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ABSTRACT

Horizons are geologically significant surfaces that can be
extracted from seismic images. Color coding of horizons
based on amplitude or other attributes can help reveal an-
cient sedimentary environments and structural features. Ex-
tracted horizons are also used for building structure models
and stratigraphic interpretations. We propose two methods
for constructing seismic horizons aligned with reflectors
in a 3D seismic image. The first method generates horizons
one at a time; the second method generates an entire volume
of horizons at once by first computing a relative geologic
time volume from seismic normal vectors. Rather than
gradually building a horizon by extending one or more seed
points to a surface along seismic reflectors, both of our
methods generate whole horizons at once by solving partial
differential equations derived from seismic normal vectors.
The most significant new aspect of both methods is the
ability to specify, perhaps interactively during interpreta-
tion, a small number of control points that may be
scattered throughout a 3D seismic image. Experiments re-
vealed that with our method, control points enable the ex-
traction of more accurate horizons from seismic images in
which noise, unconformities, and faults are apparent. These
points represent constraints that we implemented as pre-
conditioners in the conjugate gradient method used to con-
struct horizons.

INTRODUCTION

In seismic interpretation, by visually tracking or automatically
extracting surfaces throughout a 3D seismic image along consistent
seismic waveforms, such as peaks, troughs, or zero-crossing points,
and to a lesser extent, relatively constant phase, we are able to iden-
tify seismic horizons. These horizons are assumed to correspond to

stratal surfaces, which are primary beddings or ancient depositional
surfaces that are geologically synchronous (Vail et al., 1977). Color
coding of horizons based on amplitude or other attributes can help
reveal ancient depositional environments and geomorphic features
(Posamentier et al., 2007). Therefore, extracting horizons from seis-
mic images is a common and important problem for seismic inter-
pretation.

Horizon volume

Zeng et al. (1998b) present the concept of a stratal time model
and generate such a model with a limited number of interpreted
horizons and therefore with limited resolution. A horizon cube
(de Groot et al., 2010; Qayyum et al., 2012) is a volume containing
a dense set of stratigraphic surfaces (Brouwer et al., 2011), which
is similar to a stratal time model if the surfaces are displayed in the
geologic time and space domain. Clark et al. (2010a, 2010b) gen-
erate a high-resolution stratal time model, but they called it a hori-
zon volume, by using seismic dips estimated from a seismic image.
We also prefer to use the term horizon volume instead of stratal
time model because we also compute a high-resolution result
(Figure 1c) from a high-resolution relative geologic time (RGT)
volume (Figure 1b). The RGT volume is computed from seismic
normal vectors, which are, similar to seismic dips, estimated from
a seismic image (Figure 1a). A horizon volume tðx; y; τÞ (Fig-
ure 1c) contains the seismic traveltime location t of horizons as
a function of RGT τ and horizontal spatial coordinates x and y.
Therefore, a horizon volume (Figure 1c) can be used to flatten re-
flectors (Figure 1d) or to access all horizons at once. Horizontally
slicing a horizon volume yields a traveltime structure map of a
horizon corresponding to a constant RGT τ. The concept of an
“RGT volume,” first presented by Stark (2003, 2004, 2005), is
closely related to the horizon volume. An RGT volume τðx; y; tÞ (Fig-
ure 1b) contains RGT τ as a function of spatial coordinates x, y, and
seismic traveltime t. A surface of constant τ in an RGT volume cor-
responds to a seismic horizon (Stark, 2003, 2005). The only differ-
ence between an RGT volume (Figure 1b) and its corresponding
seismic image is that the value of a sample in an RGT volume
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represents geologic time rather than seismic amplitude (Stark, 2005).
Given an RGT volume τðx; y; tÞwith τmonotonically increasing with
vertical traveltime t, a horizon volume tðx; y; τÞ can be easily ob-
tained via an inverse linear interpolation method (Parks, 2010) or
by a time-warping technique (Burnett and Fomel, 2009). In practice,
we use both the horizon and RGT volumes to conveniently access
horizons. An RGT volume, with axes identical to a seismic image,
is first used to look up the RGT value τ for a horizon we wish to
extract. A horizon volume is then used to directly obtain the spatial
coordinates for the horizon by horizontally slicing the horizon volume
for that τ. As we compute an RGT value for every seismic sample, we
can extract a horizon at each sample in a seismic image, and therefore
obtain all seismic horizons represented in a seismic image.

Previous methods

Methods for obtaining a horizon volume can be generally clas-
sified into three categories: The first is stratal slicing (Zeng et al.,
1998a, 1998b), which uses several reference horizons to interpolate
a stratal time model or horizon volume. With a limited number of
horizons for control, the interpolated horizon volume can follow
large-scale features but usually cannot resolve local features (Lo-
mask et al., 2011). The second category of methods uses seismic
reflector dips (Lomask et al., 2006; Fomel, 2010; Parks, 2010; Kar-
imi and Fomel, 2011) or, similarly, seismic normal vectors, com-
puted for every image sample to be perpendicular to seismic
amplitude reflectors. In these methods, a horizon volume is explic-
itly (Lomask et al., 2006) or implicitly (Fomel, 2010; Parks, 2010;
Karimi and Fomel, 2011; Luo and Hale, 2012) generated to map a
seismic image from the traveltime-space domain to a flattened im-
age in the RGT-space domain. Horizon volumes generated by these
methods are more accurate for revealing local features than those
interpolated from several horizons using the first category of
methods. The third category is similar to the second one in that
these methods also compute high-resolution horizon volumes, but
without the use of dips or normal vectors. Instead, they use an
RGT volume generated by unwrapping a corresponding seismic
instantaneous phase image (Stark, 2003, 2004, 2005; Wu and
Zhong, 2012b).

