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Abstract. Off-the-shelf home automation technology is making it easier than

ever for people to convert their own homes into “smart homes”. However, manual

configuration is tedious and error-prone. In this paper, we present a system that

automatically generates a map of the home and the devices within it. It requires

no specialized deployment tools, 3D scanners, or localization hardware, and in-

fers the floor plan directly from the smart home sensors themselves, e.g. light

and motion sensors. The system can be used to automatically configure home au-

tomation systems or to automatically produce an intuitive map-like interface for

visualizing sensor data and interacting with controllers. We call this system Smart

Blueprints because it is automatically customized to the unique configuration of

each home. We evaluate this system by deploying in four different houses. Our

results indicate that, for three out of the four home deployments, our system can

automatically narrow the layout down to 2-4 candidates per home using only one

week of collected data.

1 Introduction

Commercial off-the-shelf home automation devices are becoming smaller, more reli-

able, and less expensive. Furthermore, low-power wireless technology allows these de-

vices to be surface-mounted, which obviates the need for home re-wiring and dramati-

cally reduces installation costs. However, creating a do-it-yourself smart home involves

much more than just installing hardware; the application software must also be config-

ured with the physical context of each device, including its location within the home

and its spatial relationship to other devices. For example, a lighting automation system

must know which lights and motion sensors are in the same room in order to turn the

lights on when the room is occupied. Home automation devices today, however, are un-

aware of their context within the home. For example, Figure 1(a) shows a typical home

automation tool: it automatically detects all devices in the home network and displays

them to the user as a list. The user must note the serial number on each sensor and

mentally map each physical device to its virtual representation in software. Then, the

physical relationship between devices must be encoded in software as abstract logical

rules, e.g. “Lights #19 and #28 should be controlled by light sensor #5 and motion

sensor #15. This manual configuration process is tedious and error-prone.

In this paper, we present an approach to automatically infer the spatial layout of

smart home deployments, including (i) the floor plan of the house and (ii) the location
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(a) HomeSeer (b) Smart Blueprints

Fig. 1: A conventional user interface for home automation software shows all available

devices in a list, while Smart Blueprints automatically infer the home’s floor plan and

shows the sensors in their physical context.

of the devices within that floor plan. Our approach requires no specialized deployment

tools, 3D scanners, or localization hardware; the floor plan is inferred from the smart

home sensors themselves, e.g. light and motion sensors. A homeowner can simply snap

sensors into place, and the sensors can provide useful functionality with little or no ad-

ditional configuration effort. For example, home automation systems can automatically

configure space heaters to respond to the temperature and motion sensors found to be

in the same room. The system can also produce an intuitive map-like interface for vi-

sualizing sensor data or interacting with controllers. Figure 1(b) shows an example of

this interface, which is more intuitive than the conventional list-based interface in Fig-

ure 1(a). We call this system a Smart Blueprint because it is automatically customized

to the unique layout of each home and that home’s devices.

As a case study, this paper considers the sensors that are required for a home energy

management system: light sensors on windows, temperature sensors throughout the

house, and motion sensors in each room. Armed with only these sensors, the Smart

Blueprint system uses a three-step process to infer the floor plan and sensor locations.

(1) First, it analyzes sensor data to infer how many rooms are in the house and which

devices are in each room, using the insight that motion sensors in the same room tend

to be triggered at similar times due to occupant movement. (2) Once the rooms are

identified, the system analyzes motion sensor data to infer which rooms are adjacent,

and it analyzes light patterns to decide which side of house the windows in the room

are more likely to be on, e.g. East or West. This analysis constrains the location of each

room with respect to the other rooms. (3) Finally, the system pieces the rooms together

like a puzzle to find the floor plan that best explains the sensor data. If multiple floor
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plans explain the data equally well, the system asks the user to choose between a small

number of alternatives.

The sensor data alone is not sufficient to fully constrain the floor plan and sensor

layout, so we pair the devices in strategic ways to create additional constraints. First, we

deploy motion sensors in pairs by packaging them into a single physical enclosure that

snaps in place behind the door jamb of a doorway with the sensors facing in opposite

directions, thereby creating a new constraint that the two sensors must be in different

rooms. This constraint helps to separate clusters of sensors that show overlapping activ-

ity patterns, such as motion sensors with visibility into neighboring rooms, or sensors

in different rooms that are often used at the same time by different people. Next, we

pair light sensors with motion sensors so that the light sensors can be associated with

a particular room, based on activity patterns. Finally, motion sensors in doorways are

paired with magnetometers in order to infer the doorway’s cardinal direction.

