games provide a rich environment for artificial 
evolution and other AI approaches to problem solving. 
Good players, human or AI, need to reason at multiple 
levels of detail – from overall grand strategies down to 
highly localised decisions. RTS games also possess very 
natural and intuitive levels of detail, allowing the problem 
to be quite neatly decomposed into a number of smaller 

problems – although these are not independent of one 
another. 

While current approaches to building AI systems for 
RTS games already use a hierarchical decomposition, 
these generally do not include learning or adaptation. 
Those systems that exist that do enable learning, and those 
that have been proposed, enable learning in single layers 
only in order to simplify the search involved. One 
proposal to extend this is to enable learning at successively 
lower levels after each higher level of learning is 
complete, in turn. 

We note that such a solution may fail to exhaustively 
search the space of possible solutions, as some good 
solutions may depend on combinations of adaptations at 
multiple levels. Accordingly, we propose to develop a 
system in which the different levels of the hierarchical AI 
coevolve. We have noted a number of issues regarding this 
and further proposed a basic framework for future 
progress on this. 
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Abstract- Coevolutionary techniques in combination
with particle swarm optimization algorithms and neu-
ral networks have shown to be very successful in find-
ing strong game playing agents for a number of deter-
ministic games. This paper investigates the applicabil-
ity of a PSO coevolutionary approach to probabilistic
games. For the purposes of this paper, a probabilistic
variation of the tic-tac-toe game is used. Initially, the
technique is applied to a simple deterministic game (tic-
tac-toe), proving its effectiveness with such games. The
technique is then applied to a probabilistic 4x4x4 tic-tac-
toe game, illustrating scalability to more complex, prob-
abilistic games. The performance of the probabilistic
game agent is compared against agents that move ran-
domly. To determine how these game agents compete
against strong non-random game playing agents, coe-
volved solutions are also compared against agents that
utilize a strong hand-crafted static evaluation function.
Particle swarm optimization parameters/topologies and
neural network architectures are experimentally opti-
mized for the probabilistic tic-tac-toe game.

1 Introduction

The work on computer games has been one of the most suc-
cessful and visible results of artificial intelligence research
[17]. This is due to the fact that games provide challenging
“puzzles” that require a great level of sophistication in order
to be played/solved. Games can be considered as problems,
which operate by following strict rules within a game envi-
ronment. The manner in which moves may be executed and
games may be won or drawn are strictly defined and may
not be deviated from. Game environments are an ideal do-
main to investigate the effectiveness of an array of different
AI techniques. Pioneers of AI research used games as prob-
lem domains in their research, for example, Arthur Samuel
[16], Claude Shannon [18] and Alan Turning [20].

This paper investigates the effectiveness of using a co-
evolutionary technique in combination with particle swarm
optimization algorithms and neural networks to find game
playing agents for probabilistic games from pure self-play.
This means that no game information or game strategies are
provided to the learning algorithm and the agent learns its
own playing strategy by competing against other players.
A similar approach has been used by Messerschmidt and
Engelbrecht [13] and Frankenet al [2, 3, 4, 5] for the de-
terministic games of tic-tac-toe [13, 5, 2], checkers [3, 2]
and the iterated prisoners dilemma [4, 2]. The PSO coevo-

lutionary approach used is an adaptation of the evolutionary
algorithm approach developed by Chellapilla and Fogel [1].

Probabilistic games contain hidden game information
and players compete against each other based on elements
of chance, which are beyond their control. Games that are
played with dice or cards are usually probabilistic games,
which include backgammon, poker, bridge and scrabble.
Deterministic games on the other hand are games that pro-
vide perfect information to all players at all times. There
are no hidden elements and the players can execute moves
in any manner they wish to, within the rules of the game,
without any probabilistic elements affecting their game de-
cisions. Such games include tic-tac-toe, checkers, chess and
go.

Probabilistic games can not be solved, meaning that it is
not possible to play a probabilistic game in such a way that
you are always guaranteed to either win or draw. This is due
to the probabilistic element that may favor any player dur-
ing the course of the game. This is the reason why games
of this nature are similar to real world problems. With real
world problems it is very difficult for one to define con-
straints and such problems almost never contain perfect in-
formation. Successful techniques applied to probabilistic
games may therefore be more scalable to real world prob-
lems in comparison to techniques that are successful when
applied to deterministic games.

Game trees have contributed a tremendous amount to
game learning, providing the ability to see favorable or non-
favorable moves in the future of a game. A number of game
tree construction methods exist, with the most popular be-
ing minmax [6], alpha-beta [12] and NegaScout [15]. To
elaborate a bit more, game trees are constructed by adding
every possible move that can be played by each player, al-
ternating the player each time the game tree depth increases.
For probabilistic games the construction of a tree becomes
impractical, since the tree has to represent all possible out-
comes of the probabilistic elements used by the game. This
usually causes the tree to become extremely large, ham-
pered by time consuming efforts for its construction and
use. Game trees can be constructed based on the probabili-
ties of certain moves that can be executed. Moves that have
higher probabilities in being selected are used to construct
the tree, while less probable options are excluded. Game
trees are not extensively used in this report, with only sim-
ple minmax trees, expanded to a depth of 1.

Coevolutionary techniques in combination with other
learning algorithms have successfully been applied to prob-
abilistic games, specifically in backgammon[19, 14]. Tem-
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poral difference learning is one of these, which is based
on Samuel’s machine learning research [16]. This learn-
ing algorithm has been successfully applied to backgam-
mon by Gerry Tesauro [19]. TD-Gammon, the name given
by Tesauro to the program, is a neural network that takes
a board state as an input and returns the score of the board
state as an output. The weights of the neural network were
optimized using temporal difference. TD-Gammon is re-
garded to be as good as the best human backgammon play-
ers in the world, and possibly even better [17]. Another
successful learning technique in combination with coevo-
lution has been applied by Blair and Pollack, which man-
aged to use a simple hill-climbing learning algorithm to co-
evolve competitive backgammon agents [14]. All the exam-
ples given above illustrate that coevolution is a very power-
ful learning machine, which when combined with even the
simplest learning algorithms, it may return sound results.

Simulation-based techniques have also shown to be very
effective [7, 8]. These techniques allow the simulation of
games from their current state to completion, by using dif-
ferent randomly selected possible outcomes to replace the
probabilistic elements. By doing so, statistical information
about the game is gathered for each possible move. Based
on the probability of a win, draw or loss for each move, a
decision is made on which move to select. There have been
some notable applications of this technique: The University
of Alberta developed a poker-playing program called Loki
that utilizes simulation-based techniques [7]. Loki is the
first serious academic effort to build a strong poker play-
ing program and at best is rated as a strong intermediate-
level poker player [17]. Mathew Ginsberg’s bridge playing
program GIB [8] also makes use of simulation-based tech-
niques. GIB forced the frequent bridge world champion Zia
Mahmood to withdraw in 1999 a prize award of£1000000
for any program that manages to beat him, after narrowly
beating GIB in an exhibition match [17]. GIB also utilizes
another technique frequently applied to probabilistic games,
the Monte Carlo simulation method, where a representative
sample of all possible moves is chosen to give a statistical
profile of an outcome.

2 Particle Swarm Optimization

The particle swarm optimization algorithm is a population-
based algorithm that enables a number of individual solu-
tions, called particles, to move through a hyper dimensional
search space in a methodical way. The movement of the
particles is done in such a way that it enables them to in-
crementally find better solutions. The algorithm is based
on the simulation of the social behavior of birds within a
flock and was first described by Kennedy and Eberhart [10].
What mainly drives a PSO algorithm, is the social interac-
tion between its particles. Particles within a swarm share
their knowledge with each other, specifically with regards
to the quality of the solutions they have found at specific
points in the search space. The best solution discovered by
a specific particle is referred to as a personal best solution.
Particles then move towards other personal best solutions
using certain velocities, in an attempt to discover improved

solutions.
It is obvious that the pattern of communication between

the particles will ultimately affect the manner by which the
particles move within the search space. Different informa-
tion sharing patterns/structures will enable the search space
to be explored in different ways. Topology is a term that
refers to a pattern by which particles communicate with
each other. The following topologies are most commonly
used:
• Global Best: All particles communicate with each

other, forming a fully interconnected social network.
With this topology all particle movements are af-
fected by their own personal best solution and a
global best solution. The global best solution forms
the best solution of the entire swarm.

• Local Best: A neighborhood size is defined for this
topology, which determines the number of particles
with which each particle can communicate and share
information with. If a neighborhood size is 3, for ex-
ample, neighborhoods of 3 particles are formed by se-
lecting the two adjacent neighbors of each particle in
variable space. With this topology all particle move-
ments are affected by their own personal best solu-
tion and a local best solution. The local best solution
forms the best solution within the neighborhood the
particle belongs to.

• Von Neuman: This topology is very similar to the lo-
cal best topology, which allows each particle to form
a neighborhood with its immediate top, bottom, left
and right particles in variable space [11].

A particle swarm optimization algorithm has a number
of parameters which allow it to be fine-tuned for better per-
formance. The swarm size and the topology form two pa-
rameters, which have already been discussed. Furthermore,
four other parameters determine the behavior of the particle
movement. Two acceleration constants determine the de-
gree by which a personal best and neighborhood best solu-
tion affects a particle’s movement.c1 forms the personal ac-
celeration constant andc2 the global acceleration constant.
The inertia weight variableφ determines how much previ-
ous particle velocities influence new particle velocities. Fi-
nally, Vmax is a value that sets an upper limit for velocities
in all dimensions, which limits particles from moving too
rapidly.

3 Coevolution

Coevolution is a competitive process between a number of
species that enables the species to continuously evolve in
order to overcome and outperform each other. Consider the
example of a lion and a buck, where the two are competing
in a survival “game”. The lions’ survival depends on captur-
ing the buck for food, while the bucks’ survival on the other
hand depends on outwitting the lion so it never gets caught.
The buck can initially run faster than the lion, avoiding its
capture. The lion fails in numerous attempts, but in the pro-
cess strengthens its leg muscles, enabling it to run faster
and eventually to capture the buck. The buck then develops
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a technique that allows it to continuously dodge the lion,
since it can not run any faster and gets caught. In return the
lion manages to increase its stamina in the process of trying
to keep up with the buck, allowing it to follow the buck until
it gets exhausted from its dodging maneuvers and then cap-
turing it. The two continuously discover different ways that
will enable them to survive in turn. This pattern is similar
to the one seen in the case of arms races, where a number of
countries compete against each other to produce more de-
structive and technologically advanced weapons. Another
excellent example of coevolution is described by Holland
[9].

This continuous coevolution allows each of the species
competing to incrementally become stronger, with a tit-for-
tat relationship fueling the process. The example given
above is a demonstration of predator-pray coevolution,
where there is an inverse fitness between the two species.
A win for the one means ultimately a lose for the other,
with loosing species improving in order to challenge win-
ning species. A different form of coevolution exists, called
symbiotic coevolution. In this case species do not compete
against each other, but rather cooperate for the general good
of all the other species that are coevolving. A success for
one of the species, means the improved survival fitness of
all other species too.

For the purposes of this report, a combination of sym-
biotic and predator-prey coevolution has been chosen. The
actual algorithm is described in Section 6. This coevolution-
ary approach is based on the coevolution of two separate
populations of game playing agents that compete against
each other. A score scheme is used that enables the award-
ing of points to game playing agents that are successful in
winning and drawing games, while loosing agents are pe-
nalized. Agents within a population cooperate in an attempt
to improve the overall fitness of the population. A PSO al-
gorithm is applied to each population separately to adapt
agents.

The size of each population and the scoring scheme used
have an influence on the performance of the coevolutionary
process.

4 Tic-Tac-Toe Variation

The variation introduced below in section 4.2, extends the
original tic-tac-toe game by adding and modifying rules that
make the game more complex and probabilistic.

4.1 Tic-Tac-Toe

The original game is a deterministic 2 player game that is
played on a 3x3 grid, which initially contains empty spaces.
The player who competes first must place anX piece in one
of the 9 spaces of the grid with the second player following
by doing the same with anO piece. The players may not
place a piece in an already occupied space and they may
not skip a turn. The objective of the game is for a player to
complete a full row, column or diagonal with his own pieces
in sequence, with the win going to the player that manages
to do so. Both players compete until a player successfully

completes the objective or until no more empty spaces exist.
In the last case, this implies a draw between the two players.

Table 1 shows the probabilities of a win, draw and
loss between two players when playing tic-tac-toe. These
probabilities were calculated using two random playing
agents competing against each other.Player1st plays first
while Player2nd plays second for a total of 100000 games.

Games %

Player1st 58277 58.277
Player2nd 28968 28.968

Draw 12755 12.755
Table 1: Tic-tac-toe: probabilities.

The table clearly shows an advantage forPlayer1st. This
advantage is due to two facts. The first being the priority
of Player1st to capture the center empty space of the 3x3
grid, giving him a significant advantage overPlayer2nd.
This is because the center space forms a part of one row,
one column and two diagonals, and by placing a mark there,
Player1st already has secured 4 winning options to his fa-
vor while denying 4 winning options forPlayer2nd. No
other space gives such an advantage. The second advantage
is thatPlayer1st will have the opportunity to place more
pieces on the board, since the board initially consists of an
odd number of empty spaces.

4.2 Probabilistic 4x4x4

The tic-tac-toe variation described here is a probabilistic 2
player game, played on 4 layers consisting of 4x4 grids.
Another way to visualize the game board is by seeing it as a
3 dimensional cube, consisting of 64 smaller separate cube
spaces which make up the positions in which a player can
place a piece. The figure below shows this.

Figure 1: A probabilistic 4x4x4 game board.

The complexity of the game is increased by introduc-
ing the new dimension and increasing the board size by 1.
The first player,Player1st, will no longer have a large ad-
vantage overPlayer2nd as in the original tic-tac-toe game.
This is because a center space does not exist any longer due
to the even sized board edge. Furthermore, the total number
of spaces is an even number too, allowingPlayer1st and
Player2nd to have an equal number of pieces on the board.

The game is played similar to the original tic-tac-toe
game, withPlayer1st and Player2nd alternating turns
and respectively placing anX or O piece on one of the
board layers. A player does not have the freedom though of
placing a piece in any of the 4 available layers. The layer
in which a player has to make a move is determined by a
“4 sided dice”. Just before executing a move, the player
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rolls this dice to determine the level to play. If a player has
to play on a layer where all spaces are occupied by pieces,
he misses that round and the game moves on to the next
player. The game only ends when there are no more empty
spaces to place a piece. When the board is full, each player
counts the number of rows, columns and diagonals he has
completed and gets a point awarded for each successful 4
pieces placed in sequence. The player with the most points
wins the game. If the players have an equal score, the game
is a draw. Figure 2 shows different combinations in which
a player can score points. All three dimensions can be
used and any 4 pieces lined up in sequence can score a point.

Figure 2:Probabilistic 4x4x4 point combinations.

Table 2 shows the probability of a win for both
Player1st and Player2nd, and of a draw for a total of
100000 games that are played randomly by both players.

Games %

Player1st 50776 50.776
Player2nd 44367 44.367

Draw 4857 4.857
Table 2: Probabilistic 4x4x4: probabilities.

The advantage ofPlayer1st overPlayer2nd has been con-
siderably reduced compared to the original tic-tac-toe game.
Only a 6.4% winning advantage seperatesPlayer1st from
Player2nd in the probabilistic variation.

5 The Game Playing Agents

The game playing agents are represented by standard 3-
layer feed forward neural networks, consisting of summa-
tion units. The size of the input layer is dependant on the
size of the game board. The input layer therefore consists
of 9 neurons for a standard 3x3 tic-tac-toe game, while 64
neurons are required for a probabilistic 4x4x4 tic-tac-toe
game. The size of the hidden layer varies, depending on
the complexity of the game. Only one neuron is used in the
output layer. The architecture explained above excludes all
bias units. The sigmoid activation function is used for each
neuron in the hidden and output layers, with the steepness
valueλ set to 1. The weights of the neural network are ran-
domly initialized between the range[ −1√

fanin
], [ 1√

fanin
],

wherefanin represents the number of incoming weights
to the neuron.

The neural network is used to evaluate a given state by
accepting the actual state as an input and returning as an
output a value that represents how advantageous the state
is, with states returning higher values preferred.

Assume thatPlayerx plays againstPlayery and that

Playerx needs to plan a new move. LetStatecurrent de-
note the current game state. The following steps are used to
determine the next state.

1. Build a game tree with a depth ofN , using
Statecurrent as the root node and by adding all
possible moves forPlayerx for all odd depths and
Playery for all even depths.

2. Evaluate all leaf nodes by using the neural network as
an evaluation function in the following manner:

i. For all valid positions on the board assign a
value of 0.5 for everyPlayerx piece on the
board, a value of -0.5 for everyPlayery piece
and a value of 0 if there is no piece on a specific
position.

ii. Supply these values as inputs to the neural net-
work and perform a feed forward process to de-
termine the output.

iii. Assign the value of the neural network output as
the evaluation value of the node.

3. Using the minmax [6] algorithm, determine the most
beneficial state to execute the next move.

Instead of using minmax, the alpha-beta [12] or NegaS-
cout [15] algorithms can be used to optimize the game tree.
Only a single depth for the game tree has been considered
throughout this paper.

The input representation scheme used in the first point
of step 2.i, results in identical board states to be inversely
represented depending on whether the player played first or
not [3].

Since a neural network is used to evaluate how good a
state is, the objective is to find a set of weights which can
differentiate between good states and bad states. Usually,
supervised training would be used to adjust the neural net-
work weights. With supervised training there exists a train-
ing set consisting of both inputs and the associated desired
outputs. The most popular supervised training algorithm is
back propagation [22]. With back propagation, each pat-
tern of the training set is used and the difference between
the actual output and the target output is used to adjust the
weights. After repeating this process for a number of times
for the full training set, the neural network eventually fits
a curve over the training set to relate inputs with desired
outputs. In the case of game learning one does not have a
training set and the weights can therefore not be adjusted us-
ing back propagation or any other supervised training tech-
nique. This problem is overcome with the use of coevolu-
tion and particle swarm optimization algorithms.

6 The Game Training Process

This section explains exactly how the coevolution and par-
ticle swarm optimization algorithms are combined to train
game playing agents. Initially, two populations of game
playing agents are instantiated by generating a number of
neural networks with randomly initialized weights. These
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neural networks form possible game playing agents that will
coevolve, growing stronger for each new generation. The
agents represent particles in a swarm. Each particle repre-
sents the weights of one neural network. Each agent has
the ability to store two sets of weights: its current weights
(Weightscurrent) and its best weights (Weightsbest) it has
encountered during the training process. Each agent in the
first population competes against all other agents in the sec-
ond population, and vice-versa. A scoring scheme is then
used to evaluate the agents. Agents are rewarded/penalized
based on whether a game has been lost, won or drawn.
Points are accumulated for each agent over all games played
by the agent. Higher scoring agents are considered better
than lower scoring agents. These scores are used to deter-
mine personal, local and global best solutions, as needed for
the PSO algorithm. To discover the overall best agent, the
two best agents of each population compete against a ran-
dom player for a total of 10000 games. Based on the score
scheme used, the agent with the highest score is regarded as
the overall best agent and stored in a hall of fame. In no way
does this agent affect training and the sole reason the agent
is stored is to preserve the overall best agent during train-
ing. The evaluation against a random player may be time
consuming, but the diversity of game playing strategies that
they offer is valuable, making them appropriate to be used
for evaluation purposes. A detailed step-by-step algorithm
is given in the following subsection.

6.1 Step-by-Step

1. Instantiate two new populations of agents. Each agent
is initialized in the following way:

• The Weightscurrent are initialized as ex-
plained in Section 5.

• The Weightsbest are set equal to the
Weightscurrent for the first generation.

2. Agents compete against agents in the opposing pop-
ulation, as explained in Section 5. Agents use both
their Weightscurrent andWeightsbest to compete.
Competing agents use a preselected score scheme,
based upon which each agent receives a specific
score. The scheme adopted by this paper awards the
following: 3 points for a win, 1 for a draw and 0 for
a lose. The weights of each agent are used as follows
to compete against all other agents in the other popu-
lation:

• All Weightscurrent of the one population
compete against allWeightscurrent of the
other population by playing both first and
second. Based on eachWeightscurrent

wins/losses/draws, a score is assigned to each
Weightscurrent.

• All Weightsbest of the one population compete
against allWeightscurrent of the other popula-
tion by playing both first and second. Based on
eachWeightsbest wins/losses/draws, a score is
assigned to eachWeightsbest.

3. The scores of allWeightscurrent andWeightsbest

for each agent in the two separate populations are
compared. If the score of an agents’Weightscurrent

is larger than the score itsWeightsbest, then its
Weightscurrent becomes the newWeightsbest and
therefore its new personal best.

4. All the scores of theWeightsbest in each separate
population are compared. The agent with the highest
score for itsWeightsbest, becomes the local/global
best of the population.

5. The Weightsbest of both agents with the highest
scores that exist in both populations compete against
a random playing agent for a total of 10000 games,
5000 of which the agent plays first and the remain-
ing 5000 the agent playing second. A score for the
Weightsbest for both best agents that belong to the
two populations is determined. If a score is found that
is the highest score observed thus far during training,
the weights are stored as the best weights encoun-
tered during training. This set of weights is called
Weightssupreme.

6. Update allWeightscurrent based on the PSO algo-
rithm used for both populations.

7. If the algorithm has not converged at a specific solu-
tion, go to step 2 and repeat the process.

7 Results

The following section reports the results of the coevolution-
ary technique, as applied to the two tic-tac-toe games.

Each simulation was executed 30 times, with the
Weightssupreme stored for each. The evaluation of two
agents is determined by using a sample of 100000 games.
Each agent competes for 50000 games by playing first while
the remaining 50000 games the agent competes second. The
percentage of wins, loses and draws is given in each case,
together withF , its Franken performance measure [2].

Playerstatic refers to players utilizing a hand-crafted
static evaluation function,Playerran refers to players play-
ing randomly andPlayersupreme to players that utilize the
Weightssupreme that were found with the coevolutionary
PSO method. In the case ofPlayersupreme, the average of
all 30 best solutions is shown in the given tables.

The hand-crafted evaluation function used byPlayerx

to compete againstPlayery for both games is defined as:

nP layerx∑
k=1

piecesk −
nP layery∑

k=1

piecesk (1)

wherenPlayerx is the total number of rows, columns and
diagonals (in all dimensions) of the game that only contain
pieces belonging toPlayerx, andpiecesk is the total num-
ber of pieces in that specific row, column or diagonal. In
the case wherepiecesk = max, thenpiecesk = +∞. The
value of max represents the maximum number of pieces
that can be placed in sequence. The value of 3 is used
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for tic-tac-toe and 4 is used for probabilistic 4x4x4 tic-tac-
toe. The reason this assignment is done is to allow agents
using equation(1) to immediately take opportunities that
will allow them to complete full sequences which enables
them to win games/score points. Higher values returned by
the hand-crafted evaluation function represents better board
states.

7.1 Tic-Tac-Toe

7.1.1 Hand-Crafted Evaluation Results

Table 3 shows the results of how the hand-crafted function
performs againstPlayerran.

% F

Playerstatic 93.55
Playerran 1.78 95.88

Draw 4.67
Table 3: Tic-tac-toe: hand-crafted evaluation.

It is clear that the function works very well, since it only
looses 1.78% in total. One could argue that this is not satis-
factory, since the game is very simple and could be played in
such a way that games are only won or drawn. This is where
the depth of the minmax tree comes into play. In order for
the agents to achieve perfect play for the tic-tac-toe game
using the provided hand-crafted static evaluation function, it
is required for them to be able to construct deeper trees that
will enable them to explore possible future moves. When a
depth of 4 (ply-depth of 2) is used, perfect play is achieved.
In order to keep the complexity of the learning algorithms as
low as possible, depths of only 1 are used, keeping in mind
that increased depth sizes may return improved results.

7.1.2 Coevolutionary PSO Results

The initial configurations of the coevolutionary and particle
swarm optimization algorithms are taken from [5], specif-
ically the configuration that returned the best results was
chosen. The Von Neuman topology was selected, withc1,
c2 andφ all initialized to the value of 1. NoVmax value
was selected, meaning that the velocity of the particles
are not restricted in any way. The swarm size for each
population was set to 10 (20 particles are used in total),
with each particle having 7 neurons in the hidden layer. A
score scheme that awarded 3 points for a win, 1 point for a
draw and 0 points for a loss was used. Table 4 reveals the
results of this parameter configuration.

% F Variance

Playersupreme 72.07
Playerran 22.83 74.61 ±2.66

Draw 5.1
Table 4: Tic-tac-toe: initial setup.

The coevolutionary PSO algorithm does not manage to
produce agents that perform very well, with a mediocre im-
provement when compared to Table 1. ThePlayersupreme

under performs in comparison toPlayerstatic. Figure 3

indicates the performance of the two best set of weights
in each population and the performance of the overall best
set of weights (Weightssupreme) over the generations for
one of the executed simulations. The performance measure
used in the graph is the score when competing against
Playerran for 10000 games. The covered white part
of the graph conveys the performance ofWeightsbest1,
which belongs to the first population, while the black
part conveys the performance ofWeightsbest2 which
belongs to the second population. The two gray lines are
sixth degree polynomials fitted throughWeightsbest1 and
Weightsbest2.

Figure 3: Best agents performance: initial setup.

The graph clearly indicates a premature convergence taking
place. The best agents in both populations are clearly
struggling to find better solutions and do not improve at
all in the later stages during training. The performance
of the weights belonging to both agents remain constant
throughout training, with no arms race pattern being
visible. By investigating the velocity values during training,
it was noticed that these grew considerably large in all
dimensions. The maximum velocity valueVmax was
therefore set to 1, a very small value, to investigate how this
affects training. The results are given in Table 5, clearly
showing an improvement.

% F Variance

Playersupreme 80.34
Playerran 13.76 83.48 ±3.65

Draw 5.9
Table 5: Tic-tac-toe:V max = 1.

Figure 4 shows how this change has affected the per-
formance of the best agents in each population. Both
agents are now alternating and continously finding newer
weights with improved solutions during training, clearly
revealing an “arms race” effect, as described in Section
3. Sixth degree polynomials have been fitted through the
performance of both sets of weights, making this more
apparent.200 CIG'05 (4-6 April 2005)



Figure 4: Best agents performance:V max = 1.

7.2 Probabilistic 4x4x4 Tic-Tac-Toe

7.2.1 Hand-Crafted Evaluation

The results of the hand-crafted static evaluation function for
the probabilistic 4x4x4 tic-tac-toe game are shown in table
6.

% F

Playerstatic 99.43
Playerran 0.32 99.55

Draw 0.25
Table 6: Probabilistic 4x4x4: hand-crafted function.

The results indicate that the hand-crafted evaluation func-
tion for this game is extremely good, but not perfect. This
is expected though, since the game is probabilistic, mak-
ing it impossible for a player to constantly win or draw
games, since the probabilistic element can not always favor
Playerstatic.

7.2.2 Coevolutionary PSO Results

Using the exact same setup that proved successful for
tic-tac-toe, the results for probabilistic 4x4x4 tic-tac-toe is
shown in Table 7.

% F Variance

Playersupreme 86.19
Playerran 11.21 87.49 ±2.95

Draw 2.6
Table 7: Probabilistic 4x4x4: Initial setup.

The results look very promising, with 86.19% of the games
won. A series of other simulations were done, investigat-
ing different topologies, neural network architectures and
swarm sizes. Table 8 shows the results when the Global
Best and Local Best topologies were used, indicating that
the Von Neuman topology performs marginally better (Ta-
ble 7). The Von Neuman topology had managed to suc-
ceeded in finding solutions that win an average of 1.17%
more than the solutions found by Global Best and an aver-
age of 0.62% more than solutions found by Local Best.

Topology % F Variance

Playersupreme 85.02
GBest Playerran 12.42 86.29 ±3.23

Draw 2.56

Playersupreme 85.57
LBest Playerran 11.77 86.9 ±2.93

Draw 2.66
Table 8: Probabilistic 4x4x4: Different topologies.

Hidden % F Variance

Playersupreme 85.22
10 Playerran 12.19 86.50 ±2.54

Draw 2.59

Playersupreme 84.65
15 Playerran 12.61 86.02 ±3.06

Draw 2.74
Table 9: Probabilistic 4x4x4: Different hidden layer sizes.

Size % F Variance

Playersupreme 92.57
15 Playerran 5.93 93.32 ±2.83

Draw 1.5

Playersupreme 95.06
20 Playerran 3.85 95.615 ±2.48

Draw 1.09

Playersupreme 96.55
25 Playerran 2.94 96.8 ±2.12

Draw 0.51
Table 10: Probabilistic 4x4x4: Different swarm sizes.

Table 9 indicates that no performance improvement was
gained with an increase in the number of the hidden neu-
rons. Therefore the hidden layer size is not increased and
remained as a value of 7. Different population sizes were
investigated, with the results shown in Table 10. Popula-
tion sizes of up to 25 were used, which included sizes of 15,
20 and 25 agents. The results clearly show that there is a di-
rect relation on the improvement of agents as the population
sizes increase. Larger swarm sizes offer a larger diversity
of solutions, enabling the PSO algorithm to discover better
solutions. One must not forget though the increase in com-
plexity of the coevolution process, since a larger population
requires more games to be played to evaluate agents. Even
though a population size of 25 produced a 1.49% improved
winning result over a 20 sized population, the complexity
increase does not make this worth while. The population
size of 20 would therefore be more favorable.

8 Conclusions and Future Work

The coevolutionary technique in combination with a parti-
cle swarm optimization algorithm has shown to be very suc-
cessful in finding strong agents for the probabilistic 4x4x4
tic-tac-toe game. The most optimal setup presented in this
paper was capable in producing a network that could al-
most match the performance of the hand-crafted evalua-
tion function. Future work includes a more detailed study

201 CIG'05 (4-6 April 2005)



with regards to the PSO parameters and the application of
the technique to more complex probabilistic games such as
backgammon and poker. One important coevolutionary as-
pect was not approached in this report, which forms the next
step in improving the technique. This is concerning the se-
lection of agents within populations which are used for fit-
ness sampling. Different selection strategies should be ex-
amined which might prove more efficient than the selection
of the entire population which is adopted in this paper. In
addition to that, a more in depth investigation must be done
to examine how different scoring schemes affect training.
Scoring schemes that award equal points for winning and
drawing would encourage defensive strategies to be found,
while strategies that only award wins with points would en-
courage aggressive strategies to be found.
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Abstract

Ms. Pac-Man is a challenging, classic arcade game with
a certain cult status. This paper reports attempts to evolve a
Pac-Man player, where the control algorithm uses a neural
network to evaluate the possible next moves. The evolved
neural network takes a handcrafted feature vector based
on a candidate maze location as input, and produces a
score for that location as output. Results are reported on
two simulated versions of the game: deterministic and non-
deterministic. The results show that useful behaviours can
be evolved that are frequently capable of clearing the first
level, but are still susceptible to making poor decisions.
Currently, the best evolved players play at the level of a
reasonable human novice.

1 Introduction

Games have long been used in the study of computa-
tional intelligence and machine learning. Much of the early
focus was on strategy games such as chess and checkers.
There have been noteworthy successes for machine learn-
ing methods in Backgammon using reinforcement learning
[12], or co-evolution [9], and also using co-evolution to find
good position evaluation functions for checkers [3].

More recently, with the rise in popularity of real-time
arcade and console games, there has been growing interest
in applying computational intelligence to such games [7].
This paper investigates the use of Pac-Man style games, in
particular Ms. Pac-Man as a challenge for computational in-
telligence. One of the motivations for this work is to gain
insight into the kind of approaches are effective in this do-
main, where the large state space precludes the direct use
of game-tree search. While this paper only evolves the Pac-
Man controller, it provides a foundation for also evolving
ghost behaviours, which might lead to Pac-Man variants
that are even more fun to play than the original. Further-
more, the aim is to eventually gain insight into how hard

these games are to play: are good human players simply re-
acting quickly in ways that would be obvious to some rudi-
mentary form of computational intelligence, or does Ms.
Pac-Man have chess-like complexity?

Pac-Man is a classic arcade game originally developed
by Toru Iwatani for the Namco Company in 1980. The
game rapidly achieved cult status, and various other ver-
sions followed. The best known of these is Ms. Pac-Man,
released in 1981, which many see as being a significant
improvement over the original. In the original game, the
ghosts behaved deterministically, and a player could ex-
ploit this behaviour by using set patterns or routes. Pro-
vided the successful route was executed faithfully (in some
routes precise pauses were necessary at certain points on the
route), then the level could be cleared while achieving max-
imum points in the process. From a machine learning per-
spective, the learning of such routes is less interesting than
the learning of more general intelligent behaviour, able to
cope with novel circumstances. In Ms. Pac-Man, the ghosts
have similar hunting abilities to the original game, but are
non-deterministic, which makes the game much harder and
more interesting. Ms. Pac-Man also uses four different
mazes, which are revealed as the player progresses through
levels, though in this paper we only use the first level. The
rules and game setup are reasonably simple, at least com-
pared to more modern arcade and console games, though
close investigation reveals many interesting subtleties that
might go unnoticed by the casual player. Many of these
finer points are mentioned in sections 2 and 3 below.

From a computational intelligence perspective, there are
many aspects of the game worthy of study. These include
evolving Pac-Man playing agents and evolving ghost be-
haviours. The latter is a problem in multi-agent systems,
since the ghosts should cooperate with each other to be
maximally effective, though the game designer can impose
various constraints on the ghosts, such as disallowing direct
ghost communication. Both the Pac-Man and Ms. Pac-Man
ghosts behave far from optimally, and this may add to the
appeal of the game. However, it would also be interesting to

1
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experience playing against evolved ‘optimal’ ghosts, even
if it turns out to be less enjoyable than playing against the
standard sub-optimal variety.

1.1 Previous Research

There have been several previous efforts to evolve Pac-
Man players. One of the earliest was that of Koza [6]. Koza
used his own implementation of Pac-Man, based on the
first screen of Ms. Pac-Man. He defined 15 functions: two
conditionals and 13 primitives for controlling the Pac-Man.
These included output controls such as “move towards to
nearest pill along shortest path”. Koza’s implementation
appears to be significantly different from the real game, and
the ghost behaviours make the game quite easy for the Pac-
Man. In his version, all four ghosts follow the same be-
haviour: pursue Pac-Man when he is in sight for twenty out
of twenty-five time steps, and randomly change direction
for five out of twenty-five time-steps. This is very different
from the original Ms. Pac-Man ghosts, who each had dis-
tinctively different behaviours, would pursue the Pac-Man
more aggressively, and would reverse direction much less
often (more like once in two hundred time steps on aver-
age), and less predictably. More frequent ghost direction
reversals make the game much easier for the Pac-Man, since
each reversal can act as a lifesaver in an otherwise hopeless
situation.

More recently, Gallagher and Ryan [5] evolved a Pac-
Man player based on a finite-state-machine plus rule-set. In
their approach they evolved the parameters of the rule set
(85 in total), where the individual rules were hand-specified.
However, the game simulator they used was a greatly sim-
plified version of the original. Although the maze was a
faithful reproduction of the original Pac-Man maze, only
one ghost was used (instead of the usual 4), and no power
pills were used, which misses one of the main scoring op-
portunities of the game.

De Bonet and Stouffer [2] describe a reinforcement
learning approach to simple mazes that only involved one
other ghost, and a10× 10 input window for the control al-
gorithm centred on the Pac-Man’s current location. They
were able to learn basic pill pursuit and ghost avoidance be-
haviours. There has also been some work on learning routes
for Pac-Man, but as explained above, this approach is not
viable for Ms. Pac-Man.

2 Ms. Pac-Man Game Play

The player starts with three lives, and a single extra life
is awarded at10, 000 points. While it is never a good idea
to sacrifice a life, it may be better to take more risks when
there are lives to spare. There are220 food pills, each worth
10 points. There are 4 Power Pills, each worth50 points.

The score for eating each ghost in succession immediately
after a power pill starts at 200 and doubles each time. So,
an optimally consumed power pill is worth3050 (= 50 +
200 + 400 + 800 + 1600). Note that if a second power pill
is consumed while some ghosts remain edible from the first
power pill consumption, then the ghost score is reset to200.

Additionally, various types of fruit appear during the lev-
els, with the value of the fruit increasing with each level.
The fruit on level one is worth only100 points, but this in-
creases to many thousands of points in higher levels. It is
not necessary to eat any fruit in order to clear a level.

While good Pac-Man players often make use of fixed
routes, the non-determinism of Ms. Pac-Man makes this
approach ineffective. Instead, short term planning and re-
active skill is more important. An appreciation of ghost
behaviour also plays a significant part, since although the
ghosts are non-deterministic, they are still at least partially
predictable. The reactive skill lies in judging the distance
between the Pac-Man and the ghosts, and working out rela-
tively safe routes to the pills and the power-pills. Appropri-
ate consumption of the power pills is of critical importance
both for gaining high-scores, and for clearing the levels. Ex-
pert players will often get the ghosts to form a closely-knit
group, which chases the Pac-Man to the power pill, only
to be eaten after consumption of the power pill. Indeed, ex-
pert players generally have a good understanding of how the
ghosts will behave in any circumstances. Billy Mitchell, the
world Pac-Man (but not Ms. Pac-Man) champion said the
following:

“I understand the behavior of the ghosts and
am able to manipulate the ghosts into any corner
of the board I choose. This allows me to clear the
screen with no patterns. This was a more difficult
method for the initial 18 screens. I chose to do
it this way because I wanted to demonstrate the
depths of my abilities. I wanted to raise the bar
higher - to a level that no one else could match.”

In both Pac-Man and Ms. Pac-Man, the ghost behaviour
is far from optimal in several ways, in the sense that the
ghosts do not try and eat the Pac-Man as quickly as possi-
ble. On leaving the nest, each ghost typically meanders for
a while before pursuing the Pac-Man more actively. They
then adopt different behaviours. The red ghost is the most
predatory one, and is quite direct in seeking out the Pac-
Man. The ghosts get less aggressive in order, through pink
and blue down to the orange ghost, which behaves in a
somewhat random way - and will often let Pac-Man es-
cape from situations where the right moves would secure
a certain kill. The game also appears to have a bug, in that
sometimes the Pac-Man is able to escape what looks like
a certain death situation by passing straight through one
of the ghosts. Whether this is a bug (which can occur all
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too easily in multi-threaded systems due to synchronisation
problems), or a deliberate feature is not clear. Either way,
it does not detract from the quality of the game play, and
perhaps even enhances it. For the current paper, only the
opening maze of Ms. Pac-Man has been implemented, as
the evolved players are still at an early stage.

3 Experimental Setup

While the long-term aim of this work is to evolve con-
trollers for the original Ms. Pac-Man game, there are many
other worthy objectives as well, such as evolving new ghost
behaviours, and experimenting with the effects of various
changes to the rules. For these purposes, and also to enable
much faster fitness function evaluation, we implemented
our own Ms. Pac-Man simulator. The implementation was
designed to be a reasonable approximation of the original
game, at least at the functional if not cosmetic level, but
note that there are several important differences:

• The speed of both the Pac-Man and the ghosts are iden-
tical, and the Pac-Man does not slow down to eat pills.

• Our Pac-Man cannot cut corners, and so has no speed
advantage over the ghosts when turning a corner.

• The ghost behaviours are different (ours are arguably
more aggressive, apart from the random one).

• Our ghosts do not slow down in the tunnels. This
comes as a bit of a shock when playing the game!

• In our maze, there is no fruit. The main aim at present
is to learn the basic game. Fruit only plays a minor part
until the higher levels when it becomes more valuable,
and can add significantly to the score.

• No additional life at10, 000 points. This would have
been easy to implement, but has little bearing on
evolved strategies.

• All ghosts start immediately at the centre of the Maze,
and are immediately in play: there is no nest for them
to rest in.

• A ghost once eaten returns instantly to the centre of the
maze, and resumes play immediately.

• Currently, our ghosts do not consider the locations
of the other ghosts; they could improve their hunting
if they utilised such information to ’spread-out’ more
when hunting the Pac-Man.

• Our game lacks the nice cosmetic finishes of the orig-
inal. Game play (for a human player) is surprisingly
diminished as a result of being chased by a silent rect-
angle, instead of a wailing ghost with watchful eyes!

Some of these are due to lack of time available in im-
plementing the game, but replicating the exact ghost be-
haviours is hard. While it is possible that the underlying
behaviours may be reducible to a few simple rules, it is
difficult to determine these from observation alone, though
clearly the expert human players have done a good job
of this, at least implicitly. Indeed, learning the ghost be-
haviours by observing game-play would be a challenging
machine learning project in itself.

3.1 The Implementation

The implementation is written in object-oriented style in
Java and is reasonably clean and simple. The maze is mod-
elled as a graph, with each node in the graph being con-
nected to its immediate neighbours. Each node has two,
three or four neighbours depending on whether it is in a
corridor, a T-junction, or a crossroads. Each graph node
is separated by two screen pixels - this gives very smooth
movement. After the maze has been created, a simple effi-
cient algorithm is run to compute the shortest-path distance
between every node in the maze and every other node in the
maze. These distances are stored in a look-up-table, and
allow fast computation of the various controller-algorithm
input features listed below. During evolution, each game
lasts for between a few hundred and a few thousand time-
steps, depending on luck and on the quality of the controller.
Typically, around 33 games per second can be played (on
a 2.4ghz PC) when evolving a perceptron. This slows to
around24 games per second for an MLP with20 hidden
units. The cost of simulating the game and computing the
feature vector for each node under consideration is greater
than the cost of simulating the neural networks.

For a given maze, game play is defined by the ghost be-
haviours and a few other parameters, listed in Table 1. The
ghosts operate by scoring each option and choosing the best
one, when more than one option exists, which is only the
case at junction nodes (recall that ghosts are not allowed to
turn back on themselves, except during a reversal event).
Ghost1 pursues the most aggressive strategy, always taking
the shortest path to the Pac-Man. Ghosts2 and3 operate
under less effective distance measures, while ghost4 makes
random choices, except when playing deterministically, in
which case it chooses the option that minimises they dis-
tance to the Pac-Man. All ghosts have small pseudo-random
noise added to their evaluations in order to break ties ran-
domly.

The author tested the implementation to assess the dif-
ficulty of the game. For a human player, of course, this is
influenced very significantly by the speed at which the game
is played. When played at approximately the same speed as
the original Ms. Pac-Man, the game seemed harder than the
original, with the author’s best score after ten games be-
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Feature Description
Ghost1 Minimise shortest-path dist. to Pac-Man
Ghost2 Minimise Euclidean dist. to Pac-Man
Ghost3 Minimise Manhattan dist. to Pac-Man
Ghost4 Random (Or minimise y-dist. if non-rand.)
Edible Ghosts are edible for100 time steps

Reversal Ghosts reverse every250 time-steps
Ed. Spd Ghosts move at half-speed when edible

Table 1. The Simulated Game Setup.

ing only 12, 890, compared to over30, 000 on the original
Ms. Pac-Man. When slowed down to1/3 speed, however,
a score of over25, 000 was achieved before boredom set
in. Since playing the original game at1/3 speed was not
possible, it is hard to make a direct comparison beyond this.

3.2 Location Features

Our Pac-Man control algorithm works by evaluating
each possible next location (node), given the current node.
Note that each node is two screen pixels away from it’s
neighbour, which leads to smooth movement, similar to the
arcade game, but also makes the maze-graph rather large,
with 1, 302 nodes in total.

The control algorithm chooses the move direction that
will move it to the best-rated location. From an evolution-
ary design viewpoint, the most satisfying approach would
be to use all the information available in the state of the
game as inputs to the node evaluation neural network. This
would include the maze layout, the position of each pill and
power pill, and the position of each ghost (and whether the
ghost was currently edible, and how much longer it was due
to remain edible for). This would involve processing a large
amount of information, however. For the current experi-
ments, a less satisfactory, but more tractable approach has
been taken. Features were chosen on the basis of their being
potentially useful, and efficient to calculate. These are listed
in Table 2. These features are unlikely to be optimal, and
almost certainly place significant limitations on the ultimate
performance that such a controller can achieve. Whether the
networks evolved for this paper have reached these limits is
another question. Note that the use of maze shortest-path
distances in the features naturally helps the Pac-Man avoid
getting stuck in corridor corners; something that could oth-
erwise happen if the inputs were based on geometric dis-
tance measures (such as Euclidean). Note that two of the
ghosts do use geometric distance measures, but since ghosts
are not normally allowed to turn back on themselves, they
cannot become stuck in this way.

Input Description
g1 . . . g4 distance to each predatory ghost
g1 . . . g4 distance to each edible ghost

x, y location of current node
pill distance to nearest power pill

junction distance to nearest junction

Table 2. The feature vector. Each input is the
shortest-path distance to the specified object, or set
to the maximum possible distance if that object does
not currently exist in the maze.

3.3 Evolutionary Algorithm

Our Evolutionary Algorithm (EA) is an(N + N) evo-
lutionary strategy [1]. Experiments were done withN = 1
andN = 10. The case ofN = 1 results in a simple random
mutation hill-climber. These hill-climbers can outperform
more complex EAs in some cases [8], but they have to be
applied carefully in this domain, due to the high-levels of
noise present in making fitness evaluations. For this reason,
we investigate the effects of playing multiple games per fit-
ness evaluation, which reduces noise. The ES was also run
with N = 10, and this was found to give better evolution-
ary progress, with the larger population also quenching the
effects of noise. Using an ES removes the need to define
a crossover operator. This would not be a problem for the
single-layer perceptrons, but naively defined crossover op-
erators are typically destructive when evolving MLPs, due
to the problem of competing conventions [11].

The overall objective was to evolve the best player pos-
sible, where quality of play is measured by average score
over a significant number of games (e.g.100). The fitness
function used by the EA was the average score over a num-
ber of games, where the number of games was either1, 5,
or 50.

3.4 Neural Networks to be Evolved

The neural networks were implemented in object-
oriented style with the basic class being a Layer, consist-
ing of a weight matrix mapping the inputs (plus bias unit)
to the output units, and atanh non-linearity being applied
to the net activation of each output. A single layer per-
ceptron then consisted of just one such layer, a multi-layer
perceptron consisted of two or more such layers, though ex-
periments in this paper were limited to a maximum of two
layers (hence one hidden layer in standard terminology).

For initial members of the population, all weights were
drawn from a Gaussian distribution with zero mean and
standard deviation equal to the reciprocal of the square root
of the fan-in of the corresponding node. A mutated copy
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Figure 1. Fitness evolution of a perceptron for the
deterministic game.

of a network was made by first creating an identical copy
of the network and then perturbing the weights with noise
from the same distribution. Weights to be mutated were
selected in one of four ways as follows (probabilities in
parentheses): all the weights in the network(0.1), all the
weights in a randomly selected layer(0.27), all the weights
going into a randomly selected node(0.27), or a single
randomly selected weight(0.36). While these parameters
could have been adapted (or indeed, the noise distribution
for each weight could have been adapted), these adaptations
can also have detrimental effects on the convergence of the
algorithm when high levels of noise are present, as is the
case here.

4 Results

Results are presented for evolving neural network loca-
tion evaluators, first for the deterministic game, then for the
non-deterministic game.

4.1 Evolving Players for Deterministic Play

As might be expected, evolving strategies against de-
terministic ghosts is easier than when the ghosts exhibit a
small amount of non-determinism. Effective ghosts chase
aggressively most of the time, while occasionally making
a surprise move in order to disrupt any patterns. To test
this we experimented with evolving players against deter-
ministic ghosts. Figure 1 shows the fitness evolution of a
perceptron against deterministic ghosts. Since, for a given
neural network, every run of the game is identical, only one
game run per fitness evaluation is required. The maximum
fitness (score) attained was 9,200. Note that when played in
the non-deterministic game, this player did not have espe-
cially high fitness, with an average score (over 100 games)
of only 1,915 (Table 3).

4.2 Simple Ghost Avoidance

Before evolving neural networks for the non-
deterministic game, tests were run to see how well a
simple ghost avoidance strategy would perform. To this
end, a hard coded controller was implemented, which
scored a node as the shortest path distance to the closest
ghost, and then chose the node that maximised that score.
This strategy performed poorly, however, as shown in
Table 3 (Simp-Avoid), with an average score of only980.
This was thought to be a worthwhile test in order to demon-
strate that the neural networks are learning something more
than this simple, if somewhat flawed, ghost avoidance
technique.

4.3 Evolving for Non-Deterministic Play

In the non-deterministic game, the aim is to learn general
behaviours, but the noise makes progress difficult. Increas-
ing the number of games per fitness evaluation improves the
reliability of the fitness estimate, but means that fewer fit-
ness evaluations can be made within the same time.

Figure 2 shows the effects that the games per fitness eval-
uation has on evolving an MLP with twenty hidden units,
using a(1 + 1) ES. The graph shows plots for 1, 5 and 50

Figure 2. Evolving an MLP (20 hidden units) with a
1 + 1 ES, using 1, 5, and 50 games per fitness evalu-
ation.

games per fitness evaluation, and indicates that a large num-
ber is needed in order for evolution to make progress, with
best performance being obtained when we run50 games
per evaluation. Note that the graphs for1 and5 games have
been averaged using a smoothing window of25 samples ei-
ther side of the centre. This is to present a better picture
of the average fitness at each point on the graph. We ran
the same (1 + 1) experiments for a perceptron, and found
that this was able to significantly outperform the MLP, but
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that the overall trend was the same, in that making many
fitness evaluations per game (e.g.50) was essential in order
to make good evolutionary progress.

