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ABSTRACT

Electric Network Frequency (ENF) fluctuations based foieasal-
ysis is an emerging way for such multimedia authenticatesks
as time-of-recording estimation, timestamp verificatiand clip in-
sertion/deletion forgery detection. ENF fluctuates due yoaghic

changes in load demand and power supply, and these flucisatio

travel over the power lines with a finite speed. In this papeperi-
ments are conducted on ENF data collected across differeatibns
in the eastern grid of the United States to understand tlatioat
ship between the signals recorded at the same time at theg®lus.
Based on these experiments, a signal processing mechanitaval-
oped to demonstrate that ENF fluctuations across diffeosattions
exhibit a measure of similarity with each other, which isgadional
to the distance between the locations. Such observatiotigateal
a location estimation protocol based on the similarity ofFE®ig-
nals with respect to anchor nodes. Under certain condititvespro-
posed protocol is shown to provide an estimation accura©pes.
Challenges in the application of ENF signal analysis foatamn of
recording estimation of multimedia signal are also disedss

1. INTRODUCTION

Advancement in multimedia technologies has given rise dtifpra-
tion of such recording devices as voice recorders, camcrdeyi-
tal cameras, etc. A huge amount of digital information erdaitsing
these devices can be stored on disks or uploaded on suchmecia
dia platforms as YouTube and Facebook. Metadata descrghiog
important information as the time and the place of recordiray be
manually added or embedded into a media recording usingribuil
clocks and GPS in the recording devices. However, digitalktoan
be used to modify the stored information. Developing foietsols
to authenticate multimedia recordings using an environatesmgna-
ture, known as Electrical Network Frequency (ENF) signaijolr
emanates from power networks is an active area of researf®][1
ENF is the supply frequency of electric power in distribatiwet-

frequency estimation of the ENF signal for short segmentsian
the presence of higher noise levels, as compared with thedfou
transform based methods [3]. The performance of ENF majchin
of two signals is further improved by considering an autozsgive
model of the signal [4]. Based on this model, matching the BN~
signals by estimating the correlation coefficient betwdendorre-
sponding “innovations” sequences provides a higher comdielén
time-of-recording estimation and verification.

Most of the existing research has focused on utilizing thé&EN
signal as a timestamp for multimedia recordings. An impuria-
triguing question that is still unanswered in the literatis: “can the
ENF signal be used to estimate or verify the place of recgrdin
an audio or a video recording?” An answer in affirmative carepa
way towards the potential usage of ENF signal analysis ioraatic
geo-tagging of multimedia data uploaded on YouTube andieade
in addition to numerous forensic and law enforcement appibos.

At an inter-grid level, it may be possible to differentia&tlveen
the recordings conducted across different grids, as theuitions in
the ENF signal are typically different at the same time axinge-
pendently operated grids. At an intra-grid level, most @& éxist-
ing work has assumed that the ENF signals across an intexctath
power grid are similar at the same time. However, minor Vit
are likely to be present in the frequency fluctuations aedéft lo-
cations due to local changes in the load on the grid and thee fini
propagation speed of the effects of such load changes to pénes
of the grid [5]. In this paper, we study such effects by cortithgcex-
periments on the ENF data collected from different locatiaithin
the eastern grid of the United States. As it will be shownrlatehe
paper, there exists differences among simultaneous ENfalsigx-
tracted from recordings taken in different locations witthe same
interconnected power grid. Our study here builds a foundatd
design a localization protocol based on a method of halfilater-
section to estimate the location of recordings. The chgéerarising
due to the noisy nature of the ENF signal from multimedia réicmys
are also discussed.

works, and its nominal value is 50 or 60 Hz depending on the geo

graphic location. An important property of the ENF signathiat its
value fluctuates around the nominal value: on the order ofcepp
mately 50-100 mHz in the United States. These fluctuatioasiae
to variations in the load on the power grid and can be consitias
occurring at random. The randomly varying ENF signal is ethbe
ded into audio recordings due to electromagnetic intenfezrerom
nearby power lines in audio [1], and in video recordings dueis-
ible flickering of electric powered indoor lightings [2]. iBproperty
of the ENF signal has enabled its use in media forensic aisafyar-
ticularly for timestamp authentication and forgery detatt

2. PROPAGATION MECHANISM OF ENF SIGNAL

The fluctuations in the ENF signal in the same grid are dueeo th
dynamic nature of the load on the grid. Power demand and gippl
a given area follow a cyclic pattern. For example, demantckases
during evening hours in a residential neighborhood, aslpenpitch

on air-conditioning and other power units. For robust openzof the
grid, any load change is regulated by a control mechanismA6]
increase in the load causes the supply frequency to dropotemily;

the control mechanism senses the frequency drop and stavisd
power from adjoining areas to compensate for the increasetadd.

