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Abstract. The recognition of affective human communication may be
used to provide developers with a rich source of information for creat-
ing systems that are capable of interacting well with humans. Posture
has been acknowledged as an important modality of affective communi-
cation in many fields. Behavioral studies have shown that posture can
communicate discrete emotion categories as well as affective dimensions.
In the affective computing field, while models for the automatic recogni-
tion of discrete emotion categories from posture have been proposed, to
our knowledge, there are no models for the automatic recognition of af-
fective dimensions from static posture. As a continuation of our previous
study, the two main goals of this study are: i) to build automatic recogni-
tion models to discriminate between levels of affective dimensions based
on low-level postural features; and ii) to investigate both the discrimi-
native power and the limitations of the postural features proposed. The
models were built on the basis of human observers’ ratings of posture
according to affective dimensions directly (instead of emotion category)
in conjunction with our posture features.

1 Introduction

The role of computers and other technologies in many facets of today’s society
explains the importance of creating systems to be capable of interacting well
with humans. Affective communication may be used to provide developers with
a rich source of information for achieving this goal. Posture in particular has
been recognized as an important modality for affective communication [20][1][8]
[5]. In fact, cognitive neuroscience studies have shown the importance of body
posture over facial expressions in cases of incongruent affective displays [7].

Behavioral studies have shown that posture can communicate both affective
dimensions and discrete emotion categories [17][5]. In the affective computing
field, models for the automatic recognition of discrete emotion categories from
static body postures have been proposed [2][5][15]. Other studies have shown that
body motions extracted from dance sequences [3][24][14] can convey emotion in
terms of discrete categories effectively. To our knowledge, what are missing still
are models for the automatic recognition of affective dimensions from posture
as there are for motion [4]. This is important as a single label may not reflect
the complexity of the affective state conveyed by the posture. Indeed, Ekman
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and Friesen [10] initially posit that while they consider the face to be the fore-
most modality for expressing discrete emotion categories, the body is better at
communicating dimensions of affect.

While affective posture recognition systems continue to focus on discrim-
inating between emotion categories, our previous work [18] has attempted to
understand if we can go beyond these categories and recognize levels of affective
dimensions. Using a multidimensional scaling technique, affective dimensions
were extracted that support the categorical evaluation of affective posture. The
extracted dimensions are arousal, valence, and action tendency. The goals of
the new study are: i) to build automatic recognition models to discriminate be-
tween levels of affective dimensions based on low-level postural features; and ii)
to investigate both the discriminative power and the limitations of the postural
features proposed.

The remainder of the paper is organized as follows: Section 2 describes the
affective dimension recognition survey and the automatic recognition models
built upon the survey data and our low-level postural features. The models
and the statistically determined most relevant features of each are evaluated
in Section 3. Section 4 provides a discussion on some further testing that was
carried out and future directions to be explored.

2 Affective Dimension Recognition

2.1 Human Recognition of Affective Dimensions

As our goal is to build posture recognition models based on affective dimensions,
an online survey was conducted to collect data from human observers. To carry
out the survey, the same set of affective posture images that were used in the
previous study were used in the current study. The reader is directed to [17]
for a detailed explanation of the posture collection and stimulus preparation
processes.

Fig. 1. Examples of the affectively expressive avatars reconstructed from motion cap-
ture data.

The survey was conducted online as a series of webpages. The stimuli com-
prised 111 affective posture images, and were presented separately (one posture
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per page), in a randomized order that differed for each participant (called ob-
servers hereafter). Five anonymous observers, two males and three females par-
ticipated in the study. In contrast to the previous study, in the current survey, hu-
man observers judged postures according to affective dimensions directly instead
of judging postures according to discrete emotion categories only. Specifically,
observers were asked to rate each posture according to a seven-point Likert scale
for each of four affective dimensions: valence (pleasure), arousal (alertness), po-
tency (control), and avoidance (avoid/attend to). Valence, arousal, and potency
(or dominance) were chosen based on psychological research throughout the last
century which asserts that these three dimensions cover the majority of affect
variability [25][23][6] [22]. Furthermore, valence and arousal were two of the di-
mensions identified in our initial study, and we consider potency a form of action
tendency, which was the third dimension we identified previously.