Our basic approach is to infer constraints on spatial layout based on patterns in the

sensor data, strategically using sensor pairing and supplemental sensors as necessary

to fully constrain the floor plan and sensor layout. Smart Blueprints do not require any

specific set of sensors to operate and the sensors described in this paper are only an ex-

ample; the general approach that can be applied to any smart home or home automation

system. For example, many devices such as wireless light switches and electronic appli-

ances will also have usage patterns that correlate with occupant movement and activity.

Furthermore, any device can be paired with a motion sensor to constrain its room loca-

tion, a magnetometer to constrain its orientation, or a light sensor to constrain its side

of the house. Additional constraints are also possible by pairing with other sensors, or

applying other signal processing algorithms. Pairing sensors to create new constraints

adds only marginal hardware cost and, as more constraints are added, the floor plan and

sensor layout become easier to infer.

To evaluate this approach, we deployed Smart Blueprints in four houses for 1-3

months each. For three of the houses, the system narrows the system layout down to

2-4 candidates after processing only one week of data. Most users should be able to

select their own floor plan out of only 2-4 choices. On the fourth house, however, the

system did not identify the correct topology because the house had multiple floors and

a very modern, open floor plan. We discuss these and other limitations of our system, as

well as future techniques to improve it. We also present the performance of our system

using simulated data based on 15 additional floor plans that were downloaded from

architecture sites on the Internet. Aside from the Smart Blueprints system itself, the

contributions of this work include insights into the computational structure of homes

and how sensors can be used to generate and infer topological constraints.

2 Background and Related Work

Many existing technologies can automatically map out the floor plan of a building or

localize devices in a building, but to our knowledge the Smart Blueprints system is the

first to do both simultaneously without the need for user intervention or specialized

deployment tools. For example, optical [1], laser, acoustic, and RF [2] sensors have all

been used to find the boundaries of a room, and can be combined with mobile robots [3]
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or a mobile human [4] to create a complete map of a building. Approximate floor plans

can also be generated by tracking personnel movement with in-building tracking sys-

tems [5]. However, Smart Blueprints are easier to use because no specialized tools,

robots, or in-building tracking systems are required. Furthermore, the notion of using

an installation tool or process does not always apply to do-it-yourself deployments that

may occur piecemeal over the course of many months or years, as the homeowner adds

new functionality. In contrast, the Smart Blueprints system can automatically assimilate

new devices into the existing map at any time, with no additional overhead.

An installer could manually configure a smart home deployment using a graphical

interface to quickly draw the house floor plan and locate the sensors within that plan.

Several such tools already exist that offer visual drag-and-drop interfaces, and some

are even designed for cell phone usage to facilitate on-site sketches1. However, this ap-

proach is no less tedious or error-prone than manually configuring a conventional list of

devices: users must still manually create a mapping between the physical world and its

virtual representation. Similarly, users could provide basic information about the home

such as the number of rooms or the directions of the walls, as initialization information

for a Smart Blueprint. We do not preclude this possibility and believe that it will in fact

improve results, but it will also introduce new challenges about the confidence of user-

supplied information. For example, does a foyer, stairway landing, or hallway count as

a room? How many rooms is a great room (a living room, dining room, and kitchen that

are not separated by walls)? Similar types of ambiguity exist for the number of floors

and the direction of windows or walls. We informally asked several people to indicate

how many rooms and floors are in our evaluation homes and received different answers

from each. In this paper, we aim to demonstrate that the Smart Blueprints approach is

possible even in the absence of any user input.

Smart homes have been an active area of research for several decades, typically

involving long-term and highly-engineered sensor installations [6,7]. In contrast, the

goal of our work is not to enable new smart home applications, but to facilitate the de-

ployment process for do-it-yourself installations. Several prior projects have addressed

configuration challenges for home and building automation systems, but focus on in-

teroperability [8,9], automatic service discovery [10], or the use of modularity [11] and

ontologies for seamless integration [12]. All of these solutions are necessary for a zero-

configuration smart home system. In this paper, we focus on a different aspect of the

configuration issue: identifying the physical context of devices.

A large body of literature has developed formalisms to specify a building floor

plans as a constraint satisfaction problem (CSP) so that an architect can review all

possible floor plans that satisfy certain physical constraints (e.g. types of rooms, mini-

mum/maximum size, etc.) [13]. The Smart Blueprints system also uses constraints and

search algorithms, but generally has much more specific constraints (e.g. doorway #3

has a north-to-south orientation) because it has a different goal: to find a small number

of constraints that uniquely specify a single floor plan. Our contribution is not the ability

to specify or search through floor plans, but the ability to automatically infer constraints

on those floor plans from sensor data.