An alternative that seems to work better, is to increase the
population size instead. Figure 3 plots average fitness ver-
sus generation when using a10 + 10 ES to evolve an MLP
with 20 hidden units. Error bars are shown at(+/−) one
standard error from the mean, to give an idea of the range of
performance present in each generation. Experiments were
also made with5 and 10 hidden units, but20 seemed to
perform best, though this was not thoroughly analysed. For
this graph,5 games per fitness evaluation were used, and
therefore the total number of games played was identical
to the50 game plot of Figure 2. Unlike the1 + 1 ES, the
larger population is able to smooth the effects of noise. A
similar graph is observed when evolving a single layer per-
ceptron using the10 + 10 ES (not shown), but it was con-
sistently found that the best evolved MLP out-performed the
best evolved perceptron. While each evolutionary run pro-
duces neural networks that have different behaviours, and
even a particular network can behave rather differently on
each game run, there are some interesting trends that can
nonetheless be observed, and these are further discussed in
Section 4.4.

Figure 3. Evolving an MLP (20 hidden unit) with a
10 + 10 ES, using5 games per fitness evaluation.

Table 3 shows the performance statistics for three
evolved controllers and one hand-designed controller.
MLP-20 (20 hidden units) is one of the best MLPs found
with the 10 + 10 ES. This is significantly better than the
evolved perceptron (Percep-LC) - where LC stands for
Level-Clearer - as explained below. Next we have the per-
ceptron evolved on the deterministic game, but tested on the
non-deterministic game (Percep-Det), and finally the hand-
designed weights, and Simp-Avoid, both of which perform
very poorly.

Controller min max Mean s.e.
MLP-20 2590 9200 4781 116

Percep-LC 1670 8870 4376 154
Percep-Det 440 5140 1915 90

Hand-Coded 400 3540 1030 58
Simp-Avoid 480 1320 980 82

Table 3. Controller performance statistics (measured
over 100 runs of the non-deterministic game).

4.4 Evolved Behaviours

One of the most surprising behaviours that sometimes
evolves is the ghost chaser strategy. This exploits the fact
that when a ghost reaches a junction, it is not normally al-
lowed to retrace its path (unless all ghosts are reversing).
Therefore, especially when the ghosts are bunched together,
the Pac-Man can safely chase them for a while - until all
the ghosts suddenly reverse, at which point, the Pac-Man
should make a hasty retreat, but this particular evolved strat-
egy fails to do this and causes the Pac-Man to be immedi-
ately eaten instead.

A more successful strategy has been dubbed the Level-
Clearer (Percep-LC), owing to its ability to regularly clear
the first level of the game, although it usually loses a few
lives in the process, and therefore does not usually clear
the second level (even though all levels are currently identi-
cal). Also, it is rather poor at eating ghosts, and so does not
achieve very high scores relative to its progress through the
game. The best evolved controller, MLP-20, on the other
hand is not as good at clearing a level, but much better at
eating ghosts.

4.5 Interpreting the Evolved Neural Network

Recall that the evolved perceptron assigns a value to each
possible neighbour of the Pac-Man’s current location. To
gain more insight into the kind of judgements it is making
we can plot the score for every node in the network, which is
independent of the current Pac-Man location. The intensity
gradients then show the immediate route the Pac-Man will
follow, and show the current ratings of the rest of the maze
locations. Note that in many cases, all ratings fall into a
small range, but only the order of the nodes matters, not
their absolute values. For display purposes, we map the
range of scores into the full range of grey levels from black
to white.

Figure 4 shows these scores during a sample game run
for an evolved perceptron controller. The Pac-Man is fol-
lowing a gradient towards some pills and an edible ghost. In
this game the Pac-Man next proceeds to eat the two nearest
edible ghosts, but is then eaten by the red ghost (which has
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Figure 4. The node scores overlaid on the Maze as
background intensity.

just itself been eaten by the Pac-Man, and is on the chase
again having been reset to the centre of the maze).

Since the single layer perceptron is a linear weighting of
the input features, we can inspect these to gain insight into
what the system has learned. Table 4 shows the weights
for the evolved level clearing perceptron, together with a
set of hand-designed weights. One of the most surprising
observations is that the evolved controller actually makes
Pac-Manattracted to the strongest ghost (g1), as well as
the random ghost (g4). The strongest attraction is towards
pills (−15), while unexpectedly, the Pac-Man is mildly re-
pelled by junctions. This was unexpected, since junctions
have more escape routes than corridors and are therefore
safer places to be. Note that the Pac-Man is attracted to
only three out of four edible ghosts - again a surprise. The
evolved controllers do vary from run to run, but many dis-
play these counter-intuitive features. When observing the
game-play, it became clear why there is sometimes an ad-
vantage in being attracted to ghosts - it enables the Pac-Man
to lure the ghost to a power-pill - and subsequently eat the
ghost. This is a dangerous policy, however, and inevitably
leads the Pac-Man to unnecessary death on many other oc-
casions.

With these considerations in mind, a hand-designed con-
troller was constructed, with the weights also shown in Ta-
ble 4. This controller performed poorly, however, as can be
seen from the statistics in Table 3.

Parameter Designed Evolved
g1 (red) 1.0 -0.29875
g2 (pink) 0.8 2.88190
g3 (blue) 0.6 2.60610

g4 (orange) 0.4 -0.31166
e1 -1.0 -1.72596
e2 -1.0 -0.66969
e3 -1.0 -1.36305
e4 -1.0 0.21379
x 0.0 -0.35274
y 0.0 3.48056

pill -0.1 -15.18330
power -1.0 -3.95439

junction -1.0 1.31463

Table 4. Designed and evolved perceptron weights
(see Table 2 for description of parameters).

5 Discussion and Future Directions

Perhaps the least satisfactory aspect of the current work
is the fact that the input vector has been hand-designed.
This was done in order to enable fast evolution of be-
haviours, but also places limits on how good the evolved
controllers ultimately become. One possibility would be to
feed the raw 2D array of pixels to the network, and see what
it can learn from that, although the answer may well be ‘not
very much’. Note however, that this approach has been ap-
plied with some success in [4], where they evolved a car
controller given the visual scene generated by a 3D car sim-
ulator as input to their evolved active vision neural network.
In that case, the main thing it learned was to follow the edge
of the pavement. Learning a good Pac-Man strategy, how-
ever, is a rather different kind of challenge.

A promising direction currently being investigated is us-
ing the connectivity of the nodes in the maze as the basis
for a modular recurrent neural network. The idea is that the
current location of the objects (pills, power-pills, ghosts and
Pac-Man) will propagate a signal-vector through the neural
maze-model, where the features of the vector and its propa-
gation characteristics would be evolved.

Another interesting issue is that of the best space for evo-
lution to work in. It is not clear that neural networks are the
most appropriate structures for evolving good behaviours.
It may be that expression trees or function graphs involv-
ing logical, comparator and arithmetic functions are a bet-
ter space to work in, since much of the reasoning behind
location evaluation might be reducible to making distance
comparisons between various objects in the maze and act-
ing accordingly on the basis of those comparisons.

There is currently a strong trend in evolving neural net-
work game players where fitness is a function of game per-
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formance. By contrast, reinforcement learning techniques
such as temporal difference learning utilise information
available during the game to update the network parameters,
which can ideally lead to faster and more effective learning
than evolution [10].

Regarding ghost behaviours, the current ghosts tend to
crowd together too much, making the game too easy for a
human player, at least when slowed down. A future version
will use ghosts that repel each other, in order to spread out
more. Also, a very natural development would be to co-
evolve ghost strategies, where the fitness is assigned to a
team of ghosts whose objective is to minimise the score that
the Pac-Man can obtain.

6 Conclusions

This paper described an approach to evolving Pac-Man
playing agents based on evaluating a feature vector for each
possible next location given the current location of the Pac-
Man. The simulation of the game retains most of the fea-
tures of the original game, and where there are differences,
our version is in some ways harder (such as the ghosts
traversing the tunnels at full speed).

As expected, whether the ghosts behave deterministi-
cally or not has a significant effect on the type of player
that evolves, and on the typical score that players achieve.
The non-deterministic version is much harder, since a strat-
egy must be learned which is generally good under lots of
different circumstances.

On the other hand, one of the features of simulated evo-
lution is its ability to exploiting any loopholes in the way
a system has been configured. Evolution does indeed ex-
ploit the deterministic game in this way. The neural network
weights, together with the maze and the ghost behaviours,
dictate in a complex and indirect way the exact route that the
Pac-Man will take, and hence the ultimate score obtained.
While it is impossible to foresee the effects that even mi-
nor changes in neural network weights will have on the way
the game unfolds, without actually simulating it, the fitness
function cares only about the final score, and exploits any
changes that happen to be advantageous.

While it is harder to evolve controllers for the non-
deterministic game, it is a more interesting domain to study,
since evolved controllers should now encode generally good
strategies, rather than particular routes. However, the non-
determinism causes high-levels of noise, which makes evo-
lutionary progress more problematic. This would be less of
a problem if the game consisted only of eating pills, but eat-
ing multiple ghosts can cause major differences in the score
that could be due either to differences in strategy, or just
luck.

Ms. Pac-Man is an interesting and challenging game to
evolve controllers for, and much work remains to be done

in this area. This paper explored the use of a purely reactive
neural network for controlling the Pac-Man, but there are
many other possible approaches, and it would also be inter-
esting to investigate how game-tree search techniques could
be adapted to cope with the large state space of the game.
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Abstract- In this paper, we apply an Evolutionary Algo-
rithm (EA) to solve the Rubinstein’s Basic Alternating-
Offer Bargaining Problem, and compare our experi-
mental results with its analytic game-theoretic solution.
The application of EA employs an alternative set of
assumptions on the players’ behaviors. Experimental
outcomes suggest that the applied co-evolutionary algo-
rithm, one of Evolutionary Algorithms, is able to gener-
ate convincing approximations of the theoretic solutions.
The major advantages of EA over the game-theoretic
analysis are its flexibility and ease of application to vari-
ants of Rubinstein Bargaining Problems and compli-
cated bargaining situations for which theoretic solutions
are unavailable.

1 Introduction

There are several methodologies applied for studying
games. One of them is to evolve players’ strategies in a
way that simulates the natural evolution. Evolutionary Al-
gorithm (EA) have proven effective for a wide variety of
problems.

The purpose of our research is to apply Evolutionary Al-
gorithms, specifically Co-evolutionary Algorithms, to solve
an Alternating-Offer Bargaining Problem. To this problem,
the assumptions of the game-theoretic solutions Subgame
Perfect Equilibrium (SPE) are relaxed by equipping players
with imperfect abilities of game theoretical reasoning. De-
lays and any possible divisions of a cake, not limited to SPE,
are therefore possible. Having used a co-evolution adap-
tive system in which bargaining players learn “how to bar-
gain from experiences” while competing against each oth-
ers, we study experimentally how the discount factors affect
the bargaining outcomes and compare those with the theo-
retical SPE. The findings reveal that the evolutionary com-
putation approach is a convincingly complementary and ap-
proximating tool potentially able to tackle bargaining prob-
lems which would require excessive efforts if approached
by traditional game-theoretic methods.

We start with brief descriptions to these methods and
then focus on applying an evolutionary algorithm to an in-
finite extensive-form game, Alternating-offers bargaining
problems.

1.1 Game theory

Game theory is a branch of mathematics that uses models
to study interactions with formalized incentive structures

(“games”). Game theory is important to many fields, in-
cluding economics, biology, politics and computer science.

1.2 Analytical method

Von Neumann and Morgenstern first formalizes two-
person zero-sum games and presents their theo-
retical optimal solutions for ideally rational play-
ers by equilibrating through mathematical reasoning
([Von Neumann & Morgenstern 1944]).

Game theorists solve games, assuming that every in-
volver has “Perfect” rationality as an ‘economic man’ who
typically has complete information relevant to problems,
full computing capacity and well-defined and stable system
of preferences. Rational players know all involvers are ra-
tional and know the rules of the game ([Simon 1955]).

[Nash 1950] formulates Nash Equilibrium for multi-
player games. Complex problems probably have multiple
Nash Equilibriums. How to select equilibrium becomes a
problem. Theorists have proposed different definitions of
rationality to eliminate some equilibrium in order to refine
the Nash equilibrium.

Game-theoretic analysis normally requires substantial
time and costs. Theorists spend years to present a particu-
lar equilibrium for a particular situation. Substantial efforts
may be required to find equilibriums for slightly modified
situations.

1.3 Behavioral method

Some psychologists, along with social scientists and
experimental economists collect data from human an-
swers to questionnaires and competitions ([Simon 1982],
[Barkow et al 1992], [Kagel & Roth 1995]). They observe
and analyzeactualhuman behaviors and try to explain why
in some (simple) cases, people learn to perform better,as
if they know theoretical equilibriums. In some other (often
complicated) situations, people give intuitively reasonable
responses, not using rational choices.

1.4 Evolutionary game theory

Maynard Smith and Price (1973) initiatedEvolutionarily
Stable Strategy(ESS) which is the most influential work
since the Nash Equilibrium in Game Theory. Unfortu-
nately, like traditional game-analytical methods, ESS does
not explainhowa population adapts to such a stable strategy
[Weibull 1995]. Using ESS theory, one can check whether
a strategy is robust to continually evolutionary pressures.
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In the real world however, an ESS may not dominate in a
population during a certain period of time, due to strong
stochastic components emerging in evolutionary process.
[Fogel et al. 1997] and [Fogel et al. 1998] show that “even
in simple games, ESSs may not be stable under conditions
that are pertinent in the real-world, such as finite popula-
tion size and culling selection. Under proportional selec-
tion, large finite populations may tend to vary around an
ESS, but large can be on the order of5000 or more individ-
uals in a population.”

1.5 Evolutionary Algorithm Simulations

Evolutionary Algorithms refer to a class of algorithms
which are inspired by natural evolution. Related methods
to this work are Genetic Programming (GP) [Koza 1992]
[Langdon & Poli 2001] and Genetic Algorithms (GA)
[Holland 1975]. Evolution Algorithms are different from
ESS, although both are rooted in evolutionary biology. To
use an EA approach to solve games can be regarded as a way
of simulation, which do not necessarily converge to game-
theoretic equilibriums or ESS.

[Axelrod 1987] studies normal-form repeated games.
His GA experimental results and [Miller 1996]’s results co-
incide with some reciprocity phenomena shown in human
entries of Iterated Prisoners Dilemma (IPD) competitions.
[Koza 1992] investigates a finite, extensive-form and no-
repeated games with complete and perfect information, for
which he finds Subgame Perfect Equilibrium using Genetic
Programming (GP).

In this work, we attempt to employ Evolutionary Algo-
rithm to study an infinite extensive-form two-person game
with complete and perfect information:Basic Alternating-
Offer Bargaining Problem(BAOBP), or Rubinstein Bar-
gaining Problem [Rubinstein 1982] whoseSubgame Perfect
Equilibrium (SPE) is known. We start by introducing the
BAOBP and its SPE. EA framework and a co-evolving sys-
tem for BAOBP are developed, after which experimental
outcomes are analyzed. Conclusions and future work will
be given in the end.

2 Bargaining Problems

Bargaining problems study a class of situations where par-
ticipants have common interests but conflict over how to di-
vide the interest among them. Participants try to achieve
agreements through negotiation. [Nash 1950] formulates
the Nash Bargaining Problem and [Rubinstein 1982] mod-
els and solves the Basic Alternating-Offer Bargaining Prob-
lem. Based on these, other researchers study more complex
bargaining situations.

2.1 Alternating-Offer Bargaining Problem

BAOBP describes a bargaining scenario in which the par-
ticipant A makes an offer or count-offers to the player B on
dividing a cakeπ = 1 at time of 0, 2, 4, 6, ... . B makes
a counter offer at time 1, 3, 5, 7, ... . The bargaining pro-
cess ends once an offer or a counter-offer is immediately

accepted by the other player. A proposal on division by the
playeri is xi for himself andxj = 1 − xi for the otherj.
Playeri’s discount factorδi is his bargaining cost per time
interval,δi ≡ e−ri whereri is the playeri’s discount rate.
The payoff gained by playeri who has a share ofxi from
the agreement, reached at timet is determined by the payoff
function:xiδ

t
i .

2.2 Assumptions and Subgame Perfect Equilibrium

[Muthoo 1999] characterizes solutions to BAOBP problem
by satisfying two properties: “no delay” and “stationarity”.
No delay means that “whenever a player has to make an of-
fer, her equilibrium offer is accepted by the other player”.
Stationarity requires “in equilibrium, a player makes the
same offer whenever she has to make an offer”. Theorists
mathematically analyze Subgame Perfect Equilibrium un-
der such strong assumptions, in which players should offer
nothing other than the perfect equilibrium partition and for
sure will be accepted at time 0. Partitions are guaranteed
before a bargain even starts, given the discounts factors.

The unique equilibrium taken as the Game-theoretic for-
mula solution of this game is a Subgame Perfect Equilib-
rium in which the first player A obtains:

x∗A =
1− δB

1− δAδB

and the second player B gets:

x∗B = 1− x∗A

Technical treatments and proofs are available in
[Rubinstein 1982], [Muthoo 1999], and [Bierman 1998].

3 Evolutionary Algorithms

Evolutionary algorithms are a population-based improve-
ment mechanism. Individuals are selected based on their
performance (fitness). Better individuals have higher prob-
ability to be selected as “raw material” to breed new off-
spring for the forthcoming generation. The offspring are
created by the genetic operators (crossover and mutation)
on the “raw” genetic material. Evolution pushes individu-
als (more specifically, the genetic materials) to continue im-
proving their adaptation to the environments or objectives
in order to survive. The improvement of individuals illus-
trates the process of acquiring behavior patterns adaptive to
the environments.

In many applications, Evolutionary Algorithms are used
as stochastic search methods, which are proposed to pro-
duce near-optimal solutions to a given problem. Given
the size of the search space (depending on how strategies
are represented), exhaustive search is normally impractical.
An efficient approach able to search acceptable strategies
within a reasonable time is therefore needed. EA are cho-
sen not only because they have succeeded in many other ap-
plications, but also because they are expected that the same
mechanism is applicable to slightly modified scenarios.
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Figure 1: The diagram of Co-evolution

3.1 Co-evolution

Natural co-evolution is the mutual evolutionary influences
between two species dependent on each another. The sur-
vival skills from co-evolving species in nature inspire sci-
entists to borrow co-evolution principles to solve problems
in which two elements are greatly interacting with each
other. Figure 1 shows in an idealized two species situ-
ation, the species A and B are coexisting. One species’s
fitness is its current adaptation to the other species that is
evolving simultaneously. Computer scientists have mod-
eled [Schmitt 2004] and provided experimental outcomes to
substantiate that co-evolution is practically good in some
games. [Tsang & Li 2002] successfully developed a co-
evolutionary system EDDIE/FGP which aids investors to
seek dealing rules in financial markets.

4 Experiments

In this classical model of alternating-offers bargaining pro-
posed by Rubinstein, the discount factors, specifying the re-
spective costs subject to bargaining time for the two players,
are the only elements that determine their bargaining pow-
ers. In this model, the theoretical SPE is unique and can
be expressed analytically. However the assumptions of this
model are too idealized hence other equilibriums and pos-
sibilities, which would arise in more realistic assumptions,
are ruled out.

4.1 Assumptions to Players

Subsection 2.2 has provided the game-theoretic solution.
The unique point prediction P.E.P analyzed by game theo-
retical method is a compelling one because it is difficult to

see why perfectly rational players knowing all involvers are
rational and knowing the rules of the game will do anything
else. However, it is the assumptions that make applicators of
the theory unlikely to believe provided that realistic players
often lack the perfect rationality assumed. So, more realis-
tic settings of assumptions have to be made in order to see
whether strategies of players with Bounded Rationality con-
verge to SPE. We hypothesize there are reciprocal interac-
tions between players’ behaviors, and players learn through
trial-and-error experiences.

In our experiments, strategies have dynamic behaviors
and can propose any division within the size of a cake rather
than “stationarity”; bargaining procedure can last at most
10 time intervals (due to computational resources) instead
of no delay; and players are allowed to use various strate-
gies. Instead of assuming certain rationality of players, we
hypothesize that

• Players in bargaining problems have a very low level
of intelligence and are incapable of game-theoretic
reasoning;

• The only goal of a player is to maximize his overall
payoffs;

• Players learn through trial-and-error experiences over
generations;

• There are reciprocal interactions between bargaining
players’ behaviors, like co-adapting organisms;

• A strategy has no ability of identifying opponents’
strategies;

• A strategy has no memory of historical behaviors of
the opponent’s strategy in the undergoing bargaining;

• A strategy is unable to adjust its behaviors during a
bargaining procedure. In other words, a strategy is
a function without any parameters responding to its
opponent’s actions.

Using this set of assumptions avoids the difficulties of defin-
ing rationality.

4.2 Experimental Set-up

We build a two-population co-evolutionary system imple-
mented by Genetic Programming (GP). Each player has his
own population: a strategy pool consisting of candidate so-
lutions. The strategies of the two players evolve at the same
time. In this system, the objective of the strategies is to
maximize the payoff from bargaining agreements. Well-
performed strategies are chosen under the guideline of se-
lection and undergo progressive modifications to be more
competitive in forthcoming bargaining.

Genetic parametersare stated in Table 1.
Game parameters: 10 pairs of discount factors are cho-

sen, which are shown in the Table 2. In theory,0 < δi < 1.
δi = 0.1 means that a cake with a size1 will shrink to be 0.1
after one time interval for the playeri andδi = 0.9 means
that the cake will be 0.9 after one time interval. There are
two examples of a low and a high discount factors.

Representation: An individual gi ∈ I is a genetic pro-
gram in playeri’s populationI. Its corresponding strategy
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Table 1: GP parameters

Parameter Value

Population Size 100
Number of Generations 300
Function Set { +, -,×,

÷ (Protected)}
Terminal Set {1, -1,δA, δB }
Initial Max Depth 5
Initialization Method Grow
Selection Method Tournament
Crossover rate 0 to 0.1
Mutation rate 0.01 to 0.5
Maximum nodes
of a GP program 50

is s(gi). In order to make the search space smaller, currently
we evolve onlygi. A time-dependent strategy of playeri is
s(gi) = gi × (1 − ri)t, wheret is time, an non-negative
integer.

Fitness Function: A strategy’s performance highly de-
pends on other strategies whom it meets. The design
of using a group of fixed representative strategies as the
fitness assessment has a risk that evolution may exploit
the weaknesses of the pre-defined representatives, but per-
form poorly against others. So the fitness of a strategy
should be based on its performance against the opponent’s
co-evolving strategies at the same evolutionary time. In
other words, for this bargaining problem, the relative fitness
[Koza 1992] assessment is a fair choice. Game Fitness of a
strategys(gi), denoted byGF (s(gi)) is defined as the aver-
age payoff ofs(gi) gained from agreements with strategies
in the opponent’s populationJ which has a set ofn number
of bargaining strategies,j ∈ J :

GF (s(gi)) =

∑
j∈J ps(gi)→s(gj)

n

whereps(gi)→s(gj) is the payoff gained bys(gi) from an
agreement withs(gj) which receivesps(gj)→s(gi). An In-
centive Method to handle constraints is used in defining
the fitness function for all the individuals in the popula-
tions. Detailed designs of the fitness function are described
in [Tsang & Jin 2004].

4.3 Observations

We have executed 100 runs with different random seeds for
each game’s setting chosen. For each game’s setting, the
average of sharesxA from final agreements made by the
best-of-generation individuals from both populations at the
300th generation is shown in the table 2. We observe that
after 300 generations, the100 xAs cluster around SPE, hav-
ing minority of exceptions found. To our hypothesis that
SPE is the same as the mean of our experimental shares,
a t-test shows the t Critical value two-tail is2.2621, larger
than the t statistics value1.3011. So our hypothesis is ac-
cepted at the95% confidence level. Many experiments,

Table 2: The means of the sharesxAs obtained by the best-
of-generation individual in the population A at the300th

generation

Discount SPE ExperimentalxAs’
Factors x∗A AveragexA Deviation

(0.1, 0.4) 0.6250 0.9101 0.0117
(0.4, 0.1) 0.9375 0.9991 0.0054
(0.4, 0.4) 0.7143 0.8973 0.0247
(0.4, 0.6) 0.5263 0.5090 0.0096
(0.4, 0.9) 0.1563 0.1469 0.1467
(0.5, 0.5) 0.6667 0.6745 0.0271
(0.9, 0.4) 0.9375 0.9107 0.0106
(0.9, 0.6) 0.8696 0.8000 0.1419
(0.9, 0.9) 0.5263 0.5065 0.1097
(0.9, 0.99) 0.0917 0.1474 0.1023
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Figure 2: The distribution of 100 runsxA at 300th genera-
tions: δA = 0.5 andδB = 0.5. The vertical line x = 0.6667.
is the SPEx∗A.
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Figure 3: The distribution of 100 runsxA at 300th genera-
tions: δA = 0.4 andδB = 0.6. The vertical line x = 0.5263.
is the SPEx∗A.
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Table 3: Bargaining Time for agreements made by the best-
of-generation individuals from the two populations at the
300th generation

Discount Average
Factors Time

(0.1, 0.4) 0.0000
(0.4, 0.1) 0.0000
(0.4, 0.4) 0.0000
(0.4, 0.6) 0.0000
(0.4, 0.9) 0.2121
(0.5, 0.5) 0.0000
(0.9, 0.4) 0.0100
(0.9, 0.6) 0.4700
(0.9, 0.9) 3.8500
(0.9, 0.99) 5.6100

the SPEs are within the distributions of experimental out-
comes for example in Figure 2 and Figure 3. Therefore
it is very likely that co-evolutionary might generate exact
solutions as the theoretical ones, at a certain degree of pre-
cision. For game settings with extreme low or high discount
factors, experimental results are far from the SPE predic-
tions. In our experiments, extreme bargaining parameters
refer to the sets of discount factors: (0.1, 0.4), (0.4, 0.4) and
(0.9, 0.99). [Bragt et al. 2002] simulates the bargaining by
a multi-agent evolving system that is implemented by real
number-coded Genetic Algorithms. They have found simi-
lar results although their experiments only test the situations
when theδA = 0.6 or δA = 0.3.

All experimental results clearly demonstrate the influ-
ence of discount factors upon bargaining powers: the player
with higher discount factor, comparative to his opponent, at-
tains a larger portion of cake. If both players have the same
discount factors, the first player receives a larger part of di-
vision. This discovering is consistent with the analysis by
bargaining theory [Muthoo 1999].

The discount factors also determine the negotiation time
required for settlements (Table 3). Not all bargains reach
an agreement at the timet = 0. Delays (t > 0) emerge
as a consequence of players’ preferences to higher payoff
and expectations that higher payoff will obtain in future, by
(mainly) those players who have high discount factor; i.e.
relatively patient players. Impatient players, on the other
hand, are eager to agree as soon as possible to avoid such
delays due to relatively higher costs per time interval they
should pay than that of patient players should. Any delay
(t > 0) is costly to both of the two players. Thus the total
sum of payoff they get is less than the size of cake, which
means the cake is not divided efficiently.

Moreover, the EA approach opens a window to show
the process of artificial evolving over time, which neither
game-theoretic solution nor ESS can provide. In Figure 4
and 5, two players’ discount factors are (δA, δB) = (0.9,
0.4). The horizontal line of 0.9375 and the horizontal line
of 0.0625 are SPE for playerA andB respectively. The
values ofgi (labeled as GPT), the shares from agreements
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Figure 4: The best-of-generation individual of Population A
over 300 generations. (δA =0.9 andδB = 0.4)
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Figure 5: The best-of-generation individual of Population B
over 300 generations. (δA =0.9 andδB = 0.4)

and the payoffs of the corresponding shares of the best-
of-generation strategies of every generation are displayed.
Strategies continually update themselves over time to co-
adapt each other and come up with using relatively stable
strategies, measured by fitness. We comment now on mod-
ifications of strategies’ behaviors in this typical run. In the
initial population strategies are generated randomly and for
both players this means offering a deal of roughly 50% of
the cake in average. Soon after, the playerA learns that he
can obtain more, because for him, delay is less costly as he
has a higher discount factor than his opponent. He changes
his first offers as much as he can in order to maximize his
payoff. Finally, he approaches a value relatively close to
the theoretical perfect equilibrium. PlayerB learns that she
has to secure an agreement as soon as possible because it
is not worthy for her to wait. Thus players finally reach at
the point where both of them are willing to agree at time0
when no bargaining costs occur. This fits nicely with the
theoretical explanation.

5 Conclusions

Our objective was to compare the EA results with the Sub-
game Perfect Equilibrium solutions. The experimental ob-
servations show that co-evolutionary algorithms ideally pro-
vides approximate SPE solutions, excluding the game’s set-
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tings having very high and/or very low discount factors. Al-
though co-evolution has not always evolved identical solu-
tions to SPE in our experiments, it has given approximate
alternatives. Moreover, this approach has provided interest-
ing information concerning the influences of discount fac-
tors on bargaining time, the divisions of the cake and the
evolving process. Compared with other research methods
mentioned in the section 1, an EA approach has particular
advantages: on much lower costs over human subjects’ ex-
periments; on less human intelligence over economics theo-
rists and on its reusability and modifiability for complicated
bargaining situations without knowledge of game-theoretic
solutions such as variants of basic alternating-offer bargain-
ing problems and Incomplete information bargaining prob-
lems.

In this work, we have only studied one bargaining prob-
lem, and emphasize that considerably more work will be re-
quired to determine the general utility of EAs in the problem
domain. In future, we also plan to compare the EA results
with actual behaviors by human-subject experiments.
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Abstract— In this paper we present a new framework to
analyze the behavior of evolutionary2×2 symmetric games. The
proposed approach enanbles us to predict the dynamics of the
system using the parameters of the game matrix above, without
dealing with the concepts of Nash equilibria and evolutionary
stable strategies. The predictions are in complete accordance with
those that can be made with these latter concepts. Simulations
have been performed on populations with spatial structures,
and show a good agreement with the model’s predictions. We
also analyze the dynamics of a particular system, showing how
effectively the framework applies to it.

I. I NTRODUCTION

Harrald [1] used genetic algorithms as evolutionary dy-
namics and gives a representation of players with limited
memory in repeated games. His approach is based on binary
representation of mixed strategy players and is extended in
order to use deterministic finite automata for these games.
Starting from this approach we introduce a different and, in
some sense, more natural representation for players and are
able to give an elegant analysis of the game evolution. Finally,
we implement this framework using both Matlab and C++
and compare the results. The structure of the paper is the
following: in Section II we recall some fundamental notions of
evolutionary game theory and present Harrald’s contribution;
in Section III we discuss some of Harrald’s assumptions and
present our approach. In Section IV we introduce a spatially
structured evolutionary algorithm and give a formal description
of the evolutionary system. Section V is devoted to the
simulation analysis and conclusions are given in Section VI.
The Appendix concerns some consequences of floating point
arithmetic error we encountered in our implementations.

II. PROBABILISTIC PLAYERS

Let’s consider the general form of a2× 2 symmetric game
where the two players always choose from the same action
set, say{X, Y }, with the payoff matrix as depicted in Table
I.

In [1], Paul Harrald proposed an approach based on proba-
bilistic strategies. A player’s strategy is no longer determinis-
tic, and becomes a probability of playing actionX, regardless
of the past actions played by both players. With the exception
of the cases where the strategy probability is either0 (i.e.,
always play actionY ) or 1 (i.e., always play actionX), the

X Y
X e g
Y h f

TABLE I

THE GENERAL PAYOFF MATRIX FOR A SYMMETRIC2× 2 GAME.

resulting strategies are mixed. A strategy is represented as a
binary chromosome of fixed lengthL: the binary string is
decoded into an integer value that is then divided by2L − 1,
so to obtain the actual value of the strategy. In a panmictic
(i.e., not spatially distributed) population, each agent in the
population plays against each other agent in a repeated game
for a fixed number of iterations, obtaining a total payoff
representing his fitness. During a game, each player determines
his moves randomly choosing between the two actionsX
and Y with the probability encoded in his chromosome. By
tournament selection, couples of parents are selected according
to their fitness values. Two offspring are obtained from each
couple of parents using one-point crossover, and each bit of
their chromosome is mutated by standard binary mutation. The
obtained offspring population is then considered as the new
population of the next generation.

We consider symmetric bimatrix gamesG (I, S, π), where
I = {1, 2} is the player set, consisting of two players,S is the
pure strategies space andπ is the combined payoff function
fully represented by the associated payoff matrix pair(R,C),
whereC = RT ( see [2] for details). As usual, the set of mixed
strategies for playeri is denoted∆i and, since we restrict our
attention to symmetric games, it holds∆ := ∆1 = ∆2

In this class of games we define thesymmetric Nash equi-
librium as any strategy pair(x, y) ∈ ∆2 such thatx ∈ β (y)
and y ∈ β (x) whereβ (·) is the best reply correspondence,
which maps each mixed strategy to the face of∆ which is
spanned by the pure best reply to ’·’. Finally an evolutionary
stable strategy(ESS) is a strategyx ∈ ∆ such that for every
strategyy 6= x there exists somēεy ∈ (0, 1) such that for all
ε ∈ (0, ε̄y) it holds:

x ·R(εy + (1− ε)x) > y ·R(εy + (1− ε) x)
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III. PROBABILISTIC PAYOFFS

Two main criticisms can be raised to Harrald’s evolutionary
machinery:

• Since a player has no memory of the previous moves
in a game, there is no need to make each couple of
opponents play all the iterations of a game. In fact, given
a big enough number of play iterations, if we denote the
probabilities of the two playersA and B with pA and
pB respectively, then we can approximate the expected
gain of playerA according to the game described by the
matrix in Table I by the expression:

epApB +gpA(1−pB)+h(1−pA)pB +f(1−pA)(1−pB).
(1)

• The binary representation of the probability could not
be the most suitable one (for a complete discussion on
the representation choice see, for example, [3]). Other
possible representation could be better suited, such as the
real number one, as suggested by the author himself in
the article.

Concerning the first criticism, let’s consider a population
P (t) of N probabilistic players at generationt and denotepi,
the agenti’s probability of playing actionX. The expected
gain of playeri, when playing with agentj, follows from
expression (1):

G(i, j, t) = epi(t)pj(t) + gpi(t)(1− pj(t)) +
+ h(1− pi(t))pj(t) + f(1− pi(t))(1− pj(t)),

therefore, the fitness (i.e., the sum of his payoffs against all
other agents in the population)f(i, t) of agenti at generation
t is

f(i, t) =
∑
j 6=i

G(i, j, t). (2)

If we denote the sum of the probabilities of all players in the
population at generationt with U(t), equation (2) becomes

f(i, t) = epi(t)(U(t)− pi(t)) +
+ gpi(t)(N − 1− U(t) + pj(t)) +
+ h(1− pi(t))(U(t)− pi(t)) +
+ f(1− pi(t))(N − 1− U(t) + pj(t)). (3)

Equation (3) gives an effective way of calculating the fitness
of an agent of a given population without having to perform
the actual games between the agent and all the other agents
in the population.

It is well known (see for example [2]) that every2 × 2
symmetric game can be normalized, and is equivalent to a
doubly symmetric game, where the payoff matrix is sym-
metric. While this equivalence is proven in game theoretical
context, it remains to be analyzed when considering dynamical
evolutions. The new game, that is called reduced, has the
payoff matrix displayed in Table II, wherea = e − h and
b = f − g.

We decided to focus our attention on doubly symmetric
games, given their relevance in evolutionary game theory. In

X Y
X a 0
Y 0 b

TABLE II

THE GENERAL PAYOFF MATRIX FOR A REDUCED SYMMETRIC2× 2 GAME.

the case of a reduced symmetric game, the expected gain of
player i playing against agentj at generationt is

G(i, j, t) = api(t)pj(t) + b(1− pi(t))(1− pj(t)),

thus, following the same reasoning done for equation (3), the
fitnessf(i, t) of agenti at generationt is given by

f(i, t) = api(t)(U(t)− pi(t) +
+ b(1− pi(t))(N − 1− U(t) + pi(t)). (4)

At generationt, let’s define the mean agentp̄(t) of popula-
tion P (t) as the mean of the probabilities of theN agents of
the population, i.e.,̄p(t) = U(t)/N . If we replace in equation
(4) the value ofpi(t) with the value of the mean agentp̄(t),
and we divide by the constant factorN − 1, we obtain the
expression

F (p̄, t) = (a + b)p̄2(t)− 2bp̄(t) + b, (5)

proportional to the fitness of the mean agent at generationt.
This equation determines a parabola with vertexV at abscissa
b/(a+ b). Note that this value coincides with the value of the
game.

The selection pressure of an evolutionary algorithm evolving
this kind of agents’ strategy will drive the mean agent of the
population towards higher values on the parabola described by
equation (5).

According to the possible values of the matrix parameters
a and b in a reduced symmetric game we have the following
four cases:

1) both a and b are positive: the parabola is concave and
the evolution will depend from the mean agentp̄(0) of
the initial populationP (0); if p̄(0) < b/(a + b) (the
vertex of the parabola, i.e., the value of the game), then
the evolution will be driven toward actionY ; otherwise
the evolution will be driven toward actionX (see Figure
1(a));

2) a is negative andb is positive: the parabola is decreasing
in the interval [0, 1]. Therefore, whatever the initial
population is, the evolution will be driven toward action
Y (see Figure 1(b));

3) botha andb are negative: the parabola is convex, since
its vertex is inside the interval[0, 1]. Thus, whatever the
initial population is, the evolution will be driven toward
the vertex, i.e. the value of the game (see Figure 1(c));

4) a is positive andb is negative: the parabola is increasing
in the interval[0, 1]. Therefore whatever the initial po-
pulation is, the evolution will be driven toward action
X (see Figure 1(d)).
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(a) (b)

(c) (d)

Fig. 1. The parabola defined by equation (5) whena > 0 and b > 0 (a),
a < 0 andb > 0 (b), a < 0 andb < 0 (c), anda > 0 andb < 0 (d).

The results of this analysis completely agree with classical
results of the evolutionary theory of2 × 2 symmetric games
(see [2] and [4]) obtained using the concepts of Nash equilibria
and evolutionary stable strategies. Moreover, the model implies
that the spatial structure of the population does not influence
the mean behaviors of the evolved populations, as we will see
in the next section.

IV. SPATIAL ARTIFICIAL EVOLUTION

The framework described in the previous section is inde-
pendent of the spatial structure of the evolved population. To
test whether its predictions are good when spatial constraints
are introduced, we have decided to evolve populations on
two-dimensional regular lattices: each agent is placed on a
vertex of a rectangular grid with periodic boundary condi-
tions (i.e., a toroidal structure), and is connected with the
eight closest agents, thus defining a Moore neighborhood.
While other neighborhoods are possible, the results remain
qualitatively the same. Furthermore, one of the authors is
running an experiment on human subjets; among the results,
it is evident that individuals choose a partner in their physical
Moore neighborhood. In further research we will consider the
dynamical evolution on different networks such as small-world
networks, fragmented networks and random networks.

The evolution is performed synchronously: at each genera-
tion, each agent selects the fittest agent in his neighborhood
and produces an offspring whose associated probability is
obtained by intermediate crossover (also known as arithmetical
or guaranteed average crossover [3]) between the two proba-
bilities associated with the agent itself and the selected agent.
No mutation is used in this process, and the produced offspring
replaces the considered agent in his location in the structure.

The dynamical system is completely deterministic: different
attractors can be found for each system, but, as we will show in
the simulations in Section V, the mean agent will always tend
to 0, 1 or the value of the game (the vertex of the parabola)
depending on the cases described in the previous section.

Even if the algorithm is quite simple, we have noticed
that using two different implementations in Matlab and C++
we obtained results qualitatively comparable but numerically
different. This is probably due to the different internal rep-
resentations of real numbers: for more details see the imple-
mentation note in the Appendix. While different approaches
have been suggested for handling errors in floating point
representations (e.g., interval arithmetic, see [5]), given the
finite state structure of our model, we decided to use integer
representation for states. This approach is similar, in a certain
sense, to that used by Harrald [1].

To each agentai is thus associated an integer statesi ∈
{0, 1, . . . ,M}: the agent will then play actionX with proba-
bility pi = si/M . To calculate the gain (the fitness) of agent
ai, this probability is used in equation (4): if we denote with
W (t) the sum of the states of the agents of the population
at time t (W (t) =

∑N
i=1 si), we haveU(t) = W (t)/N .

Multiplying by M2 and simplifying, we obtain the following
form of equation (4):

F (i, t) = −(a + b)s2
i (t) +

+ ((a + b)W (t) + Mb(2−N))si(t) +
+ Mb(M(N − 1)−W (t)). (6)

This evolutionary system can be described in a more formal
way: let’s consider a discrete timet and a populationP (t) of
N agents. To each agent are associated a state and a location:
P (t) = {a1(t), a2(t), . . . , aN (t)}, with ai = 〈si(t), li〉, where
si(t) ∈ S = {s1, s2, . . . , sm}, the set of the possible states
of the agents, andli ∈ L = {l1, l2, . . . , lN}, the set of the
locations of the agents in the structure of the population. If
we denote withT the product space between the space of the
possible states and the space of the possible locations of the
agents (T = S × L), a population ofN agents is an element
of TN .

A fitness functionF : TN → RN (where R is the
set of real numbers) is given, such that each population
P (t) = {a1(t), a2(t), . . . , aN (t)} is associated to a vector
f(t) = F (P (t)) = 〈f1(t), f2(t), . . . , fN (t)〉 with fi(t) being
the fitness value of agentai(t).

The selection mechanism is described by a functionSel :
TN × RN → SN such that 〈s′1(t), s′2(t), . . . , s′N (t)〉 =
Sel(P (t), F (P (t))). For each agent in the population it selects
the state of the agent in his neighborhood with the highest
fitness value. Note that only the state of an agent is selected,
since the location of the selected agent doesn’t influence
the successive crossover. On the contrary the location of the
selecting agent influences the functionSel, since it determines
the selection pool for each location in the structure. The
topology of the structure thus affects the selection function,
but not the successive reproduction operators.
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The state of the agent in the considered location is then
combined with the selected state by a functionOp : S×S →
S, producing the state of the agent in the next generation for
the considered location. If only a crossover operator is used,
as it is the case in our evolutionary algorithm, the function
Op can be represented in the form of anN × N matrix of
elements ofS.

Given the topology of the structure, the setL of the possible
locations of the agents, the setS of the possible states of
the agents, the fitness functionF , the selection functionSel,
the recombination functionOp, and the populationP (t), the
populationP (t + 1) = {a1(t + 1), a2(t + 1), . . . , aN (t + 1)}
at the next generation is formed by agentsai(t+1) = 〈si(t+
1), li〉 such thatsi(t + 1) = Op(si(t), s′i(t)).

V. SIMULATIONS ANALYSIS

Two groups of simulation have been performed to test the
exactness of the models’ predictions: the first time, we let the
system evolve starting from random populations. Then we cre-
ated a particular initial population and the system dynamical
behavior is observed, so as to show how the prediction of the
model actually works.

At first, we let evolve a population of2500 agents at21
possible states disposed on a50 × 50 toroidal grid with a
Moore neighborhood (each agent’s neighborhood is composed
by the agent itself and the 8 agents directly surrounding him).
The agents face a game whose matrix is the one depicted in
Table III).

X Y
X −2 0
Y 0 −3

TABLE III

THE PAYOFF MATRIX FOR THE SIMULATIONS.

Such a matrix falls under case 3) of Section II since both
a and b are negative. The model in this case predicts that,
whatever the initial population is, the mean agent will tend to
the value of the game, which in this case is0.6. This prediction
is confirmed by the simulation results: in Figure 2 the evolution
of the mean player over a generation is shown, when starting
with a random population composed by20% of agents playing
actionX with probability 1, and80% playing actionY with
probability 1.

The evolution over the generations of the fitness of the mean
agent is shown in figure 3(a): it can be noticed how, even
though the mean agent value oscillates between two different
states, its fitness value (its payoff against all other members
of the population) stabilizes. The fitness of the mean agent
is clearly linked to the mean fitness of the population: the
artificial evolution tends to populations of different agents who
have very similar fitness values. In fact the difference between
the maximal and the minimal fitnesses of the population
through generations tends to0, as it is shown in figure 3(b).

As we have previously pointed out, the model can predict
the behavior of the mean agent, without taking into account
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Fig. 2. Evolution of the value of the mean player over time of a population
of 2500 agents at21 possible states disposed on a50×50 toroidal grid with
a Moore neighborhood.
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Fig. 3. Evolution over the generations of the fitness of the mean agent (a) and
of the difference between the maximal and the minimal fitness of a population
of 2500 agents at21 possible states disposed on a50×50 toroidal grid with
a Moore neighborhood.

the structure of the population and the initial disposition of
the agents. In fact, starting with different populations, we
will observe different attractors for the evolutionary process.
For this simulation a period2 attractor can be observed (see
figure 4, where the two populations are shown): darker agents
correspond to probabilities closer to0 of playing actionX,
with black agent corresponding to probability0, and white
agents to probability1.
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Fig. 4. Final populations of2500 agents at21 possible states disposed on a
50× 50 toroidal grid with a Moore neighborhood. The two populations form
a period2 cyclic attractor of the evolutionary system.

If the payoff matrix is changed to the one depicted in Table
IV, the game falls under case 1) of Section II since botha
andb are positive.

The model predicts that the evolution will depend on the
mean agent̄p(0) of the initial populationP (0); if p̄(0) < 0.6
(the value of the game), then the evolution will be driven to-
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X Y
X 2 0
Y 0 3

TABLE IV

THE PAYOFF MATRIX FOR THE SIMULATIONS.

wards actionY ; otherwise the evolution will be driven towards
actionX. The prediction is fully confirmed by the simulations
shown in Figures 5 and 6, where the time evolution of the
mean agent and of the difference between the maximal and the
minimal population fitnesses are shown, in the case of initial
random populations with̄p(0) = 0.5939 and p̄(0) = 0.6047
respectively. Note how the difference between the maximal
and the minimal fitnesses in the population rapidly grows at the
beginning of the evolution (the agents split towards opposite
strategies), and then tends to0.

(a) (b)

Fig. 5. Evolution over the generations of the mean agent (a) and of the
difference between the maximal and the minimal fitnesses of a population of
2500 agents at21 possible states disposed on a50× 50 toroidal grid with a
Moore neighborhood. The initial population has a mean agent with associated
probability p̄(0) = 0.5939 < 0.6, the value of the game.

Fig. 6. Evolution over the generations of the mean agent (a) and of the
difference between the maximal and the minimal fitnesses of a population of
2500 agents at21 possible states disposed on a50× 50 toroidal grid with a
Moore neighborhood. The initial population has a mean agent with associated
probability p̄(0) = 0.6047 > 0.6, the value of the game.

In the second part of the simulations we consider a small
population of121 agents disposed on a11× 11 toroidal grid.
Each agent’s neighborhood is composed by the agent itself and
the 8 agents directly surrounding him (thus forming a Moore
neighborhood). The payoff matrix of the game is the same as
for the first group of simulations (see Table III).

The set of an agent’s possible states is composed of7
elements (S = {0, 1, . . . , 6}). The probabilities of playing
actionX associated to the7 states are respectively:0, 0.1667,

0.3333, 0.5, 0.6667, 0.8333, and1. To draw the populations
during the evolution, we have associated to each state a color
on a grey scale (see Figure 7).

Fig. 7. Color scale for7 state agents: from state0 (black) we pass through
states corresponding to probabilities0.1667, 0.3333, 0.5, 0.6667, 0.8333,
to finally reach state6 (white) that corresponds to probability1 of playing
actionX.

The intermediate crossover between the integer states is
performed according to the crossover matrix of Table V:
recombining a statei agent with a statej agent, the state
of the offspring agent will be the one at the intersection of
row i and columnj of the matrix.

0 1 2 3 4 5 6
0 0 0 1 1 2 2 3
1 0 1 1 2 2 3 3
2 1 1 2 2 3 3 4
3 1 2 2 3 3 4 4
4 2 2 3 3 4 4 5
5 2 3 3 4 4 5 5
6 3 3 4 4 5 5 6

TABLE V

THE CROSSOVER MATRIX FOR AGENTS WITH7 POSSIBLE STATES.

Figure 8 shows the evolution of the system starting from
an initial population solely of all agents playing actionX
with probability1 (agents’ states6), with the exception of the
central individual who plays actionY with probability1 (agent
state0). For each generation (t = 0, 1, . . . , 7) the population
is plotted on the left, and the parabola associated to the
population is drawn on the right: the probabilities associated
with the 7 possible states of the agents are on the x axis, and
the corresponding fitness values, function of the sumU(t) of
the probabilities associated to the agents in the population, are
on the y axis.