The ENF signal is extracted from a recording by means of filter As a result, the load in adjoining areas also increases,hwbaxds to

ing operations followed by instantaneous frequency esiimaENF
can be estimated using Fourier transform based frequetioyag®n
methods as described in [2]. For timestamp authenticatioivari-
fication, similarity between the ENF signals extracted frooitime-
dia and power databases at the corresponding time can beiregéas
by means of the Normalized Cross-Correlation (NCC) coefiici A
high value of NCC indicates the time at which the recordingkto
place. High resolution frequency estimation methods swcMd-

a drop in the instantaneous supply frequency, and the dyaaker
supply will be driven up to compensate the rising load whiedudls
to a drop in the instantaneous supply frequency in thosemsgiA
similar mechanism is used to compensate for an excess sopply
power flow that leads to a surge in supply frequency.

A small change in the load in a given area may have a localized
effect on the ENF in that area. However, a large change suohes
caused by a generator failure may have an effect on the whidlelg

SIC and ESPRIT have been shown to provide better instanianeothe US eastern grid, these changes are known to propagatgta®



grid at a typical speed of approximately 500 miles per sesdsH

We conjecture that load change may introduce location Bpesig-

natures in the ENF patterns, and such differences may beitsgl
to narrow down the location of a recording within the grid. o

the finite speed of propagation of frequency disturbancessadhe
grid, we anticipate that ENF signals would be more similaidoa-

tions close to each other as compared with those farthet. &harh a
property of ENF signal propagation across the grid can benpiatly

used for localization at a finer resolution within a grid byrgmaring

the similarity of the ENF signal in question with ENF datadmthat
may be available for a set of locations.

3. LOCATION DEPENDENCE OF ENF SIGNALS

As a first step to explore the availability of location depemidprop-
erties of the ENF signals, we focus on the ENF signal obtadied
rectly from the power mains. This provides a most favoralole-c
dition in terms of a high signal-to-noise ratio (SNR) of thewgr-
ENF signal. As ENF signals collected across different liocet are
similar to each other over time, exploration using high SkiRals
may help us in understanding if ENF signals exhibit sometlona
specific characteristics that can potentially be explottedevise a
localization protocol. Such a study may be considered dialisitep
towards gaining an understanding of the location estimatapabil-
ities of ENF signals. This understanding can pave a way tsvar
devising solutions to a more difficult problem of locationiestion
from audio and video recordings, as ENF signals in such déogs
are present in a distorted form and at a very low SNR.

In Fig. 1(a), a plot of ENF signals extracted from three simul
taneous short recordings conducted in College Park-MDcBton-
NJ, and Atlanta-GA is shown. These three locations are fateo
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Fig. 1. Sample ENF signals extracted from recordings done in three

US eastern grid. From this figure, we observe that all thre€ EN locations in the US eastern grid of US at the same time. (fegbest

signals are highly correlated at a macroscopic level; hewen the

zoomed plot shown in Fig. 1(b), some differences can be saess
the three recordings. We extract these variations usingeirig)

mechanism, and then compare them to understand a relapdresh
tween signals recorded at different locations.

3.1. Signal Processing M echanism to Extract ENF variations

As can be seen from Fig. 1(b), the variations in simultandeNE
signals recorded across different locations of the same gré
present at high frequencies. To extract these variatiossuse a
high pass filtering mechanism by passing temporally aligibldF
signal, f{k}(n), recorded at:'" location through a smoothening
filter, and subtracting the resulting output signal frgﬁﬁ‘f}(n). The

corresponding high pass filtered outpf;;i;f}(n) is given by:
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wheref*} (n) is the ENF value at time, w(-) is the coefficient of
the smoothening filter, antl/ is the filter order for feature extraction,
chosen as an odd number. After extracting high pass filtégedis
for each location, their pair-wise cross-correlationsadrined. The
pair-wise cross-correlation between any two filtered segeat time
n from thek*" and thel*" location is given by:
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Fig. 2. Signal processing mechanism to explore intra-grid EN&-rel
tions.

eastern grid: College Park in Maryland, Princeton in Nevs&gr
and Atlanta in Georgia [7]. We use the mechanism described in
Sec. 3.1 to estimate the cross-correlation between filteNe data
from all three locations. We divide the signal into non-dapping
segments of 10 minutes each. Instantaneous frequencyirsaésd
every 1 second using the subspace based ESPRIT [8] method, as
this method provides better frequency estimation accutzy other
methods [3]. The plot of the correlation coefficients betweeo-
cessed ENF signals at different locations for filter ordér= 3 is
shown in Fig. 3. It can be observed from this figure that the cor
relation coefficient between the signals from city pairsdpart in
geographical distance is less than that of between the|sifen

city pairs closer to each other. The correlation coefficismtpprox-

whereN is the length of the signal segment. A block diagram repreimately proportional to the distance between the citiess tworth

senting this signal processing mechanism is shown in Fig. 2.