1 http://www.floorplanner.com/; http://www.smartdraw.com/

http://www.floorplanner.com/
http://www.smartdraw.com/
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(a) Doorway Sensor (b) Light Sensor

Fig. 2:We packaged multiple sensors together to detect structural relationships between

data streams, thereby constraining the floor plan.

3 A Case Study: Home Energy Management

The Smart Blueprints system presented in this paper is part of a broader project that

aims to reduce the two largest energy consumers in the home: 1) lighting, and 2) heating

and cooling. The system performs two types of controls. First, it uses a zoned residen-

tial heating and cooling system to control the temperature in each room individually,

based on activity detected by motion sensors: when the room is occupied, it is heated

or cooled to a comfortable setpoint temperature and, when it is not occupied, the tem-

perature is allowed to float to a more energy-efficient setback temperature. Second, the

system uses controllable windows shades to adjust the amount of light and heat admit-

ted into the room. This control component builds on the previous work of the authors

in daylight harvesting technology [14], and uses both light and motion sensors: when

a room is occupied, the system prioritizes indoor lighting comfort and, when it is not

occupied, the system prioritizes solar gain through the window to optimize heating and

cooling efficiencies. In order to execute these two control strategies, the system needs

at least three types of sensors: a motion sensor in each room, a light sensor on every

controllable window, and a temperature sensor in each room. We demonstrate how the

Smart Blueprints approach can be applied to this home energy management system by

modifying the design and deployment of these sensors. However, the general approach

can be applied to other home sensing systems as well.

4 Designing Sensors to Infer Context

The first implementation of our zoning and daylight harvesting systems used conven-

tional motion, temperature, and light sensors that were manually configured with room

location and other contextual information. In this paper, however, we take a novel two-

pronged approach to sensor design that enables contextual information about a sensor to

be inferred. First, we always pair multiple sensors together in the same physical enclo-

sure. In this way, the values measured by one sensor serve as contextual information for

the others, and vice versa. The pairings define a fixed spatial relationship between what

would otherwise be independent data streams. By considering all of these relationships
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Fig. 3: Two paired motion sensors were installed at each doorway, and a light/motion

pair were installed on each window.

at once, we can then piece together both the local context of each sensor and the greater

context of the entire system, i.e. the floor plan. Second, we designed our sensors to be

placed at only certain types of moldings and fixtures, specifically in doorways and on

windows. The sensors cannot be mounted on any flat surface the way a conventional

motion, light, or temperature sensor could be, which add additional constraints on the

locations of these sensors.

The doorway sensors are designed to snap in place behind the door jamb for easy

installation and architectural camouflage (Figure 2(a)). The device contains two mo-

tion sensors, one pointing into each of the neighboring rooms. This physical pairing of

motion sensors creates a relationship between the activities in every pair of adjacent

rooms. The same enclosure contains a door latch sensor to detect whether the door is

open or closed, as shown in the left of Figure 2(a) and can also contain temperature

and humidity sensors, and a magnetometer to measure the orientation of the doorway

with respect to magnetic north. In our pilot deployment, we built the doorway sensors

using Parallax passive infrared (PIR) motion sensors, a standard magnetic reed switch,

and the Synapse SNAPpy wireless microcontrollers. Further details about the deploy-

ment, power, and wireless properties of the doorway sensors can be found in another

paper [15]. Instead of building magnetometers into the enclosure, we used the compass

on a smartphone to measure the angle of each doorway.

The window sensors measure both light levels and solar gain caused by each win-

dow. The light sensors are placed on the window facing outside and measure the incom-

ing daylight on the vertical glass surface. In our system, we paired these light sensors

with motion sensors pointing back into the room. This pairing creates a defined relation-

ship between the light values and the activity in the room that contains that window. The

hardware costs only pennies for both light sensors and motion sensors, so this approach

should not add substantial financial burden. The pairing can be enforced by putting the

two sensors into a single plastic enclosure, although in our pilot deployment we sim-

ply deployed two sensors in tandem (Figure 2(b)). We used the X10 passive infrared
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(a) House A (b) House B (c) House C (d) House D

Fig. 4: To evaluate our system, we deployed in four homes with different floor plans.