At time t = 0 the single agent at state0 has the highest
fitness value (the parabola is decreasing in the interval[0, 1]),
and therefore it will be selected by its surrounding neighbors
for recombination. Applying the crossover matrix (see Table
V), at the next generation (t = 1) the population will be
formed by one agent at state0 surrounded by8 agents at
state3, and all other agents at state6. The behavior of the
population from time1 to time 4 is analogous to that of time
0: since smaller associated probabilities have higher fitness
values, the agents will recombine with the agent in their
neighborhood with smaller states. Note that the agents at state
6 disappear, because they have always the smallest fitness
value. Since the crossover matrix allows the production of
state6 agents only when both the parents have state6, that
state will never appear once lost in the population.

At time t = 5 the parabola becomes increasing in the
interval [0, 1]. The agents at state0 have the lowest fitness
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Fig. 8. Evolution of a population of11 × 11 agents that can assume7 possible states: the initial population is composed by all agents playing actionX
with probability 1 (agents’ states6), except the central individual that plays actionY with probability 1 (agent state0). For each time step, the population
(left) and the corresponding parabola (right) are shown. At timet = 8 the population will be the same as at timet = 6, resulting in an attractor of period2
for the dynamic of the system.

value: those at the border of the region will select state-
2 agents for recombination (since they have higher fitness),
producing state-1 offspring agents. Agents at state2 will
select, for the same reason, agents at state4, producing state-3
offspring agents. All other agents don’t change state, since the

crossover operator will produce offsprings with the same state
(see Table V).

At time t = 6 (see the enlargement in Figure 9 left) the
parabola is still increasing in the interval[0, 1]: only agents at
state1 will change state, since the only crossover producing
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offsprings with a different state is the one between agents at
state1 and agents at state3. At time t = 7 (see the enlargement
in figure 9 right), parabola is such that state-0 agents have a
higher fitness than state-1, -2, and -3 agents, and therefore
only agents at state2 selecting agents at state0 will produce
an offspring at a different state (1). A population equal to
that of generation6 is produced, and the system enters in a
period-2 attractor oscillating between the two configurations.
The system oscillates between states in which the mean agent
has strategies0.573003 and0.595041. This result completely
agrees with the model’s prediction: since botha and b are
negative, the mean agent shall tend to the value of the game,
which in this case is0.6.

t = 6 t = 7

Fig. 9. Enlargement, enlarging y-axis, of the parabola of figure 8 at
generations6 and 7: from increasing in the probability interval[0, 1] at
generation6, it becomes decreasing at generation7.

VI. CONCLUSIONS ANDFUTURE WORK

We have introduced a new framework to analyze and predict
the behavior of evolutionary2 × 2 symmetric games. This
approach only uses the parameters of the payoff matrix of the
game, and leads to behavior predictions that are in perfect
agreement with classical evolutionary theory, without dealing
with Nash equilibria or evolutionary stables strategies. The
proposed model is not influenced by the spatial structure of
the evolving population of agents.

The evolutionary algorithm used to experimentally validate
the model is then described, introducing a new formalism for
the evolution of spatially structured populations. The experi-
ments fully confirm the predicted behaviors, and a complete
analysis of a simple dynamical system is presented, in order
to exemplify the model.

In the future we intend to investigate the different dynamics
induced by different crossover matrices, and the possibility of
the co-evolution of strategies and crossover operators. We also
want to study and model the introduction of random mutation
in the evolutionary algorithm.
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APPENDIX

The consequences of floating points arithmetic error are
well known in the simulation literature (see for instance
[6]). In order to avoid this common pitfall we decided to
implement our framework using both Matlab and C++. With
continuous states the results obtained by two implementations
were qualitatively the same even if numerically different.

Since exact replication of the experiments is obviously
desirable we decided to have quantized states in order to
obtain crossover results that were consistent between the two
implementations.

While usually such effects are thought to be arising from
accumulated floating point errors, in our case we found such
discrepancies almost immediately.

In fact even with the seven-state simulation described in
Section V our Matlab implementation incurred in some prob-
lems, when performing the arithmetical crossover.

For example, consider crossover between two agents with
probabilities1/2 (state3) and0 (state0). With the arithmetic
crossover the offspring is1/4 and, in deciding the state of the
offspring, two quantities must be compared:1/4 − 1/6 and
2/6− 1/4. Note that obviously in this case the two quantities
are identical and a rule should be implemented for deciding
the state of the offspring. The problem we encountered is that
Matlab considers1/4− 1/6 greater than2/6− 1/4. With the
C++ implementation we used long double i.e., floating-point
data type with 80 bits of precision for our variables and the
problem did not occur. Yet, since the accumulated floating
point errors could not be ruled out completely, we decided to
consider integer representation for the states.

Nevertheless a further step was in order. Since, due to the
internal representation, the same fitness could be considered
different depending on the implementation, we resolved to
consider integer values for the fitness as well. This, to the
best of our knowledge, solved our problems with the only
drawback of imposing an upper bound on the number of states
to be considered.
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Abstract— We study by computer simulation a population of
individuals playing the prisoner’s dilemma game. Each player
has an invariable strategy (cooperate or defect) but the network
of relationships between players is allowed to change over time
following simple rules based on players’ degree of satisfaction.
The population almost always reaches a stable state and we
observe that, in the long run, cooperators tend to cluster together
in order to maintain a high average payoff and to protect them-
selves from exploiting defectors. Thus network topology plays an
important role even though strategies are not allowed to evolve.
We investigated both synchronous and asynchronous network
dynamics, observing that asynchronous update, in addition of
being more reasonable in a social setting, induces system stability
more often than the synchronous one.

I. INTRODUCTION AND PREVIOUS WORK

Game theory is an attempt to model and analyze conflicting
situations such as those that arise in the economy, in biology,
and in society in general [1]. In this context, the well-known
game called Prisoner’s Dilemma (PD) has played an extremely
important role and has received a lot of attention, including
public computer tournaments (for a survey, see Axelrod’s book
[2]). The prisoner’s dilemma has fascinated researchers be-
cause it is an interaction where the individual rational pursuit
of self-interest, one of the pillars of game theory, produces
a collective result that is self-defeating. The following payoff
matrix represents the prisoner’s dilemma game as a two-person
game in normal form:

C D
C (R,R) (S,T)
D (T,S) (P,P)

In this matrix, C stands for cooperation and D for defection.
R stands for the reward the two players receive if they both
cooperate, P is the punishment for bilateral defection, and
T is the temptation, i.e. the payoff that a player receives if
she defects, while the other cooperates. In this latter case,
the cooperator gets the sucker’s payoff S. These names are
traditional, but there is nothing special about them, of course.
The payoff values are ordered numerically in the following
way: �������	�
�	� and ���������������� .

This game has a unique Nash equilibrium, (P,P), in which
both players defect, i.e. they both choose the strategy D. Thus,
in a one-shot play of the game the rational outcome is for
both players to play D. However, both players would be better

off cooperating, with a payoff (R,R). But the outcome (R,R),
although it is preferable, is not a Nash equilibrium, and thus
two rational players will always play D instead.

If the PD game is iterated a known finite number of times,
the result doesn’t change, and steady defection of the two
players is the rational outcome of each encounter in the
sequence. However, when the game is iterated an indefinite
number of times, strategies that allow cooperation to emerge
and persist are possible, as described by Axelrod [2]. This is
an interesting result since it could lend some justification to
the commonly observed fact that cooperation does appear in
society, in spite of individual greed. There is a large amount
of literature on the iterated PD, see for instance [2] and [3].
We will only deal with the one-shot case in the rest of the
paper.

Considering now not just two players but rather a population
of � players, evolutionary game theory [4], [5] prescribes that
defection is the evolutionarily stable strategy of the population,
given memoryless players. However, in 1992, Nowak and
May [6] showed evidence, by using computer simulations,
that cooperation in the population is sustainable under certain
conditions even in the one-shot game, provided that the pop-
ulation of players has a spatial structure. A spatial structure
means that the population members are disposed on some kind
of lattice, and each player has a local small neighborhood of
other players with which he plays a number of two-person PD
games in succession. Nowak and May originally used a square
grid with five or nine neighbors per cell, but the results are
robust with respect to changes of the neighborhood shape and
size, if it remains small and localized [7].

The fact that cooperation may be stable in a structured
context even when players do not have memory of past
encounters is a remarkable result. However, many real con-
flicting situations in society are not well described by a
fixed geographical disposition of the players. In economy,
for instance, markets and relations between firms are not
limited by geographical distance in this era of fast global
communication. The same can be said of many social and
political interactions where relationships may change over
time. Thus, it becomes of interest to study how the topology
of the interactions influences the global outcome, and how
this same relational structure network may evolve under the
pressure of the player’s strategic interactions. The PD is an
excellent way of studying such an evolution in a simplified
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and understandable environment.
Recently, Zimmermann et al. [8] have published a study in

which both the strategies of players – C or D – and the network
of players’ relationships may change and adapt during time.
More specifically, they use the same rule as Nowak and May to
play successive two-person PD games between a given player
and all the players that are linked to it in the network. Each
player then adopts the strategy – C or D – of the neighbor
with the best accumulated payoff. Players are satisfied if their
payoff is the highest among the neighbors, otherwise they
are unsatisfied. Only Unsatisfied D-players can then break
a link to another D-player with a certain probability and
rewire it randomly. The evolution is synchronous, i.e. all the
players update their strategies and possibly the neighborhood
simultaneously. Using computer simulations, Zimmermann et
al. find that, for some value of the parameters, the network of
players self-organizes to stable cooperative states. Moreover,
by weighting the rewiring with a probability that favors D
players that are closer in the network – in the sense of the
path length between them – they also show that the resulting
steady-state networks are of the small-world type [9].

Here we follow similar ideas but we assume a population
of players each of which has a fixed unchanging strategy C
or D. Thus, our goal cannot be the study of the evolution
of the proportion of C and D strategies in the population,
since this proportion is fixed. Instead, we concentrate on the
purely topological aspects i.e., the evolution of the network of
relationships among the players. With respect to [8], our net-
work update rules are different, as explained in the following
section. As well, we study both synchronous and asynchronous
update policies and compare the results.

Although the assumption of unchanging strategy may seem
unrealistic, this is not necessarily so. Indeed, there are many
situations in which the player has little or no choice of
alternative strategies, either because of insufficient knowledge
or because of external social pressure. Think for instance
of religious or social beliefs and behaviors in homogeneous
human societies, or of market agents that do not know how
to adapt their strategies to market changes and stick to fixed
strategies for long periods of time. Another example would be
always voting for a given political party irrespective of other
considerations, a commonly observed situation. Thus, fixing
the strategies and allowing the relational network to evolve is
a useful first step toward an understanding of the interplay of
topology and dynamics in social interactions as represented
by the PD.

II. THE MODEL

The game considered consists of a population of � indi-
viduals all playing the prisoner’s dilemma. The population can
be subdivided into the subset of the cooperators, denoted ��� ,
and the one comprising the defectors, denoted ��� . Initially,
there are no links between the � players in the population.
At a given time � , an individual � interacts exclusively with
a subset of the entire population known as its neighbors or
neighborhood and denoted by �	� 
� � with the condition � ��

����� ����� . An individual � does not necessarily have neighbors
in which case ������� . An interaction of an individual �
with one of its neighbors � is represented by an undirected
link so that � � ��� 
� ��� � � ��� 
� ���	� . The different
values of ����� , �����! #" , �$��" , �%��"& '&( have been
chosen to be in accordance with the � � � � � � �
and � �  ��� ������� relationships of the PD mentioned in
the introduction. Furthermore, ���)"* '*( was chosen due to
the interesting results obtained in previous works as to the
persistance of + and , together for values of � in between"* � and "* - [7]. This leads us to the following payoff matrix
for a 2-agents one shot PD game:

C D
C (1,1) (0,1.39)
D (1.39,0) (0.1,0.1)

TABLE I

PAYOFF MATRIX FOR THE TWO-PERSON PD GAME USED IN THE

SIMULATIONS.

A. Normalized Average Payoff and Notion of Satisfaction

Let ./� be the strategy of an individual � , with .0�1�2� for a
defector (D) and .0���3" for a cooperator (C). Furthermore,
let us denote 4���� � the normalized average payoff of the
individual � at a given time step � . This gives us the following
equation:

4 � 
� �5�
6778 779

:<;=?>A@CBED ;F: =?>HGJI if K >�LNM ,
=?>ODQP/>RDTSG@UB1VR>?DTSGAW�GBED ;F: =?>XGXDTP/>?DTSGJI1B1VR>OD#SG
Y5GZ [ >XD#SG Z D\=?>@UBED ;F: =]>AG\IUG otherwise.

(1)
where ^�� � � (resp. _/��
� � ) is the number of cooperators (resp.
defectors) � � � at the given time step � . 4 � � � has a negative
value when player � is isolated to distinguish this case, where
the player has to randomly choose another player in the
population to be its neighbor, from the case where the player
has a � payoff and must thus rewire one of its links. Once4 � 
� � is defined, we can introduce the satisfaction threshold` � of an individual � as:` �a��b >Rcdfehgac
ikjldamOm!eNcXn5j b >Amoc
pqehgacJrsjtpumOmb >
iseNcXn<j b >mAr (2)

where �wvyxsvz" is called the satisfaction degree.
An individual � is said to be satisfied iff 4{��| ` � . In
all other cases, � is said to be unsatisfied. The satisfaction
degree characterizes somewhat the minimum percentage of
cooperators an individual should have among its neighbors in
order to be satisfied. Notice however that x does not indicate
precisely this minimum percentage since D-neighbors equally
increase a player’s payoff, even though this contribution is
generally insignificant. The two limit cases are xh��� , which
means that an individual � will always be satisfied except if it
has no neighbors ( ���U�2� ), and x}�~" implying that � will be
satisfied iff its neighborhood is composed solely of cooperators
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(i.e. 4�� � ` � � " ). It is to be noted that the notion of a
satisfied individual voluntarily differs from the one defined by
Zimmermann et al. [8] where a player is satisfied only if it has
the highest payoff among its neighbors. In our opinion, in a
real-world situation, one doesn’t necessarily desire to be “the
best”. Take for example an employee working for a company.
She need not earn the highest salary among her colleagues
to be pleased with her pay. As a matter of fact, it is likely
that the employee even ignores the salary of his or her fellow
workers. This is comparable to our notion of satisfaction where
an individual is not obliged to know the neighbors’ payoff
to be contented. Furthermore, we find it important to work
with an average payoff as opposed to an accumulated one
considered by Zimmermann et al. [8]. Indeed, in the case of
an accumulated payoff, there could be illogical situations, due
to the fact that this type of payoff privileges quantity over
quality, meaning that an individual with many neighbors has a
good chance of having a better payoff than an agent with just
a few “good” ones. A good example of such a situation is a
C-player surrounded by two dozen defectors having a better
payoff than one who has exactly one or two C-neighbors and
no D-neighbors.

B. The Rules

The interactions between the participants of the game evolve
in time according to the following basic rules:

Let � be a player and � � the ����� time step.
� if ����� � �5��� :� is unsatisfied and must choose an individual uniformly

at random � in the population to be � ’s new neighbor, i.e.� � ����� �	��
 � .� else if 4�� 
� � �� ` � :� is unsatified and must hence pick randomly one of
its D-neighbors and replace it with a randomly chosen
individual � satisfying � �� � � 
� � � .
If such a � does not exist, nothing is done and � must try
to bear with its unsatisfaction.
Notice that an unsatisfied individual � with � ���� �
necessarily has a D-neighbor since C-neighbors only
contribute to � ’s satisfaction.� otherwise:� is satisfied of its situation and will thus continue to play
against exactly the same individuals at time step � �	��

unless, independent of � , one of its neighbors decides to
cut off its link with � or an outsider inserts itself into � ’s
neighborhood.

Finally, let us stress the fact that unlike the model in
[8], defectors, as well as cooperators, have the possibility to
attempt a change in their neighborhood.

C. The Updates

The changes made to a population between two succesive
time steps � � and � �	��
 will be done in two different ways:

1) Synchronous: In the synchronous update, every individ-
ual � starts by playing the PD game with its neighbors and uses
the outcome to calculate its normalized average payoff 4�� � � � .
Next, all the unsatisfied players simultaneously modify their
neighborhood according to the previously mentioned rules (II-
B). Possible collisions are resolved by using a temporary
network data structure. The synchronization lies in the fact
that each player considers the necessary changes to make in
its neighborhood as it sees it at time step � � unaware of what
the other players are planning to do.

2) Asynchronous: For the asynchronous case we use inde-
pendent random ordering [10] of updates in time. This is a
close approximation of a Poisson process. The time � needed
to update the whole population is subdivided into a sequence
�� 
�� ��� �  /  � ��� � of update steps. During an update step ���
individual � is randomly picked, 4 � ���� � is calculated, and
the appropriate rules (II-B) are used to immediately adapt
its neighborhood if unsatisfied. Note that in the rules II-B,����� �	��
 � becomes ������ � ��
 � ��� � " � � �   / � �h This process
is iterated � times (where � is the population size) with
replacement. When the � update steps are over, only then do
we change time step to � �	��
 . Note that this is only one of the
many possible sequential update policies [11], [10], but it is a
reasonable one in our case.

Despite the fact that most work in the field has been done
using synchronous simulation, there are good reasons for
introducing an asynchronous update policy in spatial games.
Indeed, the hypothesis of a global clock, which is a necessary
requirement for synchronous dynamics, could be unrealistic in
a social setting, since information travels at finite speed. Thus,
having the whole population update its state all at once is only
an idealization. Hubermann and Glance [12] elaborate on this
point, arguing that asynchronous update policies correspond
better to the dynamics of social interactions. A different point
of view is discussed in [7] where the authors state that there
is not much difference at the macroscopic, population level.
Here we have decided to study both update models, in order to
gain further insight on the corresponding dynamical processes.

III. SIMULATIONS ANALYSIS

All the experiments in the following section refer to two
subsets � � and � � of the population of equal size. The
case of unequal proportions of cooperators and defectors is
discussed in section III-B.

A. General Results

1) �� � v xsvy�� ( : In order to analyze the influence of the
satisfaction degree on the network of players and compare the
results between the synchronous and asynchronous updates,
we varied x from �! � to �� ( by steps of �! #" . For each of
these values, two series of � � runs of 400 time steps each
were executed on a population of "/-&�*� players, one series per
update policy.

Among the several quantities that were observed at the end
of each run, we studied in particular the mean normalized
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average payoff 4 � 
� � and 4 � 
� � of cooperators and defectors
respectively, defined as:

4 � 
� �5�
� ������� 4 � 
� �� � � � (3a)

4�� 
� ���
� ������� 4 � 
� �� � � � (3b)
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Fig. 1. The mean normalized average payoff 	�
 after the final time step,
averaged over 20 runs. Synchronous versus asynchronous updating.
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Fig. 2. The mean normalized average payoff 	� after the final time step,
averaged over 20 runs. Synchronous versus asynchronous updating.

As the satisfaction degree increases, the mean average
payoff of the cooperators seems to clearly tend to the C
maximum payoff R (Fig. 1). Moreover, both synchronous
and asynchronous lead to the same behavior. Unlike 4 � ,4 � differs a little from synchronous to asynchronous. Fig. 2
shows that when using an asynchronous update, the defectors
globally attain a payoff close to the their maximum possible
( 4�� �)�! ( ) for already very small values of x ( x��%�! #" )
whereas in the synchronous case, 4�� greater than �! ( are
reached only for x ���� � . Nevertheless, if we ignore transients,
the long-term trend is identical for the two types of updates.
The correlation between the increase of x and that of 4 �

and 4 � is explained easily by the fact that the higher the
satisfaction degree, the more demanding the players become of
their neighbors. For example, xl���! � implies that in order for
an agent to be satisfied, its neighborhood must be composed
of about �*��� of cooperators.
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Fig. 3. Cooperator clustering coefficient � at system stability, averaged over
20 runs. Synchronous vs asynchronous updating. Take notice that the x-axis
starts at ������� � . For ������� � , the main connected subset of cooperators has
an insufficient size to make statistically significant measures of � � .

To highlight the phenomenon of x pressuring the coop-
erators to stick together, one can also study the Clustering
Coefficient (  ) of the connected subgraph of cooperators where
the Clustering Coefficient of a graph is defined as follows [9]:

Consider a particular node � in a graph ! , and let us assume
that it has � edges connecting it to its � neighboring nodes. If
all � vertices in the neighborhood were completely connected,
then the number of edges would be equal to �  �#" " ����� . The
clustering coefficient  � is defined as the ratio between the$ edges that actually exist between the � neighbors and the
number of possible edges between these nodes, which give us:

 � � � $
�  �%" " �

The clustering coefficient of the whole network with �
vertices is the average of all  � :  h� 
�

� � ��&  � .
The  of a random graph is simply ' �)( � � , where ' �*( is

the average degree of the graph and � its total number of
vertices. The  of a complete graph, is clearly equal to " .

The increasing clustering coefficient of the main connected
subset of cooperators (Fig. 3) indicates, by definition, that
more and more C-neighbors of a given C-player are neighbors
of each other. The difference between the two curves of Fig.
3 is caused by a higher averge degree of the overall network
(particularly of the main connected C-subcomponent) in the
synchronous case, which is in turn due to a ”collision” problem
not present when using an asynchronous update. This problem
is explained later in the section.

2) x � "* � : Do the tendencies mentioned under III-A.1
hold true for the limit case of x � " where all the players,
whether they are cooperators or defectors, are unsatisified
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as long as a defector is found among its neighbors? To
answer this question, and predicting a large number of links
as well as abundant rewiring requiring a lot of time, the runs
were increased to " �*�&� time steps each and the size of the
population was reduced to � � individuals ( � �t+ and � �t, ).
This reduction was essentially done for obvious computational
reasons, but also enables us to have a visual representation of
the networks and the mechanisms at hand (Fig. 4).

Let us take a look at the time series of the mean normalized
average payoffs 4 � and 4 � (Fig. 5).
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Fig. 5. Evolution of 	�
 and 	 � averaged over 20 runs; (a) using
synchronous update, (b) using asynchronous update.

An interesting point to notice is that when using an asyn-
chronous update, all the D-players are able to reach and main-
tain their maximum payoff. The small fluctations that occur
after system stability (generally reached around time step 150)
are due to defectors getting totally disconnected from their
neighbors (which were of course all unsatisfied cooperators).
However, the lone defectors reattain their maximum payoff by
finding a new C-neighbor usually in a matter of one to two
time steps. In the synchronous case, the defectors on average
seem to tend to their maximum payoff in the first 100 time
steps, 4�� gently decreases. This is also true concerning the
payoff of the cooperators which diminishes at the the same
speed as 4 � does.

Fig. 5 unfortunately does not give a detailed picture of the
rewiring at hand and the underlying organization, since once
again it only shows an average of the 20 runs. In order to
have a better understanding, we must have a look at a few
particular runs and study not only 4 � and 4 � , but also the
evolution of the different types of degrees of the network.

The first thing to be observed is the cooperators forming a
complete graph whether the update is synchronous or asyn-
chronous (see Figs. 6 and 7, where, after a transient period,
the average degree of cooperators becomes "/( , which is the
maximum possible degree given that there are � � cooperators
in the population). This is a direct consequence of the pressurex � " exerts on the C-players forcing them to continue
changing neighbors for as long as they are connected to
defectors. Since defectors, on the other hand, continously seek
to have interactions with them, the C-players inevitably end
up forming a huge cluster where they are all linked to one
another (Fig. 4).
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Fig. 6. Network degrees of a particular run; update: synchronous, population
size: 40, � � ; . C-D and D-C links are the same since there are as many
cooperators as defectors.
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Fig. 7. Network degrees of a particular run; update: asynchronous, population
size: 40, � � ; . C-D and D-C links are the same since there are as many
cooperators as defectors.

Secondly, as mentioned above, when using an asynchronous
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(a) (b)

(c) (d)

Fig. 4. A network of � � players (20 C-players and 20 D-players) at different time steps with � � ; and using asynchronous update; (a) time step 10, (b)
time step 30, (c) time step 50, (d) time step 1000 (end of run). Cooperators are represented by circled dots; defectors by simple dots.

update, all the defectors reach their maximum payoff and
maintain it (Fig. 5(b)). Now, looking at Fig. 9 together with
Fig. 10, showing respectively for the same run, the mean
normalized average payoffs and the number of connected
subcomponents the network comprises, we see that the local
drops of 4 � are due to defectors finding themselves cut off
from the cluster of cooperators and having thus a momentarily
negative normalized average payoff (Eq. 1). These defectors
will then randomly create a new link, rewiring it until it
eventually reconnects them to a cooperator. Only then will the
system reach once again a stable state. This effect is apparent
in Fig. 10 where the number of components oscillates between
one and two, in the limit of long simulation times. When there
are two components, they are constituted, respectively, by a
single defector and all the remaining players. Notice however
that once the subgraph of cooperators is complete, these new
links that end up connecting a defector with a cooperator will
cause 4 � to gradually decrease since there is no possibility for
a C-individual to rewire a link to another cooperator. Note that,
although we have analyzed a single run, all the runs follow

the same qualitative trend.

When using a synchronous update, things are not as simple.
Fig. 6 and Fig. 8 show that although the system reaches a
stable state, the latter is quite fragile and is not safe from
collapsing to attain another type of stable state, as can be seen
in Fig. 8. There are two mechanisms at work: The first one,
responsible for the fall of 4 � and 4 � and, conversely, the
abrupt increase of C-D and D-D connections is the same one
discussed for the local drops of 4 � in the asynchronous case.
The second mechanism occurs only after the first one has taken
place. If the new link created at time step � � by an isolated
D-individual

�
connects it to another D-agent � , causing

the latter to be unsatisfied, it will necessarily be rewired at
time step � �	��
 by both players. This ”double rewiring” will
generate, at time step � �	� � , two new links �����	� and ��
���
respectively connecting

�
with an agent � and � with an

agent � . For the sake of the argument, we will suppose that �
and � are two different players who were either lone players
at � �	��
 or were satisfied before being forced to interact with
their corresponding new partner. Depending on � ’s strategy
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. � and � ’s strategy .  , different outcomes are possible:
� . � � .  ��� (both are D):

We have 4 � � �	� � � � 4 � 
� � ��
 � , but more importantly,�
and � (resp. � and � ) will want to rewire ������� (resp.

��
��� ) elsewhere, with the risk of iterating this process
several times generating one to two new links at each
step. The consequence is a strong increase of the number
of links in the network, and hence an increase of the
clustering coefficient.� . � ��� , .  �~" or . � � " , .  �2� :
We find ourselves in the same situation encountered at
time step � �	��
 . Notice also that 4 � � �	� � � is slightly
lower than 4 � � �	��
 � .� . � � .  � " (both are C):4 � � �	� � � � 4 � 
� �	��
 � � 4 � � � � and the system
recovers its stability with a lower 4 � .

At each step of the above process, there is about 75% chance
for one of the first two cases to occur as long as the third case
is not encountered. That is why, when using a synchronous
update, approximately half the runs present sooner or later a
rise of the different average degrees accompanied by a drop of
both 4 � and 4 � . The system usually reattains stability once
the + " , average degree reaches � � " " where � is the size
of the population (see Fig. 6).

On the same figure, the fact that the D-D average degree
does not increase past a certain level — about six in the figure
— is due to the fact that the higher the D-D average degree,
the higher the probability of two unsatisfied D agents breaking
a link with other D players, and trying both to connect to one
another. This results in two D-D links disappearing for only
one new D-D link created.

To ascertain that the results obtained with �&� individuals
are also valid for bigger size populations, a few very long
runs ( " � �&�*� time steps) were executed on the initial size of"/-*�&� players. These runs — not shown here to save space —
indeed confirm all the quantities measured with the small size
population, such as the complete graph of cooperators and the
fragile stable state induced by a synchronous update.

B. Different proportions of cooperators and defectors

What happens if the population is not composed of equal
size subsets of cooperators and defectors? Do some aspects
drastically change or are they all similar to the �*� � " � � �
case?

To answer these questions, we studied two different propor-
tions of cooperators and defectors: 40% C - 60% D and 60%
C - 40% D. Here we briefly report on the main results. For x
values between �! � and �! ( the results are globally the same
as the 50% C - 50% D proportion. However, in the 40% C
- 60% D case, when using a synchronous update, we obtain
higher average degree values, clearly due to the higher number
of defectors increasing the probability of two connected D-
players mutually deciding to break up and thus adding a new
link to the network. For the same reason, defectors can never
maintain the average maximum payoff � when x}�~" . As for
the 60% C - 40% D case, the average degrees have, for the
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Fig. 8. Time evolution of the mean averaged payoffs 	 
 and 	 � during
a particular run; update: synchronous, population size: 40, � � ; . The
population recovers a few times from isolation of a D player but ends up
falling into another network state with lower mean payoff.
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Fig. 9. Time volution of the mean averaged payoffs 	�
 and 	 � during
a particular run; update: asynchronous, population size: 40, � � ; . With
respect to the previous figure, the population always recovers after isolation
of a single defector, thus keeping the average payoffs higher.
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Fig. 10. The number of connected subcomponents of a particular run; update:
asynchronous, population size: 40, ��� ; .
exactly symmetrical reasons, lower values than the 50% C -
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50% D case and the system always attains a stable state with
the defectors at a maximum average payoff of � .

IV. CONCLUSIONS AND FUTURE WORK

In this work we have studied by computer simulation the
dynamical features of a population of individuals playing the
one-shot prisoner’s dilemma game. In spite of the fact that
the players are not allowed to change their strategy, which
is fixed at the outset, the network of relationships between
players self-organizes towards a situation were the cooperators
tend to cluster together and are surrounded by defectors.

The elementary rules that allow the adaptation of the
topology are local and extremely simple: they are based on
the satisfaction threshold of an individual, which is a function
of its current average payoff at a given time step. Unsatisfied
players break a random link with a defector neighbor and ran-
domly choose another neighbor in the population. Clustering
of cooperators as a way of sustaining cooperation, is well-
known in spatial PD games. Here, however, it emerges in the
absence of the possibility for a player to imitate another agent’s
strategy. Since the topology of the network plays an important
role in social interactions, it is important to understand how
and why this topology changes globally under the effect of
simple local rules that represent likely actions of single agents
that do not possess knowledge other than of their immediate
surroundings.

Most spatial games simulations are of the synchronous
type. However, especially for social interactions, some kind
of asynchronicity in the players’ actions seems to be more
realistic. We have studied both fully synchronous and a simple
asynchronous model. Although the long-term trend of the
dynamical evolution of the population is similar in several
respects for both update policies, the asynchronous model
gives rise to more stable patterns and avoids some artificial
bookeeping operations that are needed to simulate simulta-
neous update of the agents. In fact, the synchronous system
dynamics can be sometimes subject to sudden instabilities
that modify the system state in a non-trivial manner. Overall,
asynchronous update seem to be preferable in situations such
as those represented here.

In future work we would like to investigate the stability of
the long-term steady states of the population in the face of
random perturbations of the system. As well, the behavior
of the system with respect to variations in the temptation
parameter T should be investigated. Further steps should
include studying the time evolution of populations in which
players can locally change their strategy or their neighborhood,
but not both. And, finally, we would like to study populations
in which both the network topology and the strategies can
change.
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Abstract- Poker poses cognitive challenges like those 
of warfare, business and other real world domains. 
This makes poker a good test bed for basic research 
on how people make Command and Control decisions 
and for applied research on how systems might help 
people make better decisions. In this paper, I compare 
the cognitive challenges of poker and warfare, and 
present a new suite of “Pared-down Poker” games 
that cut to the core of Command and Control. 
Compared to full-scale poker, Pared-down Poker is 
more tractable to normative analyses in the lab and 
more relevant to cognitive challenges in the world. The 
games have been programmed in Java along with 
various “animal archetypes” that simulate poker 
personalities. One game has been used to study the 
computational effectiveness of cognitive style against 
normative skill, and the findings from this study 
highlight questions for further research. 

1 Introduction 

Useful research on computational intelligence requires 
both rigor and relevance. Poker offers the promise of 
both, because poker is relatively tractable to mathematical 
computations (for rigor) and arguably applicable to 
practical situations (for relevance). 

I say “relatively tractable” because standard poker is 
complicated by the many combinations of 5-card hands 
that can be made from a 52-card deck (Epstein 1977). I 
say “arguably applicable” because the link between poker 
and warfare or business or other domains has, to the best 
of my knowledge, been established only informally 
(McDonald 1950). 

My interest is computational intelligence as applied to 
Command and Control of military missions. My approach 
begins with a basic model of Command and Control, 
which I relate to the game of poker. I then pare-down full-
scale poker in a way that strengthens the connection 
between poker and warfare. 

 The result is a suite of Pared-down Poker games that 
are, compared to standard poker, more tractable to 
computational investigations (for rigor) and more 
formally related to Command and Control (for relevance). 
These games have been programmed in Java, along with 
animal archetypes (software robots) that simulate poker 
personalities. In this paper, I describe the games and 
present the results of a pilot study on style and skill. 

How does this work differ from previous work on 
poker in Game Theory and Artificial Intelligence? One 
difference is that Pared-down Poker strikes a novel 
balance between the stripped-down (extremely simple) 
pokers studied in Game Theory (Kuhn 1950) and the full-
scale (extremely complex) pokers studied in Artificial 
Intelligence (Billings et al. 2003). Pared-down Poker is a 
suite of four games ranging from simple to complex in 
order to facilitate a progressive research program where 
findings from the simpler games can be used to inform 
studies of more complex games. Another difference is 
that Pared-down Poker is designed for research on human 
strategies (also see Findler 1977), as opposed to machine 
strategies for optimal play in stripped-down poker or 
near-optimal play in full-scale poker. Of course, a 
thorough study of cognitive strategies must include 
models of normative or near-normative strategies in order 
to benchmark how well people perform. And in this 
respect, Pared-down Poker is more useful than full-scale 
poker because it is more tractable to normative analyses 
of optimal solutions. 

2 The Four Steps of Command and Control 

In military missions, the term Command and Control 
has a specific meaning that refers to: 

 “a process... [that] begins with assessing the 
battlefield situation from available information. Following 
this assessment, the commander decides on a course of 
action. The commander then implements this decision by 
directing and controlling available forces. The final 
step… is evaluating the impact of the action on both 
friendly and opposing forces. This evaluation then serves 
as an input into an updated assessment of the situation, 
and the process continues.” (Mandeles et al. 1996, pg. 4). 

Based on this definition, Command and Control can be 
boiled down to four steps: (1) inference – in assessing a 
situation,  (2) investment – in deciding on a course of 
action,  (3) implementation – in acting to carry out the 
decision, and (4) iteration – in adapting to new situations. 
Of course, the same four steps are involved in many 
decision making tasks, and any information processing 
task can be characterized as having a beginning, middle, 
end and sequel – so Command and Control also occurs in 
business, medicine and other non-military domains. 
However, below I use the term in its more narrow sense at 
it applies to warfare (and poker).  
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At a functional (strategic) level, poker is often 
compared to business and warfare (McDonald 1950). 
Here, to make the connection more explicit, I note the 
following: At step 1 of Command and Control, a poker 
player must make inferences about the relative strength of 
his own forces (cards and chips) relative to his opponents’ 
forces. And, he must do so with only partial information 
about his opponents’ forces (from exposed cards and 
previous bets) under changing conditions (as cards are 
dealt and drawn and as chips are bet and won) in the 
course of a battle (hand). At step 2 of Command and 
Control, a poker player must make investments (of chips) 
in order to achieve a desired outcome, where his desire 
may be to win the current battle (pot) or to set up wins in 
future battles. At step 3 of Command and Control, 
implementation by a poker player must be in a manner 
that does not give away information about his forces or 
strategies, and perhaps even in a manner intended to 
convey deceptive information. Finally, at step 4 of 
Command and Control, iteration by a poker player must 
account for changes in available forces (cards and chips), 
both his own and his opponents’. A poker player must 
also adapt his strategies based on what he has discovered 
about his opponents in previous battles (hands) and what 
he expects of his opponents in future battles. 

In the real world, Command and Control is 
accomplished by “individuals working in specific offices 
within larger organizations” (Mandeles et al. 1996, pg. 5), 
and modern warfare poses many challenges of 
communication and coordination between individuals and 
organizations. These challenges are typically addressed 
by operating procedures and computerized systems and 
subsystems, like those aboard the US Air Force’s 
Airborne Warning and Control System. Here, at the 
systemic (tactical) level, poker bears less resemblance to 
Command and Control than at the strategic (functional) 
level because a poker player is an individual sitting at a 
card table rather than an organization of individuals 
sitting at war consoles (computers). However, poker can 
be played on computers, and computer poker can be 
played on teams in settings where teammates can 
communicate via systems. And even without formal 
teams, poker can give rise to temporary coalitions acting 
in co-opetition (Brandenburger and Nalebuff 1996), 
where weaker players cooperate to a limited extent 
against stronger players, which also occurs in warfare.  

Moreover, tactical Command and Control systems are 
typically distributed among individuals and organizations 
because they must be for physical reasons and not because 
they should be for optimal outcomes (Mandeles et al. 
1996, Snook 2000). Therefore, a poker perspective that 
focuses on strategic functions may be useful for 
improving the integration of tactical systems across 
individuals and organizations. Integration is a critical 
component of next generation Command and Control 
systems, like the US Air Force’s Multisensor Command 
and Control Aircraft (Tirpak 2002). As such, poker has 
relevance to both strategic functions and tactical systems 
in modern warfare. 

In short, when Command and Control is cut to the 
core, there are four steps that map to four skills of poker 
playing. This makes computer-based poker a useful test 
bed for investigating how (and how well) people perform 
in Command and Control, and how (and how well) 
systems might support people in dealing with the 
cognitive challenges of modern warfare. With this 
background and purpose, I now take a closer look at the 
cognitive challenges of poker (and warfare). 

3 The Four Skills of Poker Playing 

As an example, consider a simplified (pared-down) 
game of poker between two players, Player A and Player 
B, illustrated in Figure 1. Assume that each player has 
anted 1 chip to the pot and Player A makes a bet of 2 
chips (so pot=1+1+2=4 chips). Player B is then faced with 
the choice between fold, call or raise. Below I dissect this 
decision following the four steps of inference, investment, 
implementation and iteration. 

3.1 Inference 
Before he does anything else, Player B must first make 

an inference about the strength of Player A’s hand, i.e., he 
must compare the expected strength of A’s hand to the 
actual strength of his own hand. To make this inference, 
Player B gets only partial information from the cards 
(e.g., Player A cannot have any cards that are in Player 
B’s hand) and from Player A’s bet. But did Player A bet 
because he has a strong hand and he wants to build the 
pot? Or did Player A bet as a bluff, hoping the bet would 
cause Player B to fold so Player A could take the pot with 
a weak hand? Or did Player A not really think much at all 
when he made his bet? 

To answer these questions, Player B needs a causal 
model of Player A that can be used to estimate P(Abet|Ah), 
e.g., to estimate the probability that Player A would make 
a bet (as he did in this example) given a possible hand Ah 
that would beat Player B’s hand. Without such a model, 
Player B has no basis for inferring the relative strength of 
Player A’s hand. However, if Player B has a causal model 
of Player A, then he can do some more thinking. 

In fact, a normative (optimal) Player B needs to 
estimate P(Abet|Ah), which is the likelihood that Player A 
would bet given a hand Ah, along with the prior 
probability P(Ah) that Player A would have been dealt a 
hand Ah. With these probabilities, Player B can then 
compute the probability that Player A has a hand Ah given 
the bet, P(Ah|Abet), by a process know as Bayesian 
inference using the following equation: 

 
P(Ah|Abet) = P(Ah)*P(Abet|Ah) /  P(Abet), where  
 
P(Abet) =  P(Ah)*P(Abet|Ah) + ΣP(Ai)*P(Abet|Ai) 
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where the subscript i refers to other hands in the set of 
possibilities that are not Ah. This posterior probability, 
P(Ah|Abet), is what Player B needs in order to judge the 
chance that Player A has a hand Ah that is better than the 
hand that Player B holds himself. As such, Bayesian 
inference or some process that approximates it is first and 
foremost in poker (and warfare), even if poker players (or 
Commanders and Controllers) do not consciously 
recognize it as such (also see Korb et al. 1999).  

Notice that a causal model (see above) is needed to 
estimate the likelihood, P(Abet|Ah), but this likelihood 
itself is not the inference of interest because what Player 
B really needs to know is the posterior P(Ah|Abet). The 
two are different but related by the prior P(Ah) via Bayes 
Rule (see above), and this is why Bayesian inference is 
critical to poker (and warfare). Then later, as further 
evidence is provided by another bet or raise in the same 
hand, the posterior P(Ah|Abet) becomes the prior for a 
subsequent Bayesian inference using another likelihood 
from an appropriate causal model to get an updated 
posterior, etc. 

Now to continue the example, assume that Player B’s 
inference puts the odds at 2:1 (probability=2/3=67%) that 
he (Player B) has a better hand than Player A. The 
question now is: Should he fold, call or raise? 

3.2 Investment 
Player B’s choice involves an investment of chips. 

Thus, to make the choice Player B needs to know both his 
win:loss odds (see inference, above) as well as the 
cost:pot stakes. In the example here, the pot contains 4 
chips when it is Player B’s turn to act after both players 
have anted 1 chip and Player A has bet 2 more chips. The 
cost for Player B to call the bet is 2 chips, so the cost:pot 
stakes for Player B are 2:4. 

 With cost:pot stakes of 2:4 and win:loss odds of 2:1, 
the expected utility for a call by Player B is 
6*(2/3)+0*(1/3)=4 chips, since a win will pay him 6 chips 
and a loss will pay him 0 chips. The expected utility of a 
fold by Player B is 2 chips, because he will give up the 
pot (with probability 1) but retain the 2 chips it would 
cost him to call. Since the expected utility of a call is 4 
chips and the expected utility of a fold is only 2 chips, 
Player B should call rather than fold. But, should he make 
an even larger investment and raise rather than call?  

To make this choice, Player B must be able to predict 
what Player A will do in response to a raise. Is the raise 
likely to make A fold his hand, in which case B should 
raise with almost any hand? Or is Player A likely to call 
because Player B’s raise feeds into a setup that A had 
been planning all along, ever since A’s initial bet? Like 
the case of inference above, answers to these investment 
questions depend on having a causal model of Player A. 

With such a model, Player B can estimate the chances 
that A will call or fold in response to a raise, P(Acall|Braise) 
and P(Afold|Braise). Player B can then go further to select 
the option (call or raise) that will maximize his expected 
utility. Without such a model, Player B must use some 
other (sub-optimal) strategy to make a choice.  

3.3 Implementation 
Once he makes an investment decision, Player B is 

faced with the challenge of implementation. Here he must 
take chips (resources) from his stack and put them in the 
pot (battlefield) in a manner that does not give Player A 
any additional information about his hand strength or 
strategy. In fact, the problem of implementation arises 
even before chips are put in the pot, since Player B may 
convey information about his hand strength or strategy 
while he ponders his inference and investment decisions. 

In poker jargon, the unintentional conveying of 
information by mannerisms in implementation is called a 
tell. In some cases, a tell can provide as much or more 
information about an opponent’s hand as a bet or raise. Of 
course, in computer-based poker, some tells like 
trembling fingers and dilated pupils (both of which 
usually signify a good hand) cannot be observed and 
hence do not play a role. However, other mannerisms like 
how long it takes a player to make a decision, or table 
chat (“acting”) via text messages can provide players with 
information about their opponents’ hand strengths and 
strategies. Here, as in warfare, the key to winning poker is 
to outwit opponents in a battle of “he thinks that I think 
that he thinks…”. And, as in modern warfare, computer-
based poker provides less direct information than hand-to-
hand combat, which makes it that much more important to 
extract the maximum certainty from available 
information.  

3.4 Iteration 
For a specific decision, like the call or raise choice of 

Player B in the above example, the cognitive challenges 
of poker boil down to the 1-2-3 of inference, investment 
and implementation. But poker, like warfare, is not a one 
shot deal. Rather, poker involves multiple hands (deals) in 
a temporal sequence, and even within a given hand there 
are usually several rounds of betting as the game state 
changes when cards are dealt or drawn, or when chips are 
bet or raised, or when other players fold. 

Thus, the 1-2-3 steps of inference, investment and 
implementation are repeated in iteration as players adjust 
to changes in the game state (from round to round) and to 
data they get on opponents’ behavior (from hand to hand). 
The latter is particularly important, and the use of such 
data is actually a higher-level process of Bayesian 
inference in which a player must update causal models 
based on opponents’ behavior. 

Recall that, to make an inference about the relative 
strength of his hand, a player needs a causal model of his 
opponent that he can use to estimate likelihoods of the 
form P(bet|hand, model), where “hand” is the cause of the 
opponent’s “bet” in a “model”.  The problem in iteration 
is that there are many possible models, so a player must 
make a second-order inference about P(model|data), 
which he can do in Bayesian fashion if he has a meta-
model that provides an estimate of the prior P(model) as 
well as the likelihood P(data|model). So here again, but 
now at a higher level, we see the importance of Bayesian 
inference in poker (and warfare). 
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But the challenge of iteration goes even beyond these 
higher-level Bayesian inferences that are needed to update 
causal models of opponent behaviors. That is, a player 
must also assess the previous (and project the upcoming) 
effectiveness of his strategies. For example, a player’s 
investment strategies must consider the accuracy of his 
inferences (and underlying causal models) as well as his 
ability to estimate probabilities and to anticipate 
possibilities. Similarly, a player’s implementation 
strategies must consider tells and tilt (emotional response) 
by himself and his opponents. These are practical and 
critical aspects of human poker and warfare, which are 
typically ignored in studies of machine poker and which 
motivate my study of human and machine performance in 
Pared-down Poker.  

4 Full-scale Poker 

Poker games differ primarily in their dealing rules and 
betting limits. The dealing rules are usually one of three 
major types. In Draw Poker, all cards are dealt face down 
and some cards may be exchanged via discarding and 
drawing. In Stud Poker, some cards are dealt face up to 
each player. In other pokers, like Texas Hold’em, some 
cards are dealt face up and shared by all players. 

The betting limits are also one of three major types. In 
fixed limit games, the size of each bet and raise is a fixed 
amount. In spread limit games, the bets and raises can be 
any amount between certain limits. In no limit games 
(often played with dealing rules of Texas Hold’em), the 
size of a bet or raise is limited only by a player’s bankroll. 

Given some betting limits (see above), the betting rules 
for most poker games are as follows: Each hand starts 
with a pre-deal payment of chips to the pot, either as an 
ante (by all players) or a blind bet (by only some players, 
rotating with the deal). This is followed by one or more 
rounds of betting where the game state changes via 
dealing or drawing cards (per dealing rules, see above) 
between each betting round. Within a given betting round, 
the betting rules are as follows: starting with one player 
(usually left of the dealer), the player can either check or 
bet. [A check is like a “pass” in which no chips are added 
to the pot but the player stays in the hand. In some games, 
checking is not allowed and the player is forced to bet or 
fold.] Once one player bets, the options for subsequent 
players are fold, call or raise. [There is a limit on the 
number of raises per round.] 

Besides some dealing rules and betting limits, a poker 
game needs a ranking structure to determine which hand 
will win a showdown. In full-scale poker, where the deck 
contains 52 cards and each hand is made of 5 cards, the 
hands are ranked by classes such as Royal Flush, Straight 
Flush, Four-of-a-Kind, Full House, etc. These ranks are 
based on relative rareness, but then there are further sub-
ranks that are not based on rareness. For example, Four 
Queens beats Four Jacks even though Queens are not 
more rare than Jacks. [And in some games the object is 
get the lowest rank.] 

From a research perspective, if not a player’s 
perspective, the problem with full-scale poker is that the 
optimal decision in a given situation is intractable to 
closed-form analytical solution (Epstein 1977). In fact, 
even brute-force numerical solutions are beyond the 
current state of the art (Billings et al. 2003, Koller and 
Pfeffer 1997) because, unlike chess and other games of 
perfect information, poker is a game of imperfect 
information where there are millions of possible game 
states to consider at each step.  

Although the combinatorial problems of 5-card hands 
dealt from a 52-card deck may be mathematically 
interesting, they are not particularly interesting from 
either a cognitive perspective or a practical perspective. 
From a cognitive perspective, the interesting issues are 
the big four of inference, investment, implementation and 
iteration, and these issues can be studied with more rigor 
in the context of simpler games that use fewer cards in the 
deck and fewer cards in each hand. 

From a practical perspective, poker played with fewer 
cards is also more relevant to real world problems. This is 
because the types of probabilistic problems faced in the 
real world are rarely like the combinatorial problems 
posed by 5-card hands dealt from 52-card decks – i.e., 
poker dealings result from random sampling (of a known 
deck) while real world events arise from causal factors 
(often unknown). As such, the probabilistic problems that 
are most similar between poker and warfare are those that 
deal with Bayesian inferences (see above) and the 
associated causal models of opponents’ intentions. By 
reducing the combinatorial problems of full-scale poker, 
with smaller hands dealt from a smaller deck, pared-down 
poker allows players and scientists to focus on the more 
relevant problems of causal models and Bayesian 
inference. 

 In short, pared-down poker offers advantages of both 
rigor and relevance over full-scale poker for the study 
computational intelligence. And it is on this basis that I 
designed a suite of Pared-down Poker games for research 
on the big four issues of inference, investment, 
implementation and iteration.  