Next, we analyzed the observers’ data to determine the level of agreement
between observers in rating the affective dimensions. Using the normalized ob-
servers’ rating for each posture for each dimension, the estimated marginal means
for each observer were calculated for each dimension. Results showing differences
between observers across the four affective dimensions are presented in Figure 2.
The x-axis denotes the four affective dimensions and the y-axis denotes the esti-
mated marginal means for each observer. As we can see, the greatest variability
occurs with observer two across the arousal, potency, and avoidance dimensions.
According to the means, across all observers, the arousal dimension contains the
least amount of variability while the greatest amount of variability occurs for
the avoidance dimension. Cronbach’s α was used to test the reliability of the
observers’ agreements across the four dimensions. The results reflect the above
findings with arousal showing the highest reliability (α = 0.85, r = 0.55), and
avoidance showing the lowest reliability (α = 0.35, r = 0.11).

Next, we calculated the average percentage of error across all observers for
each dimension, considering each observer’s rating for each posture separately.
The results obtained show an average error of 19% for valence, 15% for arousal,
19% for potency, and 25% for avoidance. We consider these differences to reflect
the variability that may typically occur in human-human affective communica-
tion.

2.2 Automatic Recognition of Affective Dimensions

To build automatic affective dimension recognition models, each static posture
is associated with a vector of 24 postural configuration features (explained be-
low), and four values indicating the observers’ normalized average ratings for
each affective dimension: valence, arousal, potency, and avoidance. The same
features were used to build emotion category recognition models in previous
studies [2][16][9].

The postures are described according to the 24 features introduced in our pre-
vious research [2][8], which are listed in Table 1, and shown in Figure 3. These
features, calculated using the numerical data obtained from the motion capture,
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Fig. 2. Results of observer ratings for each affective dimension. The affective dimen-
sions comprise the x-axis, and the estimated marginal means for each observer comprise
the y-axis.

Fig. 3. Visual representation of some of the postural configuration features. These
features were computed in the frontal view by projecting 3D motion captured data on
the 3 orthogonal planes to measure direction and volume of the body according to the
lateral, frontal, and vertical extensions of the body, and body orientation.
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were chosen because they are low-level and context-independent. Precisely, di-
rection and volume of the body were described by projecting each marker on the
three orthogonal planes and measuring the lateral, frontal, and vertical extension
of the body, body torsion, and the inclination of the head and shoulders.

Table 1. The table lists the set of posture features proposed. The Code column indi-
cates the feature codes used in the paper. The following short-cuts are used: L: Left,
R: Right, B: Back, F: Front.

Code Posture Features Code Posture Features

V4 OrientationXY : B.Head - F.Head axis V5 OrientationY Z : B.Head - F.Head axis

V6 Distancez : R.Hand - R.Shoulder V7 Distancez : L.Hand - L.Shoulder

V8 Distancey : R.Hand - R.Shoulder V9 Distancey :L.Hand - L.Shoulder

V10 Distancex: R.Hand - L.Shoulder V11 Distancex:L.Hand - R.Shoulder

V12 Distancex: R.Hand - R.Elbow V13 Distancex:L.Hand - L.Elbow

V14 Distancex: R.Elbow - L.Shoulder V15 Distancex: L.Elbow - R.Shoulder

V16 Distancez : R.Hand - R.Elbow V17 Distancez :L.Hand - L.Elbow

V18 Distancey: R.Hand - R.Elbow V19 Distancey:L.Hand - L.Elbow

V20 Distancey: R.Elbow - R.Shoulder V21 Distancey :L.Elbow - L.Shoulder

V22 Distancez : R.Elbow - R.Shoulder V23 Distancez :L.Elbow - L.Shoulder

V24 OrientationXY : Shoulders axis V25 OrientationXZ : Shoulders axis

V26 OrientationXY : Heels axis V27 3D −Distance: R.Heel - L.Heel

A backpropagation algorithm was used to build a separate model for each
affective dimension. One reason for choosing backpropagation is its effective
handling of data comprising continuous values. Although other algorithms may
perform better, finding one is not the goal. Instead, the goal is to examine our set
of features, and to determine whether or not they are effective for discriminating
between levels of affective dimensions from posture. Furthermore, backpropaga-
tion is a well accepted algorithm used in recognition tasks.

Table 2. Performance levels of backpropagation for the 111 postures for each affective
dimension model using the complete set of 24 posture features.

Affective Dim. Models Error %: 24 Features

Valence 21%

Arousal 21%

Potency 19%

Avoidance 19%

The topology of the backpropagation network was determined empirically.
It consists of one input layer with 24 nodes (corresponding to the 24 posture
features), one hidden layer with 12 nodes (the number of input nodes/2), and
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an output layer with one node (corresponding to the observers’ ratings for each
dimension, separately). Both the learning rate and the momentum were set to
0.01. Each network was trained with 10,000 epochs, and tested using five fold
cross-validation. The performance error obtained for each of the backpropaga-
tion models, shown in Table 2, is 21% for both the valence and arousal dimen-
sions, and 19% for both the potency and avoidance dimensions. Comparable to
the results of the human observers discussed in Section 2.1, these results using
backpropagation are quite promising.