House ID #Residents #Floors #Rooms #Doors #Windows Window Orientations #Months

A 3 1 8 8 12 4 3

B 2 1 7 7 5 2 2

C 2 2 9 15 23 4 1

D 3 1 7 7 4 2 1

Table 1: We deployed our system in four multi-person homes with a widely varying set

of windows, doors, rooms, and floors.

motion sensors and the U012-12 data loggers designed by Onset, which monitor the

environment with the built-in light, temperature, and humidity sensors.

We deployed these two types of sensors in four homes of various sizes, including

both single-story and multi-story houses, and the durations of the sensor deployments

vary from one to three months. We deployed one doorway sensor at the top of doorways

that cover all the inner doors, all the inner hallways and all the entryways to the home.

We deployed a window sensor on at least one window on each wall of every room. Two

homes were detached homes that had windows in all four directions, and two homes

were apartments or condominiums that had windows on only two walls. An example

of home deployment is shown in Figure 3. The people living in the homes included

students, professionals, and homemakers. Scaled diagrams of the actual house floor

plans are shown in Figure 4, and the deployment information about these homes is

summarized in Table 1.

5 Inferring Rooms and Adjacency

The first step to identify the home’s floor plan is to infer the number of rooms in the

house, and which rooms are adjacent. For this task, we use the insight that objects in the

same room are often used at similar times, and so the number of rooms can be inferred

based on the number of clusters of sensors that are temporally correlated. In our pilot

study, we use motion sensor data to infer the number of rooms: when people are in

a room, multiple sensors in the room should detect motion. This approach faces two

challenges. First, motion sensors have visibility through doorways and into multiple

rooms. In our deployments, some of the motion sensors could detect activity in up to



8

five rooms. Second, houses with multiple people often have simultaneous activity in

more than one room at a time. For these two reasons, the temporal correlation between

sensors is a weak indicator of room co-location. In fact, motion sensors in different

rooms often had higher correlation than sensors in the same rooms, particularly when

they both had high visibility into another highly-frequented room. In prior work, we

found that a simple clustering approach was sufficient to identify which devices were

in the same room, but this approach assumed only a single motion sensor per room, and

could not accurately determine the exact number of rooms [16]. In this paper, we need

the exact number of rooms, and we quickly found that a naive clustering approach did

not work for any of the four pilot deployments, particularly with more than one motion

sensor per room.

To address this problem, we leverage the motion sensor pairings on our doorway

sensors: any two motion sensors within the same enclosure are guaranteed to be mon-

itoring different rooms. This constraint allows us to ensure that sensor clusterings do

not cross room boundaries: any sensor clustering that does is eliminated from consid-

eration. The basic algorithm has five steps. (1) Identify all simultaneously firing sen-

sors: those sensors that fire within one second of each other. We call these firing sets

S = s1, s2, ..., sK , where K is the size of the firing set, and si : i < K are the sensors

in the set. (2) Eliminate any firing set S that contains two paired sensors: if S contains

two paired sensors, it might have been caused by multiple people in different parts of

the house, or a single person making a doorway crossing. By eliminating firing sets with

paired sensors, we increase the likelihood that it was caused by a single person who is

safely on the interior of a single room. (3) Calculate the frequency fS of all remaining

firing sets S. (4) Calculate a weight wS for each firing set S, defined as follows:

wS =
fS

∑K

k=1 fsk
×

fS

minK
k=1fsk

(1)

The frequency fS indicates the number of times that a set of sensors fire together.

However, this does not necessarily indicate the importance of the set, because some

rooms are used more often than others. The weight wS is designed to normalize the

frequency based on the upper bound on the number of times that this set of sensors

could possibly have fired together. This upper bound can have two cases. First, the

total number of times that any of the sensors fired:
∑K

k=1 fsk . Second, the number of

times that the least frequent sensor fired:minK
k=1fsk . We normalize fS by both of these

values to a create a weight wS that approximates the likelihood that the sensors in the

firing set are actually in the same room.

(5) The last step is to merge firing sets into clusters that represent rooms. To initial-

ize, a single cluster is defined as the firing set with the highest weight. We then process

the remaining firing sets in a greedy fashion sorted in descending order by weight. Each

firing set is merged with a cluster if and only if (a) the merge would not cause the cluster

to contain any paired sensors, and (b) the merge would not cause a loop among door-

ways, which implies any transitive closure of doorways would not contain any paired

sensors. Otherwise, the firing set is used to initiate a new cluster. When all firing sets

have been processed, the clusters represent individual rooms. Two rooms are defined to

be adjacent if the union of their clusters contains two paired sensors.
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Fig. 5: In homes A, B, and D, the system infers the correct number of rooms and the

adjacency of those rooms after collecting motion sensor data for 7-14 days.