Proposed methods

We first describe a method for extracting single horizons, one at a
time, by using precomputed seismic normal vectors, which are
perpendicular to seismic amplitude reflectors. This method requires
at least one control point to indicate the horizon (containing this
point) that we want to extract and to initialize a horizontal surface
passing through this point. The initial surface is typically inconsis-
tent with the desired horizon, but it is iteratively deformed until vec-
tors normal to the surface are aligned with vectors normal to a
reflector in the seismic image. We extend this method to permit ad-
ditional control points, which enable reliable extraction of a se-
quence boundary or a horizon complicated by faults or noise.
We then introduce a second method that generates a complete hori-
zon volume constrained by one or more sets of control points, where
each set contains more than one control points. To generate a hori-
zon volume (Figure 1c), we first use seismic normal vectors to com-
pute an RGT volume (Figure 1b), from which a horizon volume is
then interpolated. This process is similar to Parks’s (2010) method
for flattening a seismic image, but we instead derive the method in a
simpler way. Furthermore, similar to the way in which we extract a
more accurate single horizon using control points, we use multiple
sets of control points to generate a more accurate horizon volume
from a seismic image complicated by faults or noise. Each set of
control points belongs to a single horizon with an unspecified
RGT value and is easily specified by selecting points that we want
to lie on the same horizon. We implement these constraints with
simple preconditioners in the conjugate gradient (CG) algorithm
that we use to compute the RGT and horizon volumes.

EXTRACTING A SINGLE HORIZON

To extract or construct a single horizon from a 3D seismic image,
one usually first picks a reference point or seed. This seed then

Figure 1. From (a) a seismic image, (b) an RGT volume is com-
puted and then converted to (c) a horizon volume that maps the seis-
mic image to (d) a flattened image.
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grows to a horizon surface by manually or automatically tracking
seismic reflectors along seismic amplitude peaks or troughs. Here,
we describe a different method that uses at least one control point to
initialize a complete horizontal surface and then updates that surface
to conform to seismic normal vectors. We then extend this method
to enable use of multiple control points, which improve the accu-
racy and efficiency of horizon extraction.

Horizon extraction without constraints

We first use structure tensors (Van Vliet and Verbeek, 1995;
Fehmers and Höcker, 2003) to compute, for each image sample,
a unit (or seismic normal) vector n ¼ ½ nx; ny; nt �⊤ that is
perpendicular to the seismic amplitude reflector at that sample lo-
cation. We notate the unit vectors by time in the vertical dimension,
but we consider a seismic image by samples in horizontal and ver-
tical dimensions when we estimate those normal vectors. We then
assume a single-valued horizon surface t ¼ fðx; yÞ. The surface can
be implicitly defined as a set of points ðx; y; tÞ satisfying

Fðx; y; tÞ ¼ t − fðx; yÞ ¼ 0: (1)

The defined function Fðx; y; tÞ is 0 everywhere, but its gradient
vectors are not zero vectors and can be represented as ∇Fðx; y; tÞ ¼
½− ∂f

∂x −
∂f
∂y 1�⊤, where k∇Fðx; y; tÞk ≥ 1. The unit vectors perpen-

dicular to the surface are

ns ¼
∇Fðx; y; tÞ

k∇Fðx; y; tÞk ¼ α

2
64− ∂f

∂x
− ∂f

∂y
1

3
75; (2)

where α ¼ 1
k∇Fðx;y;tÞk are spatially variant scale factors that make ns

unit vectors. Here, we assume the surface normal vectors always
point downward.
We assume that a surface that follows a seismic reflector is a hori-

zon surface of constant geologic time, and seismic normal vectors
computed from a seismic amplitude image are unit vectors that are

perpendicular to seismic reflectors. Therefore, the seismic horizon
we seek is a surface whose normal vectors ns must be equal to the
seismic normal vectors n at all positions ðx; y; tÞ on the horizon.
However, we initially do not know the positions of the horizon.
To solve this problem, we must iteratively update an initial horizon-
tal surface f 0ðx; yÞ, by solving the partial differential equations,

αi

2
64− ∂fi

∂x
− ∂fi

∂y
1

3
75 ≈

2
4 ni−1x

ni−1y

ni−1t

3
5: (3)

Here, fiðx; yÞ is a surface computed at the ith iteration;
ni−1x ¼ nxðx; y; fi−1ðx; yÞÞ, ni−1y ¼ nyðx; y; fi−1ðx; yÞÞ, and ni−1t ¼
ntðx; y; fi−1ðx; yÞÞ are the components of seismic normal vectors
at positions on the surface obtained in the ði − 1Þth iteration. To
start this iterative process, we initialize a horizontal surface
f 0ðx; yÞ (black lines in Figure 2a) passing through a control point
(green circle in Figure 2a) that is located on the seismic horizon we
want to extract. This initial surface is then iteratively updated to
align with the seismic horizon. In each iteration, we have
αi ¼ ni−1t from the third equation of equation 3, and then substitute
αi ¼ ni−1t into the first two equations to obtain the following in-
verse-gradient problem (Bienati and Spagnolini, 2001; Farnebäck
et al., 2007) to update the surface fiðx; yÞ:"

∂fi
∂x
∂fi
∂y

#
≈
�
pi−1

qi−1

�
; (4)

where pi−1 ¼ −ni−1x ∕ni−1t and qi−1 ¼ −ni−1y ∕ni−1t are reflector
slopes in the x- and y-directions, respectively. Here, we assume seis-
mic reflectors cannot be vertical and seismic normal vectors always
point downward, then nt > 0. These two equations above should be
satisfied for every sample on the horizon, but it usually helps to
weight these equations by some measure wðx; y; tÞ of the quality
of the estimated reflector slopes. For example, because noise is con-
sidered nonplanar in general, wðx; y; tÞ can be a measure of local