5 Pared-down Poker 

Pared-down Poker is a suite of four games ranging  
from simple to complex for progressive research on the 
big four issues. While all of the games are pared-down in 
comparison to full-scale poker, the most complex game of 
Pared-down Poker is similar to the full-scale pokers 
studied in the field of Artificial Intelligence. At the other 
end of the spectrum, the simplest game of Pared-down 
Poker is similar to the stripped-down pokers studied in the 
field of Game Theory. As such, the suite of Pared-down 
Poker games can help bridge a gap left by previous 
research in computer science and mathematics, especially 
for those with an interest in cognitive (not just normative) 
performance – as in the new field of Behavioral Game 
Theory (Camerer 2003). 
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The four games of Pared-down Poker are designed to 

be easy to learn and easy to play but hard to play well 
(depending on the opponents). The games are also 
designed to be fun to play, and they get more fun as they 
move from simple to complex. Here I would note that fun 
and games are not trivial; rather they are critical because 
the games pose cognitive challenges like those in the real 
world and because the fun keeps people engaged in 
experiments. 

5.1 Four Games 
There are four games of Pared-down Poker, each of 

which can be played by 2-4 players. The four games, 
from simple to complex, are named as follows: 

 
One Card High 
Two Card High 
Pairs and Straights 
Get a Clue  
 
In One Card High, each player gets one card from a 

deck of 11 cards. The betting structure of this game is 
illustrated by the game tree in Figure 1. In Two Card 
High, each player gets two cards (one per round, in two 
rounds) from a deck of 22 cards. Pairs and Straights, 
which is also played with two cards in each hand, is a 
cross between pre-flop Texas Hold’em and Draw Poker 
(for readers familiar with these games). Get a Clue is an 
even more complex game played with two cards in each 
hand, where the backs of the cards are marked (with their 
suit) to give players clues to the fronts of the cards.  

5.2 The Rules 
In Two Card High, each player gets two cards and the 

player with the highest card wins in a showdown. The 
game can be played with fixed limits or no limits on bets 
and raises.  

The deal is from a deck of 22 Cards. There are two 
suits and any two will do (although our Java games use a 
custom-designed card deck with Red and Blue suits). 
Each suit has 11 cards numbered Zero (Joker) to Ten. 
Zero (Joker) is the lowest card and Ten is the highest 
card. Each hand is made from two cards and a hand is 
ranked by its high card. For example, a hand of 8 and 3 
beats a hand of  7 and 6 because 8 > 7. A hand of 8 and 3 
beats a hand of  8 and 2 because 3 > 2. 

There are two rounds of dealing and betting. To start, 
each player makes an ante to the pot and is dealt one card. 
This is followed by a round of betting, which starts to the 
left of the dealer. The first player must bet or fold (no 
checking is allowed). The next player can either raise, call 
or fold. The next player can either re-raise, call or fold, 
but there is a limit of two raises (one re-raise) per round. 
Players who do not fold are dealt another card, and this is 
followed by another round of betting.   

A player wins the pot when he has the highest hand in 
a showdown or when all other players have folded. 

 

5.3 More Rules 
In a simpler game, called One Card High, each player 

is dealt only one card from a half deck (one suit, 11 
cards). There is only one round of betting and only one 
raise allowed (see Figure 1).  

In a harder game, called Pairs and Straights, each 
hand has two cards but the hands are ranked as either a 
Pair like (8, 8), a Straight like (8, 7) or a Mutt like (8, 2). 
A Pair beats a Straight and a Straight beats a Mutt. 
Within each class, the higher the better. For example: a 
Pair (8, 8) beats a Pair (7, 7); a Straight (8, 7) beats a 
Straight (7, 6); a Mutt (8, 2) beats a Mutt (7, 5). For 
Straights,  (10, 9) is the highest and (0, 10) is the lowest. 
The deal is two cards to each player, then a round of 
betting, then the option to discard and draw a card, then 
another round of betting.  

In the hardest game, called Get a Clue, the hands are 
dealt and ranked like Pairs and Straights but the cards 
have colored backs (clues) that match the suits on the 
fronts of the cards. This gives you a clue to your 
opponents’  hands (e.g., two Red-backed cards cannot be 
a Pair), and it gives them a clue to your hand.  

5.4 Software 
The four games of Pared-down Poker (above) have 

been programmed in Java to support online experiments. 
In the Java versions (Burns 2005), play is between 2-4 
players and each player can be either a human being 
(connected on the web) or a software robot. The default 
version is one human playing against animal archetypes 
(software robots) that simulate the “style and skill” of 
poker personalities (see below).  

The Java versions are designed to be played online so 
that cognitive experiments can be performed anywhere 
and anytime that people have a web-connected computer. 
A pilot version is available for demonstration on the 
world wide web (Burns 2005). A screen shot from this 
version is shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The game tree for a simple Pared-down 
Poker played “heads-up” (two players) in one round 
with no checking and one raise. To start, Player A 
must bet or fold. If  Player A bets then Player B must 
raise, call or fold.  If  Player B raises then Player A 
(denoted A’) must call or fold. In an example game 
(discussed in the text), betting amounts are fixed limits 
where the ante is 1 chip, a bet is 2 chips and a raise is 2 
more chips. 

A B

A’ call 

raise
fold 

call bet
Low Stakes

High Stakes 

fold fold 
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Figure 2. Screen shot of Pared-down Poker, as 
programmed in Java and playable on the web. A 
human (lower right) is playing the game of Two Card 
High against three software robots (one has folded).  

 
On the upper left of the game screen is a menu that 

allows players to choose a game (one of four, see above) 
and read the rules. The menu also includes options, which 
are expanded to display options, player options and 
betting options. The display options include options to 
display additional information about other players’ cards 
(e.g., flip cards face up when a player folds). The player 
options include options to change the number of players 
(from 2-4) as well as the skill (e.g., Novice or Expert) and 
style (e.g., Tight or Loose and Passive or Aggressive) of 
robot players. The betting options allow any of the four 
games to be played with fixed limits (adjustable to any 
amount) or no limits. 

These options are designed to provide flexibility for 
experimental purposes. For example, in human testing, 
the display features can be changed to give more or less 
information and thereby study how well people exploit 
the extra information. Similarly, the player features can be 
changed to study how well people adapt to different styles 
of opponents and different numbers of opponents. Finally, 
the betting features can be changed to study how well 
people adapt their betting strategies as the stakes are 
raised to high limits (or no limits). 

6 The Four Styles of Poker Playing 

As discussed above, the four skills of poker playing 
can be characterized in normative terms, e.g., for the skill 
of inference the normative strategy is Bayesian inference. 

The question now is: How and how well do people 
play poker (Command and Control)? That is: What are 
the cognitive means by which people perform and how do 
they stack up to normative skills? Answers to this 
question are important for a cognitive-scientific 
understanding of poker and for cognitive-engineering 
applications in warfare. 

There are many “how-to” books that shed light on the 
question of how people play poker. Most of these books 
offer only street-smart folklore rather than formal models, 
but since the folklore is street-smart (i.e., somewhat tested 
in table practice) it provides a starting point for the 
development of more formal models. 

For example, poker writers often draw a distinction 
between style and skill but do not really specify how the 
two are distinguished. In an effort to formalize the 
difference, I proposed the following as a working 
definition (Burns 2004): Style is a functional basis for 
making decisions in the absence of a rational basis for 
making decisions, i.e., when the expected utility for 
each option is the same.  

By this definition, skill is the ability to make normative 
inferences (i.e., about Bayesian probability) and 
investments (i.e., for maximum utility). The problem, of 
course, is that people have mental limits of precision in 
estimating odds and stakes, as well as mental limits of 
projection in estimating future events. Bound by these 
mental limits, many choices look like a toss up and when 
faced with these choices people rely on personal 
preferences that are commonly referred to as style (see 
Burns 2004).  

As a formal basis for different styles, I proposed a 
binary distinction between conservative and non-
conservative preferences as well as a contextual 
distinction between low stakes and high stakes 
consequences. The binary distinction between 
conservative and non-conservative captures the major 
styles in poker playing, i.e., Tight versus Loose and 
Passive versus Aggressive. The contextual distinction 
captures the difference between the low stakes (Tight-
Loose) dimension of style and the high stakes (Passive-
Aggressive) dimension of style, since poker players are 
often non-conservative at low stakes but become 
conservative as the stakes are raised, or vice versa. Thus, 
there are four major styles of poker personalities as 
illustrated in Figure 3 (also see Schoonmaker 2000). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aggressive (A) 

Ti )

Jackal Lion 

4, 5 6, 7 
ght (TLoose (L)

4, 6 6, 8 

Mouse Elephant 

Passive (P) 

Figure 3. The four styles of poker playing are: Tight-
Passive (Mouse), Tight-Aggressive (Lion), Loose-
Passive (Elephant) and Loose-Aggressive (Jackal). The 
noted numbers are minimum bet and raise cards in 
the game of One Card High (see text for details). 
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The four styles illustrated in Figure 3 are so common 
(and useful) in the poker folklore that they are often 
labeled as animal archetypes (personalities). The animals 
in Figure 3 are adopted from Hellmuth (2003), who 
distinguishes between four animals with different styles at 
Novice skill. Hellmuth also defines a fifth animal (Eagle) 
at a higher level of Expert skill. 

7 Style and Skill in Pared-down Poker 

Pared-down Poker can be used to perform 
computational investigations of how people make 
decisions as well as how well people make decisions  As 
an example of these uses, I performed a pilot study of 
style and skill in Pared-down Poker (Burns 2004).  

7.1 Assumptions 
My analysis was motivated by both practical and 

theoretical matters. As a practical matter, poker writers 
(Sklansky 1987) note that Novice players (who play with 
different styles, see Figure 3) typically make their betting 
decisions with little or no regard for what other players 
do. That is, they follow rules like: If I have a hand of X or 
better then I will bet, otherwise I will fold. As a 
theoretical matter, such simple rules are far from the 
optimal strategies, which involve detailed calculations of 
probabilities and utilities for complex scenarios. Thus, the 
question is: How well do different Novice styles (in 
Figure 3, using simple rules) perform against one another 
and against Expert skill (as defined by normative 
strategies)? 

To answer this question, I developed models of Novice 
styles and Expert skill in the game of One Card High (see 
Figure 1). The Novice styles are defined by two numbers, 
(X, Y), which are the minimum cards at which a player 
will bet or call a bet (X) and raise or call a raise (Y).  

7.2 Calculations 
The assumed values of (X, Y) for each style are noted 

in Figure 3. Using these values as simple thresholds 
(betting rules), I held computer face-offs in heads-up 
(pairwise) play between the different Novice styles. For 
example, in a face-off, a Mouse will always bet or call a 
bet if he has a 6 or higher card, and he will always raise or 
call a raise if he has an 8 or higher card. Each face-off 
was a set of 220 games that captured all 110 combinations 
of cards that the two players could be dealt from a deck of 
11 cards, with each combination played in each order 
(i.e., each player in role A and role B, see Figure 1). 

I also held computer face-offs between each Novice 
style and Expert skill. Here I assumed that the Expert 
knew his opponent’s style and used this information along 
with normative equations to compute expected utilities 
and optimize his decisions. For example, at node A (see 
Figure 1) the expected utility of a bet by Player A is: 
UA,bet = PB,fold*[b+(b+2a)] + PB,call*[b+PA,win|B,call*(2b+2a)] 
+ PB,raise*[PA’,call|B,raise* PA’,win|B,raise* (4b+2a) + PA’,fold|B,raise* 
(b)], where a=ante=1 chip and b=bet=2 chips for the fixed 
limit game analyzed in my face-offs (see Burns 2004). 

Figure 4 shows the results of the face-offs between 
each pair of Novice styles, and between each Novice style 
and Expert skill. With respect to the question of how well 
different styles perform against each other, Figure 4 
shows that the Mouse beats all other styles. However, the 
results are nonlinear: the Mouse beats both the Lion and 
the Jackal, yet the Lion beats the Jackal by more chips 
than the Mouse beats the Jackal. These results provide 
formal support for the informal (street-smart) notion that 
it is important to adapt one’s style to an opponent’s style. 
For example, based on Figure 4, one should play like a 
Mouse when facing a Lion, but one should play like a 
Lion when facing a Jackal. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Results of pair-wise face-offs between each 
Novice style. Arrowheads point to winning style. 
Numbers are earnings (chips/game). Line thickness 
reflects earnings. Parenthetic numbers are losses 
against an Eagle (Expert).   

 
 
With respect to the question of how well Novice styles 

perform against Expert skill, Figure 4 shows that style is 
remarkably effective against skill. That is, while each 
Novice style loses to Expert skill (by parenthetical 
numbers in Figure 4), the losses are in the same ballpark 
(0.1-0.2 chips/game) as the losses of Novice styles to each 
other. And in some cases, like the Lion against the Jackal, 
a Novice does as well as the Expert. This shows that 
cognitive strategies can be very effective, even when they 
are very simplistic. 

7.3 Questions 
Based on these findings, the questions are: Why are 

these simplistic strategies so effective? When do simple 
styles break down such that poker players should develop 
more complex skills? How do poker players acquire styles 
and skills, and how well do they adapt to time-changing 
conditions and style-changing opponents? As a practical 
matter, answers to these questions are needed to guide the 
design of adaptive support systems that leave people 
alone in cases where their cognitive strategies work well 
and help people perform in cases where their cognitive 
strategies do not work well. 
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With respect to the question of why the Novice 
strategies perform so well in One Card High, there are 
two reasons (see Burns 2004). First, winning poker 
(pared-down or full-scale) takes a lot of luck and not that 
much skill when it is played with low limits on bets and 
raises. In fact, this is the reason that poker pros prefer 
high limit or no limit games, where advanced strategies 
like bluffing become important. Bluffing allows a player 
to win chips even when he is not dealt a good hand – but 
bluffing does not work for low limit games because your 
opponents can call your bluffs without much cost.  

The other reason that a Novice like the Mouse does so 
well is that his simple strategy (style) is functionally 
equivalent to a much more complex strategy (skill). In 
particular, the Mouse’s style, which requires a better than 
average card to bet and a significantly higher card to 
raise, implicitly captures two features of strategic skill, 
namely: (1) one should bet and raise only when one has a 
decent chance of winning a showdown and/or a decent 
chance of causing one’s opponent to fold, and (2) one’s 
chance of winning a showdown and chance of an 
opponent folding are typically less after an opponent has 
raised if the opponent is also considering (1). 

7.4 Extensions 
Based on this pilot study of style and skill, further 

analyses and experiments are planned to explore the 
questions outlined above. The test bed for these 
investigations will be the Java versions of Pared-down 
Poker, which allow online experiments with human 
players competing against each other and/or against 
software robots. 

Motivated by the dual need for rigor and relevance, 
this research will focus on the four skills of poker playing 
that are also the four steps of Command and Control, 
namely: inference, investment, implementation and 
iteration.  

The ultimate objective of this research is to improve 
the design of computer systems that advise and automate 
cognitive functions in real world Command and Control. 
Towards this end, Pared-down Poker provides a test bed 
for understanding cognitive strengths and limits. It also 
provides a test bed for evaluating support systems that 
might be designed and employed to improve cognitive 
performance.  

8 Conclusion 

Motivated by the need to balance rigor (tractability) 
and relevance (applicability), I proposed a new suite of 
Pared-down Poker games that cut to the core of 
Command and Control. In designing these games, I 
highlighted the cognitive connections between poker and 
warfare. I also formalized the difference between style 
and skill, and analyzed a simple game of Pared-down 
Poker to set the stage for further research. 
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Abstract- TRACS (Tool for Research on Adaptive 
Cognitive Strategies) is a new suite of card games 
played with a special deck, where the back of each 
card is a clue to the front of the card. This design 
simulates the clue/truth structure of real world 
domains like medicine and warfare, where truths 
(fronts of cards) must be diagnosed from clues (backs 
of cards) in order to make decisions (cards to choose, 
chips to bet, etc.). Here I present the cards and rules of 
TRACS. I also discuss how the games have been used 
for computational investigations of memory limits and 
Bayesian inference. The methods for these studies 
include human experiments and agent simulations, 
both of which are facilitated by the unique features of 
TRACS. The products of TRACS research include a 
computational model of memory limits and a decision 
support system for Bayesian inference.   

1 Introduction 

How do people make decisions and how can systems 
help them make better decisions in the context of real 
world domains like medicine, business and warfare? This 
is the question that motivates my research on 
computational intelligence, with a focus on cognitive 
strategies. 

Previous research on Judgment and Decision Making 
(JDM, see Connolly et al. 2000) has typically pursued 
computational studies in the lab. Conversely, previous 
research on Naturalistic Decision Making (NDM, see 
Zsambok and Klein 1997) has typically pursued 
ecological studies in the field. While each camp strives 
for both rigor and relevance, the reality is that JDM has 
produced mostly rigorous findings that are lacking in 
ecological relevance while NDM has produced mostly 
relevant findings that are lacking in computational rigor.   

I think that both rigor and relevance are needed for 
useful research and that mind games can help bridge the 
gap between JDM and NDM. However, to fulfill this 
promise, the mind games must be both tractable to 
computational analysis in the lab (for rigor) and 
prototypical of psychological challenges in the world (for 
relevance). 
 
 
 
 

 This paper presents a new suite of card games called 
TRACS: Tool for Research on Adaptive Cognitive 
Strategies (Burns 2001, Burns 2005). TRACS is unique in 
that it uses a special deck of double-sided cards to play 
games that are, compared to standard card games, more 
tractable to computational analysis and more typical of 
practical situations. In this paper, I present the TRACS 
cards and rules and discuss how TRACS games have been 
used for basic research on mental models and applied 
research on support systems.  

1.1 Card Games 
Card games have two features that make them 

attractive as mind games for research on cognitive 
strategies, namely they are flexible (for experiments) and 
they are familiar (for participants). Flexibility is desirable 
so that game tasks can be modified as a research program 
evolves. Card games are especially valuable in this regard 
since is it easy to design variations on a theme, as 
evidenced by new games that have been developed for 
both recreation and research purposes (Gardner 2001, 
Abbott 1963). Familiarity to a general population is 
desirable because a domain-specific mind game (e.g., 
military or business or medical) requires recruiting and/or 
training of experts with domain-specific knowledge. 
Moreover, domain-specific research findings often do not 
generalize outside the domain. The tokens and rules of 
card games are abstract analogs of many domains 
(McDonald 1950), and this allows research findings to be 
applied across domains. 

 Besides being flexible and familiar, card games also 
offer advantages of rigor and relevance. With respect to 
rigor, the cards in a standard deck present a relatively 
small set of features (e.g., suits and pips) to constrain the 
possibilities that players must consider as they reason 
about probabilistic game states in a dynamic context. 
With respect to relevance, card games are played with 
imperfect information about face down cards, which 
simulates real world conditions better than board games 
like checkers and chess that are played with perfect 
information about the game state. With respect to both 
rigor and relevance, card games are better than 3-D 
graphic and virtual adventure games for research on 
human judgment and decision making – because the 
simple images (cards) and discrete sequences (moves) 
allow players and researchers to focus more directly on 
cognitive strategies rather than sensing and motor skills. 
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1.2 New Games 
Along with the advantages noted above, card games 

also have some disadvantages. With respect to 
computational rigor, the optimal decisions in most card 
games are not amenable to analytical solution (Epstein 
1977, Koller and Pfeffer 1997), except for trivial versions 
(Kuhn 1950, Nash and Shapely 1950) that are not very 
relevant to practical situations. The combinatorial 
complexities of most cards games played with a standard 
deck of 52-cards make it extremely difficult to establish 
normative performance, which is needed to benchmark 
cognitive strategies. And, with respect to relevance, 
standard playing cards provide information on only one 
side of the cards, which does not reflect the basic 
clue/truth structure of many real world problems like 
diagnosing a medical disease or military target (truth) 
from an X-ray image or radar return (clue). 

The TRACS cards and rules are designed to overcome 
both of these limitations found in standard card games. 
For practical relevance, TRACS uses double-sided cards 
where the backs give clues to the fronts, and TRACS 
poses diagnostic and decision making challenges that 
simulate real world dilemmas. For computational rigor, 
TRACS is a suite of games ranging from simple (and 
tractable) to complex (less tractable), which facilitates 
progressive research on cognitive strategies. 

2 The Cards 

Standard playing cards present information on only 
one side, in the form of shape-color suits (Club, Diamond, 
Heart, Spade) and numerical pips (A, 2, 3, …, J, Q, K). 
The TRACS cards (Figure 1) are different because they 
present information on both sides to better reflect the 
clue/truth structure of imperfect information in real world 
domains. This novel feature of TRACS provides research 
advantages over standard card games, but also presents a 
design challenge in helping players to internalize the 
structure of the double-sided (unfamiliar) deck.  

The design of the deck is based on the notion of tracks 
and treads, where the back of each card is a track that 
gives a clue to the tread on the front. The analogy is that 
of a track (shape) left by the tread of a shoe or a tire. Each 
tread is set of shapes and there are two treads in TRACS: 
a Red tread (Figure 1, upper) and a Blue tread (Figure 1, 
lower).  

Each track, on the back of a card, is a single black 
shape (triangle, circle or square) that gives a clue to the 
tread on the front of the card. The clue comes from the 
structure of the deck, in which there are different numbers 
of each track (shape) in each tread (set), as shown in 
Figure 1 and as illustrated by the Red and Blue sets of 
shapes in the center on the front of the cards.  
 
 

2.1 Rationale 
Why are there only two treads (Red and Blue)? Two 

treads are used to keep the games as simple possible but 
still interesting. If there were only one tread the player 
would have nothing to diagnose. 

Why are there three tracks? Again, it is to keep the 
games as simple as possible but still interesting. Three is 
the minimum number of track types needed to capture the 
basic difference between what is likely, unlikely and 
ambiguous (50-50) in probabilistic diagnoses. 

How is this structure relevant to real world domains? 
A fundamental dilemma in virtually every domain is to 
diagnose the likely truth from a given clue. For example, 
in medical diagnosis one must infer the most likely state 
of a tissue (healthy or diseased?) from the clue given by 
an X-ray image. Similarly, in military intelligence one 
must infer the most likely identity of a possible target 
(friendly or enemy?) from the clue given by a radar 
return. TRACS cards reflect the essential structure of this 
task, because players must infer the likely truths (treads) 
from clues (tracks). TRACS rules reflect the relevant 
context in which people must deal with clues and truths in 
the real world, which is both probabilistic and dynamic. 

Along with this basic clue/truth structure, a related 
feature of the TRACS deck is that it contains multiple 
copies of each track/tread card type, i.e., either 2, 4 or 6 of 
each card type (see Figure 1). This design has both 
theoretical advantages and practical advantages over 
standard playing cards. A theoretical advantage is that 
TRACS can be used to study the memory processes that 
people use to count “carbon copies” (multiple instances), 
as opposed to unique objects like the cards in a standard 
deck. A practical advantage is that the deck can be scaled 
(halved, doubled, sampled, etc.) to change the number 
and/or distribution of card types. For example, the deck 
used in solitaire games can be doubled for a two-player 
game to preserve the number of cards per player. 
 

2.2 Example 
As an example of the basic problem that arises in 

TRACS (and the real world), consider a card that is dealt 
from a full deck with tread down and track up. Assume 
this card shows a triangle track. 

Based on the distribution of track/tread cards in a full 
deck (Figure 1), the Red:Blue odds for this triangle are 
6:2 [P(Red)=6/8=75%]. Similarly, the Red:Blue odds for 
a square track are 2:6 [P(Red)=2/8=25%]. Thus, when 
faced with a decision like “choose the Red card”, you 
would do better to pick a triangle track than a square 
track. 

Now consider a situation where some triangle tracks 
have been turned over in play but then removed from play 
and taken out of sight. How well can you remember 
which cards you have seen so you can update the 
track/tread odds for a triangle track that is dealt later in 
the game? 
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Next consider a situation where you get additional 

information from a spy who, like all spies, is of limited 
reliability. For example, assume a triangle track is dealt at 
the start of the game and the spy says, “That track is 
Blue”. Also assume that the reliability of the spy is known 
(e.g., 90% correct in reporting Red or Blue). How do you 
use this likelihood information along with your prior 
knowledge of the Red and Blue probabilities (based on 
the deck distribution) to estimate the posterior (after spy) 
probability that the triangle track is Red? 

Finally, consider a situation where a triangle track 
appears in the hand of an opponent, along with two 
square tracks. Also assume that the game is a 3-card 
poker where the best hands are flushes (all three Red 
cards or all three Blue cards) and that your opponent, who 
holds the triangle and two squares, has just made a big 
bet. Based on the distribution of cards in the deck, his two 
squares are probably Blue and his one triangle is probably 
Red. But he just made a big bet and this behavior 
provides some evidence to support the hypothesis that his 
cards are either all Red or all Blue. How well can you 
fuse the evidence from his tracks and bets to make 
inferences about what he has in his hand, so you can 
make the best choice about whether to call his bet, raise 
his bet or fold your hand? 

In fact, these three examples (above) highlight the 
cognitive challenges of three TRACS games, called 
Straight TRACS, Spy TRACS and Poker TRACS, 
respectively. In the following sections I discuss these and 
other TRACS games.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. The TRACS deck contains a non-uniform distribution of 24 double-sided cards.  

3 The Games 

TRACS is a suite of games that can be played with real 
cards or online (Burns 2001, Burns 2005). The online 
games are programmed in Java, and computer versions 
have also been written in MATLAB for agent simulations 
and human experiments. 

The TRACS deck can be used to play many games, 
both solitaire and multiplayer, only some of which have 
been programmed in computer versions. One class of 
online games, the TRACS Arcade, includes three solitaire 
games called Straight TRACS, Wild TRACS and Booty 
TRACS. Straight TRACS is a game of forced choice on 
each turn, played in a series of turns. Wild TRACS gives 
the player some options on each turn, and Booty TRACS 
gives the player even more options on each turn. 

The other class of online games, in the TRACS 
Casino, includes gambling games for one or more 
players. These games are similar to familiar casino games 
but with various twists that are made possible by the 
unique design of TRACS. The games include Slot TRACS 
(like a slot machine), Black TRACS (like Blackjack) and 
Poker TRACS.  

Below I discuss the games in the TRACS Arcade with a 
focus on Straight TRACS, which is the simplest game and 
which has been used to perform normative analyses and 
cognitive experiments. I also discuss the games in the 
TRACS Casino with a focus on Poker TRACS, which is 
the most complex game and is therefore the most 
computationally interesting. The details of all games, as 
well as online play, are available at www.tracsgame.com 
and http://mentalmodels.mitre.org. 
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4 TRACS Arcade  

The TRACS Arcade is a suite of solitaire games. The 
simplest game, called Straight TRACS, is a matching 
game played in a series of turns as the deck is depleted. 

 Figure 2 illustrates a typical turn. At the start of the 
turn, three cards are dealt from the deck (on left) to a field 
(on right) as one tread flanked by two tracks (Figure 2a). 
The diagnostic challenge is to judge the likely color of 
each track. The decision challenge is to choose the track, 
either left or right, that is most likely to match the color of 
the tread in the middle. The chosen track is turned (Figure 
2b) and the turn is scored as a save (if colors match) or a 
strike (if colors mismatch, as in Figure 2b). The pair of 
treads (save or strike) is then removed from play and 
stored in a stack (tread down, not shown in Figure 2), 
using one stack for saves and one for strikes.  

The remaining track on the field is turned to reveal its 
tread (Figure 2c) and this tread is moved to the center of 
the field where it becomes the color to match on the next 
turn (Figure 2d). Two more tracks are dealt from the deck 
to the field (left and right) and the sequence continues 
until all cards have been paired as either a match (save) or 
mismatch (strike). The last pair does not count because 
the player has no choice. 

The object of the game is to make saves (matches) and 
avoid strikes (mismatches). The challenge of the game is 
to count the cards and update odds as the deck is depleted, 
in order to make the best choice on each turn. 

Straight TRACS is a good game for learning TRACS, 
but it is not too fun for participants and not too deep for 
experiments. This is because every turn is a forced choice 
(left or right) with a fixed outcome (strike or save), 
whereas choices in real life often involve several options 
and scalable outcomes. Thus, the TRACS Arcade also 
includes two variants of Straight TRACS that are designed 
to capture these features of real world decisions. 

In one game, called Wild TRACS, the player gets four 
wild cards that can be used as tickets to exercise options. 
Each wild card can be played in one of two ways, either 
as a spare (which is like passing a turn) or a dare (which 
is like betting double-or-nothing). Each wild card can be 
played only once, as either a spare or a dare, and the 
player’s challenge is to optimize use of this limited 
resource and finish a trip through the deck with no strikes. 
In another game, called Booty TRACS, every save 
(match) becomes booty that the player can use to bet 
double-or-nothing on later turns. In this way, a player 
must bet booty to get booty, and the player can scale the 
stakes (booty) beyond the one point of a save or strike in 
Straight TRACS and the additional point of a dare in Wild 
TRACS. The object is to get the most booty on a trip 
through the deck. 

The simplest game of Straight TRACS has been used 
to perform human experiments and agent simulations, and 
the findings are discussed in Section 6. Section 5 (below) 
outlines other games in the TRACS Casino. 
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Figure 2. A turn in Straight TRACS.  This turn is 
scored a strike (colors mismatch).  

Figure 3. Screen shot of Slot TRACS. 

Figure 4. Colored ruler used as a probe in 
human testing on Straight TRACS. 
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5 TRACS Casino 

The TRACS Casino is a suite of gambling games, 
similar to familiar games but with a TRACS twist. Slot 
TRACS is the simplest game, and is similar to slot 
machines except the player must make a few decisions 
other than whether or not he wants to pull the arm, which 
is the only decision in most slot machines. Slot TRACS 
(Figure 3) has four windows (slots), and behind each is a 
simulated wheel with a full TRACS deck (see Figure 1). 
The wheels are spun and when they stop a single card 
appears behind each window. The player must select three 
cards in three of the four windows, trying to make a flush 
of all three Red or all three Blue. The selected cards are 
clicked to turn them face up and show their colors. The 
player gets a payoff if he makes a flush, and the payoff 
gets higher as the flush gets rarer, where rareness is 
determined by the distribution of cards in the deck. For 
example, a flush of three Red squares or three Blue 
triangles is the most rare and so it pays the Jackpot. Other 
flushes pay less in proportion to their rareness. 

Slot TRACS is interesting because the player must 
make two kinds of decisions. First, he must decide how 
many cards he wants to be spun face up: 0, 1, 2 or 3. The 
ante (cost to play) increases as more cards are spun face 
up and the player must balance the cost of this extra 
information with its benefit in making rare flushes. 

The second decision in playing Slot TRACS is which 
track(s) to turn face up after the spin. This choice is 
interesting from a cognitive perspective because it 
involves a tradeoff between a high chance of getting a 
low payoff versus a low chance of getting a high payoff. 
The payoff schedule in Slot TRACS is purposely designed 
such that all choices are normatively equivalent, yet 
players tend to exhibit individual preferences that reflect 
risk seeking or risk averse tendencies. 

 Black TRACS is another game in the TRACS Casino, 
and it is similar to Blackjack but with a twist. Like 
Blackjack, Black TRACS is played against a dealer who 
must make his choices according to a pre-set strategy 
while the player can adjust his strategy to account for 
changes in the number of each card type remaining in the 
deck. Unlike Blackjack, it is harder to keep an effective 
count in Black TRACS because the player must count six 
types of track/tread cards at once. In the standard card-
counting strategy for Blackjack (Lewis 2002), the player 
need only count only one thing, namely the net number of 
high cards that have been seen (i.e., high cards seen minus 
low cards seen).  

Poker TRACS is the most complex and challenging 
game in the TRACS Casino. Unlike standard poker, a 
hand is made of three cards (not five), and the ranking 
system is the same as the payoff structure of Slot TRACS 
(see above). That is, a flush (three cards of the same 
color) ranks higher than a non-flush, and rarer flushes are 
better, where rareness is determined by the number of 
each track/tread card type in the full deck. 
 

More formally, the possible flushes are ranked by their 
conditional probability P(flush|tracks) in the full deck, 
and the ranks are computed as follows: First, each card is 
assigned a number 1, 2 or 3 proportional to the number of 
its track (shape) in the tread (set) as illustrated by the two 
tread designs (Red and Blue) on the fronts of the cards. 
That is: Red triangle = 3, Red circle = 2, Red-square = 1; 
Blue square = 3, Blue circle = 2, Blue triangle = 1. Then, 
for a flush of 3 cards {X, Y, Z}, all Red or Blue, the 
numbers are multiplied to get N=X*Y*Z. The 10 possible 
N are {1, 2, 3, 4, 6, 8, 9, 12, 18, or 27}, where smaller N 
are rarer. [N=1 is possible only with a double deck.] 

This ranking system preserves the basic structure of 
standard poker but eliminates the need to memorize a 
ranking schedule (like Flush beats Straight) and reduces 
the number of possible hand strengths by orders of 
magnitude. That is, while standard poker also has 10 
ranks based on rareness (i.e., Royal Flush, Straight Flush, 
Four-of-a-Kind, Full House, Flush, Straight, Three-of-a-
Kind, Two Pair, One Pair, No Pair), it makes further 
distinctions within each rank (e.g., King beats Queen even 
though each is equally rare). Poker TRACS reduces the 
number of possibilities to 10 flushes (plus non-flushes), 
and the flush ranks makes it easy for players to compute 
the odds of hands that their opponent may hold. 

For example, in standard poker (with 5-card hands 
dealt from a 52-card deck), the odds that your opponent 
was dealt a Straight versus a Flush are about 2:1 
(Straight:Flush). But this is a complex calculation that 
poker players cannot do in their heads, and many players 
do not even know that the approximate answer is 2:1. In 
Poker TRACS, you can easily estimate the odds of 
possible hands that your opponent was dealt because 
these odds are given by the tracks in his hand and the 
ranking system (above). For example, if your opponent’s 
tracks are {triangle, square, square}, then either he holds 
a Red flush of N=3*1*1=3, or a Blue flush of 
N=1*3*3=9, or a non-flush. Furthermore, it is 
approximately three times less likely (3:9) that he holds 
the Red flush with N=3 than the Blue flush with N=9. 

I say “approximately” because the ranking structure 
reflects the baseline (full deck) odds and the actual odds 
of flushes in opponents’ hands change for two reasons. 
First, the fronts of some cards may be observed in play 
(i.e., in your own hand). For example, if you hold two 
Red squares, and there are only two in the whole deck, 
then any squares in your opponent’s hand must be Blue. 
Second, you get additional information about your 
opponent’s hand from his bets and raises. In the above 
example, if your opponent makes a big bet or raise then 
he probably has the stronger flush rather than the weaker 
flush or a non-flush, unless he is bluffing. And, of course, 
this is the essence of poker (and business and warfare, see 
McDonald 1950), in which players must use imperfect 
information from cards and bets along with models of 
their adversaries to make inferences about one’s chances 
of winning and to make investments of one’s chips to the 
pot. 

246 CIG'05 (4-6 April 2005)



6 Human Testing 

Agent-based simulations have been performed in order 
to establish normative strategies in Straight TRACS and 
other solitaire games, and in order to develop cognitive 
surrogates (robot players) for multiplayer games like 
Poker TRACS. 

Human-based experiments have been performed on the 
simplest game of Straight TRACS and a variant called Spy 
TRACS in order to measure cognitive performance against 
normative standards. The methods and findings from 
these experiments are reviewed below, to show how 
TRACS can be used to develop valuable insight into how 
well people reason about probabilistic information in 
dynamic situations. 

6.1 Experiment 1 
Experiment 1 was designed for two purposes. One 

purpose was to test how well people could count cards 
and update odds in Straight TRACS. Another purpose was 
to develop a computer model of cognitive limits. 

Straight TRACS requires probabilistic estimation of 
track/tread odds under dynamic conditions as the deck is 
depleted, where the key skills are basic memory (like card 
counting in Blackjack) and revising probabilities. The 
hard part is that, in TRACS, the player must keep a count 
of all six track/tread cards types (see Figure 1) in order to 
update the odds. For example, the Red:Blue odds for 
circle tracks start out at 4:4, and to update the odds after 
some circles have been seen the player must know both 
how many Red circles have been seen and how many 
Blue circles have been seen. 

The probe for Experiment 1 was a colored ruler with 
buttons (Figure 4), which appeared on the computer 
screen below each track. The ruler ranges from 100% Red 
on one end, to 50-50 in the middle, to 100% Blue on the 
other end. The player’s task was to click the button that 
matched the chances (player judgment) that the track will 
turn out Red or Blue. The experiment also measured 
which track the player chose to match the color of the 
tread in the middle (see Figure 2). Here I focus on the 
data for players’ judgments (of % Red or Blue) rather 
than on players’ choices (of track to turn). Further details 
on both judgments and choices in the experiment are 
provided elsewhere (Burns 2002, 2003).  

The major finding from Experiment 1 is that people 
are extremely limited in their ability to count cards and 
update odds. Approximately 100 participants were tested, 
each playing 10-20 games of Straight TRACS, where each 
game involved 11 turns. All participants played several 
practice games beforehand, and some participants played 
many practice games. The cognitive performance of 
participants was seen to exhibit a pattern of anchoring 
and adjustment (Burns 2002, 2003), in which players 
were anchored to the baseline (full deck) odds and made 
only minor adjustments thereto – typically much less than 
the optimal adjustments – as a result of memory 
limitations.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
Figure 5 shows the average performance for human 

players and for a simulated baseline agent, who is a player 
that never updates odds. A perfect player who correctly 
updates odds at each turn would have zero error always. 
This figure illustrates the baseline bias that people exhibit 
in playing Straight TRACS, i.e., the average error 
increases as the deck is depleted in play similar to the 
behavior of a baseline agent. 

Figure 6 shows the number of turn-to-turn adjustments 
in odds made by human players and perfect agents. Here 
the magnitude of adjustment is measured as a span of 
buttons on the colored ruler (see Figure 4). Figure 6 
illustrates anchoring behavior where human players make 
too many non-adjustments (adjustment magnitude zero). 

Human Players 
Baseline Agent 

Figure 5. Error versus turn in Straight TRACS, 
showing a baseline bias. 

Human playing mental odds 
Agent playing actual odds 

Figure 6. Turn-to-turn adjustments in odds, 
showing anchoring (adjustment magnitude 0). 
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Besides these results, I also measured the hits and 
misses made by players in counting all cards of a certain 
class, where the six card types (Figure 1) are grouped into 
three classes (2-count, 4-count, 6-count) depending on 
how many of that card type there are in the deck. A hit 
occurred when all of the Red or all of the Blue cards of a 
given track type (triangle, circle or square) had been 
turned over in play and the player correctly clicked the 
rightmost (Blue) or leftmost (Red) button on the colored 
ruler. A miss occurred when all of the Red or all of the 
Blue cards of a given track type had been turned over and 
the player did not click the rightmost (Blue) or leftmost 
(Red) button. The results show a hit rate of ~50% for 
counting up to two of each card type (while counting all 
six types at once), but the hit rate for counting up to four 
or six was only ~10%. 

6.2 Cognitive Model 
Based on these findings, I developed a computational 

model to explain and predict human memory in playing 
Straight TRACS (Burns 2003). The model employs fuzzy 
functions, which are like fuzzy logic in that they specify a 
fuzzy mapping from a physical event (turning a card) to a 
cognitive belief (update of odds). The model is based on 
an accumulator analogy where discrete bins are filled in a 
stepwise fashion and the filling of one bin after a lower 
bin is governed by a fuzzy function (leaky filling). 

Figure 8 shows how well the computer model 
compares to the cognitive data for all three track types 
(triangle, circle, square) in one game. The black plots the 
mean (line) and standard deviation (bars) of all data from 
humans. The gray plots the mean and standard deviation 
for the model, which exhibits variability due to its fuzzy 
functions. The dotted line plots the performance of a 
perfect agent who counts cards and updates odds with no 
error. The comparison shows that the model (gray) does a 
good job of capturing the mean and spread of cognitive 
performance (black), especially relative to normative 
performance (dotted). Results were similar for other 
games as reported elsewhere (Burns 2003).  

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These experimental findings and the computational 
model demonstrate how TRACS can be used to gain 
insight into human thinking. Both descriptive data and 
predictive models are needed to understand the strengths 
and limits of cognitive competence, and Experiment 1 
shows that TRACS can be used as a test bed for getting 
such data and building such models. 

While memory limitations are important in many 
practical applications, computer systems that can support 
such limits are straightforward (e.g., a card counter in 
Straight TRACS). Thus, further experiments (discussed 
below) were designed and performed to study another 
task where cognitive competence is also limited but where 
a support system is not so obvious.   

Experiment 2 used a game called Spy TRACS to study 
Bayesian inference, which is a critical and challenging 
task that arises in many real world domains. Like Straight 
TRACS, the basic problem in Spy TRACS is to update 
odds in light of additional information. But unlike 
Straight TRACS, the additional information in Spy TRACS 
comes from a “teammate” (spy) – who like all teammates 
is of limited reliability 

7 System Design 

To test cognitive competence in a task of Bayesian 
inference, Spy TRACS is played like Straight TRACS but 
with two twists. One twist is that the player does not have 
to count cards because he is given the deck odds based on 
the current card count by the computer. The other twist is 
that the player is also given a spy report with associated  
reliability for each track. The player’s task is to combine 
the deck odds with the spy odds to get the fused odds in 
order to make the best choice of a track (left or right) on 
each turn. A colored ruler like that of Figure 4, but with 
numerical % instead of buttons, was used for presenting 
odds (deck and spy) to players and for measuring odds 
(fused) from players. 

 The results (Burns in press) confirmed previous 
findings of cognitive conservatism (Edwards 1982) in 
Bayesian inference. That is, people extracted far less 
certainty than they should have from the data they were 
given. For example, given a deck probability of 80% Red 
and a spy probability of 67% Red, most people reported a 
fused probability of less than 80% Red, and some people 
reported <67% Red. The Bayesian answer is actually 89% 
Red. 

The findings from Spy TRACS were used to build and 
test a support system that could help people in tasks of 
Bayesian inference. The support system, called Bayesian 
Boxes (Burns in press, 2004) works like a colored 
calculator (see Figure 8) where the user dials in a prior 
(deck odds, at bottom) and a likelihood (spy odds, on the 
left) and reads off the posterior (fused odds, at the top). 
Further experiments were performed with Spy TRACS to 
evaluate the benefits of Bayesian Boxes.  
 
 Figure 7. Model (gray) versus data (black). 
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Here the intent was not to see if

numbers in and read numbers off the 
Rather, the intent was to see if prac
Boxes improved people’s intuitive 
Bayesian inference. So, the experimen
as follows. 

After several games of Spy TRACS
data (which motivated the developm
Boxes, see above), players were g
calculator along with a few sample pro
it (along the lines of the problems the
TRACS). After about 5 minutes of pr
calculator was taken away and playe
several more games of Spy TRACS to
The before data was compared to the
results showed a significant increase (
the fraction of Bayesian responses 
Encouraged by these results, Bayesia
further enhanced and applied to real 
Bayesian inference like the forens
disputed authorship (Burns 2004). 

8 Conclusion 

TRACS is a suite of games played 
of double-sided cards. In this paper
TRACS can provide a unique ble
relevance for research on cognitive 
reviewed how TRACS has been 
cognitive experiments and computer sim
TRACS can be used to develop de
systems in practical applications.  
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Abstract: The game Fox and Geese is solved using 
retrograde analysis. A neural network trained using a 
co-evolutionary genetic algorithm with the help of the 
expert knowledge database was found to be a very 
capable Fox and Geese player after training, and 
quickly learned to beat training opponents. 
 
Key-Words: Game theory, rote-learning, neural networks, 
genetic algorithms, co-evolution. 
 
1 Introduction 
 
1.1 The Game of Fox and Geese 

 
Fox and Geese is a derivative of draughts (checkers) and is 
played on a standard 8 by 8 draughts or chess board. The 
black player has four pieces (the Geese) which are initially 
placed on the four dark squares at the top of the board.  
The white player has a single piece (the Fox), which is 
normally placed either at the bottom of the board, on the 
second dark square from the left (figure 1) or on any free 
dark square on the board, chosen by the white player.  
 

 
 
Fig. 1. The standard starting position for Fox and Geese 
 
Black pieces (Geese) can move one square, but can only 
move down the board, so their options are limited to the 2 
squares diagonally ahead. White’s Fox piece can move 
diagonally one square in any direction. There is no taking 
or jumping in Fox and Geese, so an occupied square is 
blocked to both players. 
   The object of Fox and Geese, for the Fox, is to break 
past the line of Geese and reach one of the four dark 
squares at the top of the board, where the Geese are 
initially placed. The aim for the Geese is to hem the Fox in 
so that it can no longer make a legal move (There are no 
drawn games in Fox and Geese. If the Fox fails to break 
through the line of Geese, it will eventually be pinned to 

the bottom of the board, and will lose the game (see 
Perham, 1998 or Berlekamp, Conway and Guy, 1982 for 
full details [2][9]). 
 
2 A Simple Rote-Learning Player 
 
A rote-learning algorithm, closely based on the technique 
used by Samuel [11], was used to improve the play of a 
basic AI Fox and Geese program. Previously encountered 
board positions are recalled from a database of moves in 
order to increase the look-ahead ability of a mini-max 
search tree. 
   Samuel’s rote-learning method can quite easily be 
adapted for the game Fox and Geese. As the rules of Fox 
and Geese are relatively similar to draughts, and the 
playing board is the same, the AI mini-max algorithm is 
easily adapted to this new implementation. The only part 
of the AI programming that needs to be really specific to 
Fox and Geese is the design of the board evaluation 
function [16]. 
 
2.1 A Board Evaluation Function for Fox and Geese 
 
For this implementation a range of values between -100 
and 100 was chosen, thus allowing a score to be efficiently 
stored in one byte of memory.  A score of -100 represents 
an overwhelming advantage for the Geese, and a score of 
100 means the same for the Fox. 

As the AI algorithm would eventually be supplanted to 
some extent by the accumulated knowledge from previous 
games, there was no need to create a highly complex board 
evaluation function which can perform as well as a master 
player. The design of the evaluation function reflects these 
simple needs, and values are based on only a few features 
of the board. First, the board evaluation function checks 
for a winning position and returns either 100 or –100 if it 
finds one. Otherwise, the score is calculated by setting an 
initial value of  -50 and then adding two points for every 
dark square reachable by the white piece. To this total a 
bonus of two points is added for every row the Fox has 
advanced from the bottom of the board.  

The other important feature in the evaluation function, 
that of increasing the score as the Fox advances up the 
board, is included to encourage the Fox to move forward 
as much as possible. 
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A simple mini-max AI player using this board 
evaluation function with a search limit of 6 ply can play a 
fairly competent game of Fox and Geese. The algorithm 
does, however, perform better for the Geese than it does 
for the Fox.  When the AI program takes both players’ 
roles, the Geese usually win, although at lower search 
depths (below 6 ply) the advantage the Geese have is 
diminished considerably, and the Fox can sometimes win. 
The Geese can also defeat most human opponents, 
whereas a fairly competent human player can easily beat 
an AI Fox. The temptation to tinker further with the 
evaluation function (and improve the Fox’s performance) 
has been resisted as it is felt to be adequate for the 
machine learning experiments to come. 
 
3 A Complete Solution of Fox and Geese 
 
A simple form of retrograde analysis was used to construct 
a database of valid boards and moves for Fox and Geese 
[7][13]. First, in a relatively straightforward manner, all 
possible boards were simulated and stored. These moves 
were then edited down to two smaller databases consisting 
of boards with legal white moves and legal black moves. 

 
3.1 Assigning Values to the Expert Database 
 
Having now collected and ordered all playing positions in 
Fox and Geese, it only remained to assign a game-
theoretic value to each position. A simple implementation, 
similar to the retrograde analysis that employed by 
Schaeffer et al. for the Chinook checkers program [7][13], 
was used for this purpose. In this case however, a forward 
moving analysis is found to be most suitable and each 
position is resolved by calculating its successors. Initially 
a first pass through the databases resolves all known 
winning positions (those where the Fox is either trapped, 
or has achieved the top row of the board). Subsequent 
iterations through the database (from each legal board 
position) simulate all succeeding moves from any 
positions which as yet have unknown values. 

From these studies it was thus determined that the value 
for the game Fox and Geese is a win for the Geese and the 
game is thus strongly solved, as defined by Allis [1]. This 
significant result is believed by the authors to be the first 
such complete solution of the game Fox and Geese. 
 
4 A Neural Network Player: F&G-NN/BP 
 
An artificial neural network was trained using back 
propagation to perform the role of a board evaluation 
function in a standard mini-max search algorithm. The 
database of perfect moves provided expert knowledge for 
training. 

Each time the neural network is called upon to give a 
value to a board at the leaves of a search tree, the raw 
output of the network (between 0 and 1) is compared to 
the value found in the perfect moves database for the 
relevant board.  The result from the database is allotted a 
value of 1 for Fox wins and 0 for Geese wins, so that this 
result can be directly compared with the network’s output. 

If the difference between the network output and the 
database value falls outside of a tolerance of ±0.1, the 
networks weights are updated by back propagation using 
the network output and database value as actual and target 
values. The learning rate (α) is set to 0.5, and no 
momentum or other optimisation measures are used. 
 