3 Grounding Affective Dimensions into Posture Features

In the first part of this paper, we proposed a set of low-level postural features
and tested the possibility of building models for recognizing levels of affective
dimensions. As mentioned above, these results are quite promising as they are
similar to the level of agreement between our observers. This second part of the
paper tackles two issues. One, we look at how humans may use postural features
to discriminate between levels of affective dimensions. Two, we assess the limita-
tions of our features and hence, which features may be necessary to add in future
studies. To answer the first question, we extract the most relevant features for
each affective dimension by applying non-linear mixture discriminant analysis
(MDA) [19][12] to the postures for which agreement between the observers was
high. To answer the second question, we examine the postures for which agree-
ment between the observers was very low and discuss them according to models
presented in other studies.

MDA was applied to each of the four affective dimensions separately. MDA
is a statistical technique used to discriminate between two or more categories or
groups. Mixtures of Gaussian distributions are used to model the groups. More-
over, the separation between groups is maximized while the variance within the
groups is minimized. Postures that received an average observer rating of < 3.8
were labeled low. Postures that received an average rating between 3.8 – 4.2 were
labeled neutral. Finally, postures that received an average rating of > 4.2 were
labeled high. Given that the majority of the postures were labeled as either low or
high, the number of subclasses used by the MDA algorithm for classification was
two for low-rated postures, one for neutral-rated postures, and two for high-rated
postures. Furthermore, in order to discern the most discriminating feature sets,
only the postures which obtained high agreement between observers (> 0.80)
were used. Thus, after discarding the low agreement postures from the original
111, 91 postures remained for the valence dimension, 101 postures remained for
the arousal dimension, 93 postures remained for the potency dimension, and
68 postures remained for the avoidance dimension. The MDA algorithm allows
us to ascertain the most relevant features because it uses an iterative process
to create the models based on linear combinations of the most discriminating
features.

Separate models were built to discriminate between pairs of affective dimen-
sion levels (e.g., low vs. high, low vs. neutral, etc.). The models obtained are
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Table 3. Important features for discriminating between pairs the affective dimension
levels are presented. The last column contains the percentage of error for each model.
The following short-cuts are used: Dim: Dimension, H: High, L: Low, N: Neutral.

Affective Head Vertical Frontal Lateral Heels MDA

Dim. Model V5 V6 V7 V16 V22 V23 V8 V9 V19 V20 V21 V24 V10 V11 V13 V14 V15 V26 v27 Error

Valence HL 3 1 2 16%

Arousal HL 1 2 5 3 4 5%

Potency HL 3 2 1 4 5 6 3%

Avoidance HL 4 1 2 3 7%

Valence HN 4 1 2 3 27%

Arousal HN 1 4 3 2 9%

Potency HN 4 3 1 5 2 8 6 7 19%

Avoidance HN 2 5 1 4 3 14%

Valence LN 3 1 2 28%

Arousal LN 3 1 4 5 2 12%

Potency LN 3 4 1 2 20%

Avoidance LN 1 2 18%

shown in Table 3. The last column of the Table reports the percentage of clas-
sification error for the models. The remaining columns report the features used
by the discrimination functions of each model. The number in each entry of the
Table represents the rank of importance of the features. Lower numbers corre-
spond to higher discriminative power. For conciseness, we report in this Table
only the features selected by at least one of the four models.

An examination of the Table shows that the head (V5) is important for
distinguishing between low and high for all dimensions and high and neutral
for all dimensions except arousal. For arousal, to distinguish between high and
neutral, and low and neutral levels, openness of the body seems to be important
as these models rely on at least one vertical, frontal, and lateral feature. In the
case of potency, the most discriminating feature for all three models is V16, the
vertical extension of the arm. Frontal features do not play a role in any of the
avoidance models. Similarly, lateral features are not represented in any of the
valence models.

A visual examination of the the labels assigned to the subclasses for low- and
high-rated avatars for all four dimensions indicates that the relevant features
identified by MDA do aid in discriminating between postures. Refer to Figures
4, 5, 6, and 7 for examples. Low subclasses of valence (Figure 4(a-d)) appear
to be separated by the vertical extension of the arm (V6) and the 3D distance
between the heels (V27). In one subclass (Figure 4(a,b)), the arms are stretched
down alongside the body and the heels remain close together (the body is quite
closed), while in the other subclass (Figure 4(c,d)), the arms are raised to face
level and the heels are further apart. Whether the arms are raised well above
the head (Figure 4(e,f)) or fall within the torso area (V6) (Figure 4(g,h)) seems
to separate postures within the two high subclasses of valence.