Figure 2. (a) Seismic sections and (b) subsections that intersect with a sequence boundary. The initially horizontal surface (black curve) passes
through one control point and is updated iteratively using seismic normal vectors. The dashed green curve denotes the manually interpreted
sequence boundary.
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planarity in the seismic image, easily computed from structure ten-
sors (Hale, 2009). Then,

wi−1

"
∂fi
∂x
∂fi
∂y

#
≈ wi−1

�
pi−1

qi−1

�
; (5)

where wi−1 ¼ wðx; y; fi−1ðx; yÞÞ. Assuming we have N sampled lo-
cations on the horizon surface, we will have 2N weighted equations
for the N unknowns fiðx; yÞ. For each iteration, we discretize these
equations to obtain the corresponding matrix form:

WGf ≈Wv; (6)

where W is a 2N × 2N diagonal matrix containing weights
wðx; y; fi−1ðx; yÞÞ, G is a 2N × N sparse matrix obtained by discre-
tizing partial derivatives, v is a 2N × 1 vector containing the seismic
reflector slopes pi−1 and qi−1 on the surface fi−1ðx; yÞ obtained in
the previous iteration, and f is an N × 1 vector containing surface
depths fiðx; yÞ we want to find. We use approximate equalities in
equations 3–6 because we compute the least-squares solution by
solving the normal equation of equation 6:

ðWGÞ⊤WGf ¼ ðWGÞ⊤Wv: (7)

To simplify this equation, we let A ¼ ðWGÞ⊤Wv and b ¼
ðWGÞ⊤Wv to obtain

Af ¼ b: (8)

Because the matrix A ¼ G⊤W⊤WG is symmetric positive definite
(SPD), we use the CG method to solve this linear system.

Preconditioner

To accelerate the convergence of CG iterations, we use the model
reparameterization technique f ¼ S~f (VanDecar and Snieder, 1994;
Harlan, 1995; Fomel and Claerbout, 2003). S is a simplification op-
erator designed to create the desired features in the solution f. Ap-
plying this technique to the system of equation 8, we first solve a
new system,

S⊤AS~f ¼ S⊤b; (9)

for the new unknowns ~f and then compute the desired solution
f ¼ S~f. For an appropriate operator S, the CG method applied to
the new system of equation 9 converges much faster than for the
original system of equation 8. In effect, this model reparameteriza-
tion is equivalent to split preconditioning (Saad, 1996) with left and
right preconditioners M−1

L ¼ S⊤ and M−1
R ¼ S. As noted by Saad

(1996), this split preconditioning can be implemented with a left
preconditioning matrix M ¼ MLMR in a preconditioned CG solu-
tion of

M−1Af ¼ M−1b; (10)

whereM−1 ¼ SS⊤. Recall that S is a simplification operator used to
facilitate desired features in the solution (Harlan, 1995). Here,
we implement S as a smoothing operator S ¼ SxSy, where Sx
and Sy are axis-aligned smoothing filters in the x and y directions,
respectively. A horizon surface f is often smooth, except at faults.

Therefore, our Sx and Sy are spatially variant smoothing filters
(Hale, 2009), with the extent of smoothing controlled by a measure
of discontinuity of seismic reflectors. This measure could be pla-
narity (Hale, 2009) or fault likelihood (Hale, 2013). Here, we
use planarity, computed from structure tensors, to control the extent
of smoothing in Sx and Sy.
Now, for each iteration (equation 5) that updates the surface

fiðx; yÞ, we solve equation 8 using the preconditioned CG method
with preconditioner

M−1 ¼ SxSyS⊤y S⊤x : (11)

In this way, we iteratively update the surface t ¼ fðx; yÞ until its
normal vectors ns are aligned with the seismic normal vectors
nðx; y; t ¼ fðx; yÞÞ. The updating iteration is terminated when
the absolute average update of each sample on the surface is smaller

than some small number
P

N−1
j¼0

jfiðxj;yjÞ−fi−1ðxj;yjÞj
N < ϵt, where N is the

number of samples on the surface and ϵt is an arbitrary small num-
ber. In summary, given an initially horizontal surface (black curves
in Figure 2) that is inconsistent with any seismic reflector, our
method iteratively reduces the difference between the normal vec-
tors ns of the surface and the seismic normal vectors nðx; y; fðx; yÞÞ
on the surface to obtain a single seismic horizon surface (blue
curves in Figure 2).

Results without constraints

In Figure 2, using only one control point to indicate which hori-
zon we want to extract, our method updates the initially horizontal
surface to the more nearly correct seismic horizon (blue curves in
Figure 2) after nine iterations. The extracted surface is well aligned
with the seismic horizon at conformable areas in the left section of
Figure 2a. However, in the sections shown in Figure 2b, this iter-
ative method fails to update the horizon surface to the location of the
angular unconformity (green dashed curve in Figure 2b). Extracting
such a sequence boundary or unconformity is an important but dif-
ficult problem in seismic interpretation. From structure tensors, we
fail to correctly estimate the discontinuous normal vectors at the
unconformity and therefore obtain the incorrect horizon surface
shown in Figure 2b. In the next section, we describe a method
to more accurately extract a sequence boundary using more control
points.

Horizon extraction with constraints

Near unconformities, faults, or in areas where an image is noisy,
estimated seismic normal vectors are not accurate enough to auto-
matically obtain a correct sequence boundary or horizon. Therefore,
instead of using a fully automatic method, we might manually in-
terpret the seismic image to obtain a more geologically reasonable
surface. However, we need not manually interpret the entire hori-
zon. Using a small number of control points as constraints, we solve
a constrained least-squares problem to efficiently and more accu-
rately extract a sequence boundary or horizon from a noisy or com-
plex seismic image.