We apply the technique on our four house deployments, and the percentage of cor-

rect room adjacency links detected over 21 days is shown in Figure 5 for Houses A,

B, and D. The results show that accuracy fluctuates during the first week but stabilizes

to the correct number of rooms and room adjacency once it obtains enough data. This

means that, for these houses, the system can provide the correct floor plan after a learn-

ing period of 1-2 weeks. The sensor clustering for these three houses is illustrated in

Figures 7(a), 7(g), and 7(m). Our current algorithm does not work for House C because

it has two floors, and the algorithm combines rooms from both floors into a single room.

We discuss ways to address this limitation as future work.

6 Inferring Structural Constraints

The number of rooms and their adjacency does not create a fully-specified floor plan,

and other structural constraints must also be measured or inferred through other means.

In our case study, the application needs a light sensor on every window to manage

lighting levels and solar gain. We use these sensors to infer the angle of the windows

with respect to true north, based on the patterns of sunlight that are detected throughout

the day. In previous work, we noted that light sensors clearly differentiate direct and

indirect sunlight, and that direct sunlight occurs at different times of day based on the

angle of a window. Therefore, the time of day of the maximum light reading can be

used to infer the angle of a window to within a few degrees, when exposed to direct

sunlight [17]. Figure 6(a) shows ideal cases in House A for light measurements on
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Fig. 6: Light sensors are needed to manage daylight harvesting and solar gain. We can

also infer the angle of orientation for each window using patterns in the sunlight data.

Our algorithm accurately inferred the angle of all twelve instrumented windows in

House A.

windows at different angles. In a home setting, however, the direct sunlight can be

consistently blocked by trees or neighboring houses, skewing the angle measurements.

We found this to skew some angle estimates enough that windows appeared to be on

the wrong wall.

In order to overcome this challenge, we use two new techniques. First, we do not

simply look at the maximum light reading. Instead, we calculate the expected curve for

all possible window orientations, and assign each window the orientation with which its

light readings have the highest correlation coefficient. This reduces the impact of partial

shade that causes short-term abnormalities in the daily light response curves. Second,

we assume that houses are built primarily with right angles, and so the windows point

in only four directions. We first use all windows to estimate the angle of orientation of

the entire house, and subtract this from the estimated window angles. Then, we cluster

the window orientations so as to minimize the difference between the cluster average

and the four cardinal directions.

We apply these techniques to light sensors deployed in House A, and the results are

shown in Figure 6(b). The naive technique described above (Max Daylight) produced

37.1 degrees of error on average, and did not clearly differentiate the SW and NW win-

dows. Using correlation coefficients (Daylight Corr) approach improved the absolute

error, but did not improve differentiation. Finally, our clustering approach (Least-error

Cluster) correctly assigned each window to the correct wall, by looking at all windows

in aggregate instead of each window individually.

These experiments analyze light sensors on windows, but similar approaches could

also be used on the interior of a room: the highest light levels in a room will often be

correlated with the side of the house that the room is on. Otherwise, devices in the home

can alternatively be equipped with magnetometers. Magnetometers are commonly used

as in cell phones, GPS receivers and vehicles to measure orientation with respect to

magnetic north. They are small, inexpensive, and low-power devices that can easily be
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integrated into a sensor package such as our doorway enclosure. In our pilot deploy-

ment, we used the magnetometer in an Android cell phone to measure the doorway

angle by holding the device up to the wooden doorway trim. This process caused some

noise in the angle measurements because the trim is not perfectly straight or the phone

is not exactly level. Table 2 lists the measurements of the doorways in House A, which

are accurate to within 10-15 degrees. We would expect the same causes of noise to

affect values measured by a magnetometer actually embedded into a surface mounted

enclosure.

7 Searching the Space of Floor Plans

The goal of our search algorithm is to generate a set of floor plans that are most consis-

tent with the structural constraints that were inferred from our sensors. The input to the

search algorithm is a number of rooms R, a R×R adjacency matrix that indicates the

adjacency of rooms, and the angle of orientation for doors and/or windows. The output

of the algorithm is a fully-specified topology with (x, y) coordinates for each room.

7.1 Defining the Search Space

Doorway Measured

Dining Room 322

Kitchen 230

Hallway 221

Bathroom 221

Bedroom 225

Mudroom 324

Nursery 327

Table 2: Clustering magne-

tometers reduces orienta-

tion error to within ∼ 10◦.