4.1 F&G-NN/BP Experiments 
 
The neural network was trained by playing 200 games 
against the simple mini-max AI opponent using a look-
ahead of 6 ply. For each game the winner is recorded, as is 
the proportion of plays made by the network player which 
are valued as an eventual win in the perfect moves 
database.  Also recorded are the number of times back 
propagation is used to adjust the network weights during 
each game and the average error for each game. The error 
for each network activation is expressed as the difference 
between the target and actual network output (a value 
between 1 and 0). The average error is simply the total 
network error for one game divided by the total number of 
network activations.  

This experiment, and all other experiments, were 
conducted 10 times in order to reduce the potential for 
misleading results caused by the random nature of network 
weights initialisation. The roles of the AI player and the 
neural network were then switched and the experiments 
were performed a further 10 times. 
 
4.2 F&G-NN/BP Results 
 
Results show that the neural network player was able to 
quickly supplant the simple mini-max AI player.  When 
playing as both the Fox and the Geese, the neural network 
is able to beat the simple AI player within a few games of 
training commencing. After the first ten games the neural 
network was able to win more than half as either player. 

The neural network plays better as the Fox.  The 
average number of wins (out of ten) starts above eight, and 
varies throughout training between eight and ten. By the 
end of training the neural network playing as the fox wins 
almost every game against the opposing AI player. 
 

 
Fig. 2. Back propagation. Average no. of wins per 10 games for Fox. 
Number of wins (out of 10) for every 10 games of the 200 game training 
run. (This graph represents the average from the 10 runs.) 

The neural network playing the Geese performs less 
strongly, only winning an average of around six of its first 
ten games. After the initial ten games performance 
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fluctuates, but the last sixty games show a steady 
improvement towards an average of more than eight wins 
out of ten. 

 
Fig. 3. Back propagation. Average no. of wins per 10 games for 
Geese. (This graph represents the average from 10 training runs.) 

 
The slightly erratic nature of the learning process expressed 
in terms of game wins and losses is in contrast to the results 
gained from testing the average network output error for 
each game. Here, results show a smooth decrease towards 
an extremely low error rate. 
 

 
Fig. 4. Back propagation. Average percentage error for Fox. 
Percentage error is calculated by summing the errors from the 
network (target output – actual output) and dividing the result by 
the total number of network activations. (A similar graph is 
obtained for the Geese.) 

 
This disparity is probably caused by the neural network’s 
non-static evaluation of board positions at different points 
in a mini-max search tree. Although the accuracy of the 
network outputs is steadily increasing, the adjustment of 
the network during mini-max searches leads to erratic 
search results.  Once the fluctuation of the network 
weights has reduced to a background level, the game-
playing performance of the neural network player 
stabilises towards more consistent results. 
 
5 Machine Learning using GAs 
 
There recently been a number of board game 
implementations using genetic algorithms in some way 
[6]. Chisholm and Bradbeer have used a genetic algorithm 
to control and optimise the board evaluation function of a 
draughts program [5]. The algorithm uses crossover and 
selection to develop optimal weights for board evaluation. 
Each weight represents the importance assigned to a 

feature on the board, such as number of pieces left, 
number of kings on the board [5]. 

Some researchers such as Carling have used genetic 
algorithms to train neural networks to play board 
games[3]. Richards, Moriarty, McQuesten and 
Mükkulainen have experimented with this approach [10]. 
Rather than evolving whole networks by adapting the 
weights between nodes, Richards et al. have developed a 
system where promising neurones are bred and combined 
in new networks every generation. Their system, which 
they have called SANE, has been applied to the task of 
playing Go with some considerable success. 

An alternative solution to this problem of training 
neural networks is described in Chellapilla and Fogel [4]. 
Here, instead of using a reinforcement method such as 
back propagation or temporal difference learning, 
Chellapilla and Fogel create a set of network weights by 
co-evolution [4]. 
 
6 A Neural Net/GA Player: F&G-NN/GA 
 
A genetic algorithm was used to breed a set of optimal 
weights for an artificial neural network. The neural 
network comprises a standard multi-layer feed-forward 
network consisting of 33 input units (32 concerning the 
state of each square on the board and one for who is to 
move), a hidden layer of 20 units and a single output node. 
A pool of ten randomly created network players competes 
against each other in a tournament using a co-evolutionary 
strategy. Poorer players are replaced with offspring bred 
from two successful players, as well as new randomly 
initialised players being introduced. 
 
6.1 Implementation 
 
The genetic algorithm used in this implementation has the 
task of breeding optimal weights for the artificial neural 
network. The network performs the role of a board 
evaluation function, used by a mini-max search tree to 
give values to board positions encountered during a search 
[8]-[12]. 

A binary system of encoding was not used in this 
system. Instead the network weights themselves each form 
a gene of the GA chromosome. The chromosome or string 
for this implementation is simply the entire collection of 
network weights. New offspring are bred from two parent 
sets of weights. Crossover points are chosen randomly at 
intervals anywhere between one and five weights along a 
string. This method of crossover provides the reason that 
weights are grouped into sub-strings by the network nodes 
that they feed into, rather than the nodes they emanate 
from. As the output layer of the neural network consists of 
only a single node, strings formed by the weights between 
the 20 node output layer and the hidden layer are grouped 
into one string of 20 weights, rather than 20 strings of one 
weight each. 

During crossover, for each weight the offspring 
receives from a parent, there is a 0.1% chance of mutation. 
Mutated weights are created by randomly re-initialising 
the weight to a random value between –1 and +1. 

252 CIG'05 (4-6 April 2005)



6.2 The F&G-NN/GA Fitness Function 
 
The solution chosen here is to use the perfect moves 
database (see section 3) to supply the level of fitness based 
on the number of winning moves the players make during 
the course of a game. 

A pool of ten players is used, randomly initialised 
having each of the network weights set to a random value 
between –1 and +1. Every generation, each player plays 
one game against an AI mini-max opponent. The total 
fitness of each player is calculated by counting the number 
of correct moves (moves which will definitely lead to an 
eventual win), the player makes. The initial fitness value 
given to each player is simply the proportion of correct 
moves to total moves made expressed as a percentage. To 
this total is added either a winning bonus of 150 points, or 
for a losing player 3 points for every move made in the 
game. The bonus added for losing players is designed to 
promote long games and prevent the players’ learning 
stalling at local minima. A player who plays four moves, 
and only makes one (fatal) mistake scores a fitness of 75, 
and is unlikely to improve further if the fitness function 
only reflects the proportion of winning moves. The 
bonuses encourage longer games, and more generalised 
good play. The winning bonus is introduced to ensure that 
winning play, as the main goal of the board game problem, 
is rewarded above all other fitness criteria. 

The rules for breeding new players are as follows. The 
four best players are kept on for the next generation. The 
rest of the players are replaced, four by offspring and two 
by new randomly initialised players. The only difference is 
the pool members chosen for breeding. The existing 
players are replaced by offspring in reverse order to that of 
their fitness ranking. This is done in order to include the 
soon to be replaced players in the fifth, sixth and seventh 
position in the breeding. For each replacement, offspring 
are bred from two parents randomly chosen from all 
players above the new offspring in the fitness ranking. 
This allows players which do not qualify in the top four a 
limited opportunity to breed before they are replaced. The 
further up the fitness table these players rank, the more 
offspring they qualify as parents for, before they are 
replaced. The top four players are, of course, candidates 
for breeding all four offspring. 

The limited inclusion of lower ranking players in the 
breeding process is intended to decrease the risk of the GA 
settling in local minima [6]. If the breeding network 
weights are too similar, the resulting offspring may well be 
carbon copies of the original. Although mutation may 
eventually reintroduce diversity, mixing the pedigree of 
new offspring helps to increase the mix of weights in the 
pool, and consequently, any local minima will eventually 
be surpassed by a new combination of weights.  
 
6.3 The F&G-NN/GA Experiments 
 
Each generation, a pool of ten players play one game each 
against an AI mini-max type opponent. After each 
generation, the fitness function ranks players based on 
their performance, and breeding takes place based on these 

results. Each experiment lasts 200 generations, and was 
repeated ten times to reduce the chance of anomalous 
results. A further ten runs were then performed with the 
GAs and the AI opponent switching roles. The number of 
games won by the GA was recorded, as was the 
percentage of winning moves played in each game. 
 
6.4 F&G-NN/GA Results 
 
The genetic algorithm breeds players able to beat the AI 
player. As the Fox player, the GA is particularly strong, 
and is very quickly able to beat the AI player (see figure 
5). 
 

 
 

Fig. 5. Neural Network/GA. Average no. of wins out of 10 for 
the  Fox. This graph represents the number of wins out of 10 for 
every 10 epochs of the 200 generation training run. The results 
are taken from the highest ranking player in a pool of ten. 
(Averaged over ten runs.) 

It takes the GA considerably more time to breed 
network weights capable of defeating a Fox AI player. 
Two out of the ten runs did not win any games at all 
during the training period. On average, results show a 
smooth learning curve (figure 6) and a consistent 
improvement in performance which results in a player 
strong enough to win eight games out of ten. 
 

 
 
Fig. 6. Neural Network/GA. Average no. of wins out of 10 for 
the Geese   (Results are based on the average from 10 training 
runs.) 
 

The results showing percentage of winning moves made 
per game also show a steady increase in performance 
throughout training (see figures 7 and 8). This is 
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unsurprising, as the percentage of winning moves is one of 
the main features of the GA fitness function. Nevertheless, 
these results give a good indication that the quality of play 
increases fairly steadily throughout training. 
 

 
 
Fig. 7. Neural Network/GA. Average percentage of winning 
moves for Fox This graph shows the percentage of moves in 
each game which are held in the perfect moves database as 
eventual winning positions. Results are an average from 10 
training runs. 

 

 
Fig. 8. Neural Network/GA. Average percent of winning moves - Geese 

7 Conclusions 
 
The three learning algorithms implemented, rote learning, 
neural network/BP and neural network/GA, have been able 
to improve their ability to play the board game Fox and 
Geese. Table 1 shows the total number of games won by 
each algorithm during training, and the results show a 
clear measure of success for both learning techniques. The 
neural network/GA shows the best aptitude for learning as 
both Fox and Geese. The rote-learning algorithm displays 
a poorer performance, especially for those games where it 
played as the Geese. 

TABLE 1. Total (average) number of wins during 200 
training games with each starting.  (Final total out of 400)  

Training Method Average no of Wins (out of 400) 
 Fox Geese Total 
Rote learning 165.3 36.1 201.4 
Neural Network/BP 186.5 158.1 344.6 
Neural Network/GA 199.7 119.8 319.5 

 
As may be noticed from table 1 above, there were a very 
high number of wins for the neural network/GA Fox. This 

is due to the fact that the simple AI Geese did not play 
well at the relatively low ply search used in these 
experiments (due to cpu-time constraints). Fortunately, as 
stated in section 4.2 and shown in figure 4, winning was 
not the sole fitness criteria used in the training process. 

The rote-learning algorithm clearly experiences 
problems overcoming the native deficiencies of its AI 
board evaluation function, and has shown a general lack of 
flexibility when approaching the learning task. 
Considering that, unlike the neural network/BP and neural 
network/GA, the rote-learning system has a pre-
programmed board evaluation function and does not have 
to learn the game from scratch, learning (although clearly 
demonstrated during the Fox runs, at least) could be said 
to be incremental at best.  

Although some game knowledge is pre-existent in the 
rote-learning algorithm within the board evaluation 
function, this system is only one of the methods which 
presents unsupervised learning. The neural network/BP 
and the neural network/GA are helped to learn the game 
by having access to the contents of a perfect moves 
database. In this respect, the rote-learning results are more 
significant than they at first appear. 

The genetic algorithm is clearly established as an 
effective technique for the training of a neural network. 
Excellent results are achieved from training runs as both 
the Fox and the Geese. The GA shows results far better 
than rote learning, even though playing ability was learned 
from scratch. Perhaps detracting a little from these results 
though, is the supervised nature of the learning. 

The back propagation neural network applies itself to 
the problem of playing Fox and Geese with great success. 
Showing the most wins of all, the neural network is able to 
easily supplant its simple AI competitor whether playing 
as the Fox or the Geese. 
 
7.1 Machine Learning Behaviours 
 
It is interesting to note that all three of the machine-
learning techniques perform much better when playing as 
the Fox (see Table 2). This at first may seem at odds with 
the remarks in section 2.1, which suggest that for 
experienced Fox and Geese players, the Geese have the 
advantage, but the following discussion clarifies these 
results. 
 

TABLE 2.  Proportion of the total wins achieved as Fox and 
Geese.  

Training Method %  of Total Wins 
 Fox Geese 
Rote learning 82.1% 17.9 % 
Neural Network/BP 54.1% 45.9% 
Neural 
Network/GA 

62.5% 37.5% 

 
Table 2 above shows the spread of all the games won 

by the machine learning algorithms during training runs of 
200 games playing the Fox, and 200 games as the Geese. 
Results represent a percentage of the total number of 
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victories from the 400 games (and are averaged over 10 
training runs). 

Although all three algorithms show ability to play the 
game, and can usually defeat a simple AI opponent, 
neither of them can really be described as expert players. 
During a game of Fox and Geese, the onus is on the Geese 
to preserve a defensive line of pieces. For a Fox, the 
tactics involved in playing against an expert are much 
more complex than those used against a less experienced 
player. If the Geese player is prone to occasional mistakes, 
it is not overly difficult to capitalise on one of these errors, 
and win the game. This is what appears to be happening 
here. The various machine learning players are competent 
enough to play well as the Fox, adopting the simple tactics 
of pushing against the line of Geese and waiting for an 
opportunity to slip through. Taking the more complex role 
of the Geese is more problematic for the learning 
algorithms. The task of keeping a tight formation of pieces 
is more complex, and each mistake can potentially lead to 
a quick defeat. 

The assertion made in section 2.1 that the simple AI 
player performs better as the Geese is qualified by 
observing that lower search depths may expose flaws in 
the AI player’s game. Both machine-learning 
implementations are trained at relatively low search depths 
(4 ply for the neural network/GA system and 6 ply for rote 
learning), so the AI Geese player may well be prone to 
making mistakes which the opposition can capitalise on. 
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Abstract- Most often situated multi-agent simulations,
of which platform-games are an example, uses reactive
agents. This approach has limitations as soon as com-
plex behaviours are desired. For these reasons we pro-
pose an approach using cognitive agents. They have
knowledge, objectives and are able to build plans in or-
der to achieve their goals and then execute them.

In this paper we particularly address the problem of
teams of cognitive agents. We chose to build teams di-
rected by a leader. One major problem is the build-
ing of the team plan and in particular one difficulty is
to find the means in order to let autonomy to the team
members. This can be done if the leader builds abstract
plans. We present in this article a solution to this prob-
lem.

1 Introduction

Our work aims at producing agent-based simulations where
the agents, situated in a geographical environment, behave
“rationally”. An application of such a work can be simula-
tion platforms of which computer games are an instance,
movies is another like “The Lord of the Rings” and the
MASSIVE application illustrate it1.

The main characteristics that we consider for these simu-
lations are: first, the environment is defined by a geography,
then the notions of positions or coordinates have a meaning,
this is a critical feature since relative positions must be con-
sidered before executing an action and consequently moves
must be performed; second, the world is dynamic (agents
can appear or disappear), and then heavily non monotonic
(ie. values, once known, can change); third, agents are dif-
ferent: they can perform and suffer actions that are different
from one to the other; and last, the agents are embodied:
they are situated in the environment, and have a partial per-
ception of it, from this it follows that the agent’s knowledge
is incomplete, moreover because of the non monotonic na-
ture of the environment, this knowledge can be wrong.

According to J. Laird, computer games constitute the
“killer application” for human-level AI [LvL00]. The char-
acters involved in video games, like FPS or role-playing
games, have indeed to be perceived as autonomous entities
with increasing realistic behaviours. They have to be con-
vincing, thus their behaviour must comply with the ratio-
nal expectations of their partner or opponent human players.
They also need to adapt to new situations, acquire additional
abilities throughout the game, etc. In addition, team strate-

1see http://www.massivesoftware.com/news.html

gies are also often useful. Some research has been done
concerning agents and games [Nar00], and most of them
concern reactive agents [Nar98].

But reactive agents, while effective in several cases, offer
limited behaviours. Indeed their behaviours are “short term
directed” and not “goal oriented”. Their ability to perform
some tasks depends on the immediate surroundings and is
not the result of wilful acts. In current commercial games,
too often the character’s behaviours are reactive ones, coded
using scripts based on trigger/action sets. This approach has
limitations [Toz02]. First the obtained behaviours are rather
limited and it is difficult to get deliberate group behaviours
unless they hard-coded them. This leads to a second ma-
jor problem: the software design concern. It appears to be
very difficult to reuse parts of AI from one game to another:
scripts are too much tied to game design.

Our proposition aims at offering cognitive, driven by
goals, proactive agents. To use cognitive agents allows to
obtain more abstract reasoning. From one simulation/game
to another the cognitive behavioural engine stays the same
even if the context changes, and the behavioural compo-
nents, the interactions, can be at least partially reused. Our
approach uses declarative knowledge and thus favours the
separation between the game logic and code. This promotes
reusability and should ease the development.

In a first part we describe how we design simulated
worlds or game environments: the geography, the laws that
rule the world (the interactions) and the cognitive agents
and their behavioural engine. Then we discuss teams and
present our proposition to obtain team plans.

2 Simulations with cognitive agents

We define a simulation as follows:
Simulation = E × I × A

where E is the topologic environment, I is the set of in-
teractions that rule the simulated world and A is the set of
situated agents involved in the simulation. In the following
subsections we will quickly define these three points.

2.1 Environment

The environment describes the geography of the simulated
“world”. We represent the environment by a graph where
nodes are places and vertices denote path from one place to
another (see Table 1). A place is an elementary geographical
area. The granularity of a place depends on the simulation,
the only constraint is that inside a place there is no restric-
tion neither for moves, nor for perception (restrictions due
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to the other agents, like collision problems, are exempt). A
place can represent a room, a town or any other part of the
environment, and inside a place the position of an agent can
be handled discretely or continuously depending on needs.

Environment = {place*,path*}
path = (placeorigin, placedest,condition)

Table 1: Definition of environment

A path denotes an oriented transition between two
places. It is defined by the places that it links, and a con-
dition that must be satisfied if an agent wants to use this
path (usually most of the conditions are simply true). The
paths are oriented and the condition to go from some place
a to a place b is not necessarily the same than the one to
go from b to a. This formalism allows to describe, for ex-
ample, that a door between two rooms must be opened if
we want to go from one room to the other, or that an agent
must be able to swim to cross a river between two fields. In
this last case, our approach allows, depending on needs, to
choose to represent or not the river with a place. It depends
on whether ot not the crossing of the river has a meaning in
the simulation (see figure 1).

area a river r area b area a area b

Figure 1: Left: river is modelled. Paths are: (a,r,“agent
can swim”), (r,a,true), (b,r,“agent can swim”), (r,b,true)
Right: river is not modelled. The paths are: (a,b,“agent can
swim”),(b,a,“agent can swim”).

2.2 Interactions

Knowledge representation is based on the notion of what
we call “interactions”[MPR03]. Since the objective is to
achieve simulations (like games are), it is necessary to rep-
resent the laws that rule the simulated world and to allow
the agents to manipulate these as knowledge elements. We
introduce our interactions in this goal.

Interactions are the backbone of our simulation model.
They are at the basis of the knowledge representation in the
simulation. Some agents (the actors) can perform interac-
tions and others (possibly the same) can suffer from them
(the targets).

An interaction is defined by a name and three parts:

• a condition, it tests the current context of execution of
the interaction and consists mainly of tests on values
of target or actor properties.

• a guard, it checks general conditions for the interac-
tion applicability, typically it defines that to be fired
an interaction requires that the distance between the
target and the actor must be less than some given
value.
The guard is separated from the condition since it cor-
responds to the knowledge due to the geographically
situated feature of the simulations. In a non situated
context, one would have only the condition and action

parts. The guard will be at the origin of the moves in
the plan, moves that are indeed specific to situated
problems. We do not express explicitly in an interac-
tion that the agent has a move to do in order to fire it,
we want the agent to plan it when required.

• an action, it describes the consequence of the interac-
tion, it can be a change in the state of the actor and/or
of the target (ie. a change of the value of a property),
and/or the activation of an environment action (like
the creation of an agent).

By example, to open an object (door, chest, window, etc.)
makes it changing from closed state to opened one. The
nature of the target is of no importance here (insofar as it
can suffer open), this knowledge can then be represented
in a “universal” way by the interaction (see below). In this
sense, interactions are declarative knowledge: they describe
an action and not how to solve/use it. Let us remark that
there is no mention of moves to be performed to fire the
interaction, the knowledge due to the situated property is
mentioned in the guard. An interaction is a piece of abstract
knowledge where the situated point of view is taken into
account in the guard.

open:

{

condition = “target.opened = false”
guard = “distance(actor, target) < 1”
action = “target.opened = true”

One advantage in using such interactions is that this ap-
proach favours a good software engineering design. Since
interactions are not tied to a particular agent nor to a simu-
lated world, they can be reused from one to another. This is
clearly the case with the above open interaction. Reusabil-
ity is of course an important concern in software engineer-
ing design and in particular in AI game design where it is
reputed to be not applied although wished.

To increase the generic nature of our interactions we pro-
pose a way to specialize them. This is not the object of this
paper to detail it but let us say that the aim is to keep the
declarative and abstract nature while taking into account the
fact that to solve a given abstract action can require different
conditions. To solve that we use something like inheritance
of interactions. Using an example should help to present it
shortly: again consider the open interaction, we said that it
can be applied to different types of targets and used in a plan
such that “to fetch an apple in the next room I must open this
door”. Now let us assume that this door is a lockable one
(and is indeed locked). From an abstract point of view the
plan is still valid, but the open interaction must be under-
stood as “make the door change from closed to opened state
when it is unlocked”. The problem is then how the same
abstract plan (open the door to fetch the apple) can receive
different solutions (just “open” or “unlock and then open”)
depending on the target (whether it is lockable or not). Our
solution is to allow to specialize interactions by adding ex-
tra conditions, thus you create another open interaction that
“inherits” the previous one and to which you add the condi-
tion target.isLocked=true. This is this version that
is given as can-suffer interaction to the lockable agents.
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2.3 Agents

Our agents are embodied agents that are situated in their
environment, they are influenced by it and more precisely
by where they are in it.

We distinguish two kinds of agents: inanimate and ani-
mate agents (not to mistake them with mobile/non-mobile
agents). Both are defined by properties and can suffer inter-
actions but the latter can also perform interactions and have
a behavioural engine (see Table 2). The animate agents are
cognitive and proactive agents. They are responsible for the
dynamics of the simulations. The interactions that an agent
can perform correspond to its abilities.

Agents = Animate | Inanimate
Inanimate = {Properties∗, can-suffer}
Properties = (name, value)
can-suffer = Interaction-name*

Animate = Inanimate ∪ can-perform
∪ brain ∪ goals

can-perform = Interaction-name*
brain = planning engine ∪ memory
goals = interaction-goal | condition-goal

Table 2: Agent’s definition

The cognitive agents The structure of the animate agent’s
“mind” is presented in Figure 2. Agents have a memory that
can be seen like a “degraded environment”. This one rep-
resents the knowledge base for all the information gathered
by the agent concerning the environment: the topology of
the environment, the other agents (their position and state).
This information is used by the planning engine to deter-
mine the action that the agent must try to execute in the
environment to fulfil its goal. A perception module is used
to pick up information in the environment and to update the
memory, this perception is local. Updates are performed
by a separate module that has an influence on the planning
engine in order to adapt the currently computed plan to the
new perceived situation. This last module is a kind of “short
term memory”. From this it results that the knowledge of an
agent is not complete, then an agent may have to search for
unknown information, and can be wrong, but the agent is
supposed to behave with respect to its knowledge. This is
due to the dynamic and non monotonic nature of the envi-
ronment. Knowing that its environment is non monotonic
must be taken into account by the agent.

Goals Animate agents have goals. The satisfaction of
these goals leads the agents to behave according to a com-
puted plan. There exist two kind of goals. First, the
interaction-goals, they correspond to an (inter)action that
the agent has to execute. The target of this interaction can
be less or more precisely given: from a named agent to any
agent that can be the target of the interaction, as shown in
the next table:

goal type of target
eat(apple 12) a given named apple
eat(an apple) any apple
eat(*) any eatable (ie. “who can-suffer eat”) agent

Figure 2: Different elements of agent’s mind.

Second, the premiss-goals (or condition-goals), they cor-
respond to a condition that the agent wants to become true.
For example:

actor.energy > 100 :
“having his energy being greater than 100”

Planning engine In order to achieve their behaviour the
animate agents have an engine that computes plans in order
to satisfy the goals given to them. The plan is produced by
a backward chaining on the can-perform interactions of the
agents. The plan building depends on the information stated
in the memory (ie. the beliefs base) of the agent. In a rather
classical way, the plan can be viewed as a tree (see Figure 3).
The nodes are made of the different goals and subgoals
encountered during the resolution. Some are interaction-
goals, others are premiss-goals. Thus the tree is an alterna-
tion of condition and interaction nodes and corresponds to
an AND-OR tree. AND-nodes correspond to condition-nodes
(for condition-goals) and OR-nodes to interaction-nodes (for
interaction-goals).

The condition and interaction nodes are classical case.
The sons of a condition node are interaction-nodes built
from the interactions whose action part offers a way to sat-
isfy the condition (or help to satisfy it). The interaction-
node’s sons are built from the conditions that can be found
in the condition and guard parts of the interaction: from
these, condition-nodes are built. This is classical in back-
ward chaining.

We want to underline a point that introduces differences
in comparison with planning in non situated context. In-
deed, since we consider embodied agents situated in a geo-
graphical environment and since we want to simulate their
behaviour in such an environment, agents must perform
moves. Typically an agent must move next to a target to
interact with it. It is here that the guards that we have in-
troduced in our interactions play their roles. To be allowed
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to fire the action part of the interaction, the agent must sat-
isfy the conditions and the guards. But guards, since they
imply moves that are a crucial side-effect in situated sim-
ulations, require specific consideration. We have discussed
this problem in [DMR04] where we show in which ways the
situated context has an influence on “planning while execut-
ing”. Indeed, considering only conditions and actions leads
to abstract plans that are valid independently of any situ-
ated context: “to open a door only requires that it is closed
and makes it opened”. However, simulations in situated en-
vironment implies that in the execution plan moves must be
done, and then “to open a door” requires also the actor be-
ing next to the door as expressed in the guard of the open
interaction. This guard must be considered while building
the plan. The backward chaining on the guard produces the
moves and these moves can require specific planning in or-
der to be achieved. The conditions that must be satisfied
in order to be able to perform a move are the conditions
that exist between the places in the computed path. Then
the same abstract plan can lead to several execution plans
each depending on the execution context where the agent is
situated.

Let us just add that the plan is not rebuild at each step but
partial replanning is done according to the new perceived
information given by the updates module.

A small example To illustrate the different points de-
scribed in the previous paragraph we will consider a very
small and simple example. We consider a world with two
places/rooms separated by a door d, the path between these
two rooms has the condition “d.locked=false”. Four interac-
tions define the laws: unlock, take, move, push (see Table 3).
In the world are an animate agent a that can perform these 4
interactions, and three inanimate agents, the door d that can
suffer open, a key k that can suffer take (and can be used to
unlock d) and a button b that can suffer push. The goal of
the agent is to push on b. The figure 3 presents the planning
in two different situations.

unlock:

{

condition = “target.locked = true”
guard = “distance(actor, target) < 1”
action = “target.locked = false”

take:

{

condition = true
guard = “distance(actor, target) < 1”
action = “actor.own(target) = true”

push:

{

condition = true
guard = “distance(actor, target) < 1”
action = “target.pushed = true”

move:

{

condition = conditionsfoundinpath
guard =
action = “distance(actor, target) < 1”

Table 3: Definitions of the interactions (adapted - but with-
out distortion - to shorten the example)

3 Teams

In the previous section we have briefly described our ap-
proach to model the simulated world and the agents. In par-
ticular we present how we obtain individual agent behaviour

unlock(d)

b k

d

a

push(b)

d(a,b)<1

move(b)

true

push(b)

d(a,b)<1

move(b)

d.locked = false

d(a,d)<1

move(d)

own(k)

take(k)

d(a,k)<1

move(k)

true

Figure 3: An animate agent a is situated in an environment
where are also 3 inanimate agents, a door d, a button b and
a key k. The goal of a is to push b. a must build a plan
to achieve it. A plan can be drawn as a tree, nodes due
interaction-goals are drawn with dashed lines and nodes due
to condition-goals with solid lines. Depending on the execu-
tion context, different plans can be obtained. Left is the tree
obtained when d is not locked and right is the case where d
is locked. a must adapt its plan to the context.

that allows agents to achieve tasks. However individual be-
haviours are not enough, sometimes tasks must be done by
groups, or teams, of agents. In computer games the need of
teams is important: teams of fighters in FSP games, groups
of units in strategy games, teams of characters in role-player
games, etc.

Several situations can require the use of teams. First,
getting a number of agents to do a job can speed up its
achievement, this corresponds to task parallelization when
several agents have the same abilities and perform similar
tasks simultaneously, one agent could have done it alone
but it would have taken more time. Second, in some cases,
one agent is not sufficient to perform a task, and several
must cooperate simultaneously to do it, by example this is
the case when a heavy load must be carried and two or more
agents are required in order to lift it, of course they must do
this simultaneously. Third, complex tasks require a lot of
different abilities and it is not often the case that one agent
alone has all of them, then several “specialist agents” that
together gather these abilities must cooperate to achieve the
task. Of course, these three cases can mix. In this paper we
mainly address this last case.

3.1 Teams of cognitive agents with leader

Making teams of agents work has been the subject of several
approaches. Emergence is a solution to obtain a team behav-
iour [CGGG03]. But in this case we think that the notion of
team work is only “apparent” since the team behaviour is a
collateral effect of the sum of the individual behaviours and
is not deliberate. We mean that the agents are not conscious
that they work in a team and no team strategy is explicitly

259 CIG'05 (4-6 April 2005)



planned.
Our objective is to make our cognitive agents work in a

team and being aware of it. To perform this we make some
choices in this paper:

1. the team is assumed to be already created, that means
that we are not concerned here with the problem of re-
cruiting an able agent or constituting the team before
doing the job.

2. the team is directed by a leader which is an agent that
plays a particular role in the team. It is known at the
beginning.

3. the leader is in charge of the team strategy and co-
ordination, therefore our work does not consider the
cases where agents negotiates to cooperate and to find
an agreement on a plan. For example, plan merging
[KMS98, AFH+97] is not our interest here.

Having a leader that builds the team plan can be seen as
a restriction since this implies that control is partially cen-
tralized. However one can see by oneself that this is often
the case in real life: firemen in a squadron or workers in a
building site obey to the orders of their leader. The point
is that in such teams, even if the leader gives orders, team
members still have their autonomy. They must behave ac-
cording to the leader plan but have to use their knowledge
and abilities to achieve these orders.

Indeed, an important feature is the granularity of the
leader orders. A site foreman does not order a bricklayer
“take this red brick, bring it there and put it on the foun-
dation, then take this second one, bring it there and put it
next to the first one, then take this third one...”. His order is
simply “build this brick wall here”. How the wall is built is
the responsibility and the competence field of the bricklayer.
As we see here, the leader gives rather high level orders and
is not concerned with details. Moreover these orders can be
abstract insofar as they are not necessarily tied to a partic-
ular situated context: the foreman can use the plan of con-
struction in his office to show the bricklayer the walls to be
built, this one is in charge to do it according to the site con-
straints and situation. The worker is autonomous once the
order has been given, probably he only must report when
he succeeds or even informs his leader when a problem he
cannot solve occurs.

Therefore, the leader is in charge to build the plan that
solves the team goal but this plan does not describe the so-
lution in full details.

In the following (see paragraph 3.3) we propose a solu-
tion to reproduce this behaviour: the leader has the knowl-
edge about its team members abilities, it builds an abstract
plan to solve the team goal and it distributes orders to the
members. The members autonomously resolve their tasks
and report to the leader.

3.2 Description of a team

Describing a team simply as a group of agents is not suffi-
cient. Our proposition consists in describing the team struc-

ture independently of any concrete agent and then to instan-
tiate it with the members.

Since we are interested in teams that gather several com-
plementary specialists, we design the team structure in term
of roles. A role corresponds to a set of abilities (ie. interac-
tions) required to play it (see Table 4). We add a cardinality
to each role, this allows to precise when several agents of
the same type are required in a team. This information is
for example useful to handle dynamic reorganization of the
team, but we will no more use it in the following of this
paper.

To instantiate a team consists in selecting existing able
agents and to attribute them some role in the team. Of
course to be able to play a role an agent must have all the in-
teractions that describe it in its can-perform property. Then
a team is given by a team-structure and a mapping from the
role in the structure and the agents members of the team.

TeamStructure = (Role, Cardinality)*
Role = Interaction*

Cardinality = Natural..Natural
Team = TeamStructure × (Role,Agent)*

Table 4: Definition of team

The knowledge concerning the team is given to the team
leader. In this paper we are not interesting in how the leader
recruits its team-mates.

3.3 Our proposition

Giving autonomy to the team members is an important
point. First, as said before, this is more realistic and simu-
lates what happens in real life. Second, this avoids to obtain
stupid behaviours, in particular because we consider situ-
ated agents in dynamic environments like game worlds are.
One must not forget that, as we say earlier, agent’s knowl-
edge, and by way of consequence the leader’s knowledge, is
not necessarily correct. Then, in the case where the leader
builds the plan in every detail and gives very precise or-
ders to the team members, those having no right to modify
them, it is more than probable that members will be con-
fronted with unexpected situations and will not be able (nor
authorized actually) to handle them. As an example, such
situations can be due to objects that are not where they are
supposed to be. Then a precise order like “go to a given pre-
cise location and take the brick” can not be solved by a non
autonomous agent if the brick has been moved. This is not
the case with the more abstract order “take the brick” given
to an autonomous agent that can decide and plan how to find
the brick according to the environment it is confronted with.
As a third advantage this provides an easy way to consider
team of teams, we will discuss this later in the paper.

As it has been described earlier our agents are cognitive
ones and are able to build plan according to their knowl-
edge. Insofar as individual and team plans are of the same
nature, there is no reason that the individual planning strat-
egy could not be applied to team planning.

So, the problem that arises is: How to adapt the individ-
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ual planning to team work in order to let some team mem-
bers autonomy. Here follows our proposition.

As we have seen the plan can be viewed as a tree where
root is the goal and leaves are actions to be executed in order
to solve the goal. In a team plan, leaves are then the orders
that the leader gives to the members. To be able to build this
plan, the leader must have some knowledge concerning the
members abilities, that is about their can-perform interac-
tions.

Let us consider that the leader knows all the can-perform
interactions of the members. Then exactly like in the indi-
vidual planning, he could build a plan to solve the goal. But
in this case he would build a full plan and team members
will no more have any planning autonomy! So the solution
is to not let the leader plans “until the end”, but to limit the
tree depth. But this can not be done arbitrarily. There is no
reason to decide that the leader unfolds the tree until it has
a depth of 3 rather than 5 or 10. The appropriate depth will
depend on the goal and the members abilities, it will be dif-
ferent at every time. In order to compute the depth’s limit
the leader would have to compute the full plan before to cut
it at a relevant depth. It is a nonsense to compute the full
plan, then to forget it and ask the members to re-build it!

Therefore this approach is not correct. We must not for-
get that we want the plan built by the leader to be abstract.
And then the leader does not need to have explicitly all the
knowledge about the can-perform of its team members. Ac-
tually, the leader only has to know what high-level tasks the
members are able to do. It even does not need to know by
itself how to perform these tasks, like a foreman does not
necessarily have to know how to build the wall, it suffices
that he knows that the bricklayer is able to do it. Indeed,
the leader has to know what things must be done but not
necessarily how to do them.

To achieve this we propose to hide some knowledge to
the leader: the guards and conditions in the can-perform of
the members are hidden to the leader. Thus the leader can
know which of the member’s interactions can be used in
its plan since, knowing their action parts, it can use them
during its backward chaining. However, since the leader
knows no condition (nor guard) for these, it considers they
are satisfied and stops the chaining. Then these interactions
become necessarily leaves of the leader tree plan and can be
distributed to the members as goals. Those members, hav-
ing full knowledge, are able to make the appropriate plan.

Let us take an example. We have one agent named a0

who can perform some interaction I0 (see Table 5). Two
other agents, named a1 and a2 can respectively perform in-
teractions {I1, I3, I4} and {I2, I5} (see Table 6).

a0 will be the leader of the team. The team structure is
made of two roles r1 and r2 that are defined respectively by
interactions {I1, I3} and {I2}. This implies that the “high
level” tasks the leader can ask to the members are to satisfy
p1, p2 or p3. The conditions and guards of these interactions
are hidden to a0 (see Table 5).

As we can see, agents a1 and a2 can play roles r1 and r2

respectively, they are chosen as team members.
Now, the team is given the goal p0. The leader, a0 builds

leader.can-perform team.can-perform
name I0 I1 I2 I3

conditions p1, p2 – – –
guard true – – –
actions p0 p1 p2 p3

Table 5: Leader’s knowledge, conditions and guards are
hidden for the interactions of the team roles. They are con-
sidered as true.

name I1 I2 I3 I4 I5

conditions p3, p4 p5 true true true
guard G1 G2 G3 G4 G5

actions p1 p2 p3 p4 p5

Table 6: Definitions of can-perform interactions of team
members.

the plan for it. According to its knowledge, the backward
chaining leads to use interaction I1

2 that requires p1 and p2

to be solved. These lead respectively to the use of I1 and
I2 (in this plan I3 does not interfere from the leader point
of view). For the leader, I1 and I2 have their conditions
and guards satisfied (since they are hidden and seem to have
none), then it stops its planning here (see Figure 4).

a2

p1 p2

I0

I1 I2

p0

a1

Figure 4: Tree representing the plan built by the leader. It is
developed until the abstract team’s interactions are reached,
goals can then be given to the team members.

Now the leader can distribute the tasks to its team mem-
bers according to their role in the team, indeed the leader
is not able to perform the task itself since I1 and I2 are not
in its can-perform. Then it gives p1 to a1 as goal and p2 to
a2. Now each agent autonomously solves its goal according
to its knowledge and builds the appropriate plan (see Fig-
ure 5). Then it can determine which action to fire to solve
its goal and can inform its leader when it succeeds or if it
fails.

The importance of the autonomy of the agent is increased
while considering the influence of the surrounding environ-
ment and specially with the situated aspect. This is ex-
pressed within the guards whose resolution has not been de-
tailed in above trees. Indeed, as we have seen since guards
express that the actor must be near the target in order to
fire the interaction, they requires planning to be solved. But
this is highly context dependant. And it would have been

2In the following we assume condition pi not to be satisfied.
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Figure 5: Trees representing the individual plans built au-
tonomously by the 2 team members (guard’s plan are not
detailed, they depend on the context).

particularly irrelevant for the leader to plan it instead of the
members.

3.4 Team of teams

With our above described approach it is easy to build “team
of teams”, or team built as a hierarchy of agents, where one
“big leader” orders to subleaders that order to and so on, un-
til “basic members”. In fact it applies immediately to such
cases without change!

Indeed, each level of the hierarchy corresponds to a level
of decision with its type of orders. The higher in the hier-
archy an agent is, the more high-level or abstract its orders
are. For example, a works foreman can order a bricklayer
leader to have walls built and the carpenter leader to have
windows installed. Each of them orders to his team-mates
to do the appropriate work.

With our approach the leader’s planning stops with the
abstract orders that can be given to team members and be-
come a goal for them. If a team member agent is a leader
itself, it applies the same procedure: starting from the goal
that he has received, he builds a plan that stops when the ab-
stract knowledge of its team (ie. interactions where condi-
tions are hidden) is used. Then it can give orders to its team
members. As we note nothing particular has to be done in
order to consider hierarchies of teams: building the teams
with their knowledge suffices.

4 Conclusion

In this paper we propose a mean to handle teams of cog-
nitive situated agents directed by a leader. The presented
solution let the team members some autonomy in the way
they contribute to the team plan achievement. Indeed, the
leader uses abstract knowledge on team’s abilities to build
an abstract plan and then distributes high-level orders to its
team-mates.

Several problems have not been addressed in this paper
and require complementary works, among them let us cite:

• how is the team built, that is how the leader recruits
its team-mates?

• how to dynamically reorganize a team when an agent

leave it (the cardinality information that are just men-
tioned in the paper can be used here)?

• how the information are exchanged inside the team?

• how to proceed in the case of teams with no leader?

They are, with others, the subjects of future works.

Thanks Many thanks to the anonymous referee that corrects so
many of our language mistakes. Thanks to all referees for their
remarks too.
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Abstract 
In this paper, we show how our AI opponents learn 
internal representations of probabilities. We use a 
Bayesian interpretation of such subjectivist probabilities 
but do not implement full Bayesian methods of parameter 
estimation since we wish the AIs to be as human-like as 
possible. Thus the parameters of the subjectivist 
probabilities are learned incrementally. 
 

1. Introduction 
 
Following the seminal work of Axelrod [Axelrod 1984], 
we have previously investigated games of incomplete 
information using such tools as Evolutionary Algorithms 
[Wang and Fyfe 2004a], Population Based Incremental 
Learning [Fyfe and Wang 2004], Artificial Immune 
Systems [Wang and Fyfe 2004b, Fyfe 2004b] and 
Artificial Neural Networks [Fyfe 2004a]. Yet such 
investigations have left us somewhat dissatisfied in that 
the mechanisms whereby the games are resolved are often 
remote from those which we humans actually use to play 
games or solve paradoxes. Additionally, such modern 
artificial intelligences are essentially distributed in that we 
are rarely in a position to, for example, isolate the specific 
individual connection within an artificial neural network 
or identify the specific interaction in an evolutionary 
simulation or isolate the effect of a specific interaction 
between an artificial antibody and an artificial antigen 
which led to the development of a solution within the 
game. 
 
Yet there are advantages in the above set of Artificial 
Intelligence (AI) techniques: we turned to them because 
we were dissatisfied with the current intelligences 
exhibited by the “AI” in contemporary computer games. 
These typically form intelligence with the use of standard 
techniques such as expert systems, A* searches and so on. 
Such intelligence is fast to implement but often lacks 
robustness: the intelligence is static and can usually be 
outwitted by a human opponent who learns the AI’s 
technique and circumvents it. For example, the AI in 
computer games is often very good at managing micro-
resources and will often launch steady waves of attacks 
against human-controlled opponents; the human response 
is usually to defend his resources against such (generally 
predictable) attacks while simultaneously building a bank 
of sufficient resources to launch an overwhelming attack 

against the AI’s resources. The AI is essentially beaten 
because of its lack of flexibility. We wish to retain the 
flexible responses which the above technologies 
incorporate while making the responses which our AI’s 
exhibit both more humanlike and more transparent. To do 
so, we turn to probabilities which we update 
incrementally during the game as more information 
becomes available. 
 
We may view the application of intelligence building 
within computer games as part of the greater game of 
creating machines which can think, something which 
many people consider to be impossible. However, we can 
do no better than turn to the authority of Von Neumann 
who is quoted in [Jaynes 2003] as saying: 

“You insist that there is something a machine 
cannot do. If you will tell me precisely what it is 
that a machine cannot do, then I can always make a 
machine which will do just that!” 

We will demonstrate that using probabilities allows us to 
explicitly respond to any objections about thought and 
intelligence with our game AIs. 
 
Note that we take the view that we are not interested in 
creating the most intelligent machine since, as we have 
seen with deterministic games, we can build a machine 
which is capable of beating any human. Nor do we wish 
to build an intelligent machine and then plumb in 
“artificial stupidity”, a tactic which is easily identified as 
false by a human opponent. Rather our aim is build a 
system which truly mimics human game play. We tend to 
think of this approach as artificial humanity and will 
demonstrate initial attempts to follow this route. 
 

2. Subjectivist Probabilities 
 
The use of probabilities clearly enables us to explicitly 
formulate responses within a computer game in a “white-
box” manner; however, we also wish that our 
implementation of probabilities to be such that a human 
observer can resonate with the logic of the AI’s responses. 
We also wish to ensure that we have robustness and 
learning built into the system of probabilities. 
 
Most engineers and many scientists still view 
probabilities within the frequentist paradigm: a 
probability is (loosely) a limit taken over an infinite 
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number of trials of the relative frequency of an event. 
This is challenged by the subjectivist or Bayesian 
paradigm [Jaynes 2003] which views probabilities as 
having no meaning outwith the agent who is assigning 
these probabilities. In other words, each person has a 
subjective view of the probability of any event being 
realised and this view may be quantised by a real number 
which should correspond in some degree to common 
sense. There are other slightly more esoteric ‘desiderata’ 
that must be taken into account but these are no more than 
the obvious constraints of consistency, conformity and so 
on. 
 
There is a great deal of controversy  associated with the 
use of  Bayesian concepts in the context of game theory 
with many authors taking a very strong stance against 
their use: for example, Binmore ([Binmore 1992, page 
487]) considers “that Bayesianism does not call for much 
mental prowess on the part of the players”. Or even 
stronger, from [Gintis 2000, page 289],  “the “belief” 
concept involves all sorts of philosophical nonsense”. Yet, 
even if full-blown use of Bayesian methods is not usual,  
Bayesian updating of probabilities is widespread e.g. 
there is a chapter “Learning who your friends are: Bayes’ 
Rule and Private Information” in [Gintis 200] which is 
devoted to probability updates according to Bayes’ Rule. 
The same theme emerges in [Dixit and Skeath 1999] 
though these authors also stress the role of Bayes’ Rule in 
two player, simultaneous play games. However using 
Bayes’ Rule in this way does not necessarily constitute 
employing the whole Bayesian paradigm. 
 

2.1 A Full Bayesian Game 
Consider the game of Chicken: the two protagonists each 
prefer that the other gives way, but failing that, will 
themselves give way (Macho is better than Chicken but 
Chicken is better than Death). A full Bayesian treatment 
of such a game – the game will be non-fatal so it can be 
repeatable - would involve having a prior probability that 
one’s opponent would be Chicken which will be updated 
as evidence appears. Examples of prior Beta probability 
(see Appendix) density functions are shown in Figure 1. 

Figure 1. Three different prior beta distributions, (see 
Appendix) horizontal axis from 0 to 1 in hundredths. 

One advantage of a Beta distribution is that it is so 
malleable (can be unimodal, bimodal, symmetric or not 
etc.) For this simulation we chose Beta(0.5,0.5) as a prior 
which says that we are giving most probability mass to 
our prior conviction that the opponent will be very macho 
or very chickenish. Now we sample from the binomial 
distribution in which the opponent will play macho with 
probability 1/8 and update the posterior probabilities 
accordingly (Figure 2).  

Figure 2. Posterior pdfs after 1, 2 and 5 samples from 
a chicken opponent. 

We first note that the chicken end of the distribution 
quickly acquires most of the probability mass and that the 
variance of the distribution decreases in time (the AI 
becomes more confident of its beliefs). We also  see that 
we have much more information than we really wish: we 
really only wish to identify whether we are playing 
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against a hawk or a chicken but we actually have a full 
pdf at each turn. Also there is plenty of evidence that 
humans are not actually very good at implementing 
Bayes’ Rule when it comes to evaluating evidence. Thus 
in the following, we have adopted an incremental 
updating of subjectively-based probabilities rather than go 
down a full-scale Bayesian implementation. 
 

3. Simulations 
In this section, we will discuss simulations of a 
simultaneous game of complete information, and then a 
sequential game of incomplete information before 
returning to our game of chicken. 

3.1 A simultaneous game of 
complete information 
 
We first examine a coordination game to investigate 
whether our AIs can learn to cooperate with each other. 
To do this, we create a typical game situation: we have 
three AIs each with slightly different interests. We create 
a payoff function discussed in (Fudenberg and Tirole, 
1991, page 15) in a game which we have previously 
investigated with Artificial Immune Systems. Let us have 
three AIs labelled 1, 2 and 3 and let the possible strategies 
be labelled A, B and C. The game consists of each of the 
AIs independently and simultaneously choosing a strategy 
and the strategy with the highest number of votes is 
adopted. If no strategy has a higher number of votes than 
any other, there is no payoff. The payoff functions are 
µ1(A)= µ2(B)= µ3(C)=2 
µ1(B)= µ2(C)= µ3(A)=1 
µ1(C)= µ2(A)= µ3(B)=0 
where we are using µi(X) as the payoff for AIi when 
strategy X is adopted. 
We will use this very simple model in a didactic role to 
illustrate how AIs can develop intelligent cooperation. 

3.1.1 A Maximum Utility Model 
 
Maximum utility models try to find the mode of a 
distribution and ignore what is happening in other parts of 
the distribution. In this section, our AIs select which of 
the three strategies they will use in a deterministic manner. 
However, we also have a probabilistic element in this 
section, in that each AI holds a mental model of the 
probabilities that each of its two opponents will opt for a 
particular strategy. For example, AI1’s model of 
probabilities is shown in Table 1. 
 
 AI1 AI2 AI3
A * 0 1-β1
B * α1 0 
C * 1-α1 β1

Table 1The first AI's estimate of the probabilities that 
the second and third will opt for strategies A, B or C. 