Constrained optimization

As discussed above, in each iteration that updates a horizon sur-
face, we solve a linear systemAf ¼ b for the vector f that represents
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the surface. Because the matrix A is SPD, solving this linear system
is equivalent to minimizing the following quadratic function of the
vector f:

FðfÞ ¼ 1

2
f⊤Af − b⊤f: (12)

Suppose we have a set of n control points ðxi; yi; tiÞ; i ¼ 1;
2; : : : ; n, and we want to extract a horizon surface that exactly
passes through these points. With these constraints, we obtain a
constrained optimization problem:

minimizef FðfÞ ¼
1

2
f⊤Af − b⊤f; subject to Cf ¼ t;

(13)

where t ¼ ½t1; t2; : : : ; tn�⊤ is an n × 1 column vector, and C is an
n × N (where, again, N is the number of samples on the surface)
sparse matrix with ones at the positions corresponding to control
points and zeros elsewhere. Assuming we have found some solution
f0 to the constraint equation Cf0 ¼ t, and a matrix Z whose col-
umns form a basis for the null space of C so that CZ ¼ 0, then
any solution f of the constraint equation Cf ¼ t can be written as

f ¼ f0 þ Zp; (14)

where p is a reduced ðN − nÞ × 1 column vector, and again n is the
number of control points. The control points must be unique to en-
sure that the matrix C has n linearly independent rows and Z has
N − n linearly independent columns.
Substituting equation 14 into equation 12, we obtain a quadratic

function FðpÞ with the reduced vector p:

FðpÞ ¼ 1

2
ðf0 þ ZpÞ⊤Aðf0 þ ZpÞ − b⊤ðf0 þ ZpÞ: (15)

Minimizing this quadratic function for the reduced solution p is
equivalent to solving the following reduced linear system:

Z⊤AZp ¼ Z⊤ðb − Af0Þ: (16)

We can now solve this reduced system to get p and then recover the
desired solution f by using equation 14.

Constrained preconditioner

Before we can solve equation 16, we must find matrix Z and
vector f0. Fortunately, these subproblems are simple. For example,
assume we have three control points: f0 ¼ t0, f2 ¼ t2, and f3 ¼ t3,
then t ¼ ½ t0 t2 t3 �⊤ and the matrix C is

C ¼
2
4 1 0 0 0 0 · · · 0

0 0 1 0 0 · · · 0

0 0 0 1 0 · · · 0

3
5
3×N

: (17)

We can immediately find a solution f0 ¼ ½ t0 0 t2 t3
0 · · · 0�⊤ to the constraint equationCf0 ¼ t. The columns of matrix
Z form a basis of the null space of matrix C, so that CZ ¼ 0. We
generate such a matrix Z from an N × N identity matrix, by remov-
ing any columns that are identical to rows in the matrix C:

Z ¼

2
666666664

0 0 · · · 0

1 0 · · · 0

0 0 · · · 0

0 0 · · · 0

0 1 · · · 0

..

. ..
. . .

. ..
.

0 0 · · · 1

3
777777775
N×ðN−3Þ

: (18)

Given Z and the solution f0, we are ready to solve the reduced sys-
tem shown in equation 16. Because the matrix Z⊤AZ is SPD, we
can use the CG method to solve this reduced system. Many authors
(e.g., Nash and Sofer, 1996; Gould et al., 2001; Dollar, 2005) dis-
cuss the solution of this system using the preconditioned CG
method, and we use a simple preconditioner Pz described in Nash
and Sofer (1996):

Pz ¼ Z⊤M−1Z ≈ ðZ⊤AZÞ−1; (19)

where M−1 ¼ SxSyS⊤y S⊤x as in equation 11, and Z⊤Z ¼ I because
the columns of Z form a basis. Therefore, our preconditioner for the
reduced system is

Pz ¼ Z⊤SxSyS⊤y S⊤xZ: (20)

In the preconditioned CG method for the reduced system, one
would compute the initial residual rz ¼ Z⊤ðb − Af0Þ − Z⊤AZp
and the preconditioned residual gz ¼ Pzrz.
Instead of solving the reduced system to obtain p and then recov-

ering the desired solution f, we can instead directly solve for f be-
cause we have a relationship between the reduced and full solutions
f ¼ f0 þ Zp. As discussed by Gould et al. (2001), to explicitly per-
form the multiplication by Z and the addition of the term f0 in the
CG method, we may choose f ¼ f0 þ Zp, Z⊤r ¼ rz, and g ¼ Zgz,
so that g ¼ ZPzZ⊤r. This process is equivalent to applying the pre-
conditioned CG method to the unconstrained linear system Af ¼ b,
with a preconditioner

P ¼ ZPzZ⊤ ¼ ZZ⊤M−1ZZ⊤ ¼ ZZ⊤SxSyS⊤y S⊤xZZ⊤: (21)

In practice, we do not explicitly form the matrices A and ZZ⊤ be-
cause the preconditioned CG method requires only the computation
of the residual vector r ¼ b − Af and gradient vector g ¼ Pr.
It is trivial to compute vector ZZ⊤x for any N × 1 vector x be-

cause ZZ⊤ has the form

ZZ⊤ ¼

2
6666666664

0 0 0 0 0 · · · 0

0 1 0 0 0 · · · 0

0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0

0 0 0 0 1 · · · 0

..

. ..
. ..

. ..
. ..

. . .
. ..

.