3.2. Case Study 1. 3-Location Data on the US East Coast

In this section, we describe our experiments on a 10-howy &n
multaneous recording of power data from three locationfiénUS

noting that the three cities lie approximately on a stralgtg on a
map. Based on these observations, we derive a relationshigbn
the correlation coefficient of the data from different looas and
their geographical distances.

Let us denote Princeton-NJ by city 1, College Park-MD by city
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error in distance estimation for different segment lengthd filter
orders is shown in Fig. 4(a). From this figure, we observewhen

(b) Different segment duratiody/ = 3

the filter order)/ = 3 is used, segment of 900 seconds providesgjg 4 Mean error in distance estimation between Princeton and

an estimate of distance within an accuracy of 24 miles. b&irg
the order of the filter worsens the distance estimates, kedhae use
of more data in filtering of the ENF signal averages out thectsf,
which may have been propagated due to the finite propagaieeds
of the frequency disturbances across the grid. To undetstenef-
fect of temporal resolution in distance estimation, we ik = 3
and plot the average distance estimation error for diffedemation
of instantaneous frequency estimation in Fig. 4(b). Froimfigure,
we observe that the best estimates are obtained when imsésmnts

Atlanta using a linear relationship between correlatioafficients
and distance between the cities.

minutes. The plots of the correlation coefficients betweata érom
different cities are shown in Fig. 5. From these figures, wsecole
that the correlation coefficients between the data colieftten cities
closer to each other are higher than that of the data froesdiirther
apart, as was the case with 3-location data. The relativeninatg
of the correlation coefficients are roughly inversely pndiomal with

frequency is estimated every 1 second. Such a phenomendrecan the geographical distance between the cities. For exartipedis-

explained from the finite speed of signal propagation, wki@mpir-
ically determined to be in the order of 500 miles for easteith [p].
As we increase the duration of data for instantaneous frexyuesti-
mation, the effect of the signal propagation is averagedleatling
to a decrease in the accuracy of distance estimates. Dewgdhe
signal duration for instantaneous frequency estimatioteby than
1 second leads to an error in frequency estimation itselftduee
small number of data samples available for frequency esitima

tance between College Park and Princeton is the least ndistiahce
among all city pairs, and the correlation coefficient betwie data
collected from there is the highest. However, due to a diffe2-
dimension relation of the relative locations of the citi@8][ it may
not be possible to use the straight line assumption useddn3sa
As the flow of the ENF signal over the wire lines is dependent

on a variety of parameters, such as grid topology (roadriistanay
not equal actual wire distance), grid density, etc., theetation co-

Based on this case study on 3-location data, we see that ENF siefficient between data from different locations may haverapex

nals have the potential to be used as location-stamps. Thedation
coefficient between the data recorded at an unknown locatidna
known location can be used to estimate the distance of tlwrdec
ing location from the known location. Known locations cathéee
as anchor nodes in designing localization protocols [9]thBinext
section, we discuss another case study on 5-location daie oS
eastern grid that reveals additional challenges in loatbn.

3.3. Case Study 2: 5-L ocation Data on the US East Coast

For this experiment, power data was collected from two more |

cations of Champaign in lllinois and Raleigh in North Camaliin
addition to the three locations used in Sec. 3.2 in the eaged
of US. This 5-location data is 4 hours in duration. After temglly
aligning the signals, we use the mechanism described in Bgc.
to estimate the correlation coefficients between the data fiffer-

relationship with the distance between these locationcadse of
limited data available to us, we design a localization protavith-

out learning an explicit relationship between correlatioefficient
and distance between different locations. Instead, we makeof
the observation from our experiments that the pair-wiseetation
between the locations far apart is less than the pair-wiseledion
between the cities close to each other. Using such obsengative
devise a method of half-plane intersection to estimate &mawan

location of recording.