AI1 has no probability estimates of his own choices (the 
*s) but maintains a model of his estimates of his two co-
players’ actions. He considers that they are rational and so 
each has nothing to gain by opting for the strategy which 
will gain him 0. Therefore his estimate of the probability 
that AI2 will opt for strategy A is 0. His estimate of the 
probability that AI2 will opt for strategy B is α1 and so his 
estimate that the probability that AI2 will opt for strategy 
C is 1-α1. We may write this as P1(2,A)=0, P1(2,B)=α1, 
P1(2,C)=1-α1. Note that we need the subscripts on the 
probabilities such as α1 since P3(2,B)=α3 which need not 
equal P1(2,B)=α1 since the probabilities are specifically 
defined as internal to the individual. 
 
So AI1 wishes to maximise his payoff. He can expect a 
maximum payoff of Max( P1(2,B). µ1(B), P1(3,A). µ1(A)) 
=Max(α1, (1-β1)*2). Note that, within the rules of this 
game, he can get only one or other of these, not both. 
Now AI1 is himself rational and so he will base his 
strategy selection on which of these gives him the greatest 
expected return. Thus if α1 > (1-β1)*2, AI1 will select 
strategy B; otherwise he will select strategy A. He will 
never select strategy C since this gains him 0. The other 
AIs are reasoning similarly. 
 
Now the game is started. Initially each AI’s estimate of α 
and β is 0.5+ε, where ε is a random number from a 
uniform distribution between -0.1 and +0.1. As the game 
progresses, each AI updates its probabilities in a rational 
manner: if AI2 is seen to be choosing strategy B during 
the game, AI1 updates P1(2,B) to α1+η(1- α1) and changes 
P1(2,C) to 1-α1-η(1- α1). On the other hand, if AI2 is seen 
to be choosing strategy C during the game, AI1 updates 
P1(2,B) to α1-ηα1 and changes P1(2,C) to 1-α1+ηα1. For 
this game, we give all AIs the same value of  η=0.05. The 
first 25 rounds of a typical game are shown in Figure 3.  
 

Strategy selections

1 3 5 7 9 11 13 15 17 19 21 23 25

Series1
Series2
Series3

 
Figure 3 The AIs’ selections during the first 25 rounds 
of the game.  

The vertical axis of that figure has Strategy A at the 
lowest level, Strategy B in the middle and Strategy C at 
the top. We see that for the first 8 rounds each AI opts for 
its own best individual strategy. At round 9, AI3  concedes 
to AI1 by switching to strategy A and so is gaining a 
reward of 1 to AI1’s reward of 2. It  would now pay AI2 to 
switch to Strategy C so that it would share success with 
AI3 (though AI2 would be rewarded only 1 compared to 
AI3’s reward of 2) and it does make occasional switches 
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to Strategy C, however by now the important probabilities 
are very close to 1 or 0 and max(P3(A,1), 2*(1-P3(B,2))) 
stays at P3(A,1).  This is illustrated in Figure 4: we see a 
slight wobble in AI3’s belief in AI2’s intentions but it is 
never sufficient to overcome its conviction that AI1 will 
select strategy A, thereby gaining it a reward of 1. 
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Figure 4. Top AI3's estimate ofAI2's probability of 
selecting Strategy C. Bottom: AI3’s estimate of AI1’s 
probability of selecting Strategy A. 

This is somewhat typical of Maximum Likelihood (ML) 
methods. [Mackay 2004, page 306] notes (in the context 
of ML clustering) “This is known as overfitting. The 
reason we are not interested in these solutions with 
enormous likelihood is  … the density is large over only a 
very small volume of parameter space”. Also, as we have 
seen, it may be very hard work to escape from this region. 
 
Note that we chose to increment the probabilities rather 
than go straight to the mode of the distribution. We do 
this in order to mimic human learning in a game situation: 
our aim is to make our AIs’ behaviour as human-like as 
possible not to make the AIs play the game as well as 
possible.  Thus rather than move straight to the modal 
probabilities, we incrementally update the probabilities 
just as a human would. 
 
Note also that we have not built in to this system the 
requirement of consistency (e.g. P1(2,B)≠ P3(2,B)) since 
this is ubiquitous in human existence.  

3.1.2 Using SoftMax Probabilities 
 
However, we are dissatisfied that Player 2 did not play 
with human insight by switching his vote. We can 
alleviate this situation if we use parameters ai and bi which 
underlie the αi and βi in that αi=exp(ai)/Σexp(ai) and 

βi=exp(bi)/Σexp(bi). We then update the parameters using 
ai directly: if AI2 is seen to be choosing strategy B during 
the game, AI1 updates ai to a1+ηa1.  Similarly with the b 
parameters. Now we have selections such as shown in 
Figure 5 

Soft Max Probabilities

1 3 5 7 9 11 13 15 17 19 21 23 25

Series1
Series2
Series3

 
Figure 5. The selections made by the AIs when 
softmax probabilities are used. 

We see that after 4 games in which each AI chooses its 
optimal strategy, both AI1 and AI2 simultaneously change 
to their respective second best strategies. However AI2 is 
not immediately rewarded since AI3 has changed. But 
after three more games AI3 moves back to strategy  
C and AI2 and AI3 are both positively rewarded. AI1 
perseveres with strategy A till round 20 when it switches 
to strategy B. This situation continues till round 60 when 
AI2 switches to strategy B so that now AI1 and AI2 are 
being positively rewarded. At round 193, AI3 switches to 
its second option – strategy A - but this does not evoke 
the change in AI1’s behaviour till round 633 when it 
switches to A. We see that while switching behaviour 
does happen, it takes longer and longer to manifest itself 
with this simple model. 
 
The longer time it takes for subsequent changes to 
players’ votes is not a problem: in this paper, we keep the 
value of η constant but there is nothing to stop this 
increasing in time. We are implicitly then taking account 
of player’s experience  to be more confident of the 
changes he makes in his subjective probabilities. 
 
3.2 A sequential game 

 
Figure 6 A sequential game 
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We have illustrated a simple sequential game in Figure 6. 
The game is between two players. Both players initially 
put £1 into a pot. Player 1 then draws a card from a deck 
containing an equal number of red and black cards but 
does not show it to Player 2. Player 1 may either fold or 
raise (put another £1 into the pot). If he folds and the card 
is red, he gets the pot; if he folds when the card is black, 
Player 2 gets the pot. If he raises, Player 2 must decide 
whether to meet the pot or pass. If he passes, Player 1 gets 
the pot. If Player 2 posts another £1, he gets the pot if the 
card is black but Player 1 gets the pot if the card is red. 
 
This game is specifically used in [Myerson 1997] to 
illustrate Bayesian games. As with most textbooks (e.g. 
[Gintis 2000, Dixit and Skeath 1999]) on such sequential 
games of incomplete information, the discussion in 
[Myerson 1997] is based on Harsanyi’s method. This 
envisages a prior move by chance which selects whether 
the card is black or red. Then Player 1’s action must be 
discussed under two headings depending on whether the 
card is red or black. Player 2, on the other hand, does not 
require this treatment since, when he plays, he does not 
know the colour of the card. Thus we have a node 1a and 
1b in the Figure but only a single node 2.  
 
We consider Harsanyi’s methodology to be rather 
unintuitive and revert to first principles i.e. we view the 
card drawn as a latent variable with its own set of 
probabilities. Let Pi(X) be the subjective probability that 
Player i has that X will occur. Then we are interested in  

• P2(C=Black|1=Raise), Player 2’s estimate of the 
probability that the colour of the card is Black 
given that Player 1’s action was raise. This 
depends via Bayes’ Rule on  

• P2(1=Raise|Card=Black) 
• P1(2=Pass|1=Raise), Player 1’s subjective 

probability that Player 2 will pass when he sees 
Player 1’s raise. This depends on 

• P1(Raise|C=Black), the probability that Player 1 
will raise on a Black card  

Then these probabilities can be used to determine the 
actions of the players: Player 1, being rational, will 
always raise on a red card; he will also raise if his 
expected payoff from a raise is positive: 
P1(2=Pass|1=Raise).2> P1(2=Meet|1=Raise).(-1) 
i.e. P1(2=Pass|1=Raise).2>(1- P1(2=Pass|1=Raise)).(-1) 
i.e. P1(2=Pass|1=Raise) >1/3 
If Player 1 raises, Player 2 requires to estimate 
P2(C=Black|1=Raise) 
= P2(C=Black,1=Raise)/ P2(1=Raise) 
= P2(1=Raise|Card=Black)P(Card=Black)/ 
{P2(1=Raise|Card=Black)P(Card=Black)+  
P2(1=Raise|Card=Red)P(Card=Red)} 
= P2(1=Raise|Card=Black)/{1+ P2(1=Raise|Card=Black)} 
since P(Card=Black)= P(Card=Red)=0.5. 
 
Again we can increment these subjective probabilities 
using,  if the card is black and Player 1 folded, 
P2(1=Raise|Card=Black) = P2(1=Raise|Card=Black)*(1-η) 

 
If the card is Black, and Player 1 raised, or the card is red, 
P2(1=Raise|Card=Black) = P2(1=Raise|Card=Black)*(1-η) 
+ η. 
Note that P2(1=Raise|Card=Black) can rise even when the 
card is red since this is Player 2’s subjective probability 
and, when he plays, he does not know the colour of the 
card. 
 
If card is black, and Player 1 raises, Player 2 meets, 
P1(2=Pass|1=Raise) = P1(2=Pass|1=Raise)*(1-η) 
P1(Raise|C=Black)= P1(Raise|C=Black)* (1+η) 
 
If Player 1 raised but Player 2 passed, 
P1(2=Pass|1=Raise) = P1(2=Pass|1=Raise)*(1-η) +η 
P1(Raise|C=Black)= P1(Raise|C=Black)* (1-η) + η 
 
With these rules and η=0.05, within 20 games,  
P1(Raise|C=Black)=1/3 and P1(2=Pass|1=Raise) =1/3 
where they remain stably throughout the simulation.  
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Figure 7. P2's changing subjective probabilities. 

On the other hand, Player 2’s probabilities are much more 
volatile (see Figure 7): P2(1=Raise|Card=Black) does 
hover around the correct figure (1/3), but is not fixed at 
this value. 
 
In setting out this game, we have assumed that it is 
common knowledge (everyone knows, every one knows 
that everyone knows etc.) that Player 1 will always raise 
on a red card. Again this is done for the strictly subjective 
reason that this is exactly what happens in real life. Note 
that we have only modelled first order beliefs (about the 
state of the card) and second order beliefs (about the 
response the opponent will make given the player’s 
actions) but not gone beyond that since humans are not 
capable of infinite recursions of beliefs. 
 
We said that the colour of the card chosen is a latent 
variable, at least to Player 2 who plays without seeing the 
card. A more interesting game would be to have different 
numbers of red and black cards in the game and have the 
players attempt to estimate that. This type of latent 
variable estimation is discussed when we return to the 
game of chicken in the next section. 
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3.3 Return to Chicken 
 
Finally, let us return to the game of Chicken which we 
discussed in a full Bayesian setting. Let us have two 
probability distributions determining the time when each 
of the two protagonists will chicken out of the game. Let ti 
be the time that Player i will chicken out of the game and 
let ti be drawn from a normal distribution of mean ai and 
standard deviation σ, ti ~ N(ai,σ), i=1,2. Each player will 
have a probability density function associated with his 
belief that his partner will chicken out, Pi(j=Chick, j≠i).  
Initially both of these are ½, signifying that we have no 
prior information. But as the game develops we gain 
information: at each time step, Pi(j=Chick, j≠i) = 
Pi(j=Chick, j≠i) + η for i= argmax {t1,t2} and Pi(j=Chick, 
j≠i) = Pi(j=Chick, j≠i) – η for the other. Now with this 
simplified game, the player with the belief, Pi(j=Chick, 
j≠i)< 1/2 will chicken out while the other will believe he 
has the upper hand. The outcomes of a  simulation in 
which a1= 0.3, a2=0.4, σ=0.2 is shown in Figure 8. 

The chickens
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Figure 8. Mostly Player 1 was the chicken but 
occasionally 2 chickened out. 

The probabilities, Pi(j=Chick, j≠i), were learned and are 
shown in Figure 9. We see that very soon, each Player has 
good grounds for playing chicken or not. 
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Figure 9. The probabilities learned by the two players. 

However, in a full Bayesian treatment, the underlying 
factors would also be the subject of the investigation. 
Now while we do not wish to undergo a full Bayesian 
analysis, we recognise that Chicken is a signalling game: 
it is in each player’s best interest to signal strongly to the 
other if he is not a chicken and so in a repeated human 
contest, one player will quickly learn the role of chicken 
while the other will learn the role of macho. This can 
easily be built into the system by adapting the latent 
variables (the means of the visible variables) using 

ai=ai+η for the winner and ai = ai – η for the loser.  
Figure 9 shows the result of such a simulation. Clearly 
changing the centres of the distributions gives far fewer 
games in which the first player wins. Also the 
probabilities are learned far more quickly.  
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Figure 10. Top: the samples, Middle: probabilities. 
Bottom: the learned means of the distributions. 

 
 
4. Conclusion 
 
We stated at the outset that we consider that the search for 
Artificial Intelligence may not be optimal in the context 
of computer games. It is often easy to create a game 
which an AI can play better than a human: the real task is 
to create an AI and a game in which the AI can perform in 
a human-like manner. In creating our AI players, we have 
adopted the subjectivist probability paradigm which states 
that all players associate some prior probabilities to the 
events within the game. However, we have not gone 
down the full Bayesian route which would require that we 
update our whole probability distribution as more 
evidence becomes available. This may indeed be optimal 
for generating intelligence but we question whether such 
intelligence is really human-like, particularly in the 
context of computer games.  
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We have, however, incrementally changed the beliefs of 
our players in the computer games. We have, in this paper, 
used fixed values for these increments; we could argue 
that a sigmoidal shaped convergence of values might be 
more appropriate: we change our probabilities a little 
from the first few pieces of evidence (these may, after all, 
be subject to random noise), then a great deal from the 
next group of evidences then finally little as the remaining 
evidence comes in (we may wish to leave a little doubt, 
since many of the most enjoyable games contain a 
stochastic element).  

• Wang, T.-Z. and Fyfe, C. Achieving Cooperation 
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Appendix 
 
 
If we have an unknown quantity, θ, which determines the 
actual values of n observations, X={X1,X2,…, Xn} then 
the dependence of X on θ can be detemined by the 
conditional probability density function (pdf) p(X|θ). If 
we have a prior belief about the pdf of θ, p(θ), then we 
may use Bayes’ Theorem to calculate the posterior 
distribution 

 
Future work will extend the above latent variable models.  
We are particulary interested in modelling opponents’ 
behaviour when it is affected by our own 
responses/behaviour which suggests that a Hidden 
Markov Model may be appropriate for many games.  
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Abstract- We extend the work of [McGlinchey 2003], 
in which the author trained an AI player to play Pong 
from game observation data recorded from games 
played by humans. The data trained a Self Organising 
Map (SOM) , and it was found that the AI player 
played Pong with a human style of play. However one 
of the drawback of using the SOM was that the 
movement of the bat was jerky, due to quantisation of 
vectors. The author had to applying smoothing to the 
AI player’s bat to make the movement more realistic. 
It was also found that the AI players were easy to beat. 
In this paper we train the AI player using  Generative 
Topographic Mapping (GTM) and we show that using 
the mean of the conditional density to estimate the 
bat’s position is better than using the mode.  

1 Introduction 

We wish the AI player to play in a human like fashion, 
which will create a more enjoyable and convincing 
gaming experience for a human opponent. The question 
arises as to how to make the AI human-like. We have 
[Leen and Fyfe 2004a, 2004b] previously investigated this 
using a variety of games and a variety of computational 
intelligence  techniques. In this paper, we use a generative 
probablistic method on a single game, Pong which was 
popular in the early days of computer games. 
 
 Previous research on this topic using the game of Pong 
was described in [McGlinchey 2003]. In this paper, 
McGlinchey used a Self-organising Map (Section 3) to 
learn to copy the moves of a human player in a game of 
pong. One difficulty with this system is that the Self-
organising Map quantises the data so that the AI will 
respond to a Voronoi region of similar data points with 
exactly the  same bat position; also the data includes 
quantities such as ball position and velocity which are 
continuous variables but as a variable moves from one 
Voronoi region to an adjacent region, the quantised data 
moves from one output node to the next. If each node is 
associated with a particular bat position, the bat will jerk 
from one position to the next rather than smoothly change 
along a real line. This is far from human-like behaviour. 
 
It is possible to get round this difficulty by sharing 
responsibility for a particular set of data points (measuring 
ball velocity, position etc) around a set of nodes and then 

letting the set of nodes together deterimine the position of 
the bat. However, [Bishop et al, 1996] have recently 
developed a mapping similar to the Self-organising map 
known as the Generative Topographic Mapping (section 
4) which automatically allocates responsibility for each 
data point to a number of nodes. This is inherent in the 
training process and requires no extra ad hoc 
arrangements. As a bonus, the Generative Topographic 
Mapping can be described as a “principled alternative to 
the Self-organising Map” in that it is derived from explicit 
probabilistic axioms and comes with an innate error 
model. 
 
The remainder of the paper is as follows: in section 2, we 
discuss the game of pong and the characteristics which we 
would hope to see in an artificial pong player. In section 3, 
we review the Self-organising Map and in section 4, the 
Generative Topographic Mapping. In section 5, we show 
results using the GTM and give our conclusions in section 
6.  

2 Playing Pong 

2.1 The game of Pong 
 
The game of Pong is a simple two player game which 

was made popular by early games consoles. The game is a 
minimalist table tennis (or Ping Pong) simulator, in which 
each player is represented as a bat  which can deflect a 
bouncing ball.  

 

 
Figure 1: A screenshot from the game of Pong 

 
Since the game is real time, and incorporates human 

like reactions, styles of play, and simple tactics, it is  an 
ideal environment in which to create an AI player which 
exhibits human like behaviour.  

2.2 Creating an AI Pong player 
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An ideal AI opponent for the game of Pong would be one 
that plays at a level similar to its human opponent, but 
exhibits ‘human like’ behaviour in its style of play. 
Obviously it is possible to create an AI opponent that can 
easily match the ability of its human opponent; the AI’s 
bat could be constantly updated so that its centre is equal 
to the vertical position of the ball. However, this creates 
an opponent which never makes any errors and 
consequently would not be fun to play against, and the 
game would feel unfair to play from the human player’s 
perspective. Also, the motion of the AI player’s bat would 
not be realistic: it may move too smoothly or react too 
quickly to its opponent’s moves. The difficulty lies in 
incorporating human like traits of play in the AI 
opponent’s behaviour.  

 
2.2.1 The issue of learning 
 
[McGlinchey 2003] relies on Game Observation Capture 
(GoCap) to  achieve a convincing level of human like 
behaviour. GoCap is the process of recording data from a 
live user during the execution of a game, with a view to 
using machine learning to train an AI player. 
Unsupervised learning is used to train a neural network 
which self organises based on the statistics of the training 
data.   

 
[McGlinchey 2003] captured a data vector consisting of 
the ball’s position, speed and direction, and the vertical 
position of one player’s bat every frame with the game 
running at 60 frames / second. He then trained a Self 
Organised Map on the recorded data. Once the SOM had 
been sufficiently trained, the AI player can then play Pong 
by constructing an input vector based on the ball’s speed, 
position, and direction, and inputting it into the network, 
and looking up the corresponding bat position from the 
correct component of the winning node’s weight vector.  
 
[McGlinchey 2003] found that using a SOM to train the 
AI resulted in erratic and jerky bat movement due to 
quantisation, but solved this problem by using multiple 
winners and interpolating between their corresponding bat 
positions. It was found that the AI played Pong with a 
human style of play but its level of play did not challenge 
experienced players, perhaps because the position of the 
AI’s bat is completely deterministic based on the bat’s 
speed, position, and direction. 

 
We propose to extend the work of [McGlinchey 2003] by 
using the recorded data to train a Generative Topographic 
Mapping (GTM). Since this is a continuous mapping 
model, we expect that the motion of the trained AI 
player’s bat should be smoother.  

2.3 The difficulty of modelling Pong data  
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Figure 2: Examples of the recorded data set. Top: bat 
position against ball position, Middle: The previous 
bat position against current bat position, Bottom: ball 
and bat position against time 

 
The problem with modelling the data set from a game 
such as Pong is that we have many data variables, between 
which there are complex mappings. For instance, for the 
LHS player, we would expect that at the LHS of the board 
(ball position x = 0) where the player returns the ball, for 
the player’s movement to be more restricted, as opposed 
to when the ball is in another portion of the board; in other 
words we expect there to be a one-to-one mapping 
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between ball position x and bat position y when x is small; 
and a many-to-one mapping otherwise. 
 
We find that the current bat position is always close to the 
previous bat position. This shows that the bat position 
changes very smoothly. This linear relationship can be 
seen in the other data variables which suggests that points 
in the data space which are close together will also be 
close in time. This suggests that the data may have an 
intrinsic dimensionality of 1. We can use the GTM to 
model the data with a one dimensional latent space.  

3 The Self Organising Map 

Teuvo Kohonen developed the Self-Organising Map 
(SOM) in 1982 as a visualisation tool for high 
dimensional data on a low dimensional display. A SOM is 
composed of a discrete array of L nodes arranged on a N-
dimensional lattice and it maps these nodes into D-
dimensional data space while maintaining their ordering. 
The dimensionality, N, of the lattice is normally less than 
that of the data. The SOM can be viewed as a non-linear 
extension of Principal Component Analysis (PCA), where 
the map manifold is a globally non-linear representation of 
the training data. As with local PCA, the data space is 
partitioned with each node of the map capturing a 
different partition. However, with the SOM, all data in a 
partition is quantised to a single point, and the combined 
effect of all of the vector-quantising nodes is to give a 
globally non-linear representation of the data set. 
 
Typically, the array of nodes is one or two-dimensional, 
with all nodes connected to the N inputs by an N-
dimensional weight vector. The self-organisation process 
is commonly implemented as an iterative on-line 
algorithm, although a batch version also exists. An input 
vector x is presented to the network and a winning node c 
is chosen whose weight vector cw has the smallest 
Euclidean distance from the input.  

 ( )ii
c wx −= minarg    (1) 

           

So the SOM is a vector quantiser, and data vectors are 
quantised to the reference vector in the map that is closest 
to the input vector. The weights of the winning node and 
the nodes close to it are then updated to move closer to the 
input vector.  The neighbourhood of node i  is the set of 
nodes denoted by )(iN that are close enough to be 
influenced by the node i  whenever it is the winner. 
Therefore, if the winner is c , then the weights of the 
nodes )(cNi ∈ will be updated during training. It may be 
that every node of the map is included in this set, but there 
can be significant savings in computational cost if a 
localised neighbourhood is used, especially in large maps. 
The amount by which the neighbours are updated is 

determined by the neighbourhood function, cih , which is 
a function of the Euclidean distance between the winner 
( c ) and the other nodes in its neighbourhood ( i ). This 
function is normally a Gaussian or difference of Gaussians 
(“Mexican hat”). There is also a learning rate 
parameter,η , that is usually decreased as the training 
process progresses. The weight update rule is: 
 

[ ] )(,)()()()()()1( c
iciii Nittthttt ∈∀−+=+ wxww η

     (2) 
            
When this algorithm is iterated sufficiently, the map self-
organises to produce a topology-preserving mapping of 
the lattice of weight vectors to the input space based on 
the statistics of the training data. Each weight vector lies 
approximately at the centre of its Voronoi region, which 
holds the subset of points in the data space that are closer 
to this vector than any other in the map. Another 
interesting property is that in certain circumstances the 
mapping is approximately equiprobabilistic i.e. when a 
vector is chosen at random from the training set, each 
node has an equal probability of winning. This is true if 
the mapping gives a faithful representation of the data, i.e. 
the weight density is similar to the density of the data set. 
So for areas of the input space that have a high density of 
data, there will be more weight vectors found in that 
region than other regions with lower data densities. 
However, this does not always hold true, since there are 
some data distributions that may cause part of the map to 
become “stretched” over regions of the data space with a 
very low density of data, and the equiprobability is then 
greatly dependent on sufficient narrowing of the 
neighbourhood function. This finding is empirical, and it 
is not an objective of the SOM algorithm. Some work has 
been done recently where equiprobability is used as a 
prior, and an objective function optimises the network 
parameters to achieve equiprobability. 

4 The Generative Topographic Mapping 

The Generative Topographic Mapping [Bishop et al. 
1996] is a non linear latent variable model, for which the 
parameters can be determined by using the EM algorithm.  

 

4.1 Latent Variable Models 
 

We can capture the correlation between the variables 
of a data set ( )1, , Dt t=t … by modelling the data’s 
distribution in terms of some latent variables 

( )1, , Lx x=x … . We are interested in the case when the 
dimensionality L of the latent space is smaller than the 
dimensionality D of the data space, since this shows that 
the data has an intrinsic dimensionality which is smaller 
than  D . 
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We define a joint distribution over the data and the 
latent variables, which can be decomposed into the 
product of the marginal distribution of the latent variables 

( )p x , and the conditional distribution ( | )p t x of the data 
variables given the latent variables. 

           

1

( , ) ( ) ( | ) ( ) ( | )
d

i
i

p p p p p t
=

= = ∏t x x t x x x   (3)  

We express the conditional distribution ( | )p t x in 
terms of a mapping from latent space to data space 

( ; )y x W . Geometrically, the function ( ; )y x W maps the 
latent space into an L  dimensional manifold embedded 
within the data space.  

 
We complete the definition of the latent variable 

model by defining the marginal distribution ( )p x . We can 
then obtain the distribution ( )p t of the data by 
marginalising over the latent vairables.  

 

 ( ) ( | ) ( )p p p d= ∫t t x x x    (4) 

 
In general, this integration will be analytically 

intractable except for specific forms of ( | )p t x and ( )p x . 

4.2 The GTM algorithm 
 

The Generative Topographic Mapping (GTM) uses a 
non linear mapping function ( ; )y x W which is chosen to 
be given by a generalised linear regression model of the 
form: 
 

( ; ) ( )φ=y x W W x     (5) 
 
where the elements of ( )φ x consist of M fixed non-linear 
basis functions. 
 
 We define the marginal distribution  ( )p x as a sum of 
delta functions centred on the nodes of a regular grid 
(which is analagous to the nodes of the SOM) in latent 
space: 
 

1

1( ) ( )
K

i
i

p
K

δ
=

= −∑x x x
  

  (6) 

which allows the integral in (4) to be performed 
analytically.  
 
We choose the distribution of  t for given x and W to be 
a radially symmetric Gaussian centred on ( ; )y x W , 
having inverse variance β : 
 

/ 2
2( | , , ) exp ( ; )

2 2

D

p β ββ
π

   = − −  
   

t x W y x W t      (7) 

The distribution in data space then takes the form: 
 

1
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K
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p p
K

β β
=

= ∑t W t x W    (8) 

 
with log likelihood function: 
 

1 1
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N K

n i
n i

L p
K

β β
= =

  =  
  

∑ ∑W t x W   (9) 

 
We can then find the weight matrix W and inverse 
variance β that maximise the log likelihood function, by 
the EM (Expectation – Maximisation) algorithm.  
 
We can evaluate the posterior probabilities, or 
responsibilities, of each latent sample for every data point 
using Bayes’ theorem: 
 

1

( | , )
( , ) ( | , , )

( | , )

n i
in i n K

n j
j

p
R p

p

ββ β
β

=

= =

∑

t x , W
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t x , W
   (10) 

The posterior distribution is a sum of delta functions 
centred at the latent grid points, with coefficients given by 
the responsibilities. 
 
When considering the whole set of data points, it is 
convenient to summarise the posterior distribution by its 
mean, given for each data point nt by: 

 

1

| , , ( | , , )
K

n n in i
i

p d Rβ β
=

= =∑∫x t W x t W x x x    (11) 

or alternatively, by the mode of the distribution: 
 
  
max {i}

arg max ini R=     (12) 

 
which only uses the latent point which has most 
responsibility for the current data point. We will 
investigate using both of these representations in the next 
section. 

5 Method and experimental results 

5.1 Training 
 

The data set which we used to train the GTM was the data 
captured from a two player human – human game, in each 
frame, with the game running at 60 frames / second. Each 
data vector is 6 dimensional and consists of the ball’s 
position (2 coordinates) and velocity (2 values) and speed 
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and the vertical position of one player’s bat. The nth 
vector of the data set is: 

 
( )ball pos x, ball pos y, ball vel x, ball vel y, ball speed, bat posnt =  

 
The data was normalised so that all fields ranged from -1 
to 1. 
 
We trained the GTM using a 1-dimensional latent space, 
with the assumption that the underlying variable to the 
data set is time. During training, the model parameters are 
adjusted so that the data becoming increasingly likely 
given the model (as seen in Figure 3). We also notice the 
variance decreasing as the model becomes more confident 
of the fit it is producing. The table below shows the joint 
log likelihood for all the data variables (calculated as in 
equation 9) per data point for different values of M, the 
number of Gaussian basis function, and K, the number of 
latent variable samples.  

 
K (no of 
latent 
samples) 

M (no of 
basis fns) 

Beta (inverse 
variance) 

Log 
likelihood / 
data point 

20 5 24.0157 -0.4361 
50 25 49.5366 0.5142 
100 49 46.6166 -0.4926 
400 81 54.3403 0.6905 

 
 

Figure 3. The log likelihood of the data according to 
the 1 dimensional gtm model. 

We find that results are similar for different values of M 
and K. 

 

5.2 Playing 
 

5.2.1 Estimating the conditional density of the bat 
position given the five input variables 

 

After training we wish to use the trained gtm to play the 
game of pong. To do this, it must react to the first 5 
variables on the data list in order to generate an estimate 
of the correct value of the sixth (the bat’s position). 
During training, we found a model for the joint density of 
the data variables, and now we estimate the conditional 
density of the bat position given the five other inputs. This 
can be treated as a missing value problem. We denote the 
nth data point as  

 
( )nt ,o m

n nt t=  

 
with m

nt denoting the missing data variable (the bat 

position) and o
nt the nth set of observed data variables (the 

other five inputs such as ball position x and y etc) 
We wish to find the conditional density: 
 

 

( | , ) ( | , , ) (m o m o
n n n np t t p t p t dβ β= ∫, W x W x | ) x =

       (13) 

 1

1 ( | , , )
K

m
in n i

i

R p
K

β
=
∑ t x W

 
 
where 
 

 1

1( ( )
K

o
n in i

i

p R
K

δ
=

= −∑x | t ) x x
 

 (and inR  is the responsibility of latent point i  

for the nth data point’s observed variables o
nt  ) 

 
For the nth data point, the density of the ‘missing’ data 
variable in data space becomes 
 

/ 2 2

1

1( | , ) exp
2 2

DK
m o m m
n n in i n

i

p R
K

β ββ
π=

    = − −   
    

∑t t , W y t           (14) 

where m
iy  is the missing variable’s dimension of the 

Gaussian centre in data space generated by the ith latent 
point 
 
5.2.2 Estimating the bat position 
 
Once we have the conditional density of the bat position 
given the other five input variables, we have to find a way 
to estimate the bat position from this density. 
 
We can calculate the bat position by finding the mean of 
the conditional density for each set of observed variables. 
We  find the expected value of m

nt  given the nth observed 
data point by: 
 

{ }| ( | , , )m o m m o m
n n n n n nE p dβ= ∫t t t t t W t

 
 
or 
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Alternatively, we can use the mode of the conditional 
density.  

 
max ( | , )

m
n

m o
n np β

t
t t , W        (16) 

We can approximate this by finding the latent point which 
has most responsibility for the observed variables, and 
assume that this latent point is most likely to have 
generated the complete data point. We then map this latent 
point into data space along the dimension of the missing 
variable, to find the most likely bat position:  
 

{ } { }| maxm o m
n n in ii

E R=t t y    (17) 

 
Figure 4 shows the estimated bat position from the mean 
of the conditional density of the bat position given the 
input variables. In this simulation, we used K=50, M=25. 
As can be seen, the overall shape of the estimated bat 
movement is similar to the actual bat movement; however 
the trained GTM does not capture those sections where 
the player is ‘waiting’ for the ball. As this is an important 
part of a player’s style, in general the artificial AI player is 
dissimilar to the real player (due to the difference on a 
local level). 
 
This difference in behaviour could be due to having a 
multimodal distribution over bat positions; as we estimate 
the bat position by selecting the mean of the distribution, 
we average between more than one possible bat position 
which differs from the actual bat position. 
  
We could try and address this issue by taking the mode of 
the conditional density; however we would expect the bat 
transitions to be jerky (similar to the results gained with 
the SOM), as can be seen in Figure 5. 
 
The mean of the conditional density gives a more 
smoothly varying representation than that found using a 
single point.  
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Figure 4: Estimating the bat position using the mean of 
the conditional density of bat position given input 
variables 
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Figure 5: Estimating the bat position from the mode of 
the conditional density of the bat position given the 
input variables 

6 Discussion 

Our motivation for beginning this study was to try to 
create a more smoothly varying mapping than that 
achieved by the SOM. The GTM can certainly do this: it 
automatically allocates responsibility for data points to 
points in a latent space.  However our results also suggest 
that such topology preserving methods may have other 
faults when used in this way. 
 
It is known that the SOM does not always provide a 
quantisation of a data set which captures the underlying 
probabilties in data set. Some regions of the data space 
will be allocated more reference vectors than their 
probabilty mass suggests they deserve while inevitably 
other regions may be under-represented. 
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The creators of the GTM suggest that using the most 
responsible latent node as well as the weighted sum of 
latent nodes give alternative representations of a data set. 
We have shown that, in the context of quantising a game 
space, the weighted sum of latent nodes gives a far better 
spread of estimates (modelling of the joint density) in the 
data space.  
 
The simulations presented in this paper demonstrate the 
difficulty in generating a probabilistic model in the 
context of game playing. We found that the model adapted 
to the statistics of the training data, from which we could 
calculate a conditional density that could estimate the bat 
position trajectories on a ‘global’ level, but not on a local 
level.  This may be due to the fact that we are estimating a 
conditional density from a joint density, and we are 
modelling unnecessarily modelling correlations between 
the input variables, rather than the relationship between 
input and output. A possible solution to this would be to 
estimate the conditional density directly. 
  
Other work will investigate a competition between AIs 
trained with the SOM algorithm and AIs trained with the 
GTM algorithm, both in terms of which is the most likely 
to win and, more importantly, in terms of which is most 
difficult to distinguish from a human player [Livingstone 
and McGlinchey 2004]. We also wish to investigate 
whether other refinements of the GTM specific to game 
playing might be developed. 
 

Acknowledgments 

The authors would like to thank Stephen McGlinchey 
for providing them with the data set which he used with 
the SOM and for insightful comments on the application 
of the GTM to this data set. 

 

Bibliography 

Bishop, C. M., Svenson, M., and Williams, C. (1996). 
GTM: The Generative Topographic Mapping. Neural 
Computation. 10. 1. pp 215--235. 

 
Kohonen, T. (1982). Self Organising Maps. Berlin: 

Springer-Verlag 
 
Leen, G. and Fyfe, C. Agent Wars with Artificial 

Immune Systems, 3rd International Conference on 
Entertainment Computing, ICEC2004, 2004a. 

 
Leen, G. and  Fyfe, C. An investigation of alternative 

planning algorithms: Genetic algorithms, artificial immune 
systems and ant colony optimisation, Conference on 
Computer Games: Design, AI and Education, 
CGAIDE2004, 2004b. 

 
Livingstone, D. and McGlinchey, S. What believability 

testing can tell us, CGAIDE 2004. 

 
McGlinchey, S. J., (2003). Learning of AI players 

from Game Observation data. Proceedings of Fourth 
International Conference on Intelligent games and 
Simulation, 2003, p106-110  ISBN: 90-77381-05-8 

 
 

276 CIG'05 (4-6 April 2005)



Nannon: A Nano Backgammon for Machine Learning Research���� 

Jordan B. Pollack 
Computer Science Department 

Brandeis University 

Waltham, MA 02454 

pollack@cs.brandeis.edu  

http://demo.cs.brandeis.edu 

 

 

                                                           
� Nannon is a copyrighted game, but may be used for research and academic purposes. Nannon is a trademark of Nannon 

Technology corp., which provided permission to publish the rules and board in this paper. 

Abstract- A newly designed game is introduced, which 

feels like Backgammon, but has a simplified rule set. 

Unlike earlier attempts at simplifying the game, 

Nannon maintains enough features and dynamics of 

the game to be a good model for studying why certain 

machine learning systems worked so well on 

Backgammon. As a model, it should illuminate the 

relationship between different methods of learning, 

both symbolic and numeric, including techniques such 

as inductive inference, neural networks, genetic 

programming, co-evolutionary learning, and 

reinforcement learning based on value function 

approximation.   It is also fun to play. 

1 Introduction 

Backgammon is an ancient game which is still popular 

in many parts of the world. Although it is based on a lucky 

device - the roll of dice to limit each player’s moves - 

humans have discovered a wide range of strategies and 

skills, filling up many books with acquired backgammon 

knowledge, both folk and mathematical (Jacoby 1970, 

Magriel 1976). Its popularity soared in the US with clubs 

and pub tournaments in the late 70’s, and it is growing in 

popularity again, online. 

 

Backgammon has also become an object of study for 

computational gaming, as a stochastic rather than 

deterministic game like chess. However, the difficulty of 

coding all the arcane rules, especially regarding forced 

moves and bearing off - makes computer logic for the 

game run to several pages of impenetrable logic which is 

difficult to fully debug. Also, the breadth of the game tree 

prohibits deep look ahead, because rolling doubles, which 

allow 4 checkers to move, causes combinatorial explosion.  

 

Nevertheless by the mid seventies it was possible to 

write backgammon programs on that era’s IBM 360 

computers. Such a player could make reasonably 

proficient moves. It comprised a legal move generator, a 

set of measurement and position testing functions, and 

parameter based methods to rank positions based on rough 

heuristics for determining game phase. 

 

One of the earliest published computer players was 

built by Hans Berliner (1977).  His player was similarly 

based on a set of hand-built polynomials over 

measurements of positions, as well as logical functions to 

determine which “phase” of a game the player was in; 

However, Berliner went further to include smoothing 

mechanisms after noticing that the computer player could 

be exploited as it wavered between strategic boundaries. 

With further work, his BKG became a respectable 

computer player for humans to train against. 

 

Backgammon next became a domain for scaling up 

neural network learning, e.g. back Propagation (Rumelhart 

Hinton & Williams, 1986). Gerald Tesauro wrote a series 

of influential papers on training back-propagation 

networks to become value estimators for backgammon 

positions. A player can be made by combining a value 

estimator with a greedy algorithm which looks at all 

possible moves for a given dice roll, and picks the highest 

scoring position for the current player. His early 

Neurogammon approach used encyclopedic tables drawn 

from human tournaments. Later, it was extended with 

contrast-enhancing techniques (Tesauro 1987, 1989).  

Then, in 1992, using large scale computing power 

provided by IBM Yorktown Heights, he published a 

breakthrough paper on learning backgammon via self-play 

using the method of temporal differences.  (Sutton 1989, 

Tesauro 1992). After manually increasing the set of 

primitive features, and using multi-ply search, TD-

gammon was recognized as one of the top players in the 

world. (Tesauro 1995). The success of TD-gammon 

stimulated a lot of research in Reinforcement Learning for 

the rest of the decade, as well as drove acceptance of 

commercial programs providing analysis and challenge for 

professional gambling and tournament play, such as 

Jellyfish and Snowie. 

 

Our work on co-evolutionary algorithms began in the 

early 90’s (Angeline & Pollack 1993) as part of a search 

for clear evidence that software could be a medium for the 

kind of open-ended evolution of complexity seen in the 
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“arms-race” phenomena in Nature. In co-evolution, 

learners face a dynamically changing environment, usually 

composed of other learners, such that as some improve, 

the challenges for others would automatically increase. 

Besides Hillis’s work on Sorting networks, Axelrod’s IPD 

GA experiment, and Ray’s Tierra model, we considered 

Tesauro’s TD-Gammon to be indicative of successful Co-

evolution, since it improved by essentially increasing the 

difficulty of the learning environment as it progressed. 

However, the fact that it used a population of 1 caused 

some cognitive dissonance because most co-evolutionary 

systems based on Genetic Algorithms or Genetic 

Programming used populations in the 100’s.   

 

In 1998, Alan Blair and I did a small experiment based 

on a validated backgammon legal move generator 

provided by Mark Land. We used 1+1 hill-climbing on a 

neural network as a value estimator. Using the current 

network as Champion, we added random noise to the 

weights and had it compete against the champion. Despite 

the simplicity of this algorithm, we substantially replicated 

the co-evolutionary learning effect of TD-gammon, 

although our player was not as good as the ones derived 

by Tesauro. 

 

In that and subsequent work, we started asking the 

question: what is it about backgammon, which makes 

complex learning possible? Learning in the backgammon 

domain has far exceeded success in other games which 

seem much easier to learn, such as  TicTacToe and 

Othello. The Backgammon success has not been 

replicated in harder games like Chess and Go, although 

Fogel (2002) reports intriguing results in checkers. 

 

One approach is to try to change other tasks to be more 

like backgammon in order to achieve better learning, for 

example, adding randomness to chess. Another approach 

is to find a simpler problem to study. A new kind of very 

simple game, called the Numbers game, has been valuable 

in illustrating co-evolutionary dynamics (Watson & 

Pollack, 2001; DeJong & Pollack 2002). However, the 

numbers game doesn’t lead to the acquisition of any 

knowledge or strategy. 

 

What we realized would be needed is a simpler version 

of Backgammon. Tesauro started the work in TD-

Gammon by simply learning to bear off from an end game 

position. However, learning this subgame doesn’t transfer 

much knowledge to the full game. There are other hopeful 

variants of Backgammon, such as Trouble, where children 

race in the same direction using 4 pieces but no blocking, 

and Hypergammon, using 3 pieces but the full rule set, 

however these simplifications of the game basically turn 

into luck-driven races with little strategic content or the 

volatility we think of as turnaround dynamics.  

 

Backgammon, besides the balance between luck and 

skill, is different from games with random elements like 

Monopoly or Risk, which early advantages lead to winner-

take-all. In Backgammon, specific dice rolls can quickly 

turn a game from favoring one player to the other. It is 

also “mixed motive” in that Humans develop symbolic 

strategies involving recognizing whether to play 

offensively or defensively, balancing competing goals to 

block, contain, hit, and run.   

 

Our hope for a small game would be one which 

maintains all the elements of Backgammon including: 

 

• A random element 

• Turnabout Dynamics 

• Occasional forfeited and forced moves 

• No Draw or Stalemate possible 

• Complex strategy with mixed motives 

• No first player advantage. 

 

Such a game should have an easy-to-write legal move 

generator, should allow researchers to compare various 

machine learning techniques, should allow the 

development of some notions of optimal play against 

which to measure success.
1
 A simpler game should require 

less computer resources for study, broadening the number 

of researchers involved, leading to a deeper understanding 

of why certain kinds of learning work. In particular, we 

are interested in the relationship between co-evolution, 

reinforcement, and dynamic programming, as well as the 

historic division between knowledge-based symbolic 

learning and numeric-based control of behavior.  

2 Introducing Nannon 

Nannon is a new game that was invented to meet these 

goals. Its rules and conditions were chosen to minimize 

complexity, maximize strategic choice, maintain volatility, 

and remove any first player advantage. First, consider 

using only one random number (instead of two), providing 

only 2, 3, or 4 checkers (instead of 15) per player and 

using a board from 4 to 12 spaces long (instead of 24).  

 

 Because of the availability of 6-sided dice, I settled on 

a 6-point board, with 3 checkers per side, although the 

game admits a whole family of games of related sizes and 

different dynamics. Like backgammon, players move in 

opposite directions, with a goal of getting all checkers off 

the board and out of play, while hitting their opponents 

back to the beginning to start over. 

 

The game starts in an initial position, then each player 

takes a turn by rolling a die and if possible, moving one of 

their checkers the number of steps shown on the die, or off 

                                                           
1
 Hypergammon admits a 200 Megabyte table of 

positions calculated by GNUBG which allows for value 

function to be approximated in several days of CPU time. 
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the board to safety. The initial position was chosen to 

increase strategic interaction. 

Figure 1: The initial position where White is moving 

right, Black is moving left. 

The goal is to get all one’s checkers across the board 

and out of play (“to safety”), but like in backgammon, 

intermediate goals are hitting and blocking your opponent, 

overcoming the luck of the die with strategic choices. 

Consider if black rolls a 2, and moves the piece from the 5 

to the 3 position: 

 Figure 2: Black rolls a 2 and makes a bad move, 

exposing two men instead of preserving a prime. 

Hitting means landing a checker on an opponent 

checker and sending it back to the beginning (“home”).
2
 If 

white rolls a 3, the player can move onto the board, hitting 

back the black piece (to the “7” position).  

 

Figure 3:  White rolled a 3 and hit Black back to the 7.  

With only 3 checkers, our core realization was that 

since a “point” in Backgammon requires two checkers on 

a space, and blocking requires several or even 6 points in 

a row, any reduced checker game with the full rules 

cannot maintain blocking, which is a core strategic 

element of Backgammon. 

 

So how can blocking be brought back into the reduced 

game? The answer we arrived at is to use adjacency to 

create a block.  If a player can locate two or three 

checkers next to each other, we declare the other player 

cannot land on or hit those checkers.  Therefore, the 3 

white checkers above protect each other from getting hit, 

and block black from moving on certain rolls. 

                                                           
2
 In backgammon home would be called “the bar”, and no 

other pieces can move when any piece is on the bar. This 

rule doesn’t make sense for Nannon. 

Three checkers blocking one checker would cause a 

forfeited turn only 50% of the time
3
. In the position of 

Figure 3, Black would forfeit 33% of the time, upon 

rolling a 4 or 5. (Black’s checker on the 6 can move to 

safety with a 6.) 

 

We made a second important rule decision which 

simplified the board representation. We decided that only 

one checker ever allowed on a space - e.g. no stacking of 

checkers at all! But what happens if the dice would allow 

one checker to land on another? There are 3 alternatives 

rules: It cannot move, it skips forward (which accelerates 

the game), or you are forced to hit yourself (which is quite 

odd!). We chose the simplest idea; a checker cannot land 

on another checker of the same color. Thus, in the current 

position of Figure 3, White rolling a 2 cannot stack the 

checker from the 1 to the 3 position, but must move from 

the 2 or 3 point.  

 Figure 4: White moved 2.  If Black rolls a two and hits 

the White checker on the 5-point, the game cycles back 

to the initial position. 

This no-stacking rule simultaneously increased the 

effectiveness and importance of blocking, created forced 

bad rolls which break up blocks, and made the legal move 

generator extremely simple, as seen in the Matlab and 

Java examples given in the Appendix.  

 

To find legal moves for a player, we first compute 

which of the 6 board positions are blocked by either a 

player’s own checkers, or by opponent checkers which are 

adjacent. Then we simply calculate which of the player's 3 

checkers still in play can land on a non-blocked space or 

escape off the board.  

 

Of course, developing over thousands of years, 

Backgammon has many rules which control the emergent 

issues that arise during the game. For example, you need 

to have all the pieces off the bar in order to move any 

other piece, you need have all checkers in the Home 

quadrant before bearing off, and you have to move the 

highest number if you have a choice of forced moves 

between two dice. These rules are unnecessary or lead to 

stalemate in Nannon. 

2.1 Starting Position and First Player Advantage 

 

We represent a position as two sorted triples, of the 

locations of each player’s checkers. The board positions 

are 1-6, and we use 0 to represent player 1’s home and 

                                                           
3
 However, if we considered a rule to make a 3-point 

prime completely block the other player, we would end up 

with stalemates, which are undesirable 
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player 2’s goal, and 7 to represent player 2’s home and 

player 1’s safety. Switching viewpoints consists of 

reversing the vector and subtracting it from 7. An 

alternative computer representation is to represent each 

player as a bit string using 6 bits for the location of the 

checkers on the board, and two or three bits to count the 

number of checkers which are off the bar.   

 

We found that the default home position [000 777] was 

not satisfactory as it gave an overwhelming (60%) 

advantage for the first mover, and many games with no 

strategic interaction. 

 

So the final issue in designing the game was reducing 

this first player advantage and increasing interaction. We 

looked at a variety of opening positions and rules to 

balance the game.  We found that a starting position of 

[012 567] increased interaction.  

3 Analysis of the game 

Using both random play and the expert play after value 

function approximation, we now show that the goals for a 

reduced backgammon like game are satisfied. 

3.1 Size of the game 

The number of possible board states is given by the 

following equation, where n is the number of spaces on 

the board, and k is the number of checkers per player: 
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Consider placing i=3 checkers of player 1, and j=1 

checker of player 2 on a 6 point board, leaving 2 of player 

2 checkers off the board. There are 
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6
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the first 3 checkers, 
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36
ways to place the 1 checker 

of the second player, and 3 ways to allocate the two 

remaining player 2 checkers to either home or safety. 

For the 6-position, 3-checker game, this works out to 

2530 states, although in practice the state where both 

players have 3 checkers to safety cannot be reached.  

By comparison, using 3 checkers on an 8, 10 or 12-

point game have 9784, 31426, and 86148 states 

respectively. Using 6 checkers each on a 12-point board 

creates a rare stalemate possibility within its 4,203,123 

states. Nannon is really a parameterized set of 

backgammon like games. 