0 0 0 0 0 · · · 1

3
7777777775
N×N

: (22)

Computation of ZZ⊤x zeros all the elements of x with indices cor-
responding to the locations of control points. With the precondi-
tioner P denoted by equation 21, the preconditioned gradient
g ¼ Zgz ¼ ZPzZ⊤r is projected to be in the null space of C. As
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a result, all updates to the solution f in this preconditioned CG
method will also lie in the null space of C. Therefore, because
the initial solution f0 satisfies the constraints Cf0 ¼ t, the solution
f after each CG iteration also satisfies Cf ¼ t.

Results with constraints

Where seismic normal vectors estimated from structure tensors
are inaccurate (e.g., near unconformities, faults, and noisy data),
the use of control points helps to extract a more reliable horizon
or sequence boundary. As shown in Figure 2, when we extract a
sequence boundary constrained by only one control point (green
circle in Figure 2a), the surface we extract (blue curves in Figure 2b)
is well aligned with a seismic reflector in the conformable areas (the
left-side section and the left part of the right-side section in Fig-

ure 2a), in which seismic normal vectors can be estimated
accurately. However, the surface (blue curves) extracted at the
unconformity (Figure 2b) deviates from the manually interpreted
surface (dashed green curve in Figure 2b) because the normal vec-
tors estimated there are inaccurate. Using 19 control points (green
points in Figure 3c), we obtain a surface that better fits the manually
interpreted sequence boundary. Figure 3a shows crossline and inline
seismic sections that intersect the sequence boundaries extracted
using (1) only one control point (blue curves) and (2) 19 control
points (green curves). We observe that the sequence boundary ex-
tracted using 19 control points better represents the manually inter-
preted unconformity surface compared with the one extracted using
only one control point. Figure 3b and 3c shows the same extracted
sequence-boundary surfaces colored with seismic amplitudes. Am-
plitude values for 19 control points (Figure 3c) are more uniform

Figure 3. (a) Seismic sections intersect sequence boundaries extracted using one control point (blue curve) and 19 control points (green curve).
Panels (b) and (c) show a 3D view of the extracted surfaces using one control point and 19 control points, respectively. Both of the two surfaces
are colored by amplitude.
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than those for one control point (Figure 3b). This sequence boun-
dary is also complicated by faults, highlighted by red ellipses in
Figure 3. The surface extracted using only one control point (blue
curves in Figure 3a and the surface in Figure 3b) is inaccurate near
faults. However, the surface with 19 control points (green curves in
Figure 3a and the surface in Figure 3c) more accurately follows the
faults. This example demonstrates that constraints facilitate extraction
of a horizon surface complicated by faults. Moreover, with more con-
trol points, an initial surface converges more quickly to the final ex-
tracted horizon. We can use more control points to interpolate a better
initial surface f0ðx; yÞ that is smooth but exactly passes through the
control points. An initial surface interpolated using more control
points will be closer to the seismic horizon fðx; yÞ wewant to extract,
which therefore enables the CG method to more quickly converge to
that horizon. For example, it takes nine iterations to converge using
one control point (blue curves in Figure 3a), but only five iterations to
converge using 19 control points (green curves in Figure 3a).

GENERATING A HORIZON VOLUME

Using the method discussed above, we can extract a single seismic
horizon or sequence boundary with one or more control points that
represent interpreted constraints. With similar constraints, we can also
extract all seismic horizons from a seismic image at once, and thereby
we can generate a complete horizon volume. In a horizon volume
tðx; y; τÞ, as shown in Figure 1c, the vertical axis is RGT τ and color
denotes seismic traveltime t. Horizontally slicing a horizon volume at
any single RGT value τ yields a seismic horizon. Here, we first de-
scribe a method for using seismic normal vectors to automatically
generate a horizon volume without constraints, which is usually ac-
curate for seismic images with simple structures. To better handle
images complicated by faults or noise, we then extend this method,
by incorporating scattered sets of interpreted points that correspond to
multiple seismic horizons, to generate a more reliable horizon volume
that honors those interpreted constraints.

Horizon volume without constraints

As discussed by Parks (2010), a horizon volume tðx; y; τÞ can be
generated from an RGT volume τðx; y; tÞ by inverse linear interpolation
if we assume that τ in the RGT volume increases monotonically with
seismic traveltime t. Some authors have described methods to generate
such an RGT volume using phase unwrapping (e.g., Stark, 2003, 2004;
Wu and Zhong, 2012a) or reflector dips (Fomel, 2010; Parks, 2010).
Here, we rederive the method of Parks (2010) in a simpler way to com-
pute an RGT volume. In an RGT volume τðx; y; tÞ like that shown in
Figures 4a or 1b, contours (Figure 4b) of constant τ represent seismic
horizons, which means that these contours should have the same struc-
tures as seismic reflectors in the seismic image (Figure 4b). Therefore,
gradient vectors for an RGT volume τðx; y; tÞ, which are perpendicular
to RGT contours, should be parallel to seismic normal vectors
n ¼ ½nx; ny; nt�⊤, which are perpendicular to seismic amplitude reflec-
tors. If we assume that these vectors always point downward, we have2

64
∂τ
∂x
∂τ
∂y
∂τ
∂t

3
75 ≈ α

2
4 nx
ny
nt

3
5; (23)

where α is a positive and spatially variant scalar number. Because we
again have more equations than unknowns, in general, we can only ap-

proximately solve these coupled partial differential equations. Because
we assume that all the seismic normal vectors are always point down-
ward, which means that the vertical component nt of the normal vectors
are always positive (nt > 0). Therefore, RGT results computed using
the partial differential equations above usually increase vertically with
traveltime. Using the third equation of equation 23, we compute
α ¼ ð∂τ∕∂tÞ∕nt, where nt > 0. Substituting α into the first two of
equation 23, we obtain�

nt
∂τ
∂x − nx

∂τ
∂t

nt
∂τ
∂y − ny

∂τ
∂t

�
≈
�
0

0

�
: (24)