First, we define the search space. We illustrate each stage

of this search space using Figure 7. In this section, we

only discuss Houses A, B and D, where our system is ca-

pable of inferring the correct room adjacency. The root

of the search tree for each house is the adjacency matrix,

which is derived from the sensor clustering performed in a

previous step, as illustrated in Figures 7(c), 7(i), and 7(o).

The second level of the search tree is the set of all possi-

ble doorway assignments, each of which defines a differ-

ent set of directions for each doorway. Figures 7(d), 7(j),

and 7(p) show the correct doorway assignments for each

house. For every pair of adjacent rooms, there are four

possible orientations for each doorway (North, South,

East, and West). Thus, the total number of doorway as-

signments is 4D, whereD is the number of doorways. For

each doorway assignment, the search algorithm explores

all possible interior wall assignments. These assignments define whether any pair of

rooms is adjacent by an interior wall (but not a doorway). Figures 7(e), 7(k), and 7(q)

show the correct doorway assignments for each house. Any pair of two rooms that are

not connected by a doorway can possibly be adjacent through an interior wall, and the

total number of such room pairs is npairs =
R∗(R−1)

2 −D. Finally, given a set of door-

way wall assignments and interior wall assignments, we generate the size of each wall

by formulating a linear program that minimizes the length Li of each wall i subject to

the constraints that Li ≥ 1 and Li =
∑

j Lj : adjacent(Li, Lj). Once the wall sizes
are defined, the algorithm tiles the rooms together in sequential fashion to generate the

(x, y) coordinates for each room.
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(a) Deployment

(b) Clustering

(c) Room Adjacency

(d) Doorway

(e) Interior Wall

(f) Solution

(g) Deployment

(h) Clustering

(i) Room Adjacency

(j) Doorway

(k) Interior Wall

(l) Solution

(m) Deployment

(n) Clustering

(o) Room Adjacency

(p) Doorway

(q) Interior Wall

(r) Solution

Fig. 7: This figure shows each step of our algorithm (in each row) for all three houses:

(1) sensors are clustered together based on similar activity patterns (2) these clusters

are converted into rooms and adjacency between rooms (3) doorways are assigned to

specific walls (N,S,E,W) (4) interior walls for room pairs are defined to be adjacent (5)

spatial layout of the floor plan.
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7.2 Efficiently Searching the Space

The size of this search space is different for each house, but in general it is too large to

search exhaustively. The total number of possible topologies is 4D∗
{
∑npairs

i=1 4n ∗
(

npairs

i

)}

,

where D is the number of doorways, npairs is the number of room pairs that are con-

nected via interior walls, and the number of 4 indicates the four possible directions in

which two room can be connected. The maximum value of npairs is
R∗(R−1)

2 −D. The

second row in Table 3 titled total space size shows the total size of the search

space for each of the three houses discussed.

In order to more efficiently search this state space, we use three different pruning

techniques. First, if the window and/or door orientations are known, we do not explore

topologies that are inconsistent with these orientations. In other words, if a doorway is

known to be North-South oriented, we do not explore topologies that put the doorway

on an Eastern or Western wall of a room. Row 3 in Table 3 shows the size of the search

space after constraints on window and doorway orientations are applied. Doorway con-

straints reduce the search space by two orders of magnitude, window constraints reduce

it by five orders of magnitude, and applying both simultaneously reduces it by seven

orders of magnitude.

The second and third pruning techniques rely on a non-monotonically increasing

score function that we use to assign each node a value. This score function is discussed

in the next section. Based on this score function, we use traditional α−β pruning: once

a leaf node with a low score is found, the search algorithm no longer searches sub-trees

where the root of the sub-tree has a higher score. We also use the score function for

early termination: when exploring the bottom level of the tree, if the algorithm detects

that adding additional interior walls always increases the score of a node, it terminates

and backtracks. This pruning technique is based on the observation that the sub-tree

is already over constrained. Row 4 indicate that these pruning techniques reduce the

number of explored nodes by 7-15 orders of magnitude from the size of the entire

search space, dramatically improving search efficiency. Row 4 shows both the number

of doorway assignments explored and the number of interior wall assignments explored.

7.3 Choosing the Best Topologies

The pruning techniques described above reduce the number of explored nodes down to

the millions or billions. This is computationally tractable, but not acceptable in terms

of search accuracy. To be successful, we need to leverage the structural constraints to

choose the best out of millions or billions of alternative feasible topologies. To do this,

we start with two simple heuristics:

– Minimize the number of doors and neighboring rooms that share a wall with a

window.

– Minimize the number of corners of the building.