3.2 No First Player advantage 

Even though the raw starting position has 57% equity 

for player one, rolling a 4 sided die (no 5 or 6 on opening) 

drops the advantage to 53%. Subsequently we found a 

new initial roll: Both players roll their dice, and the 

winner gets a first roll based on the difference between the 

dice (e.g. 6-4=2). This lowers the retries from 1/3rd to 

1/6th of the time and is fair to both players. The initial roll 

is biased in that 1/3rd of the time it results in a “bad” 1, 

and 1/15th of the time it gets a  “good” 5.  

 Although it is a short game, and each dice roll is 

meaningful, the initial position and dice roll makes it so it 

so that the first player has no significant advantage, at 

51.5%.  

 

Figure 5:  In 10,000 games between optimized players, 

Player 1 wins about 51% of the time.  

3.3 Turnabout Dynamics maintained 

 

One of the critical issues in reduced backgammon 

games is the loss of the volatility, or turnabout dynamics; 

this unpredictability about which player is going to win is 

essential to the popularity of the game, as it is to sports 

like Basketball and Soccer.  Nannon allows games to 

reverse almost until the final few rolls. This can be seen in 

the following analysis of 10,000 games. We calculated the 

equity of player 1 at every move and count the times per 

game the first player equity crosses zero. Only 20% of the 

time does an initial lead carry through. 

Figure 6: Volatility is shown by the number of times 

the expected winner changes across a game. 

Calculated in 10,000 games with optimized players. X-

axis is the number of flip-flops per game; Y-axis is the 

number of games out of 10,000. 
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3.4 Length of game 

Nannon is a fast game, with a mean of 13 rolls to 

completion, although long games up to 38 rolls have been 

observed. This enables 10’s of games per second to be 

evaluated in a high level language like Matlab or Lisp, and 

1000’s in a compiled language like C or Java. Figure 7 

shows the length of games out of 10,000. 

  

Figure 7: Histogram of game length. 

 

3.5 Balance between Luck and Skill 

Over a number of games, we calculate how many times 

each player forfeits a move, is forced by the die to make a 

specific move, or has 2 or 3-way choice. Just under 50% 

of the moves involve choice, as shown in the pie chart 

below. 

 
  

Figure 8: Almost 50% of the time, players have a 

strategic choice between two and three checkers.  

Forfeited rolls occur when an opponent has adjacent 

checkers (a prime). Forced moves occur mostly when a 

player has only one checker left. 

3.6 Learnable using value function approximation 

 

The game falls under the Bellman (1957) equation, 

which means there is theoretically an optimal sequential 

control policy based on a converged expected value for 

each state. The value of any state is the utility (or equity in 

backgammon terms) based on fair dice and future optimal 

play by both players. Each position can be assigned a 

value, and a strategy for play is simply the greedy 

algorithm, which looks at all moves enabled by the roll of 

the die and chooses the one with maximum likely reward 

for the current player.  This is the same way that a neural 

network value estimator like TD-Gammon is turned into a 

player. Learning the symbolic rules for a game remains a 

hard problem. 

 

Calculating the value function is given for ending 

positions – E.g. 0 or loss and 1 for win is trivial
4
. For 

position in a racing game, after no more contact or hitting 

is possible, calculating the value functions is a simple 

recursive application of dynamic programming.  However 

there is a large set of positions that enable hitting to form 

cycles, which lead to a large system of unknowns. In many 

real world applications, the number of possible states is 

too high, but for Nannon (with a 6 point board and 3 

checkers each), there are only 2530 possible positions 

making value function approximation eminently practical.  

For each state of the game, either it is an end state or we 

update its value by looking ahead under all dice roles for 

the opponent’s optimal response, and multiply it by the 

probability of the die roll (e.g. 1/6
th

).  

 Starting with the end game positions labeled as 0 or 1, 

and with values exactly solved for the racing states where 

no further hitting is possible, in 15 passes across the 2530 

states, the sum of the square of difference between values 

before and after each iteration rapidly dropped to 10
-7

. 
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Figure 9: Convergence of VFA in Nannon leads to an 

optimized player.  

                                                           
4
 In actual play, the use of doubling, “gammons”, and 

tournament rules, complicates the value calculation. 
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4 Conclusions 

Although we have not yet done a wide range of 

machine learning experiments on the Nannon game 

besides value function approximation and simple 

heuristics based on Maslow’s “Hierarchy of Needs,” (like 

Always go to safety, then Always Hit, then Always keep 

block) there are many more experiments and comparisons 

which can be done across learning methods using this 

game as a model. 

 

For example, the game can be subject to genetic 

programming, co-evolutionary learning, neural networks, 

TD learning and other reinforcement methods related to 

dynamic programming, as well as symbolic techniques 

such as Inductive inference or Inductive Logic 

Programming. 

 

Backgammon, in this simpler form of Nannon is a 

perfectly sized test problem which ultimately could shed 

light on the old computational intelligence issue of 

whether cognition is analog and numeric based on 

associationism and control theory, or digital and symbolic 

based on universal computation.  

 

Certainly as humans play such a game, they discuss 

symbolic strategies regarding when to hit, when to run, 

when to keep a prime versus losing tempo and so on.  As 

expertise develops, the symbolic is infused with more 

statistical and numeric models to aid decision-making. 

Yet, according to the theory of sequential choice 

developed by Bellman, a greedy policy based on the 

converged value function should be the top player in the 

world (assuming fair dice).   

 

Perhaps as our understanding of consciousness has 

evolved to realize that the narrative is just a story our 

mind constructs to explain our complex behavior based on 

diffuse and physical complex processes of our brains 

(Dennett 1991), perhaps the symbolic rules of a game is 

also just a story we tell as our biological organs adapt to 

optimize utility.  
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Appendices 

5.1 Legal move generator in MATLAB 

 
function moveable=legmove(pos,die) 
% pos is a sixtuple [p1 p1 p1 p2 p2 p2] 
% each from 0 to 7, each triple sorted 
% output is a bitvector for moving 
pos(1:3) 
% assumes player 1 to move 
 
moveable=zeros(1,3); 
blocked=zeros(1,7);%blocked(7) is 
always 0 
 
%block adjacent opponents 
%remember that pos(4 5 6) are sorted 
if pos(4)<6 & pos(4)>0 & 
pos(4)+1==pos(5) blocked(pos([4 
5]))=1;end; 
if pos(5)<6 & pos(5)>0 & 
pos(5)+1==pos(6) blocked(pos([5 
6]))=1;end; 
 
%block my own checkers on the board 
for i=1:3 
   if mod(pos(i),7) 
blocked(pos(i))=1;end 
end 
%Calculate unique unblocked moves 
for j=1:3 
   if pos(j) ~= 7 % once in safety 
don't move 
      if j==3 | pos(j) ~= pos(j+1) 
%stop duplicate 0 choices here 
         if 
~(blocked(min(7,pos(j)+die))) 
moveable(j)=1; 
         end 
      end 
   end 
end 
 

5.2 Printable Board 
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5.3 Legal move generator in Java 
 
/* 
   we store the board in two ints, 
   m_black and m_red which look like 
this 
   (take careful note of the indexing; 
red is indexed 
   backwards w.r.t. black); 
 
   b b b 0 B B B B B B 0 
   0 1 2 3 4 5 6 7 8 9 10 
 
   b is the home  
   B is the board 
   0 are for efficient legal move calc. 
 
   we'll index this in two ways: with 
pos and with idx 
   (position and index, resp).  idx 
indexes the bits in 
   the int, so starts from 0 and runs 
to NUM_PIECES + BOARD_SIZE + 2 - 1 
   (2 for the pads).  pos indexes the 
board, starting from 0 
   and running to BOARD_SIZE - 1.  
negative positions indicate the 
   bar; -1 is the 0, -2 is the bar, -3 
is the bar, etc.*/ 
 
public class Board { 
    // handy constants 
    public static final int NO_ONE = -
1; 
    public static final int BLACK = 0; 
    public static final int RED = 1; 
    public static final int NUM_PIECES 
= 3; 
    public static final int BOARD_SIZE 
= 6; 
 
    // board state 
    int m_black; 
    int m_red; 
    int m_whoseTurn; 
    int m_nMoves; 
 
    public boolean isLegal(int 
nFromPos, int nDie) { 
        int me = m_whoseTurn == BLACK ? 
m_black : m_red; 
        int opp = m_whoseTurn == BLACK 
? m_red : m_black; 
        int nFromIdx = nFromPos + 
NUM_PIECES + 1; 
        int nToIdx = nFromPos < 0 ? 
nDie + NUM_PIECES : nDie + nFromIdx; 
        int nToPos = nToIdx - 
NUM_PIECES - 1; 
        

  
        if(nFromPos < 0) { 
            for(int i = NUM_PIECES-1 ; 
i >= 0 ; i--) { 
                if( (me & (1<<i)) != 0 
) { 
                    nFromIdx = i; 
                    nFromPos = i - 
NUM_PIECES - 1; 
                    break; 
                } 
            } 
        } 
 
        if(nFromPos >= BOARD_SIZE) 
return false; 
 
        if( (me & (1<<nFromIdx)) == 0 ) 
return false; 
 
       if(nToPos >= BOARD_SIZE) return 
true; 
 
        if( (me & (1<<nToIdx)) != 0 ) 
return false; 
       
        int nOppToIdx = BOARD_SIZE + 
2*NUM_PIECES + 1 - nToIdx; 
        if( (opp & (1<<nOppToIdx)) != 0 
&& ( (opp & (1<<(nOppToIdx+1))) != 0 || 
(opp & (1<<(nOppToIdx-1))) != 0 ) ) 
return false; 
        } 
 
 
 
    public int[] getLegalMoves(int 
nDie) { 
        Vector v = new Vector(); 
        for(int pos = -1 ; pos < 
BOARD_SIZE ; pos++) { 
            if( isLegal(pos,nDie) ) 
v.add(new int[]{pos}); 
        } 
 
        int[] ret = new int[v.size()]; 
        for(int i = 0 ; i < v.size() ; 
i++) { 
            ret[i] = 
((int[])v.elementAt(i))[0]; 
        } 
 
        return ret; 
    } 
} 
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Similarity-based Opponent Modelling using Imperfect Domain Theories
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Abstract- This paper proposes a similarity-based ap-
proach for opponent modelling in multi-agent games.
The classification accuracy is increased by adding de-
rived attributes from imperfect domain theories to the
similarity measure. The main contributions are to show
how different forms of domain knowledge can be in-
corporated into similarity measures for opponent mod-
elling, and to show that the situation space of the oppo-
nent modelling approach is not required to be the same
as the situation space of the opponent players. Our ap-
proach has been implemented and evaluated in the do-
main of simulated soccer.

1 Introduction

Opponent modelling is an essential part of playing well in
a game, as it allows to predict future actions of the oppo-
nent and adapt one’s own behavior accordingly. Case-based
reasoning (CBR) is a common method for opponent mod-
elling in multi-agent games (e. g., [3, 32, 9]): From a CBR
perspective, predicting the opponent’s action in a given sit-
uationS is the classification goal. A CBR system compares
S to a case-base of previously observed situations. The sit-
uationS′ that is most similar toS will be selected, and the
action inS′ is returned.

The classification- or prediction-accuracy of CBR is
largely determined by the quality of the similarity mea-
sure. Unfortunately, implementing a similarity measure is
not trivial, since similarity is not an absolute quantity: What
should be regarded as similar depends on the context. The
similarity measure must be adapted to the game situation
and role of the agent whose action is to be predicted. Con-
sider situations in a soccer game: The positions of team B’s
defenders will be rather irrelevant if the classification goal
is the action of team A’s goalie, but rather relevant if the
classification goal is the action of team A’s forwards. For
these two classification goals, the similarity measure must
weight attributes (i. e., player positions) differently. Other
CBR approaches in simulated soccer dealt with this prob-
lem by introducing a focus: Cases contain only positions of
those players that are close to the ball [3]. Another method
is to partition the known cases into defensive, transitional,
and offensive sets [16]. Yet, such methods are domain spe-
cific ad-hoc solutions.

The next section gives an overview of the evaluation-
domain, simulated soccer. Section 3 defines which types of
knowledge can be used. Then it will be described how sim-
ilarity measures are extended to incorporate domain knowl-
edge. Section 5 will show how the knowledge-rich similar-
ity measure can be used for attribute- as well as multi-agent

matching. Section 6 reports the evaluation results, and the
last section concludes and outlines future work.

2 An example Multi-Agent Game: RoboCup

The RoboCup domain is a typical multi-agent game where
opponent modelling is crucial for successfully counteract-
ing adversary agents [14, 3]. Two teams of autonomous
agents connect to a server and play simulated soccer against
each other. Each player is an autonomous process. This is
a challenge for opponent-modelling, since the behavior of
each opponent player has to be approximated individually.

Decision making is done in real-time, more precisely, in
discrete time steps: Every 100ms the agents can execute a
primitive action and the world-state changes based on the
actions of all players. Basically, the action primitives are
dash, turn, kick, which must be combined in consecutive
time steps in order to form high-level actions like passes or
marking. The agents act on incomplete and uncertain in-
formation: Their visual input consists of noisy information
about objects in their limited field of vision. There is an ad-
ditional privileged agent, the online coach, which receives
noise-free and complete visual input of the playing field.
The online coach is almost exclusively used for opponent
modelling purposes. Every 100 ms it receives information
about the position and velocity of all objects on the playing
field (22 players and the ball). The agents’ actions cannot be
observed directly, but can be inferred from the differences
between consecutive world-states. E. g., in our implemen-
tation the coach assumes that the player controlling the ball
executed a kick, if the ball’s velocity increases.

Cases for our CBR system are generated from the ob-
servations of the coach. A case is represented in two parts:
46 attributes (23 positions and 23 velocities) specifying the
situation, and 22 attributes storing the actions. In a predic-
tion task, only the situation is known and one of the actions
serves as the classification goal; the other actions are ig-
nored.

RoboCup is an ideal domain for evaluating our approach,
because the same case-base can be used for different clas-
sification goals: The action of each player is handled as a
single prediction task with its own classification goal. Since
the coach receives information about all situation attributes,
cases can be stored without further analysis. Generalization
wrt. the specific classification goal is deferred until classifi-
cation time, a property of lazy learning [2].
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Figure 1: Hierarchy of knowledge types.

3 Types of domain knowledge

This section discusses which types of knowledge are use-
ful for similarity-based opponent modelling. Previous
similarity-based approaches used domain knowledge im-
plicitly or in an ad-hoc kind of way (e. g., [9, 16, 3]). Other
works incorporated isolated knowledge types. A systematic
analysis of which types of knowledge are useful will also
provide insights into which information should be learned
from the instances if the knowledge is not explicitly given.
For each knowledge type we will refer to CBR systems that
employed such knowledge.

For the examples, we use the following notation:
C1, C2, C3 ∈ R are continuous attributes.D1, D2 ∈ Z

are discrete attributes.P (x) is a binary concept applicable
to instancex. Ci(x) or Di(x) denote the value of instance
x for attributeCi or Di. w ∈ R is a weight.

We categorize the relevant types of knowledge into a hi-
erarchy (see figure 1). At the most general level, we dis-
tinguishvirtual attributes[19] (or derived attributes) from
distributional knowledge. The latter includes knowledge
about the range and distribution of attributes and their val-
ues. As is commonly used, knowledge about the range of
an attribute can be used to normalize the attribute similarity
to (0..1). Since this type of knowledge is commonly used
in CBR, we focus on the less researched type of knowledge
that can be formalized as virtual attributes.

Virtual attributes are attributes that are not directly repre-
sented in the cases but can be inferred from other attributes
[19]. They are already quite common in database research.
In CBR, virtual attributes are useful if the classification goal
does not depend on the represented attributes themselves,
but on relations between them. For example, ifC1 is the
position of player A andC2 is the position of player B, then
a virtual attributeC3(x) = C1(x) − C2(x) could be the
distance between A and B.

We further distinguish betweenmatching knowledgeand
inferential knowledge. Discrete matching knowledge states
that two values of an attribute are equivalent. The famous
PROTOS system made extensive use of this type of knowl-
edge [18]. Also taxonomies are instantiations of matching
knowledge. They were also used in CBR [4]. Continuous
matching knowledge defines regions in the instance space.
Examples:

• C1(x) > 30 ∧ C1(x) < 50 (continuous)

• D1(x) ≡ D1(y) (discrete)

Matching knowledge can be used to match syntactically
different attributes that are semantically equivalent. For ex-
ample, in our opponent modelling approach two different
players will be treated as equivalent if they have the same
role (such as defender).

Transformational knowledgeis a special form of match-
ing knowledge where usually some arithmetic or operations
are involved in order to map a point in the instance-space
to another point. For example, transformational knowledge
has been used to establish identity despite geometric rota-
tion (e. g., [23]). Example:C1(x) = rotate(C1(y), 30) In
our RoboCup implementation, transformational knowledge
is used to match local scenes from one wing to the other.

Inferential knowledgespecifies the value of an attribute
that is inferrable from some other attributes’ values. This
type of knowledge has been used in explanation-based CBR
(e. g., [1]). Example:P (x) ← C1(x) > 30 ∧ C1(x) < 50
Note that the condition part makes use of matching knowl-
edge. A typical example from simulated soccer is to define
offside as a virtual attribute over the directly represented
player and ball positions.

Contextual knowledgeis a special form of inferential
knowledge. It states that some feature is important given
some other features. For an overview over contextual
features, refer to [31]. Example:important(P (x)) ←
C1(x) > 30∧C1(x) < 50 We use contextual knowledge to
code that a team’s defenders’ positions are irrelevant if the
team’s forward handles the ball close to the opponent goal.

In our hierarchy,weightsare a special form of contex-
tual knowledge. They allow to express the importance of a
feature on a continuous scale. Thus, we can express feature
weights in a global wayimportant(P (x), w) ← TRUE,
or in a local wayimportant(P (x), w) ← C1(x) > 30 ∧
C1(x) < 50.

In other words, contextual knowledge and weights can
be called ”attribute importance” knowledge.

Relationsare special forms of inferential knowledge.
The condition part uses at least two different attributes. Re-
lational knowledge for similarity is prominent in computa-
tional modelling of human categorization [17]. Example:
P (x) ← C1(x) > C2(x). Note that relations usually make
use of matching knowledge in the condition part, as they
define regions in which the relation holds. Relations are for
example necessary to code wether a certain opponent is be-
tween the ball and the goal.

Ordering of nominal feature values is a special form of
distribution knowledge. It establishes a dimension of the in-
stance space. In [30] it was shown that using knowledge of
the ordering of discrete feature values can increase classifi-
cation accuracy.

In previous work [26] we used goal-dependency net-
works (GDNs) as proposed in [28]. In this framework,
GDNs are a combination of relational knowledge about the
subgoal-relation and contextual knowledge (a property is
important if a certain subgoal is active).
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4 The similarity measure

The non-extended similarity measure is defined in the fol-
lowing way:

sim(S1, S2) = (1)
22
∑

i=1

[ωi ∗ ∆(p(i, S1), p(i, S2)) +

ω′

i ∗ ∆(v(i, S1), v(i, S2))] +
ω0 ∗ ∆(bp(S1), bp(S2)) + ω′

0 ∗ ∆(bv(S1), bv(S2))

where S1 and S2 are the two situations in comparison,
p(i, Sj) andv(i, Sj) are the position and velocity of player
i in situationSj , respectively,bp(Sj) and bv(Sj) are the
ball-position and ball-velocity inSj , respectively.∆(A,B)
is the Euclidean distance betweenA andB, andωk andω′

k

with
∑22

k=0(ωk + ω′

k) = 1 are weights for positions and
velocities, respectively. Semantically, weights denote the
relevance of attributes.

Note that the non-extended similarity measure uses some
domain knowledge, that is, it makes use of distributional
knowledge, as it normalizes the ball and player positions
and velocities.

In comparison, the extended similarity measure is de-
fined as follows: In line with the well-known local-global
principle [5], we compute the similarity between two situa-
tions as the weighted average aggregation of the attributes’
local similarities:

sim(S1, S2) =
n

∑

i=1

(ωi ∗ si)

wheresi are the local similarity values (i. e.,si is the sim-
ilarity for attribute i), and theωi are the corresponding
weights.

sim(S1, S2) = ω1 ∗ 1(role(S1), role(S2)) +
ω2 ∗ 1(region(S1), region(S2)) +

ω3 ∗ 1(offside(S1), offside(S2)) +
ω4 ∗ 1(pressing(S1), pressing(S2)) +

ω5 ∗

22
∑

i=1

1(free(S1, i), free(S2, i)) +

ω6 ∗ 1(ahead(S1), ahead(S2)) +
ω7 ∗ ∆(positions(S1), positions(S2)) +

ω8 ∗ ∆(velocities(S1), velocities(S2)) (2)

where1(X,Y ) = 1 iff X = Y , and 0 otherwise.
The attributesrole and region make use of matching

knowledge as they define hyper-planes in the instance-
space. role(S) ∈ {forward, defender,midfielder}
denotes the role of the ball owner. region(S) ∈
{inFrontOfGoal, penaltyArea, corner, wing,midfield}
denotes the region the ball is in. Note that no distinction
is made between left and right wing, and between the four
corners, which is achieved by transformational knowledge
about mirroring and rotating.

The attributesoffside, pressing, andfree make use
of inferential knowledge.offside(S) is a binary predicate
that checks whether the situation is offside.pressing(S)
checks whether pressing is performed in the situation, that
is, whether the opponent attacks the ball owner with two
or more players.free(S, i) checks whether playeri stands
free (i. e., no player of the opponent is within a certain dis-
tance).

The predicateahead(S) makes use of relational knowl-
edge. It denotes the number of opponents that are between
the ball and the goal.

positions(S) andvelocities(S) are examples for con-
textual knowledge. They denote the positions and velocities
of the players that are relevant in the given situation. Rel-
evance of a player is computed by its role and the role of
the ball owner. If the ball owner is a forward, its own de-
fenders and the opponent’s forwards are deemed irrelevant.
If the ball owner is a defender, its own forwards and the
opponent’s defenders are deemed irrelevant.

We applied the RELIEF method [13] (with extensions
for kNN with k > 1 and for non-binary target classes pro-
posed in [15]) for learning the attribute weights.

5 Multi-agent matching

In most CBR applications, matching attributes is straight-
forward, as equally named attributes or attributes at the
same position of a vector are matched. However, when ap-
plying CBR to opponent modelling in multi-agent games,
matching of attributes is not trivial. For example, the po-
sitions and velocities stored in the cases are linked to spe-
cific players. Since it is rather common to swap positions in
RoboCup (e. g., to move a tired player from an exhausting
to a slower position), comparing positions of situationS1 to
situationS2 must take into account that it is not necessarily
the case that the position of player number 3 in situationS1

must be compared to the position of player number 3 in sit-
uationS2. Instead, it might be the case that inS2 players 3
and 9 swapped positions. In that case, the desired concept of
similarity can only be achieved by comparing the positions
of players 3 and 9.

Hence, before two situations can be compared the agents
of the two situations have to be matched. Traditional multi-
agent matching usually requires a 1 to 1 matching [29].
However, when doing multi-agent matching for attribute
matching, this requirement must be lifted. Consider the ex-
ample soccer situation in figure 2 (top). The players A,B,C
belong to one team and x,y,z to the other team. The situ-
ation on the right differs from the one on the left only in
that player x has been moved. An optimal 1 to 1 match-
ing (minimizing the summed distances) would match each
player from the left situation to itself in the right situation.
However, the relevance of player x is different in both sit-
uations. On the left, player x marks player C so that A
cannot safely pass the ball to C. On the right, player x is
basically equivalent to player z and does not mark player
C. Hence, we propose to match both players x and z on the
right to player z on the left, and to leave player x on the
left unmatched, as no player on the right corresponds to its
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Figure 2: Player matching in soccer situations. Players
A,B,C belong to one team, player x,y,z to the other. Un-
less otherwise depicted by arrows, players from the left are
matched to themselves on the right. Top: Situation 1 and 2
are compared. Bottom: Situation 3 and 4 are compared.

situation-specific role of marking.
Therefore, in our implementation multi-agent matching

is done by matching those players of the same team that
are most similar with respect to the similarity-measure.
Thus, the knowledge-rich virtual attributes are also used for
multi-agent matching. This is different than previous work
in multi-agent matching in RoboCup where players were
matched based on their spatial distance only [29].

To illustrate why virtual attributes are also useful for
multi-agent matching, consider the example soccer situation
in figure 2 (bottom). The left bottom situation is the same
one as the left top one. It differs from the right bottom one
only in the position of player x. A matching algorithm that
computes player similarity only based on spatial distance
would assign player x and y from situation 4 to player y in
situation 3. However, in situation 4 player x is not equiva-
lent to player y since it may intercept a pass from player A
to player C, just as player x in situation 3. Thus, a virtual
attributebetweenBallAndP layer(X, .) is useful which is
true for player x in both situations. If it is weighted great
enough so that it outweighs the spatial distances, player x
from situation 1 will be matched to player x in situation 2,
which is consistent with the player’s situation-specific roles.

Additionally, in our matching algorithm, the ball-owners
of two situations are always matched, and of course players
are only matched to players of their own team.

Since some contextual attributes in the similarity mea-
sure specify that some players are irrelevant (for example,
team A’s defenders are deemed irrelevant if team A’s for-
ward has the ball) in certain situations, the matching algo-
rithm does not match these players in the corresponding sit-
uations.

Table 1: Mean prediction accuracies of the extended and
the non-extended similarity measures. All attributes were
weighted equally. p is the significance level of a paired,
two-tailed t-test. N is the number of logfiles.

Non-extended Extended p N

86.3 86.4 0.838 20

6 Experiments

The following experiments tested whether the prediction ac-
curacy for player actions increases if the similarity mea-
sure is extended with imperfect domain knowledge. Both
the unextended and the extended similarity measures are
tested on the same case-base and test cases. The test do-
main is RoboCup. We used 20 publicly available logfiles of
recorded games between 19 different teams. Logfiles con-
tain the same data that the online coach (which was intro-
duced in section 2) would receive. For each game, the first
2500 cycles of the match were recorded into the case-base.
A complete game lasts 6000 time steps. The test cases were
drawn from the remaining time steps at fixed intervals of 50
time steps. The classification goal was the action of the ball
owner.

In the first experiment, all attributes (including the addi-
tional ones) were weighted equally. In the second experi-
ment, the attribute weights were learned with RELIEF. For
each game the weights were relearned using the case-base
as training data.

6.1 Focus on high-level actions

In a complex domain such as RoboCup it is infeasible to
predict an agent’s behavior in terms of primitive actions.
For individual skills (e. g., dribbling), primitive actions are
often combined by neural networks. These are trained using
amounts of training instances that are typically one or two
levels of magnitude greater than the amount of observations
available for opponent modelling. Hence, it is infeasible to
predict an agent’s primitive actions. Rather, in our experi-
ments we predicted the high-level actionshoot on goal. We
assume that for taking countermeasures it is sufficient to an-
ticipate high-level actions within a certain time window. For
example, if a defender knows that within the next 20 time
steps an opponent will shoot on the goal, it can position it-
self accordingly (and maybe even inhibit the shot by doing
so. Therefore, in our prediction experiments the agents do
not use the predictive information in order not to interfere
with the prediction accuracy.) For both the static and the
adaptable similarity measures, the prediction of an actionis
counted as correct if the action occurs within 20 time steps
after the prediction.

6.2 Results

The mean prediction accuracy of both similarity measures
of the first experiment are shown in table 1.

Unfortunately, adding virtual attributes alone does not
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Table 2: Mean prediction accuracies of the extended and
the non-extended similarity measures. All attribute weights
were learned with RELIEF. p is the significance level of a
paired, two-tailed t-test. N is the number of logfiles.

Non-extended Extended p N

86.4 % 88.2 % 0.009 20

improve prediction accuracy. Still, the accuracy is not de-
creased either, although it is known that irrelevant attributes
negatively impact accuracy [10]. This is consistent with re-
sults in other domains which showed that virtual attributes
are only beneficial if their weights are learned [27]. The sec-
ond experiment weighs attributes based on their relevance
as learned by RELIEF. The results are shown in table 2.

The extended similarity measure predicts significantly
better than the non-extended similarity measure if the at-
tribute weights are learned. In a two-tailed t-test, the sig-
nificance level is 0.009. However, the accuracy difference
between the extended and non-extended measure is small.
Our analysis suggest that the small impact of the similar-
ity measure is due to the fact that any increase of predic-
tion accuracy is difficult, since the behaviors of the player
agents are implemented by many different methods. Player
implementations range from simple decision trees [6], over
probabilistic approaches [8] to neural networks [20]. Par-
ticularly if behaviors are learned, the partitioning of thesit-
uation space can be highly irregular and complex. Further-
more, it is very unlikely that the opponent players used the
same domain knowledge. Hence, their situation space will
be different from the situation space of our case-base. Con-
sidering this, we believe that an accuracy increase of 1.8
percent points is substantial.

7 Related work

Apart from the similarity-based approach, there are several
different approaches to opponent modelling. However, not
all of them are well-suited for a continuous, real-time multi-
agent game such as RoboCup.

In game theory there are approaches to learn opponent
models from action sequences [7]. Usually a payoff-matrix
is necessary, but for predicting the opponent’s actions this
requirement does not hold [22]. Unfortunately, these learn-
ing techniques assume that the opponent strategy can be
described by a deterministic finite automaton, which might
not always be the case in a complex domain. Most impor-
tantly, game theory can describe game states only as history
of actions, which is infeasible in complex games such as
RoboCup, where subsequent game states are not only deter-
mined by player actions but also by the game physics.

Predicting opponent actions can also be done via plan-
recognition [12, 11]. Predefined plan libraries are needed,
however, and reactive agents cannot be modelled. Similarly,
classifying opponents into classes and selecting appropri-
ate counter-strategies [25, 21] requires pre-defined model
libraries. In contrast, CBR only requires a set of observa-

tions, tuning of the similarity measure is optional. However,
CBR as used in this paper does not provide an appropriate
counter-action. Up to now it only predicts the opponent’s
actions.

An approach that avoids predicting the opponent’s ac-
tions is for example to adapt probability weights of action
rules by reinforcement [24]. Instead of choosing actions that
counter-act the opponent’s next move, the own behavior is
adapted based on rewards and penalties.

8 Conclusions

We presented an approach that enriches similarity based op-
ponent modelling in multi-agent games with imperfect do-
main knowledge. A taxonomy for different types of domain
knowledge was proposed and it was shown how each type
can be incorporated into similarity measures. The predic-
tion accuracy of the knowledge-rich measure was compared
to a knowledge-poor measure in the domain of simulated
soccer. The results suggest that similarity-based opponent
modelling can benefit from domain knowledge even if it
is not known whether the opponent uses the same domain
knowledge.

Bibliography

[1] Agnar Aamodt. Explanation-driven case-based rea-
soning. In Stefan Wess, Klaus-Dieter Althoff, and
Michael M. Richter, editors,Topics in Case-Based
Reasoning, pages 274–288. Springer, 1994.

[2] David Aha. Editorial for the special issue: lazy learn-
ing. Artificial Intelligence Review, 11:7–10, 1997.

[3] Mazda Ahmadi, Abolfazl Keighobadi-Lamjiri,
Mayssam M. Nevisi, Jafar Habibi, and Kamiz
Badie. Using a two-layered case-based reasoning
for prediction in soccer coach. In Hamid R. Arabnia
and Elena B. Kozerenko, editors,Proceedings of
the International Conference of Machine Learning;
Models, Technologies and Applications (MLMTA’03),
pages 181–185. CSREA Press, 2003.

[4] Ralph Bergmann. On the use of taxonomies for rep-
resenting case features and local similarity measures.
In Lothar Gierl and Mario Lenz, editors,Proceedings
of the Sixth German Workshop on CBR, pages 23–32,
1998.

[5] Ralph Bergmann.Experience Management. Springer,
Berlin, 2002.

[6] Sean Buttinger, Marco Diedrich, Leonhard Hen-
nig, Angelika Hoenemann, Philipp Huegelmeyer, An-
dreas Nie, Andres Pegam, Collin Rogowski, Claus
Rollinger, Timo Steffens, and Wilfried Teiken. Orca
project report. Technical report, University of Os-
nabrueck, 2001.

289 CIG'05 (4-6 April 2005)



[7] David Carmel and Shaul Markovich. Learning models
of intelligent agents. In Howard Shrobe and Ted Sen-
ator, editors,Proceedings of the Thirteenth National
Conference on Artificial Intelligence and the Eighth
Innovative Applications of Artificial Intelligence Con-
ference, Vol. 2, pages 62–67, Menlo Park, California,
1996. AAAI Press.

[8] Remco de Boer, Jelle Kok, and Frans C. A. Groen.
Uva trilearn 2001 team description. In Andreas
Birk, Silvia Coradeschi, and Satoshi Tadokoro, edi-
tors,RoboCup 2001: Robot Soccer World Cup V. Lec-
ture Notes in Computer Science 2377, pages 551–554,
Berlin, 2002. Springer.

[9] Joerg Denzinger and Jasmine Hamdan. Improving
modeling of other agents using stereotypes and com-
pactification of observations. InProceedings of AA-
MAS 2004. ACM, 2004.

[10] Anthony D. Griffiths and Derek G. Bridge. A yard-
stick for the evaluation of case-based classifiers. In
Ian D. Watson, editor,Proceedings of Second UK
Workshop on Case-Based Reasoning, 1996.

[11] Gal A. Kaminka and Dorit Avrahami. Symbolic
behavior-recognition. In Mathias Bauer, Piotr Gmy-
trasiewicz, Gal A. Kaminka, and David V. Pynadath,
editors,Workshop on Modeling Other Agents from Ob-
servations at AAMAS 2004, pages 73–80, 2004.

[12] Henry Kautz. A formal theory of plan recognition and
its implementation. In J. Allen, H. Kautz, R. Pelavin,
and J. Tenenberg, editors,Reasoning about Plans,
pages 69–125. Morgan Kaufman, San Mateo, CA,
1991.

[13] Kenji Kira and Larry A. Rendell. A practical approach
to feature selection. In Derek H. Sleeman and Pe-
ter Edwards, editors,Proceedings of the Ninth Inter-
national Workshop on Machine Learning, pages 249–
256. Morgan Kaufmann Publishers Inc., 1992.

[14] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela
Veloso, Silvia Coradeschi, Eiichi Osawa, Hitoshi Mat-
subara, Itsuki Noda, and Minoru Asada. The robocup
synthetic agent challenge,97. InInternational Joint
Conference on Artificial Intelligence (IJCAI97), pages
24–29, San Francisco, CA, 1997. Morgan Kaufmann.

[15] Igor Kononenko. Estimating attributes: Analysis
and extensions of RELIEF. In F. Bergadano and
L. de Raedt, editors,Proceedings of the European
Conference on Machine Learning, pages 171–182,
Berlin, 1994. Springer.

[16] Cynthia Marling, Mark Tomko, Matthew Gillen,
David Alexander, and David Chelberg. Case-based
reasoning for planning and world modeling in the
robocup small sized league. In Ubbo Visser, editor,IJ-
CAI Workshop on Issues in Designing Physical Agents
for Dynamic Real-Time Environments, 2003.

[17] Douglas L. Medin, Robert L. Goldstone, and Dedre
Gentner. Respects for similarity.Psychological Re-
view, 100(2):254–278, 1993.

[18] Bruce W. Porter, Ray Bareiss, and Robert C. Holte.
Concept learning and heuristic classification in weak-
theory domains.Artificial Intelligence, 45(1-2):229–
263, 1990.

[19] Michael M. Richter. Fallbasiertes Schliessen.Infor-
matik Spektrum, 3(26):180–190, 2003.

[20] Martin Riedmiller, Arthur Merke, W. Nowak,
M. Nickschas, and Daniel Withopf. Brainstormers
2003 - team description. In Daniel Polani, Andrea
Bonarini, Brett Browning, and Kazuo Yoshida, edi-
tors,Pre-Proceedings of RoboCup 2003, 2003.

[21] Patrick Riley and Manuela Veloso. On behavior clas-
sification in adversarial environments. In Lynne E.
Parker, George Bekey, and Jacob Barhen, editors,Dis-
tributed Autonomous Robotic Systems 4, pages 371–
380. Springer-Verlag, 2000.

[22] Collin Rogowski. Model-based opponent-modelling
in domains beyond the prisoner’s dilemma. In Math-
ias Bauer, Piotr Gmytrasiewicz, Gal A. Kaminka,
and David V. Pynadath, editors,Workshop on Model-
ing Other Agents from Observations at AAMAS 2004,
pages 41–48, 2004.

[23] Joerg W. Schaaf. Detecting gestalts in cad-plans to be
used as indices. In Angi Voss, editor,FABEL - Sim-
ilarity concepts and retrieval methods. GMD, Sankt
Augustin, 1994.

[24] Pieter Spronck, Ida Sprinkhuizen-Kuyper, and Eric
Postma. Online adaptation of game opponent ai in
simulation and in practice. In Quasim Mehdi and
Norman Gough, editors,Proceedings of the 4th Inter-
national Conference on Intelligent Games and Sim-
ulation (GAME-ON 2003), pages 93–100, Belgium,
2003. EUROSIS.

[25] Timo Steffens. Feature-based declarative opponent-
modelling in multi-agent systems. Master’s thesis, In-
stitute of Cognitive Science Osnabrueck, 2002.

[26] Timo Steffens. Adapting similarity-measures to agent-
types in opponent-modelling. In Mathias Bauer, Piotr
Gmytrasiewicz, Gal A. Kaminka, and David V. Py-
nadath, editors,Workshop on Modeling Other Agents
from Observations at AAMAS 2004, pages 125–128,
2004.

[27] Timo Steffens. Virtual attributes from imperfect do-
main theories. In Brian Lees, editor,Proceedings of
the 9th UK Workshop on Case-Based Reasoning at AI-
2004, pages 21–29, 2004.

[28] Robert E. Stepp and Ryszard S. Michalski. Conceptual
clustering: Inventing goal-oriented classifications of
structured objects. In Ryszard S. Michalski, Jaime G.

290 CIG'05 (4-6 April 2005)



Carbonell, and Tom M. Mitchell, editors,Machine
Learning: An Artificial Intelligence Approach, vol-
ume II. Morgan Kaufman Publishers, Inc., Los Altos,
CA, 1986.

[29] Frieder Stolzenburg, Jan Murray, and Karsten Sturm.
Multiagent matching algorithms with and without
coach. In Michael Schillo, Matthias Klusch, Jrg Mller,
and Huaglory Tianfield, editors,Proceedings of the 1st
German Conference on Multiagent System Technolo-
gies, pages 192–204, Berlin, 2003. Springer.

[30] Jerzy Surma. Enhancing similarity measure with do-
main specific knowledge. InProceedings of the Sec-
ond European Conference on Case-Based Reasoning,
pages 365–371, Paris, 1994. AcknoSoft Press.

[31] Peter Turney. The management of context-sensitive
features: A review of strategies. InProceedings of the
Workshop on Leaning in Context-sensitive Domains at
the 13th International Conference on Machine Learn-
ing, pages 60–65, 1996.

[32] Jan Wendler. Recognizing and predicting agent behav-
ior with case based reasoning. In Daniel Polani, An-
drea Bonarini, Brett Browning, and Kazuo Yoshida,
editors,RoboCup 2003: Robot Soccer World Cup VII,
Lecture Notes in Artificial Intelligence, Berlin, Heidel-
berg, New York, 2004. Springer.

291 CIG'05 (4-6 April 2005)



A Survey on Multiagent Reinforcement Learning Towards Multi-Robot Systems

Erfu Yang
University of Essex

Wivenhoe Park, Colchester
CO4 3SQ, Essex, United Kingdom

eyang@essex.ac.uk

Dongbing Gu
University of Essex

Wivenhoe Park, Colchester
CO4 3SQ, Essex, United Kingdom

dgu@essex.ac.uk

Abstract- Multiagent reinforcement learning for multi-
robot systems is a challenging issue in both robotics and
artificial intelligence. With the ever increasing interests
in theoretical research and practical applications, cur-
rently there have been a lot of efforts towards providing
some solutions to this challenge. However, there are still
many difficulties in scaling up multiagent reinforcement
learning to multi-robot systems. The main objective of
this paper is to provide a survey on multiagent reinforce-
ment learning in multi-robot systems, based on the liter-
ature the authors collected. After reviewing some im-
portant advances in this field, some challenging prob-
lems are analyzed. A concluding remark is made from
the perspectives of the authors.

1 Introduction

Multi-Robot Systems (MRSs) can often be used to fulfil
tasks that are difficult to be accomplished by an individual
robot, especially in the presence of uncertainties, incom-
plete information, distributed control, and asynchronous
computation, etc. During the last decade MRSs have re-
ceived considerable attention [1–16].

When designing MRSs, it is impossible to predict all
the potential situations robots may encounter and specify
all robot behaviours optimally in advance. Robots in MRSs
have to learn from, and adapt to their operating environment
and their counterparts. Thus, learning becomes one of the
important and challenging problems in MRSs.

Over the last decade there has been increasing interest in
extending individual reinforcement learning (RL) to multia-
gent systems, particularly MRSs [16–35]. From a theoretic
viewpoint, this is a very attractive research field since it will
expand the range of RL from the realm of simple single-
agent to the realm of complex multiagents where there are
agents learning simultaneously.

There have been some advances in RL for both multia-
gent systems and MRSs. The objective of this paper is to
review these existing works and analyze some challenging
issues from the viewpoint of multiagent RL in MRSs.

2 Preliminaries

2.1 Markov Decision Process

Markov Decision Processes (MDPs) are the mathematical
foundation for single agent RL and defined as [26,36]:
Definition 1 (MDP) A Markov Decision Process is a tu-
ple < S, A, T , R, γ >, whereS is a finite discrete set
of environment states,A is a finite discrete set of actions

available to the agent,γ (0 ≤ γ < 1) is a discount fac-
tor, T : S × A →Π(S) is a transition function giving for
each state and action, a probability distribution over states,
R : S × A → R is a reward function of the agent, giving
the expected immediate reward received by the agent under
each actions in each state.

Each MDP has a deterministic stationary optimal pol-
icy [26]. In an MDP, the agent acts in a way such as to
maximize the long-run value it can expect to gain. Under
the discounted objective the factorγ controls how much ef-
fect future rewards have on the decisions at each moment. It
is noted that the reward can be probabilistic in some cases.

2.2 Reinforcement Learning

The objective of RL is to learn how to act in a dynamic envi-
ronment from experience by maximizing some payoff func-
tions. In RL, the state dynamics and reinforcement function
are at least partially unknown. Thus the learning occurs iter-
atively and is performed only through trial-and-error meth-
ods and reinforcement signals, based on the experience of
interactions between the agent and its environment.

2.3 Q-Learning

Q-learning [37] is a value learning version of RL that learns
utility values (Q values) of state and action pairs. It is
a form of model-free RL and provides a simple way for
agents to learn how to act optimally in controlled Marko-
vian domains. It also can be viewed as a method of asyn-
chronous dynamic programming. In essence Q-learning is
a temporal-difference learning method. The objective of Q-
learning is to estimate Q values for an optimal policy. Dur-
ing the learning an agent uses its experience to improve its
estimate by blending new information into its prior experi-
ence. Although there may be more than one optimal policy,
theQ∗ values are unique [37]. The individual Q-learning in
discrete cases has been proved to converge to optimal values
with probability one if state action pairs are visited infinite
times and learning rate declines [37].

2.4 Matrix Games

Matrix games are the most elementary type of many player,
particularly two-player games [38]. In matrix games players
select actions from their available action space and receive
rewards that depend on all the other player’s actions.
Definition 2 (Matrix Games) A matrix game is given by
a tuple< n,A1, · · · ,An, R1, · · · , Rn >, wheren is the
number of players,Ai andRi (i = 1, · · · , n) are the finite
action set and payoff function respectively for playeri.
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2.5 Stochastic Games

Currently multiagent learning has focused on the theoretic
framework of Stochastic Games (SGs) or Markov Games
(MGs). SGs extend one-state MG to multi-state cases by
modeling state transitions with MDP. Each state in a SG
can be viewed as a MG and a SG with one player can be
viewed as an MDP. A great deal of research on multiagent
learning has borrowed the theoretic frameworks and notions
from SGs [17–21,23,25–29,31–34,39–42]. SGs have been
well studied in the field of RL and appear to be a natural and
powerful extension of MDPs to multi-agent domains.

3 Theoretic Frameworks for Multiagent RL

3.1 SG-Based Frameworks

A RL framework of SGs is given as follows [17,26,34,43]:
Definition 3 (Framework of SGs) A learning framework
of SGs is described by a tuple< S, A1, · · · ,An,
T, R1, · · · , Rn, γ >, where

• S is a finite state space;

• A1, · · · ,An are the corresponding finite sets of ac-
tions available to each agent.

• T : S×A1 × · · ·×An → Π(S) is a state transition
function, given each state and one action from each
agent. HereΠ(S) is a probability distribution over
the state spaceS.

• Ri : S×A1× · · ·×An →R(i = 1, · · · , n) represents
a reward function for each agent.

• 0 ≤ γ < 1 is the discount factor.

In such a learning framework of SGs, learning agents
attempt to maximize their expected sum of discounted re-
wards. Correspondingly a set of Q-functions for agenti
(i = 1, · · · , n) can be defined according to their stationary
policiesπ1, · · · , πn. Unlike a single-agent system, in multi-
agent systems the joint actions determine the next state and
rewards to each agent. After selecting actions, the agents
are transitioned to the next state and receive their rewards.

3.2 Fictitious Play Framework

In a known SG, the framework of fictitious play can be used
as a technique to find equilibria. For a learning paradigm,
fictitious play can also be applied to form a theoretical
framework [44]. It provides a quite simple learning model.
In the framework of fictitious play, the algorithm maintains
information about the average estimated sum of future dis-
counted rewards. According to the Q-functions of agents,
the fictitious play method deterministically chooses the ac-
tions for each agent that would have done the best in the
past. For computing the estimated sum of future discounted
rewards, a simple temporal difference backup may be used.

Compared with the framework of SGs, the main merit
of fictitious play is that it is capable of finding equilibria
in both zero-sum games and some classes of general-sum

games [44]. One obvious disadvantage of this framework
is that fictitious play merely adopts deterministic policies
and cannot play stochastic strategies. Hence it is hard to
apply in zero-sum games because it can only find an equi-
librium policy but does not actually play according to that
policy [44]. In addition learning stability is another serious
problem. Since the fictitious play framework is of inherent
discontinuity, a small change in data could lead to an abrupt
change in behaviour [33]. To overcome this unstable prob-
lem, many variants of fictitious play have been developed,
see [33] as well as the literature therein.

3.3 Bayesian Framework

The multiagent RL algorithms developed from the SG
framework, such as Minimax-Q, Nash-Q, etc., always re-
quire to converge to desirable equilibria. Thus, sufficient
exploration of strategy space is needed before convergence
can be established. Solutions to multiagent RL problems are
usually based on equilibrium. In order to obtain an optimal
policy, agents have to find and even identify the equilibria
before the policy is used at the current state.

A Bayesian framework for exploration in multiagent RL
systems was proposed in [31, 33]. It is a model-based RL
model. In this framework a learning agent can use priors
to reason about how its action will influence the behaviours
of other agents. Thus, some prior density over possible dy-
namics and reward distribution have to be known by a learn-
ing agent in advance.

A basic assumption in the Bayesian framework is that
the learning agent is able to observe the actions taken by
all agents, the resulting game state, and rewards received by
other agents. Of course, this assumption will have no prob-
lem for the coordination of multiagents, but it will restrict
its applications in other settings where opponent agents gen-
erally will not broadcast their information to the others.

To establish the belief, a learning agent under the
Bayesian framework has some priors, such as probability
distribution over the state space as well as the possible strat-
egy space. The belief is then updated during the learning
by observing the results of its actions and action choices
of other agents. In order to accurately predict the actions
of other agents, the learning agent has to record and main-
tain appropriate observable history. In [31,33] it is assumed
that the learning agent can keep track of sufficient history
to make such predictions. Besides the aforementioned as-
sumptions, in [31, 33] there are two extra assumptions on
the belief. First, the priors over models can be factored into
independent local models for both rewards and transitions.
Second, it needs to be assumed that the belief about oppo-
nent strategies also can be factored and represented in some
convenient form [31,33].

3.4 Policy Iteration Framework

Unlike the value iteration frameworks, the policy iteration
framework can provide a direct way to find the optimal strat-
egy in the policy space. Under the policy iteration frame-
work Bowling and Veloso [45] proposed a WoLF-PHC al-
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gorithm if the other agents are assumed to be playing sta-
tionary policies. Other works following the thinking lines
of [45] can be found in [46,47]. It seems to have no other re-
ported works on the algorithms under this framework when
the other agents in the system are considered to learn simul-
taneously. Compared with the aforementioned frameworks,
many researches for policy iteration RL in multiagent sys-
tems still need to be done in the future. Fortunately, there al-
ready have been many research results on policy iteration al-
gorithms in single-agent RL systems, for instance, one may
refer to [48] as well as the literature therein. Thus one possi-
ble way is to extend the existing policy iteration algorithms
in single-agent systems to the field of multiagent systems.