In attempting to solve these equations, we would need to carefully
choose boundary conditions to avoid obtaining the trivial solution
τ ¼ constant. To avoid this problem, as discussed by Parks (2010),
we rewrite τðx; y; tÞ as

τðx; y; tÞ ¼ tþ sðx; y; tÞ; (25)

where the function sðx; y; tÞ represents vertical shifts. Substituting equa-
tion 25 into equation 24, we obtain�

nt
∂s
∂x − nx

∂s
∂t

nt
∂s
∂y − ny

∂s
∂t

�
≈
�
nx
ny

�
(26)

or �
− ∂s

∂x − p ∂s
∂t

− ∂s
∂y − q ∂s

∂t

�
≈
�
p
q

�
; (27)

where againp ¼ −nx∕nt and q ¼ −ny∕nt are estimated slopes of seis-
mic reflectors in x- and y-directions. Equation 27 is what Parks (2010)
solved to obtain shifts that flatten a seismic image. As suggested by
Lomask et al. (2006), we add a third equation ϵst ≈ 0 to reduce vertical
variations in the shifts.We alsoweight the equations above by ameasure
wðx; y; tÞ of the quality of the estimated reflector slopes pðx; y; tÞ and

Figure 4. The same (a) RGT volume as shown in Figure 1b, and
(b) contours of the RGT volume are horizons in the corresponding
seismic image.
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qðx; y; tÞ. We then compute the shifts by solving the following
equations: 2

6664
w
�
− ∂s

∂x − p ∂s
∂t

�
w
�
− ∂s

∂y − q ∂s
∂t

�
ϵ ∂s
∂t

3
7775 ≈

"wp
wq
0

#
: (28)

If we have N image samples, then equation 28 represents 3N equations
for N unknown shifts, and these equations can be expressed in matrix
form as

WGs ≈Wv; (29)

where s is anN × 1 vector containing the unknown shifts sðx; y; tÞ,G is
a 3N × N sparsematrix representing finite-difference approximations of
partial derivatives,W is a 3N × 3N diagonal matrix containing weights
wðx; y; tÞ and the constant ϵ, and v is a 3N × 1 vector with 2N slopes p
and q, and N zeros.
From equations 23–29, we use the approximate equalities be-

cause we compute the least-squares solution by solving the normal
equation of equation 29:

ðWGÞ⊤WGs ¼ ðWGÞ⊤Wv: (30)

Let A ¼ ðWGÞ⊤WG and b ¼ ðWGÞ⊤Wv so that this linear system
becomes

As ¼ b: (31)

The matrix A is SPD and sparse. In practice, we do not explicitly
form the matrices A,W, and G. Instead, we solve this linear system
using the CG method, which requires only the computation of ma-
trix-vector products such as As ¼ ðWGÞ⊤WGs and b ¼ ðWGÞ⊤
Wv. As when extracting a single seismic horizon, we solve equa-
tion 31 using the preconditioned CG method with a preconditioner
defined by

M−1 ¼ SxSyStS⊤t S⊤y S⊤x ; (32)

where, again, Sx, Sy, and St are filters that smooth in the x-, y-, and
t-directions, respectively. We again expect the solution to be later-
ally smooth except at faults. Therefore, the lateral smoothing filters
Sx and Sy are spatially variant filters (Hale, 2009), and the extent of
smoothing is proportional to a measure of reflector continuity, so
that these filters smooth less at faults.
We expect the shifts to be vertically smooth because we assume

that there are no unconformities in this example. Therefore, our ver-
tical smoothing filter St in this example is spatially invariant. We
derive all of the equations above for 3D images, but they can be
easily modified to work for 2D images, by omitting the second
equation for the y-direction from equation 28. For the 2D example
shown in Figure 1, we first solved equation 31 to get shifts sðx; tÞ.
We then computed an RGT volume τðx; tÞ ¼ tþ sðx; tÞ (Figure 1b),
where τ increases monotonically (τ does not decrease, but increases
with different rates) with seismic traveltime t. Finally, we computed
a horizon volume tðx; τÞ (Figure 1c) from the RGT volume τðx; tÞ
by inverse linear interpolation (Parks, 2010). This horizon volume

Figure 5. (a) A seismic image, (b) generated horizon volume, and (c) flattened image without control points.
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tðx; τÞ maps the seismic image (Figure 1a) to a flattened image
(Figure 1d).
For seismic images with simple geologic structures and little noise,

as in Figure 1a, we can use the method discussed above to compute
an accurate RGT volume (Figure 1b). A horizon volume (Figure 1c)
is then interpolated from the RGT volume and subsequently used to
flatten the input seismic image (Figure 1a) to produce the flattened
image (Figure 1d). However, for seismic images complicated by
faults, as in Figure 5a, the generated horizon volume (Figure 5b)
is inaccurate, so that the seismic reflectors are not flattened correctly
(Figure 5c). Therefore, we extend this method to compute more ac-
curate RGTand horizon volumes by incorporating one set or multiple
sets of interpreted control points that may correspond to one or multi-
ple horizons, without defining any RGT values for any control points.