The first heuristic is based on the observation that most windows are on exterior

walls, and it is rare for a room to have a window and an interior door on the same

wall, or a window and another adjacent room on the same wall. The second heuristic

is based on the observation that most buildings are square, and all squares have four
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House A House B

Total Space Size 6.1 × 1023 4.9 × 1022

House Constraints
Doorways Windows

Windows
Doorways Windows

Windows

+Doorways +Doorways

4.8 × 1021 3.8 × 1017 2.9 × 1015 7.6 × 1020 8.2 × 1016 1.3 × 1015

#Doorway 128 420 7 64 1728 12

#Interior Wall 652,668,160 4,615,837,808 60,886,092 71,793,408 2,305,009,408 17,790,744

Constraints Conflicts 56,750,918 269,426 1,856 10,969,360 14,802,389 250,682

#Corners Rooms 4,740,246 13,700 49 1,148,492 733,174 12,090

Room Circles 938,212 4,148 18 74,168 35,562 2,517

Room Sizes 897,310 4,048 18 60,446 32,484 2,146

Overlapped Rooms 163,336 1,148 16 18,615 5,995 513

Room Adjacency 88 7 2 1,076 255 108

Duplicate Floor Plans 76 7 2 588 219 78

Duplicate Shapes 19 7 2 26 12 4

House D

4.9 × 1022

Doorways Windows
Windows

+Doorways

7.6 × 1020 8.2 × 1016 1.3 × 1015

64 3888 64

127,705,728 5,961,165,596 127,705,728

39,119,820 265,569,366 5,678,122

6,489,208 28,248,664 491,038

456,888 2,132,489 27,436

311,628 1,856,657 22,059

81,366 367,957 4,994

176 1,076 11

98 831 11

34 109 3

Table 3: The total size of the floor plan search space is very large (row 2). This space can

be reduced using structural information (row 3), cost-based pruning (row 4), score func-

tions (rows 5-6), and filter functions (rows7-12). Door and window orientation helps to

different degrees for each house.

corners. Some houses do have extensions, sheds, or other outcroppings, all of which

lead to additional corners. However, the number of corners is typically minimized for

cost, real estate efficiency, and heating/cooling efficiency. Therefore, the score of a floor

plan increases by one for each corner that it has beyond four. Rows 5 and 6 of Table 3

show that these two cost functions eliminate all but thousands or even tens of floor plan

candidates.

Of the remaining candidate floor plans, most can be eliminated because they are

self-inconsistent. These inconsistent floor plans are akin to Mobius strips or Escher

stairways: due to computational complexity, our search algorithm generates all possible

floor plans without checking global consistency properties, such as multi-room cycles

or 2D planarity. Rows 7-12 show the effect of a number of filters that we perform to

eliminate this type of floor plan.

– Room Cycles: filter floor plans in which two connected rooms are connected to the

opposite walls of a third room. This topology is not feasible in a 2D plane.

– Room Sizes: filter floor plans with for which room sizes cannot be solved by the

linear program, due to inconsistent room adjacency.
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(b) Accuracy of Downloaded Floor Plans

Fig. 8: Accuracy is the number of candidate floor plans chosen, which determines how

easy it is for a user to recognize their own house. (a) Houses A and B are helped more

by window orientation and House D by doorway orientation. (b) Most of the 15 topolo-

gies downloaded from the Internet have fewer than 10 candidates. All candidate pools

include the correct house topology.

– Overlapped Rooms: filter floor plans that have overlapping rooms. This topology is

not feasible in a 2D plane.

– Room Adjacency: filter cases where two rooms are physically adjacent, but the

interior wall assignment indicates that they are not adjacent.

– Duplicate Floor Plans: filter floor plans that are duplicates of others. These plans

are underspecified.

– Duplicate Shapes: filter floor plans where the size and location of rooms are iden-

tical to others, even if the identities of the rooms are different. Only a single shape

can be presented to the user, and the room identities can be expanded in a separate

step.

After these filters are applied, the remaining candidate floor plans are presented to

the user. The user can select the correct floor plan from this pool of candidates.

8 Evaluation

Figure 8(a) shows the number of candidate floor plans that are generated for each of

the three houses using a different set of structural constraints: door orientation, window

orientation, or both. All candidate pools contain the correct house topology. The com-

bination of doorway and window orientations has the smallest pool of candidates for

all the three houses: 2, 4, and 3, respectively. In Houses A and B, we observe that win-

dow orientation is more effective than doorway orientation. This matches our analysis

in Table 3, where window orientation shows more decrease in topology search space

than doorway orientation. However, House D has a different trend where window ori-

entation has the largest pool size, with 109 total candidate floor plans. The explanation

for this anomaly is that House D only has windows on two walls, as indicated in Ta-

ble 1. Thus, window orientation alone is not informative enough to filter the valid but
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Fig. 9: Our system does not yet capture floor plans with non-conventional angles or

unaligned walls.

incorrect topologies. In general, houses with more doors and windows will benefit more

from information about their orientations.