4 Multiagent RL Algorithms

The difference between single-agent and multiagent sys-
tem can be seen as a difference in the properties of the
agent’s environment. In multiagent systems other adapting
agents make the environment no longer stationary, violating
the Markov property that traditional single agent behavior
learning relies upon.

For individual robot learning, the traditional Q-learning
has been successfully applied to many paradigms. Some re-
searchers also apply Q-learning in a straightforward fash-
ion to each agent in a multiagent system. However, the
aforementioned fact that the environment is no longer sta-
tionary in multiagent system is usually neglected. Over the
last decade many researchers have made efforts to use RL
methodology, particularly the Q-learning framework as an
alternative approach to the learning of MRSs. As pointed
out early, the basic assumption for traditional Q-learning
working is violated in the case of MRSs.

4.1 Minimax-Q Learning Algorithm

Under SG framework, Littman [17] proposed aMinimax-Q
learning algorithm for zero-sum games in which the learn-
ing player maximizes its payoffs in the worst situation. The
players’ interests in the game are opposite. Essentially
the Minimax-Q learning is a value-function reinforcement
learning algorithm. In the Minimax-Q learning the player
always try to maximize its expected value in the face of the
worst-possible action choice of the opponent. Hence the
player would become more cautious after learning. To cal-
culate the probability distribution or the optimal policy of
the player, Littman [17] simply used linear programming.

The Minimax-Q learning algorithm was firstly given in
[17], which just included empirical results on a simple zero-
sum SG game version of soccer. A complete convergence
proof was provided in the works thereafter [18, 23, 26],
which can be summarized in the following theorem:
Theorem 1 In a two-player zero-sum multiagent SG envi-
ronment, an agent following the Minimax-Q learning algo-
rithm will converge to the optimal Q-function with proba-
bility one. Furthermore, an agent using a GLIE (Greedy
in the Limit with infinite exploration) policy will converge
in behaviour with probability one if the limit equilibrium is
unique.

The Minimax-Q learning algorithm may provide a safe
policy in that it can be performed regardless of the existence
of its opponent [26]. The policy used in the Minimax-Q
learning algorithm can guarantee that it receives the largest
value possible in the absence of knowledge of the oppo-
nent’s policy. Although the Minimax-Q learning algorithm
manifests many advantages in the domain of two-player
zero-sum multiagent SG environment, an explicit drawback
of this algorithm is that it is very slow to learn since in each
episode and in each state a linear programming is needed.
The use of linear programming significantly increases the
computation cost before the system reaches convergence.

4.2 Nash-Q Learning Algorithm

Hu and Wellman [21, 34] extended the zero-sum game
framework of Littman [17] to general-sum games and devel-
oped aNash-Qlearning algorithm for multiagent RL. To ex-
tend Q-learning to the multiagent learning domain, the joint
actions of participating agents rather than merely individual
actions are needed to be taken into account. Considering
this important difference between single-agent and multia-
gent RL, the Nash-Q learning algorithm needs to maintain
Q values for both the learner itself and other players. The
idea is to find Nash equilibria at each state in order to obtain
Nash equilibrium policies for Q value updating.

To apply the Nash-Q learning algorithm, one has to de-
fine the Nash Q-value. A Nash Q-value is defined as the
expected sum of discounted rewards when all agents follow
specified Nash equilibrium strategies from the next period
on.

Hu and Wellman [21, 34] have shown that the Nash-Q
learning algorithm in multi-player environment converges
to Nash equilibrium policies with probability one under
some conditions and additional assumptions to the payoff
structures. More formally, the main results can be summa-
rized in the following theorem [21,26,34]:
Theorem 2 In a multiagent SG environment, an agent fol-
lowing the Nash-Q learning algorithm will converge to
the optimal Q-function with probability one as long as all
Q-functions encountered have coordination equilibria and
these are used in the update rule. Furthermore, the agent
using a GLIE policy will converge in behaviour with proba-
bility one if the limit equilibrium is unique.

To guarantee the convergence, the Nash-Q learning al-
gorithm needs to know that a Nash equilibrium is either
unique or has the same value as all others. Hu and Well-
man used quadratic programming to find Nash equilibrium
in the Nash-Q learning algorithm for general-sum games.
Littman [26] has argued the applicability of Theorem 2 and
pointed out that it is hard to apply since the strict conditions
are difficult to verify in advance. To tackle this difficulty,
Littman [28] thereafter proposed a so-called Friend-or-Foe
Q-learning (FFQ) algorithm, see the following subsection.

4.3 Friend-or-Foe Q-learning (FFQ) Algorithm

Motivated by the conditions of Theorem 2 on the conver-
gence of Nash-Q learning, Littman [28] developed a Friend-
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or-Foe Q-learning (FFQ) algorithm for RL in general-sum
SGs. The main idea is that each agent in the system is iden-
tified as being either “friend” or “foe”. Thus, the equilib-
ria can be classified as either coordination or adversarial.
Compared with the Nash-Q learning, the FFQ-learning can
provide a stronger convergence guarantee.

Littman [28] has presented the following results to prove
the convergence of the FFQ-learning algorithm:
Theorem 3 Foe-Q learns values for a Nash equilibrium
policy if there is an adversarial equilibrium; Friend-Q
learns values for a Nash equilibrium policy if the game has
a coordination equilibrium. This is true regardless of oppo-
nent behaviour.
Theorem 4 Foe-Q learns a Q-function whose correspond-
ing policy will achieve at least the learned values regardless
of the policy selected by the opponent.

Although the convergence property of FFQ-learning has
been improved over that of Nash-Q learning algorithm, a
complete treatment of general-sum stochastic games using
Friend-or-Foe concepts is still lacking [28]. In comparison
to the Nash-Q learning algorithm, the FFQ-learning does
not require learning estimates to the Q-functions of oppo-
nents. However, the FFQ-learning still require a very strong
condition for application, that is the agent must know how
many equilibria there are in game and an equilibrium is
known to be either coordinating or adversarial in advance.
The FFQ-learning itself does not provide a way to find a
Nash equilibrium or identify a Nash equilibrium as being
either a coordination or an adversarial one. Like Nash-
Q learning, FFQ-learning also cannot apply to the system
where neither coordination nor adversarial equilibrium ex-
ists.

4.4 rQ-learning Algorithm

Morales [49] developed a so-called rQ-learning algorithm
for dealing with large search space problems. In this al-
gorithm ar-stateand anr-action set need to be defined in
advance. Ar-state is defined by a set of first-order rela-
tions, such asgoal in front, teamrobot to the left, oppo-
nent robot with ball, etc. Anr-action is described by a set
of pre-conditions, a generalized action, and possibly a set
of post-conditions. For anr-action to be defined properly,
the following condition must be satisfied: if anr-action is
applicable to a particular instance of ar-state, then it should
be applicable to all the instances of thatr-state.

Although the rQ-learning algorithm seems to be useful
for dealing with large search space problem, it may be very
difficult to define ar-stateand ar-action set properly, par-
ticularly in the case with incomplete knowledge on the con-
cerned MRS. Furthermore, in ther-state space there is no
guarantee that the definedr-actionsare adequate to find an
optimal sequence of primitive actions and sub-optimal poli-
cies can be produced [49].

4.5 Fictitious Play Algorithm

Since Nash-equilibrium-based learning has difficulty in
finding Nash equilibria, the fictitious play may provide an-

other method to deal with multiagent RL under SG frame-
work. In the fictitious play algorithm, the beliefs of other
players’ policies are represented by empirical distribution
of their past play [1, 32]. Hence, the players only need to
maintain their own Q values, which are related to joint ac-
tions and are weighted by their belief distribution.

For stationary policies of other players, the fictitious
play algorithm becomes a variant of individual Q-learning.
For non-stationary policies of other players, these fictitious-
play-based approaches have been empirically used in either
competitive games where the players can model their adver-
sarial opponents - called opponent modelling, or collabora-
tive games where the players learn Q values of their joint
actions - the player is called Joint Action Learner (JAL) [1].

For the fictitious-play-based approaches, the algorithms
will converge to a Nash equilibrium in games that are iter-
ated dominance solvable if all players are playing fictitious
play [50]. Although the fictitious-play based learning elimi-
nate the necessity of finding equilibria, learning agents have
to model others and the learning convergence has to depend
on some heuristic rules [45].

4.6 Multiagent SARSA Learning Algorithm

The Minimax-Q and Nash-Q learning algorithms are ac-
tually off-policy RL since they replace themax operator
of individual Q-learning algorithm with their best response
(Nash equilibrium policy). In RL, an off-policy learning
algorithm always tries to converge to optimal Q values of
optimal policy regardless of what policy is being executed.

SARSA algorithm [36] is an on-policy RL algorithm
that tries to converge to optimal Q values of policy cur-
rently being executed. Considering the disadvantages of
the Minimax-Q and Nash-Q learning algorithms, a SARSA-
based multi-agent algorithm called as EXORL (Extended
Optimal Response Learning) was developed in [32]. In [32]
the fact that the opponents may take stationary policies is
taken into account, rather than Nash equilibrium policies.
Once opponents take stationary policies, there is no need to
find Nash equilibria at all during learning. So, the learning
updating can be simplified by eliminating the necessity of
finding Nash equilibria if the opponents take stationary poli-
cies. In addition some heuristic rules were also employed to
switch the algorithm between the Nash-equilibrium-based
learning and the fictitious-play-based learning.

The basic idea of the EXORL algorithm is that the agent
should learn a policy which is an optimal response to the
opponent’s policy, but it tries to reach a Nash equilibrium
when the opponent is adaptable. Like Nash-Q leaning al-
gorithm, the EXORL algorithm will have a difficulty when
there exist multiple equilibria. Another obvious shortcom-
ing of the EXORL algorithm is that one agent is assumed to
be capable of observing the opponent’s action and rewards.
In some cases this will be a very serious restriction since
all the agents may learn their strategies simultaneously and
one agent cannot obtain the actions of the opponent at all
in advance. Moreover, the opponent also may take stochas-
tic strategy instead of deterministic policies. Observing re-
wards obtained by the opponent will be more difficult since
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the rewards are only available after the policies are put into
action practically.

Only some empirical results were given in [32] for the
EXORL algorithm, there still lacks a theoretic foundation.
Hence, a complete proof for convergence will be expected.

4.7 Policy Hill Climbing (PHC) Algorithm

The PHC algorithm updates Q values in the same way as the
fictitious play algorithm, but it maintains a mixed policy (or
stochastic policy) by performing hill-climbing in the space
of mixed policies. Bowling and Veloso [44, 45] proposed a
WoLF-PHC algorithm by adopting an idea of Win or Learn
Fast (WoLF) and using a variable learning rate. The WoLF
principle can result in the agent learning quickly when it
is doing poorly and cautiously when it is performing well.
The change in such a way for the learning rates will be help-
ful for convergence by not overfitting to the other agents’
changing policies. At this point the WoLF-PHC algorithm
seems to be attractive. Although many examples from MGs
to zero-sum and general-sum SGs were given in [44, 45], a
complete proof for the convergence properties has not been
provided so far.

Rigorously speaking, the WoLF-PHC algorithm is still
not a multiagent version of PHC algorithm since the learn-
ing factors of other agents in the non-Markovian environ-
ment are not taken into account at all. Thus, it is only ratio-
nal and reasonable if the other agents are playing stationary
strategies. In addition, the convergence may become very
slow when the WoLF principle is applied [32].

4.8 Other Algorithms

Sen et al. [51] studied multiagent coordination with learn-
ing classifier systems. Action policies mapping from per-
ceptions to actions were used by multiple agents to learn
coordination strategies without shared information. The ex-
perimental results provided in [51] indicated that classifier
systems can be more effective than the more widely used
Q-learning scheme for multiagent coordination.

In multiagent systems, a learning agent may learn faster
and establish some new rules for its own utility under future
unseen situations if the experiences and knowledge from
other agents are available to it. Considering this fact and
the possible benefits gained from extracting proper rules out
of the other agents’ knowledge, a weighted strategy shar-
ing (WSS) method was proposed in [30] for coordination
learning by using the expertness of RL. In this method, each
agent measures the expertness of other agents in a team and
assigns a weight to their knowledge and learns from them
accordingly. Moreover, the Q-table of one of the coopera-
tive agents is changed randomly.

In tackling the coordination of multiagent systems,
Boutilier [39] proposed a sequential method by allow-
ing agents to reason explicitly about specific coordination
mechanisms. In this method an extension of value iteration
in which the state space is augmented with the state of the
adopted coordination mechanism needs to be defined. This
method allows agents to reason about the prospects for co-

ordination, and make decisions to engage or avoid coordi-
nation problems based on expected value [39].

5 Scaling RL to Multi-Robot Systems

Multi-robot learning is a challenge for learning to act in a
non-Markovian environment which contains other robots.
Robots in MRSs have to interact with and adapt to their en-
vironment, as well as learn from and adapt to their counter-
parts, rather than only take stationary policies.

The tasks arising from MRSs have continuous state
and/or action spaces. As a result, there will be difficulties in
directly applying the aforementioned results on multiagent
RL with finite states and actions to MRSs.

State and action abstraction approaches claim that ex-
tracting features from a large learning space is effective.
The approaches include condition and behaviour extrac-
tion [2], teammate internal modelling, relationship-state es-
timation [5], and state vector quantisation [9]. However, all
these approaches can be viewed as variants of individual Q-
learning algorithms since they model other robots either as
parts of environment or as stationary-policy holders.

One research on scaling reinforcement learning toward
RoboCup soccer has been reported by Stone and Sutton
[24]. The RoboCup soccer can be viewed as a special class
of MRS and is often used as a good test-bed for developing
AI techniques in both single-agent and multiagent systems.
In [24], an approach using episodic SMDP SARSA(λ) with
linear tile-coding function approximation and variableλ
was designed to learn higher-level decisions in a keepaway
subtask of RobotCup soccer. Since the general theory of
RL with function approximation has not yet been well un-
derstood, the linear SARSA(λ) which could be the best un-
derstood among current methods [24] was used in the scal-
ing of RL to RoboCup soccer. Moreover, they also claimed
that it has advantages over off-policy methods such as Q-
learning, which can be unstable with linear and other kinds
of function approximation. However, they did not answer
the open question of whether SARSA(λ) fails to converge
as well.

To study the cooperation problems in learning many
behaviours using RL, a subtask of RoboCup soccer, i.e.,
keep away was also investigated in [52] by combining
SARSA(λ) and linear tile coding function approxima-
tion. However, only single-agent RL techniques, including
SARSA(λ) with eligibility traces, tile coding function ap-
proximation, were directly applied to a multiagent domain.
As pointed out previously, such a straightforward applica-
tion of single-agent RL techniques to multiagent systems
has no sound theoretic foundation. Kostiadis and Hu [53]
used Kanerva coding technique [36] to produce a decision-
making module for football possession in RoboCup soccer.
In this application Kanerva coding was used as a general-
isation method to form a feature vector from raw sensory
reading while the RL uses this feature vector to learn an op-
timal policy. Although the results provided in [53] demon-
strated that the learning approach outperformed a number
of benchmark policies including a hand-coded one, there
lacked a theoretic analysis on how a series of single-agent
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RL techniques can work very well in multiagent systems.
The work in [2] presented a formulation of RL that

enables learning in concurrent multi-robot domains. The
methodology adopted in that study makes use of behaviours
and conditions to minimize the learning space. The credit
assignment problem was dealt with through shaped rein-
forcement in the form of heterogeneous reinforcement func-
tions and progress estimators.

Morales [49] proposed an approach to the RL in robotics
based on a relational representation. With this relational
representation, this method can be applied over large search
spaces and domain knowledge also can be incorporated.
The main idea behind this approach is to represent states
as sets of properties to characterize a particular state which
may be common to other states. Since both states and ac-
tions are represented in terms of first order relations in the
proposed framework of [49], policies are learned over such
generalized representation.

To deal with the state space growing exponentially in
the number of team members, Touzet [8] studied the robot
awareness in cooperative mobile robot learning and pro-
posed a method which requires a less cooperative mecha-
nism, i.e., various levels of awareness rather than communi-
cation. The results illustrated in [8] with applications to the
cooperative multi-robot observation of multiple moving tar-
gets shows some better performance than a purely collective
learned behaviour.

In [11] a variety of methods were reviewed and used
to demonstrate for learning in multi-robot domain. In that
study behaviours were thought as the underlying control
representation for handling scaling in learning policies and
models, as well as learning from other agents. Touzet [16]
proposed a pessimistic algorithm-based distributed lazy Q-
learning for cooperative mobile robots. The pessimistic al-
gorithm was used to compute a lower bound of the utility of
executing an action in a given situation for each robot in a
team. Although Q-learning with lazy learning was used, the
author also neglected the important fact for the applicability
of Q-learning, that is in multi-agent systems the environ-
ment is not stationary.

Park et al. [54] studied modular Q-learning based multi-
agent cooperation for robot soccer, where modular Q-
learning was used to assign a proper action to an agent in
multiagent systems. In this approach the architecture of
modular Q-learning consists of learning modules and a me-
diator module. The function of the mediator is to select a
proper action for the learning agent based on the Q-value
obtained from each learning module.

Although there have been a variety of RL techniques that
are developed for multiagent learning systems, very few of
these techniques scale well to MRSs. On the one hand,
the theory itself on multiagent RL systems in the finite dis-
crete domains are still underway and have not been well-
established. On the other hand, it is essentially very difficult
to solve MRSs in general case because of the continuous
and large state space as well as action space.

To deal with the problem of continuous state and ac-
tion space, particularly there has been an increasing effort

to apply fuzzy logic to the RL of both single and multi-
ple agent/robot systems in recent years. Fuzzy Logic Con-
trollers (FLCs) can be used to generalize Q-learning over
continuous state spaces. The combination of FLCs with Q-
learning has been proposed as Fuzzy Q-Learning (FQL) for
many single robot applications [55–57].

In [58] a modular-fuzzy cooperative algorithm for mul-
tiagent systems was presented by taking advantage of mod-
ular architecture, internal model of other agent, and fuzzy
logic in multiagent systems. In this algorithm, the internal
model is used to estimate the agent’s own action and evalu-
ate other agents’ actions. To overcome the problem of huge
dimension of state space, fuzzy logic was used to map from
input fuzzy sets representing the state space of each learning
module to output fuzzy sets denoting action space. A fuzzy
rule base of each learning module was built through the Q-
learning, but without providing any convergence proof.

Kilic and Arslan [59] developed a Minimax fuzzy Q-
learning for cooperative multi-agent systems. In this
method, the learning agent always needs to observe the ac-
tions other agents take and uses the Minimax Q-learning
to update fuzzy Q-values by using fuzzy state and fuzzy
goal representation. It should be noted that the Minimax
Q-learning in [59] is from the sense of fuzzy operators (i.e.,
maxandmin) and it is totally different with the Minimax-
Q learning of Littman [17]. Similarly to [58], there was no
proof to guarantee the optimal convergence of the Minimax
fuzzy Q-learning.

The convergence proof appears to be very difficult, par-
ticularly for the multiagent RL with fuzzy generalizations.
More recently, a convergence proof for single agent fuzzy
RL (FRL) was provided in [60]. However, one can find that
the example presented in [60] does not reflect the theoretic
work of that study at all. An obvious fact is that the trian-
gular membership functions were used in the experiment
instead of the Gaussian membership functions which are
the basis of the theoretic work in [60]. Therefore one can
find that the proof techniques and outcomes will be very
difficult to be extended to the domains of multiagent RL
with fuzzy logic generalizations. Furthermore, Watkins [37]
early pointed out that Q-learning may not converge cor-
rectly for other representations rather than a look-up table
representation for the Q-function.

6 Main Challenges

MRSs often have all of the challenges for multiagent learn-
ing systems, such as continuous state and action spaces, un-
certainties, and nonstationary environment. Since the afore-
mentioned algorithms in Section 4 require the enumeration
of states either for policies or value functions, we expect a
major limitation for scaling up the established multiagent
RL outcomes to MRSs.

In matrix games the joint actions correspond to partic-
ular entries in the payoff matrices. For the RL purpose,
agents play the same matrix game repeatedly. For applying
repeated matrix game theory to multiagent RL, the payoff
structure must be given explicitly. This requirement seems
to be a restriction for applying matrix games to the domains
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of MRSs where payoff structure is often difficult to define in
advance. Additionally, Most SGs studied in multiagent RL
are of simple agent-based background where players exe-
cute perfect actions, observe complete states (or partially
observed), and have full knowledge of other players’ ac-
tions, states and rewards. This is not true for most MRSs. It
is unfeasible for robots to completely obtain other players’
information, especially for competitive games since oppo-
nents do not actively broadcast their information to share
with the other players.

Moreover, adversarial opponents may not act rationally.
Accordingly, it is difficult to find Nash equilibria for the
Nash-equilibrium-based approaches or model their dynam-
ics for the fictitious-play-based approaches.

Taking into account the state of the art for multiagent
learning system, there is particular difficulty in scaling up
the established (or partially recognized at least) multiagent
RL algorithms, such as Minimax-Q leaning, Nash-Q learn-
ing, etc., to MRSs with large and continuous state and action
spaces. On the one hand, most theoretic works on multia-
gent systems merely focus on the domains with small finite
state and action sets. On the other hand there is still lack-
ing of sound theoretic grounds which can be used to guide
the scaling up the multiagent RL algorithms to MRSs. As
a result, the learning performance (such as convergence, ef-
ficiency, and stability, etc.) cannot be guaranteed when ap-
proximation and generalization techniques are applied.

One important fact is that most of the multiagent RL al-
gorithms, such as Minimax-Q leaning, Nash-Q learning is
value-function based iteration method. Thus, for applying
these technique to a continuous system the value-function
has to be approximated by either using discretization or
general approximators (such as neural networks,polynomial
functions, fuzzy logic, etc.). However, some researchers
has pointed out that the combination of DP methods with
function approximators may produce unstable or divergent
results even when applied to some very simple problems,
see [61] as the references therein.

Incomplete information, large learning space, and uncer-
tainty are major obstacles for learning in MRSs. Learning in
Behaviour-Based Robotics (BBR) can effectively reduce the
search space in size and dimension and handle uncertainties
locally. The action space will be transformed from continu-
ous space of control inputs into some limited discrete sets.
However, the convergence proof for the algorithms using
the behaviour-based strategies of MRSs will also be a very
challenging problem.

When the state and action spaces of the system are small
and finite discrete, the lookup table method is generally
feasible. However, in MRSs, the state and action spaces
are often very huge or continuous, thus the lookup table
method seems inappropriate. To solve this problem, besides
the state and action abstraction, function approximation and
generalization appears to be another feasible solution. For
learning in a partially observable and nonstationary environ-
ment in the area of multiagent systems, Abul et al. [62] pre-
sented two multiagent based domain independent coordi-
nation mechanisms,i.e. perceptual coordination mechanism

and observing coordination mechanism. The advantage of
their approach is that multiple agents do not require explicit
communication among themselves to learn coordinated be-
haviors. To cope with the huge state space, function approx-
imation and generalization techniques were used in their
work. Unfortunately, the proof of convergence with func-
tion approximation and generalization techniques was not
provided at all in [62]. Currently, a generic theoretic frame-
work for proving the optimal convergence of function ap-
proximation implementation of the popular RL algorithms
(such as Q-learning) has not been established yet. Interest-
ingly, there is an increasing effort in this direction in either
single-agent or multi-agent systems. For the single-agent
Temporal-Difference learning with linear function approxi-
mation, Tadíc [63] studied the convergence and analyzed its
asymptotic properties. Under mild conditions, the almost
sure convergence of Temporal-Difference learning with lin-
ear function approximation was given and the upper error
bound also can be determined.

7 Concluding Remarks

Recently there have been growing interests in scaling up
multiagent RL to MRSs. Although RL seems to be a good
option for learning in multiagent systems, the continuous
state and action spaces often hamper its applicability in
MRSs. Fuzzy logic methodology seems to be a popular can-
didate for dealing with the approximation and generaliza-
tion issues in the RL of multiagent systems. However, this
scaling approach still remains open. Particularly there is a
lack of theoretical grounds which can be used for proving
the convergence and predicting the performance of fuzzy
logic-based multiagent RL (such as fuzzy multiagent Q-
learning).

For cooperative robots systems, although some research
outcomes in some special cases have been available now,
there are also some difficulties (such as multiple equilib-
rium and selecting payoff structure, etc) for directly apply-
ing them to a practical MRS, e.g., robotic soccer system.

This paper gave a survey on multiagent RL towards
MRSs. The main objective of this work is to review some
important advances in this field, though still not completely.
Some challenging problems were discussed. Although this
paper cannot provide a more complete and exhaustive sur-
vey of multiagent RL in MRSs, we still believe that it will
help us more clearly understand the existing works and chal-
lenging issues in this ongoing research field.
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Abstract- Recently, P2P (peer-to-peer) online game sys-
tems have attracted a great deal of public attention.
They work without central servers, thus, the mainte-
nance and organization costs have been drastically re-
duced. However, in P2P systems, it is difficult for game
creators to prevent cheats by malicious players, due to
the lack of trusted servers. In order to solve the prob-
lem, we propose a practical and secure protocol based
on public key cryptography, suitable for such P2P on-
line game systems. Our scheme guarantees that play-
ers can immediately detect when cheating by other ma-
licious players happens, and that honest players can
prove their innocence, on condition that more than half
of the participants are honest. We categorized cheat-
ing into four groups, Crack-The-Game-Software attack,
Change-The-Input-After-Communication attack, Forge-
The-Result attackand Be-Offline-When-Losing attack,
and proved that our system is secure against each at-
tack. Moreover, we showed that our scheme is general
and directly applicable to almost all of existing online
games including simulation games, fighting games, and
MMORPG.

1 Introduction

Recently, a P2P (peer-to-peer) online game, which is a game
that players communicate each other over P2P network and
play online game, has attracted a great deal of public atten-
tion. The maintenance and organization cost is reduced by
the absence of the central server. Since there is no server
to calculate and maintain the state of a game, all calcula-
tion is done in parallel on each player’s computer by using
the distributed computation technique. Any group of peo-
ple can start playing a game anytime as there’s no need to
set up and maintain a dedicated server. A P2P online game
has potential to become an ideal game platform in the near
future.

One thing that has to be kept in mind is that not all the
players are honest. Some malicious players try tocheatthe
game in various ways to win the game easily. They can
crack the game software and alter the behavior of the game
software to make it easy for them to win the game. This
is a serious problem in online games. A large number of
people can be affected by this, unlike offline games where
only local participants are affected. The effect is not lim-
ited to virtual world only because sometimes items in game
worlds are traded by players in real world with real money.

At present, the most general way to prevent cheating is to
watch the behavior of all players and find out which one is
cheating. This is often done by watching the connection to
the server. However it is not possible to apply this scheme to
P2P online game because the server does not exist. A player
can not know which player is honest and which player is not.

The lack of the server allows malicious players to cheat
in another ways. The attacks likeChange-The-Input-After-
Communication attack, Forge-The-Result attackand Be-
Offline-When-Losing attackbecome possible. The detail of
these attack will be explained later.

In this paper, we present a protocol to make it possible to
detect a cheating on P2P online games. The protocol further
allows you to prove a session is played corretly when more
than half players are honest. Our scheme is based on public
key cryptography and we use digital signature to prove a
game is played correctly.

Our protocol has strong relation to other cryptographic
schemes, especially to fair coin flipping, mental poker,
multi-party computation, and fair exchange. However, our
protocol differs from those schemes in the configuration and
the goal. This will be discussed later at section 3.

This paper is organized as follows. First, we define our
security model in section 2. Then, we introduce related
works and compare them to our security model in section
3. The section 4 explains cryptographic tools used in our
scheme. Our scheme is described in section 5. We discuss
the security of our scheme in section 6. Finally, we conclude
in section 7.

2 Security Model

In this section, we describe the setting of the game, define
what an adversary can do, and define what the security is.

We consider that these definitions are proper to the cur-
rent P2P online game.

2.1 Settings

game session The game can be separated into small ses-
sions. we call itgame session

number of players On a P2P online game, not all players
participate in one game session. The game such as fighting
game is usually playable for only 2 players for one session,
so we define as follows.
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Definition 1 : (m,n)-P2P online gameThe P2P online
game whichm players participate in one game session, and
the number of players who consist the P2P network isn, is
called (m,n)-P2P online game.

The fighting game is usually(2,n)-P2P online game.

input and the output Firstly, we define theoutputof the
game software as follows.

Definition 2 : Output Data The output data which is
needed to play next game session.

Informally so-called Savedata or Highscore is theoutput.
Then, we do not call the display status, or other output of
the software asoutput. Note that theoutput of one game
session is different for each player and each player holds
their ownoutput.

Next, we define theinput. Usually the input of the game
software is the input from the device such as mouse, key-
board and joypad . In this paper we define theinput as fol-
lows.

Definition 3 : Output O For outputO, the data which is
needed to outputO is called input.

This means that not only the input from the mouse, key-
board and joypad but also the random seed, previous output,
communication from other players, current time and so on,
is theinput.

2.2 Adversary Model

The attacks which an adversary will do is as follows. Our
scheme can cope with these attacks.

Attack 1 : Crack-The-Game-Software attackThe at-
tacker cracks the software and alter the behavior of
the software. Altering theoutputof the software or
communication data of the software is classified to
this attack. Getting huge amount of money by using
cheat codes is a kind of this attack.

Attack 2 : Change-The-Input-After-Communication attack
Watch the communication from other player and
after that he decide the input to the game software so
that attacker can win the game. This is done because
the communication is not fair but the communication
of the game have to be done simultaneously.

Attack 3 : Forge-The-Result attackThe attacker broad-
casts theoutput to the all players as if he won the
game. This can also be done by acting as if he is the
another player.

Attack 4 : Be-Offline-When-Losing attackThe attacker
becomes offline when he is losing, he tries to act like
the game session did not happen. In the real world,
this must be treated as a give-up. Also malicious
player can claim that the opponent gave up, even if
the opponent is not yet given up.

These attacks includes almost all the attacks which is so-
called “Cheating”. Preventing from these cheats is enough
for general online games.

2.3 Definition of Security

We define that our system is secure for cheating when fol-
lowing condition holds.

Definition 4 : Secure SystemThat the system is se-
cure is anyone without the software creator is not pos-
sible to success any four attacks: Crack-The-Game-
Software attack, Change-The-Input-After-Communication
attack, Forge-The-Result attack, and, Be-Offline-When-
Losing attack.

2.4 Examples

We show that the adversary model defined in subsection 2.2
is reasonable. We introduce two examples, chess and Rock-
Paper-And-Scissors, and show how to cheat these games.
Then we show that those cheats are classificated to the at-
tacks define in subsection 2.2. Note thatAttack 1 is a very
strong attack, and can be done not only to P2P online game
but can be done to offline game. TheAttack 3 can be done
to any game that saves the result of the game to their com-
puter, so we do not describe theAttack 3. Also, theAttack
4 can be done to any game which becoming offline during
the game means give-up, so we do not describe theAttack
4.

2.4.1 Example : chess

When playing chess on P2P network game, the example of
Attack 1 is as follows

• Add the time left for player.

• Move the piece on anywhere on the board.

• Add any piece on the board.

In chess, player can know whether the opponent is cheating
or not because all the data of chess is open to each player, so
he can claim that the opponent is cheating, but the cheater
can claim that the opponent is cheating too. Therefore, the
player have to prove which player is playing to others. In
our scheme, even if the player cannot know whether the op-
ponent is cheating or not, the player cannot cheat.

TheAttack 2 cannot be done in chess because the move
of the chess is not done simultaneously.

2.4.2 Example : Rock-Paper-And-Scissors

When playing Rock-Paper-And-Scissors on P2P network
game, the example ofAttack 1 is as follows

• Make hand that can win to any hand, like joker in the
card game.
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TheAttack 2 can be done in Rock-Paper-And-Scissors .
Sending the hand to each player have to be done simultane-
ously because cheater can change the hand into the stronger
one after getting the opponent’s hand.

3 Related Works

In this section, we introduce the related works. These
schemes are popular in cryptography and well studied. The
settings of these schemes are similar to our setting, and have
a strong relationship to our work. We will explain what dif-
ferent parts between previous scheme and our scheme.

3.1 Multi-Party Computation

Let f denote a givenn-ary function, and suppose partiesP1,
... , Pn each hold an input valuex1, ... , xn, respectively.
A secure multiparty computation forf is a joint protocol
between partiesP1, ... ,Pn for computingy = f(x1, ..., xn)
securely. That is, even when a certain fraction of the parties
is corrupted, (i) each party obtains the correct output value
y and (ii) no information leaks on the input values of the
honest parties beyond what is implied logically by the value
of y and the values of the inputs of the corrupted parties.

There are various applications for some situations such
as multi-party computation, electronic voting, fair coin
flipping[Blum82], mental poker[SRA81][Crepeau87].

Secure two party computation was first investigated by
Yao[Yao82][Yao86] and was later generalized to multi-
party computation. The seminal paper by Goldreich et
al.[GMW87] proves the existence of a secure solution for
any functionality.

The difference to our situation One difference between
Multi-Party Computation and our situation is that we do not
have to make the input secret. When playing poker, know-
ing the input of other player after the game might be useful
because he can know the strategy of other players, and that
information is valuable. On the other hand, for general on-
line game, knowing the strategy of other players might be
not so useful.

One reason is that the software is not perfectly one-
way. It means that watching the communication from other
player, they can guess the input. Consider fighting game,
they can see what other player is doing, and can guess the
input.

Other informations about input is kept secret but know-
ing it after the game does not matter. Another reason is that
the game which strategy is very important, usually the in-
put is open to public. Consider chess, the game of famous
player is open to public, but they can win even their strategy
is known. What we need is a scheme that the players can
not change the input after the communication, or game.

We can easily understand that, making a scheme that
all player can hide their inputs to others is useful, but our
scheme can not do this. Another difference between Multi-
Party Computation and our situation is that the output is not
same for each players.

3.2 Fair Exchange

The setting of fair exchange is as follows. Suppose that
Alice buys a book ( we call thisb ) from Bob. Alice has
to pay the price for the book (we call thisa ) to Bob. If
Alice sendsa to Bob first and Bob is dishonest, then Bob
would not sendb to Alice, so Alice loses. If Bob sendsb
first and Alice is dishonest, then Alice would not senda to
Bob, so Bob loses. To trivial solution to this problem is
using TTP. First, Alice sendsa to TTP, and Bob sendsb to
TTP. Then TTP sendsb to Alice, and TTP sendsa to Bob.
Micali[Micali03] proposed a scheme such that TTP is used
only when either player cheated. Formal security model of
fair exchange is as follows.

Definition of security The outcome of the fair exchange
must be either of the following.

• Alice gets “b” and Bob gets “a”

• Alice gets nothing and Bob gets nothing

The difference to our situation Suppose that Bob is dis-
honest and did not sendb to Alice even after gettinga. Even
though Bob is dishonest, gettingb has no meaning to Alice,
because not sendingb means that Bob gives up and Alice
wins. Alice only have to claim to other players that Bob
gave up. So our scheme do not need TTP. What we need is
that Alice to “prove” to other player that Bob gave up.

4 Preliminaries

In this section, we explain the cryptographic tools that we
use in our scheme. These tools are well implemented and
distributed in many platforms.

4.1 Hash Function

Hash function is a function that makes a message digest.
Usually Hash functionH() takes an arbitrary length of
string as an input and outputs constant length string (such
as 128 bit). Security requirements for hash functionH()
are follows.

One-waynessGiven a messageX, it is should be “hard” to
find a messageM satisfying X = H(M).

Collision resistance It should be “hard” to find two mes-
sagesM1 6= M2 such thatH(M1) = H(M2).

SHA-1[RFC3174] and MD5[RFC1321] are well known and
widely used hash algorithm. these algorithm are very fast
and the security is well considered. However, the collision
was found in MD5[WFLY04] so our recommend of hash
function is SHA-1.

4.2 Digital Signature

Firstly, we explain about public key cryptography. Consider
Alice and Bob. Bob wants Alice to be able to send secure
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secret messages to him. To permit this, Bob generates a key
pair consisting of two related “keys”. One key is called the
public key, and the other, the secret or private key. In the
most useful of these algorithms, it is impractical, even for a
well-founded organization, to compute the private key from
the public key (this is the private key / public key property).
Bob keeps his private key secret, and publishes his public
key.

Alice retrieves Bob’s public key and, using it to control
the appropriate encryption algorithm, scrambles or encrypts
the message. For quality algorithms (at least in the belief
of those well-informed on the subject), once encrypted us-
ing Bob’s public key, the ciphertext cannot be descrambled
or decrypted without the private key. Thus, no one who in-
tercepts the ciphertext will be able to read it, even knowing
Bob’s public key. When Bob receives the message, he de-
crypts it using his private key (kept secret since generation
time and so known only to him). Therefore, the message
will be secure against the unauthorized, and Bob and Alice
do not need a “secure channel” to exchange a shared key.

Next we explain about digital signature. Bob wants to
send a message to Alice and wants to be able to prove it
came from him (but does not care whether anybody else
reads it). In this case, Bob sends a cleartext copy of the
message to Alice, along with a copy of the message en-
crypted with his private key (not the public one). Alice (or
any other recipient) can then check whether the message re-
ally came from Bob by decrypting the ciphertext version of
the message with Bob’s public key and comparing it with
the cleartext version. If they match, the message was really
from Bob, because the private key was needed to create the
signature and no one but Bob has it. The ciphertext version
is Bob’s digital signature for the message because anyone
can use Bob’s public key to verify that Bob created it.

More usually, Bob applies a cryptographic hash function
to the message and encrypts the resulting message digest us-
ing his private key. This makes the signature much shorter
and thus saves both time (since hashing is generally much
faster than public-key encryption), and space (since even an
enciphered message digest is much shorter than the cipher-
text version of the entire plaintext).

In this paper, what we call “signature” is using a hash
function to digest the message. Note that the player cannot
get any information of message from the signature, because
of the onewayness of the hash function.

The practical signature scheme is presented in
[BR96][Schnorr91]

4.3 Commitment Scheme

A commitment scheme is a cryptographic protocol between
two parties, a sender and a receiver. The protocol consists
of two-phases.

Commit Phase A sender sends commitment of message
M to a receiver.

Opening PhaseA sender sends messageM to a receiver.

The security requirements for Commitment scheme is as
follows.

Concealing A receiver cannot get any information ofM
from the commitment ofM .

Binding A sender cannot change the messageM after the
Commit Phase.

We will introduce an example. Alice wants to commit
a messageM to Bob. At the commit phase, Alice sends
her signatureSignSKA

(M) to Bob as a commitment. Bob
cannot know what the message is because he only has the
signature of the message so it is concealing. At the unveil
phase Alice sends the messageM to Bob. If Alice sends
message different fromM , Bob can know that by verifying
the signature. so it is binding. We use this scheme as a com-
mitment scheme. Also, this is not a perfect bit commitment
because the security of the scheme relies on the oneway-
ness of the signature scheme. Other commitment scheme is
shown in [Blum82]

4.4 Notation

We notate as follows.

a|b : concatenation ofa andb
P1, P2, ... ,Pi, ... ,Pn : the players with player IDi
SKP1 , SKP2 , ... ,SKPn

: the secret key for the each player
Signi(M) : the signature of the messageM using the secret
key ofPi

inputi : input of Pi

outputi : outputof Pi

5 Our Scheme

In this section we describe our scheme and show that this
scheme is tolerant to attacks defined in section 2. Our
scheme usesGame Simulatorto cope with Attack 1 and At-
tack 3, and usefair communicationto cope with Attack 2.

5.1 Game Simulator

First we define aGame Simulator. Game Simulatoris de-
fined as follows.

Definition 5 : Game Simulator The Game Simulator is a
software which outputs the same output as original game
software for any input, and also outputs the communication
data.

Game Simulatoris used to check whether the input-output
behavior is as same as original game software. If the input-
output behavior does not match withGame Simulatorthen
the some kind of cheat was done.

Claim 1 : The Game Simulator works much faster than the
original game software

Reason :This is because the simulator can skip the process

303 CIG'05 (4-6 April 2005)



of waiting the player’s input, and also displaying the game
to the display. Usually these processes are bottleneck of the
software and almost all the execution time of the software
is exhausted by this process.

Although the implementation of thisGame Simulatoris
not easy, this will be a very useful tool against cheating. The
general and easy way to implement thisGame Simulatoris
an open problem.

5.2 Fair Communication

We definefair communicationas follows.

Definition 6 : Fair Communication The communication
which both players commits their message before communi-
cation, we call this fair communication.

Actually when Pi wants to senddatai to Pj , and Pj

wants to senddataj to Pi in a fair communication, Pi first
sendsSigni(datai) to Pj as a commitment, andPj sends
Signj(dataj) to Pi as a commitment.

Claim 2 : Consider whenPi wants to senddatai to Pj , and
Pj wants to senddataj to Pi, and the order of the com-
munication is not decided in the game rule. If altering the
dataj after knowingdatai can make advantage toPj , and
altering thedatai after knowingdataj can make advantage
to Pi, then that communication must be fair communication

Note that not all the communication must be fair. One rea-
son is because the communication data is not always useful
datas to play game for others. Which communication must
be fair and which do not have to be fair is decided by the
people who implements the software. To do this decision
automatically is an open problem.

5.3 Protocol Details

The protocol of our scheme for (m,n)-P2P online game is as
follows. Each game session consists of one or more num-
bers of communication phases. Note that Phase 0-1 and 0-2
is not done on the first game session.

Phase 0-1All players who join the game session sends pre-
vious outputand all the signature acquired at Phase
10 to all the other players who are joining to the game
session.

Phase 0-2All players who join the game session verifies
the signature which was send by other players, and if
the number of the correct signature is more thann/2
then the output sent from other player is a “output
with no cheat”. If verif

Phase 1All players share same random session IDSID.

Phase 2Suppose thatPi wants to send communication
datadatak to Pj . This is the beginning of the com-
munication phasek.

Phase 3Pi chooses random numberRk, and sendssik =
Signi(SID|Rk|i|j|datak) to Pj , sik is the commit-
ment ofdatak.

Phase 4Pj sendssjik = Signj(sik) to Pi , Pi verifies the
signature.sjik is the proof thatPj received thesik.

Phase 5 If this communication phase must be afair com-
munication, then Pi waits until he getssjk′ =
Signj(SID|Rk′ |j|i|datak′) from Pj , and Pi sends
sijk′ = Signi(sjk′) to Pj

Phase 6Pi sendsdatak andRk to Pj .

Phase 7 If this communication phase must be afair com-
munication, thenPi getsdatak′ andRk′ from Pj , so
Pi can check whethersjk′ is a valid signature.

Phase 8 Incrementk, Repeat Phase 2 till Phase 7 in parallel
for each players until all the communication ends.

Phase 9Each player sendsSID, all the signature he re-
ceived and sent, all theR,i,j andinputi, to all players
including the players those who are not joining to this
game session.

Phase 10Pm verifies the signature he received, run the
Game Simulatorwith the inputi and get the output
outputi and communication data. If the communica-
tion data is right, he sendssm = Signm(outputi) to
Pi.

Note thatinputi implies alldatak, so it is possible to verify
the signature at Phase 10.
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Table 1: Protocol Detail

Phase Pi Pj The other players(Pm)

0-1 -output′i , Sign∗(output′i)
0-2 ¾output′j , Sign∗(output′j)

· · · · · · · · ·
3 Unfair

Communication
Phase

-sik1 = Signi(SID|Rk1 |i|j|datak1)

4 ¾ sjik1 = Signj(sik1)

6 -datak1 , Rk1

· · · · · · · · ·
3 Unfair

Communication
Phase

-sik2 = Signi(SID|Rk2 |i|j|datak2)

4 ¾ sjik2 = Signj(sik2)

6 -datak2 , Rk2

· · · · · · · · ·
3

Fair
Communication
Phase

-sik3

5 ¾ sjk4

4 -sijk4

5 ¾ sjik3

6 -datak3 , Rk3

7 ¾ datak4 , Rk4

· · · · · · · · ·
9 -i, j , inputi, SID, sik∗ , sjk∗ , sjik∗ , sijk∗ , Rk∗ Rungame simulatorwith

10 ¾ Signm(outputi) inputi, and getoutputi

9 -i, j , inputi , SID , s∗, Rk∗ Rungame simulatorwith

10 ¾ Signj(outputi) inputi and getoutputi

9 -j, i , inputj , SID , s∗, Rk∗ Rungame simulatorwith

10 ¾ Signm(outputj) inputj , and getoutputj

9 Rungame simulatorwith ¾j, i , inputj , SID , s∗, Rk∗

10 inputj and getoutputj -Signi(outputj)

∗ is a wildcard character, and it means send all the datas that matches to it. (example.Rk∗ : sendRk1 , Rk2 , ... ,Rkn
)
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5.4 Protocol Analysis

Tolerance to Attack 1 Because all the player have the
Game Simulator, even the attacker changes the behavior
of the game software, he cannot change theoutput of the
Game Simulator, and if attacker alters the communication
data they can detect it. Even if the communication data
is the original one,while the cheater alters theoutputi to
output′i, the signature he can get is signature foroutputi,
so he cannot use theoutput′i in the Phase 0-1 of next game
session. Thus, the Attack 1 does not succeed.

Tolerance to Attack 2 Because usingfair communica-
tion, Attack 2 does not succeed. In detail, after sending the
communication datadatak in Phase 4, the player cannot
change the communication data afterwards. If the player
cheats and send different data such asdata′k in Phase 6,
verifying thesik fails.

Tolerance to Attack 3 The Attack 3 is to cheat Phase 9,
Phase 10. However, becausePi can forgesik but can not
forge sjik, the attack does not succeed. For explanation,
assume that there is nosjik. With the lack of the signature,
if the playerPi wants to cheat, playerPi can make different
communication datadata′k and sign it with his secret key
and make news′ik. This is a valid sinagure, so it passes the
check in Phase 10 and get the signature ofoutput′ which
is different from the originaloutputi. On the other hand, if
we usesjik, the player cannot alterdatak, that is because
thePi does not know the secret key ofPj , he cannot create
valid sjik.

Tolerance to Attack 4 When Attack 4 occurs, because of
the existence ofsjik, Pi can prove that he really sentdatak

to Pj andPj received it. Therefore, the player can prove all
the conduct of the communication. The other players can
know the progress of the game, and decide theoutput and
sign it. Let us consider RPG. All the conduct of the com-
munication is signed, so the other players can know the item
player got, the place where he gone, and so on. Therefore
they can ”sign to the result” even if the game is not yet done.
Without the signature, the other players have to discard the
result because of the possibility of the cheat.

6 Discussion

The penalty of the cheat What shall player be done when
he cheats? We do not present the answer for this because
this depends on the type of the game. For fighting game, the
penalty might be that cheater loses once. Note that the At-
tack 4 might occur accidentally for reason like traffic trou-
ble, so the penalty must not be so heavy.

How to improve the efficiency If we only have to cope
with Attack 1, Attack 2andAttack 3, we do not have to sign
each communication data separately , except the communi-
cation data which is used in fair communication. Thus, we
can concatenate those communication data, and sign it. The

signature will not be sent every communication phase, but
several times each communication phase. However, note
that doing this weakens the tolerance toAttack 4because
doing this, it makes player impossible to prove the occur-
rence of all the communication when the opponent player
goes offline. However, the player can prove the occurrence
of the communication that is done before the last signature
has been send, so concatinating the communication data that
will be send in some period ( about 1sec or so) , and signing
it whold be practical.

How to Authenticate the keys Consider the situation that
Alice got a Bob’s public key of from Bob himself. Is this
really the public key of Bob? Someone might be acting as
Bob. We have to make sure that the public key is Bob’s.
This is called authentication of public key. If TTP such as
PKI’s certification authority[PKI] is available, the solution
is easy. TTP creates all the public key and secret key pair
and send it to players. If player wants to authenticate the
public key, he just asks TTP who is the owner of the public
key. However, our scheme is on P2P network, so we can
not rely on TTP. All the pair of public key and private key
is created by each players. One solution for this problem
is that using the authentication scheme that is used by PGP.
All the player evaluate the other players and set the level of
trust. This is called “web of trust”.

Discard-the-Result attack Although player cannot alter
his output, but he can discard it. If he “lose” or some bad
thing has happened at the game session, he can discard that
outputand use previousoutput instead. How can we deal
with this problem? One answer is that every player shares
the hash value of the other player’soutput.

Bot attack In this paper, we did not consider ofbot attack,
this attack is to use software such that plays game automat-
ically. Some times this software is called macro. To pre-
vent this, we have to decide whether human or the computer
is playing the game. Using CAPTCHA[ABL02] might be
useful to cope with this attack. CAPTCHA is a scheme to
separate the human and the computer, using an problem that
hard to solve for computer. However, when using CAPTHA
in the game, we have to take care not to bother the play.

7 Conclusions

We suggested a new solution to detect cheating on P2P on-
line game. The protocol is suitable for popular P2P online
games, such as fighting and RPG games. Our scheme uses
digital signature as a commitment scheme. With the com-
mitment scheme, you can verify a game is played fairly.
The Game Simulatoris used to check nobody cheated in
a game. Implementing genericGame Simulatorand decid-
ing which communication must befair communicationis an
open problem and is a future work.
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