Lateral features (V10 and V14) are used for distinguishing between high
levels of arousal. As we can see from Figure 5, the body in one subclass (Figure
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5(c,d)) is significantly more open laterally than in the other high subclass (Figure
5(a,b)).

In the case of potency, the vertical (V7 and V16) and lateral (V11 and
V13) openness of the body seem to classify postures within the two low-rated
subclasses (Figure 6(a-d)). In the high subclasses of potency, the vertical (V7
and V16) and frontal (V9) extension of the arms are the most distinguishing
features. In one high subclass (Figure 6(e,f)), hands rest on the hips, whereas in
the other high subclass (Figure 6(g,h)), the arms are more raised and extended
out in front of the body.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Examples of the 3D affectively expressive avatars for low and high valence
subclasses. (a)(b) Low subclass 1, (c)(d) Low subclass 2, (e)(f) High subclass 1 (g)(h)
High subclass 2

(a) (b) (c) (d)

Fig. 5. Examples of the 3D affectively expressive avatars for high arousal subclasses.
(a)(b) High subclass 1 (c)(d) High subclass 2

Vertical (V7 and V23) and lateral (V10 and V11) features are important for
distinguishing between two levels of low avoidance, as well as two levels of high
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Examples of the 3D affectively expressive avatars for low and high potency
subclasses. (a)(b) Low subclass 1, (c)(d) Low subclass 2, (e)(f) High subclass 1 (g)(h)
High subclass 2

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Examples of the 3D affectively expressive avatars for low and high avoidance
subclasses. (a)(b) Low subclass 1, (c)(d) Low subclass 2, (e)(f) High subclass 1 (g)(h)
High subclass 2
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avoidance. In particular, arms are folded across the body or near the face for
one low subclass (Figure 7(a,b)), while in the other low subclass (Figure 6(c,d)),
the arms are stretched down along the side of the body. In the case of high
subclasses, one subclass (Figure 6(e,f)) contains postures in which the arms are
raised and open laterally, while postures in which the arms rest at torso level
both vertically and laterally are represented in the second high subclass (Figure
6(g,h)).

Interestingly, an examination of the misclassified postures reveals a possible
inconsistency in perception by the observers, and not in classification by the
automatic recognition models. In the majority of the cases, the postures actually
seem to be classified correctly by MDA when considering postural features.

4 Discussion

The results presented in this paper are quite interesting and promising. Our
set of low-level posture configuration features seem quite suitable for building
automatic recognition models for affective dimensions. In fact, backpropagation
was used for further evaluation using reduced feature sets to build a new set
of affective dimension models. These models were built with the set of features
determined by MDA to be the most discriminating features for each separate
affective dimension, and tested on the entire set of 111 postures. The reduced
number of features required a reduction in the number of nodes for both the
input layer and the hidden layer of the architecture. Specifically, there were five
nodes in the input layer and three nodes in the hidden layer for the valence,
potency, and avoidance models; and four nodes in the input layer and two nodes
in the hidden layer for the arousal model. The results obtained from testing are
positive and lend further support to the effectiveness of our features, as a marked
decrease can be seen in the error percentages across all four dimensions. There
was a 12% error percentage for valence, 10% for both arousal and potency, and
11% in the case of avoidance.

While the recognition models presented here were tested with standing pos-
tures, the low-level, context-independent nature of our features has also been
assessed with a combination of standing and seated postures. In that situation,
our affective posture recognition system [16] was used to classify posture accord-
ing to nine affective categories (angry, confused, fear, happy, interest, relaxed,
sad, startled, and surprised) chosen to represent different types of emotion situ-
ations. On average, 70% of the postures were correctly classified.

However, there are more situations and conditions to examine. As mentioned
in Section 3, other types of features, (e.g., amplitude, speed of movement, di-
rection, etc.) may be necessary for achieving better recognition of some affective
states such as fear [5][16]. Indeed, an evaluation of the postures that were dis-
carded due to low agreement on affective dimension ratings between observers
reveals that fear and surprise were the most frequently chosen emotion cate-
gories.



11

Moreover, currently unrepresented static features may add to the perfor-
mance of the models. In fact, a 1932 behavioral study by James [13] found
that Approach-Withdrawal (leaning direction) and Expansion-Contraction of
the body are important for attributing attitude to static posture. This impor-
tance of leaning direction also has been evidenced by more recent studies [11][21].
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