3.4. Half-Plane Intersection for Localization

Let us denote the location &f anchor cities by?, = {z1,y1}, Pr =
{z1,11},..., Pk = {zk,yx}. Suppose we are given ENF data
collected at all anchor cities along with their known looas. Based
on this information, we derive a localization protocol toieste the

ent city pairs for a filter orded/ = 3 and a segment length of 10 unknown location of a city node (denote by A) that lies in acfdo-
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Fig. 5. Correlation coefficient between the processed ENF sig
nals across different locations for 600-second query sagifioe 5-
location data on the US East Coast

cations described by the convex hull Bf, P, . . ., Px, denoted by
D. We assume that city A's locations lies in this set. As disedsin
Sec. 3.3, if the distance @, from city A is greater than the distance
of P; from city A, we generally have; 4 > p;, 4. Based on this
observation, we say that the location of city A lies in theftmhne
described by the set of poiné,j given by:

if pj,a—pi,a <0

(4)

The conditions described in Eq. (4) are the sign bit of the dif
ference between the correlation coefficients. These emsthake
use of a highly quantized information from the correlatiaefti-
cient. The conditions also provide us with hard decisionnolauies
of the half-plane, and does not take into account the noisyreaf
pair-wise correlation coefficients. For example, when theetation
coefficients of the ENF signal of city A witif" and;'" locations
are very close to each other, i.¢o; 4 — pj,a| < e for a smalle,
the confidence in assigning a half-plane to the feasibletisolset
f’i,,- is reduced in Eq.(4). To compensate for such values of @rrel
tion coefficients, we replace the feasible set given by Bquith the
following equation with a tolerance

if pj,a—pia <ce

®)

Using the correlation value obtained from all the anchoresod
the set of feasible points can be further reduced by comgputia
intersection of all the feasible half-planes as following:

{X X = Pifl2 > [|X = Pjll2, X € D}
{X:IX = Pifl2 < | X = Pj[l2, X € D}

~ if pja—pia>0
Pi,j _ Pj,A — Pi,A

{X X = Pifl2 > [|X = Pjl|2, X € D}
{X X = Pifl2 < [|X = Pjll2, X € D}

= if pia— pi
Pi,j _ Pj,A — Pi,A > €

Pa=ni;P; ijefl,2,.. . K}i#j 6)

available, location estimates can be defined using suchanes the
centroid of the feasible set.

Fig. 6 shows the plot of location estimation accuracy ofedtéht
cities by considering other cities as anchor nodes. Frosrptt, we
observe that the location estimation accuracy of somesditie very
high for certain values of. Location estimation accuracy of NJ and
CP is approximately 100% and 85% foe= 0.05. For low values of
¢, the localization accuracy is less, since the hard decisitndoes
not provide a correct estimate when measurements are #sEgan
be seen from Fig. 5(c) and 5(d), the correlation coefficiaties
for different city data from Champaign-IL and Atlanta-GAeajuite
close to each other, and therefore it becomes difficult tothese
values for assigning feasible half-plane regions. Addirmgexanchor
nodes and placing them strategically may lead to a bettetitot
estimate.
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Fig. 6. Location estimation accuracy on 5-location US east caatst d
using the proposed half-plane intersection method.

4. DISCUSSIONS

In Sec. 3, we described the location estimation capalslitiethe
ENF signals. For multi-location data, we proposed a hafiplin-
tersection method to estimate the location of an unknownrdec
ings. The localization accuracy from this method can be awgd by
adding more locations as anchor nodes. The number of coristra
to estimate the feasible region increases on the ordéX#f?) with
the number of anchor citieK. Also, our current formulation has
used highly quantized information from correlation coeédfits to
determine the feasible region, i.e. only the sign of theedéfce be-
tween the correlation coefficient of the query processed Eiyfal
with the ENF signals from any two anchor locations. The dafre
tion coefficient generally carries some distance relatéotimation
as was shown for 3-location data. Combination of these tweas
of correlation coefficients may lead to a better localizatpproach
that provides a smaller set of the feasible solution as coadpaith
the simple half-plane approach presented above. This ig afpaur
ongoing work.

The primary focus of this paper was to explore the uncharted
application of ENF signal analysis for intra-grid locatiestimation
of multimedia data. This first study conducts experimentponer
ENF signals and provides encouraging results towards treattin.
Multimedia ENF data is, however, more challenging than pdai-
data because of its noisy nature. As we are utilizing the figh
guency variations of the ENF signal to extract a meaningfetrio
for localization, the noisy nature of the ENF signal in mukidia
data may make the localization task difficult. Furthermageshown

As we have ENF data from the five locations, we use four loca-by our experiments, location specific variations are bgsturad us-

tions as anchor cities and use the ENF data of the fifth citgtioate
its location via the proposed half-plane intersection méttDue to
the limited amount of data, we measure the estimation acgwf
our method by measuring the fraction of estimates that aonite
actual position of the query city. If data from more anchdiesiis

ing instantaneous frequencies estimated at 1 second tahpsp-
lution; reliable ENF signals extraction from multimediaalat such
a high temporal resolution is also a research challengeeritesless,
the results presented in this paper demonstrate that ENElsigave
a strong potential to be used as a location-stamp.
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