Due to the difficulty of deploying large-scale sensor systems, our evaluation is lim-

ited to only four houses. Although the floor plans of the houses are highly varied, it is

difficult to draw statistical conclusions from the results. To increase our sample set size,

we collect another 15 house plans that are publicly available online2. These floor plans

comprise a variety of single-bedroom and multiple-bedroom apartments and houses

from various parts of U.S. By analyzing the blueprints, we manually identified room ad-

jacency, doorway orientations, and window orientations in order to evaluate the efficacy

of our search heuristics on these topologies. Figure 8(b) indicates the size of candidate

pool that our system produced for each house. In two cases, the candidate pool included

approximately 50 floor plans. However, the average number of candidates is 12.2, and

the candidate pools do contain the correct topology in all 15 test cases. This indicates

that our search heuristics are effective for a large range of topologies and can be used

to provide a reasonably small set of candidate floor plans to users.

9 Limitations and Future Work

The sensors, data analysis, pruning algorithms, and scoring heuristics that we use in this

paper are designed to be generally applicable to a large number of houses. However,

they are not applicable to all houses, and the floor plans of many houses will either not

be found, or will be found but a large number of other candidates will be given higher

rank. House C in our test set is one of these houses. In future work, we believe we can

address most if not all of these limitations by extending our algorithms.

Our system performed poorly on the topology shown in Figure 4(c) for two reasons.

First, the house has multiple floors, and the stairway sensors covered two floors. This

caused the sensor clustering algorithm to group rooms on separate floors as a single

room. Furthermore, this house has a very modern and open floor plan, which exacer-

bates the problem of overlapping sensing ranges that cover multiple rooms. In future

work, we will need to address both multiple story buildings as well as open floor plans

by developing new sensors and/or analysis algorithms.

2 http://www.plansourceinc.com/apartmen.htm

http://www.plansourceinc.com/apartmen.htm
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Some other floor plans that we currently do not support are illustrated in Figure 9.

These include floor plans with unaligned walls, doorways or windows that are angled,

and rooms that do not adjoin at 90◦ angles. Of our four testbeds, two of the houses

actually do have unaligned walls and our system generated a reasonable approximation

of their floor plans. In future work, we will build on prior work in architecture [13] to

specify floor plans using more general formalisms in order to efficiently search over a

wider range of topologies.

The evaluation presented in this paper is based on the sensors available to a specific

form of home energy management system: light, temperature, and motion sensors. The

results are promising, despite the limited spatial constraints that were extracted from

these sensors. In current work, we are exploring new ways to extract spatial constraints

from these and other sensors. For example, we are exploring whether light sensors can

be used to identify room locations based on artificial lighting patterns, and whether light

sensors on the interior of a building can identify direction based on indirect sunlight lev-

els. We are also exploring techniques to extract spatial constraints from more complex

sensors such as microphones, tracking systems, and water/electrical usage.

10 Conclusions

In this paper, we present the Smart Blueprints system that simplifies the configuration

of smart homes by automatically inferring the floor plan of a home and the locations

of sensors in the house. This inferred information serves as physical context to better

interpret sensors and configure actuators. We evaluate this approach using a combina-

tion of motion sensors and light sensors, and present novel inference techniques to infer

their physical context within the home. We evaluate the system by deploying in four

homes and by analyzing 15 typical floor plans found online. Our results indicate that

our system can narrow the floor plan to a small number of candidates: between 2 and

4 for our deployment testbeds. Our approach requires a short period of data collection

to automatically infer the floor plan and in our experiments this period ranged from 1

to 2 weeks. During this training period, we expect users to use a basic list-based inter-

face until the graphical interface is ready. As an early stage prototype, our system does

have several limitations in terms of the house and floor plans on which it can operate.

It could not infer the topology of House C because it failed to generate accurate sensor

clusters due to the modern and open floor plan. Similarly, it does not yet address non-

conventional angles or alignment. In this paper, we present a proof of concept demon-

stration and indicate several open questions and new directions of research that could

improve these results in the future. We believe the concepts can be extended to other

applications, either by using the exact same sensor configurations or by generalizing

the principles learned from our pilot study to other types of sensors that are needed for

other applications.
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