Horizon volume with constraints

For specified sets of control points, we solve a constrained opti-
mization problem similar to that we solve when extracting a single
seismic horizon:

minimizes FðsÞ ¼
1

2
s⊤As − b⊤s; subject to Cs ¼ d:

(33)

As when extracting a single horizon, solving the constrained prob-
lem above is equivalent to solving a corresponding unconstrained
problem As ¼ b using a preconditioned CG method with an initial

solution s0 to the constraint equation Cs0 ¼ d and a constrained
preconditioner P ¼ ZZ⊤M−1ZZ⊤, where M−1 ¼ SxSyStS⊤t S⊤y S⊤x .
Therefore, to solve this problem, we need only an initial solution
s0 and the matrix ZZ⊤ for the preconditioner P.
Let us use a tiny 3D seismic image with only N ¼ 2 × 2 × 2 sam-

ples to explain how to implement multiplication by the matrix ZZ⊤

and to find an initial solution s0. As in equation 25, we want to
compute a 3D RGT volume τðx; y; tÞ with shifts sðx; y; tÞ. In this
simple example, τ and s have only N ¼ 2 × 2 × 2 samples, and
we can express equation 25 in vector form as

τ ¼ tþ s; (34)

where

t ¼ ½ t0 t1 t2 t3 t4 t5 t6 t7 �⊤;
s ¼ ½ s0 s1 s2 s3 s4 s5 s6 s7 �⊤;
τ ¼ ½ τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 �⊤. (35)

Assume that we have two sets of constraints: The first set has three
control points with sample indices f3; 5; 7g, and the second set has
two control points with sample indices f1; 6g. Within each set of
constraints, all control points are interpreted to be on a single
seismic horizon. Therefore, we have τ3 ¼ τ5 ¼ τ7 and τ1 ¼ τ6.
According to equation 34, this means that s5 − s3 ¼ t3 − t5,
s7 − s3 ¼ t3 − t7, and s6 − s1 ¼ t1 − t6. We can therefore write
the constraint equation Cs ¼ d as follows:

Figure 6. (a) A seismic image with three pairs of interactively interpreted control points (yellow circles, pluses, and squares), (b) generated
horizon volume, and (c) flattened image.
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2
4 0 0 0 −1 0 1 0 0

0 0 0 −1 0 0 0 1

0 −1 0 0 0 0 1 0

3
5s ¼

2
4 t3 − t5
t3 − t7
t1 − t6

3
5; (36)

where, again, s ¼ ½ s0 s1 s2 s3 s4 s5 s6 s7 �⊤. Here, we
want to emphasize that we do not specify any RGT values or shifts
for the interpreted control points to constrain the generation of an
RGT or horizon volume. We only set the RGT values of the control
points belonging to a same horizon to be equal to construct the con-
straint equation in 36. This makes it easy for an interpreter to in-
corporate control points for generating a more reliable horizon
volume. In this example, matrix C has three linearly independent
rows so that matrix Z must have N − 3 linearly independent
columns, such that CZ ¼ 0 because the columns of matrix Z
form a basis for the null space of C. Construction of matrix Z is

only slightly more complicated than for the single-horizon case.
Specifically,

Z ¼ ½ec1jec2je0je2je4� ¼

2
66666666664

0 0 1 0 0

0 1 0 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

1 0 0 0 0

3
77777777775
8×5

; (37)

where ec1 ¼ e3 þ e5 þ e7, ec2 ¼ e1 þ e6, and ei, for i ¼ 0; 1;
: : : ; N − 1, is an N × 1 unit vector with 1 at the ith index. In other
words, we begin with the identity matrix and sum the unit vectors ei

with indices i in f3; 5; 7g, corresponding to the
first set of control points, to obtain the first column
of Z; similarly, we obtain the second column of Z,
corresponding to the second set of control points
with indices f1; 6g; and finally, we use all of the
remaining unit vectors ei that do not correspond to
any control point for remaining columns of Z. In
the sameway, we can easily construct matrixZ for
any number of sets of control points. We can nor-
malize the columns of matrix Z to obtain

Z ¼

2
6666666666664

0 0 1 0 0

0 1ffiffi
2

p 0 0 0

0 0 0 1 0
1ffiffi
3

p 0 0 0 0

0 0 0 0 1
1ffiffi
3

p 0 0 0 0

0 1ffiffi
2

p 0 0 0
1ffiffi
3

p 0 0 0 0

3
7777777777775
8×5

(38)

with columns that form an orthonormal basis for
the null space of matrix C. We then find that

ZZ⊤ ¼

2
66666666664

1 0 0 0 0 0 0 0

0 1
2

0 0 0 0 1
2

0

0 0 1 0 0 0 0 0

0 0 0 1
3

0 1
3

0 1
3

0 0 0 0 1 0 0 0

0 0 0 1
3

0 1
3

0 1
3

0 1
2

0 0 0 0 1
2

0

0 0 0 1
3

0 1
3

0 1
3

3
77777777775
8×8

:

(39)

For any vector x¼½x0 x1 x2 x3 x4 x5 x6 x7 �⊤, it
is easy to compute the product

ZZ⊤x¼½x0 xc2 x2 xc1 x4 xc1 xc2 xc1 �⊤;
(40)

where xc1 ¼ ðx3 þ x5 þ x7Þ∕3 and xc2 ¼ ðx1þ
x6Þ∕2. In other words, we compute ZZ⊤x by

Figure 7. (a) Input seismic image and (b) a corresponding RGT volume computed with
three sets of control points.
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gathering and averaging all elements of x with indices corresponding
to each set of control points and then scattering the averages back into
those same elements. In each CG iteration, when we apply the con-
strained preconditioner P ¼ ZZ⊤SxSyStS⊤t S⊤y S⊤xZZ⊤ to a vector, we
need only to compute averages and apply smoothing filters. We can
also easily find an initial solution s0 to the constraint equation
Cs0 ¼ d:

s0 ¼ ½ 0 s1 0 s3 0 s5 s6 s7 �⊤; (41)

in which elements with indices corresponding to the first set of con-
trol points are s3 ¼ 0, s5 ¼ t3 − t5, and s7 ¼ t3 − t7; elements cor-
responding to the second set of control points are s1 ¼ 0 and
s6 ¼ t1 − t6. Therefore, to construct an initial set of shifts s0, we
use zeros for elements that do not correspond to any control points;
for each set of control points, we first compute their average depth or
traveltime and then choose the point with depth
nearest to that average as the reference point
and set it with zero shift (e.g., s3 ¼ 0 for the first
set of control points, and s1 ¼ 0 for the second set
of control points), then use the depth differences
between the reference point and other control
points for the remaining initial shifts in s0.
With an initial solution s0 and the constrained

preconditioner P ¼ ZZ⊤M−1ZZ⊤, we can apply
the preconditioned CG method to the uncon-
strained system As ¼ b to obtain a solution s
that satisfies the constrained problem of equa-
tion 33. In each CG iteration, we compute a
residual as r ¼ b − As. Using the constrained
preconditioner P, we compute a constrained
residual rP ¼ ZZ⊤M−1ZZ⊤r that is in the null
space of the constraint matrix C. This means
that all of the updates to the initial solution s0
in this preconditioned CG method will also
be in the null space of C. Therefore, because
the initial solution s0 satisfies the constraint
equation Cs0 ¼ d, the final solution s obtained
after any number of CG iterations will also sat-
isfy the constraints. Figure 6 is a 2D example
that shows how constraints help to generate a
more accurate horizon volume and better flatten
a seismic image. In this example, we use the
same input seismic image (Figure 6a) compli-
cated by faults that is displayed in Figure 5a,
but now we have three sets of constraints. For
each set of constraints, we interpret two control
points (yellow circles, pluses, and squares in
Figure 6a) for each seismic horizon. Using three
sets of constraints, we compute a more accurate
horizon volume (Figure 6b), with which we
can better flatten (Figure 6c) seismic reflectors
across faults.

3D results with constraints

Figure 7a shows a 3D seismic image that is
also complicated by faults. To flatten this 3D im-
age or generate a horizon volume, we choose
weights wðx; y; tÞ corresponding to faults in

equation 28. Specifically, we use the method developed by Hale
(2013) to first compute an image of fault likelihoods fðx; y; tÞ ∈
½0; 1� in which values near 1 indicate fault locations. We then
use w ¼ ð1 − fÞ8 as weights in equation 28, where the power 8
is an arbitrary number to increase the contrast between low and high
fault likelihoods. For this example, we use three sets of constraints,
corresponding to three horizons in the 3D seismic image, to com-
pute a more accurate horizon volume and more accurately flatten the
seismic image. The first set contains five control points, the second
one contains seven control points (green points in Figure 8a), and
the third one contains 11 control points (green points in Figure 8b).
Using these three sets of constraints, we first compute an RGT vol-
ume as shown in Figure 7b, from which we then interpolate a hori-
zon volume (Figure 9a) that flattens (Figure 8a or 8b) seismic
reflectors across faults. The constraints help to flatten not only re-
flectors passing through the control points but also other reflectors

Figure 8. The flattened seismic image is sliced at (a) τ ¼ 1.664 and (b) τ ¼ 1.751. Hori-
zontal slices in a flattened image correspond to seismic horizon surfaces (upper right
panels in [a] and [b], for which color denotes depth) in an unflattened image.
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in the 3D seismic image as well. Figure 9a displays the horizon
volume computed from the RGT volume shown in Figure 7b. Each
horizontal slice in the horizon volume is a traveltime structure map
of a horizon corresponding to a constant RGT value. Figure 9b
shows a 3D view of six seismic horizons extracted by horizontally
slicing (h1 ∼ h6 in Figure 9a) the horizon volume at six different

RGT values. In Figure 9b, different colors denote different seismic
horizons corresponding to the horizontal slices (h1 ∼ h6) with dif-
ferent colors in Figure 9a, but deeper horizons are obscured by the
top one. We therefore, in Figure 9c, display cut-away views of each
of the horizons. We observe that the horizons with control points
(the cyan and yellow surfaces) and others without control points
coincide well with seismic reflectors.

CONCLUSION

We propose methods to (1) extract one seismic horizon at a time
and (2) to compute at once a complete horizon volume. We designed
these two methods to compute horizons that honor interpreted con-
straints, specified as sets of control points. We incorporate the con-
trol points with simple constraint preconditioners in the CG method
used to compute horizons. The first method is useful, even though
we can extract all horizons at once using the second method, be-
cause it can more quickly extract a single horizon. Using multiple
control points, this method can reliably extract complicated geo-
logic surfaces such as sequence boundaries and horizons with
faults. Furthermore, this first method might be used to efficiently
extract horizons that might serve as control surfaces (large sets
of control points) for the second method. The second method gen-
erates a complete horizon volume at once. With a small number of
interpreted constraints, this method works well for seismic images
complicated by faults. Interpreted constraints are necessary because
completely automatic interpretation cannot yet handle complicated
seismic horizons. The proposed methods provide an especially sim-
ple way to specify such constraints by interactively picking points in
a 3D seismic image that belong to the same seismic horizon. These
methods can be implemented to interactively add or move control
points, while quickly updating a single seismic horizon or complete
horizon volume. One minor defect of both methods is that they do
not automatically produce gaps representing heaves at faults in an
extracted horizon, but a postprocessing step can be added to detect
possible fault positions from the discontinuities of the extracted
horizon surface and then create such gaps at the detected faults.
These methods might be further improved if we could predict areas
in which control points are required to generate more reliable results
so that the interpretation of constraints could be more straightfor-
ward and efficient.
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