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Abstract

Multiple Description with Forward Error Correction (MD-FEC) coding provides the flexibility, easy adaptivity
and distortion-rate optimality that are desirable for delivering streaming video in a network environment with time-
varying bandwidth fluctuations and random packet losses. Inthis work, we consider the issue of how diverse
receivers of a video stream should be grouped – where each group receives a MD-FEC coded bitstream optimized
for that group – so that the average video distortion is minimized across all receivers. We show that asequential
grouping solution is optimal for linear distortion-rate functions. For non-linear distortion-rate functions, whilethe
optimal grouping structure may not be sequential in general, we observe that the approximation factor attained
by the best sequential solution can be characterized in terms of the “degree of convexity” of the distortion-rate
function. Numerical experiments with realistic distortion-rate functions reveal that the difference between the
globally optimal grouping solution and the best sequentialsolution, is typically small. We provide a dynamic
programming based polynomial-time algorithm to compute the best sequential solution.

Index Terms
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I. I NTRODUCTION

Video (and multimedia) networking is arguably one of the most important emerging trends in communication
networking today [1]. Streaming multicast video (live or pre-recorded), which is envisioned by many to
become the “killer” application in the coming decade, will decide whether the Internet and the current wireless
technologies can live up to the explosive growth of video applications, and the multimedia demands of the next-
generation network users [2]. As networks become more diverse and dynamic in nature, they pose significant
challenges to effective delivery of streaming video. Firstly, the receivers that request and receive the streaming
video can have heterogeneous access link capacities. Secondly, the available bandwidths on the source-to-receiver
paths or the receiver’s access links can vary dynamically with time. Finally, the streaming video delivery solution
must scale to a large number of interested subscribers (receivers) who can dynamically join and leave the network.

Multiple Description coding with Forward Error Correction (MD-FEC), introduced in [3], provides a
promising technology for effective video streaming over typical network environments. MD-FEC allows the
necessary flexibility, easy adaptivity and distortion-rate optimality that are necessary or desirable requirements for
delivering streaming video (as described earlier). With MD-FEC coding, video is coded as multipledescriptions,
and different parts of the video are protected from channel losses through differentiated redundancy (FEC)
provisioning. The overall distortion that can be attained through MD-FEC coded video streaming would however
depend on the number of MD-FEC streams that can be used to serve a given set of receivers. On one extreme,
if each receiver is served a different MD-FEC coded bitstream (simulcast), the overall distortion will be the
minimum. However, this approach does not scale with number of receivers. On the other extreme, all receivers
of a video can be grouped together and served a single bitstream. Such an approach is scalable, but would
lead to larger average distortion as compared to a simulcastsolution. The problem that we address is how a
given set ofM (typically large) receivers each with different path bandwidths (resulting in different packet-loss
rates across the receivers), should be divided intoQ (typically small) groups, where each group is served a
separate MD-FEC coded bitstream; the overall objective in this grouping strategy is to minimize the average
video distortion across allM receivers.

Grouping of receivers into a given number of groups also becomes necessary when we take into account a
typical large-scale video distribution system (network) where a set of relay servers is used to distribute video
from a single source server to a (possibly large) number of receivers. In such a scenario, each source forwards
the video content to the relay nodes (relay servers), and each relay node in turn encodes the video and sends it
to a subset of all receivers. Each receiver group in this context corresponds to the set of receivers assigned to
receive the video stream from a single relay node.

For this optimal receiver grouping problem, the key resultsthat we present in this work are as follows. We first
show that for linear distortion-rate functions, there exist optimal solutions that have asequential structure, which



Fig. 1. MD-FEC coding basics: given a Group-Of-Pictures (GOP) of scalable-coded video bitstream organized from Most
Significant Bit (R0) to less significant bits (RN ), suppose we want to encode this GOP intoN descriptions, we first
run an optimal bit allocation scheme and divide the bitstream into N sections, marked with source-rate break points
R0, R1, R2, ..., RN , whereR0 ≤ R1 ≤ R2 ≤ ... ≤ RN and R0 = 0. Sectionn (n ∈ [1, N ]), contained between
rate pointsRn−1 andRn is further split inton equal size subsections. These subsections are encoded by a Reed-Solomon
(N,n) code vertically at block level to generate parity blocks. Each row in (b) corresponds to a description.

implies that finding the best (optimal) sequential groupingalso provides us a solution that is globally optimal. We
observe that for non-linear distortion-rate functions, optimal sequential solutions need not be globally optimal;
however, the difference in the overall distortion attainedby the two solutions is bounded by the “degree of
convexity” of the distortion-rate curve. We show that the optimal sequential grouping solution (for both linear
and non-linear distortion-rate functions) can be cast as a dynamic programming problem, and is computable
in polynomial-time. Through numerical experiments with realistic distortion-rate functions, we compare the
performance of the optimal sequential grouping solution (computed by solving the dynamic program), the
globally distortion-optimal solution (not necessarily sequential, and computed through enumeration) and a
baseline equal partitioning approach. We also demonstratethe benefits of a per-group multirate (MD-FEC)
solution over a per-group unirate video streaming approach. We observe that the best sequential grouping
solution typically attains a distortion that is very close (sometimes equal) to the minimum attainable distortion.

II. PROBLEM FORMULATION

We first provide a brief overview of MD-FEC. MD coding [4] involves splitting the source data into two
or more descriptions in such a way that even if a subset of descriptions is received, the receiver would still
be able to decode the video, albeit at a lower quality. Priority encoded transmission (PET) [5] was introduced
to improve the transmission of priority ordered data, e.g. the I, P , andB frames of MPEG2, on lossy packet
networks, by generating MD codes with the help of parity bytes. The MD-FEC algorithm [3] was developed to
generate descriptions that are distortion-optimal for a video source over a single lossy link between a source and
a receiver. For this purpose, one can use Reed-Solomon codes(which satisfy the Maximal Distance Separable
or MDS property) of type(N,n), for n = 1, . . . , N whereN is the number of descriptions that we generate
per GOP. As illustrated in Figure 1, the RS encoding for each section is done vertically and the FEC bytes are
arranged below the corresponding input source symbols. If the receiver obtainsn descriptions, then it will be
able to decode all the source data up to rateRn (the first n sections). MD-FEC video coding nicely adapts
itself to changes in the available capacities and the packetloss rates. The optimization algorithm returns the
rate break-points{Rn}

N
n=1 that would minimize the distortion seen by the receiver, when the loss statistics of

the link connecting the source and the receiver is known.
We consider MD-FEC in a network model that includes one source (the origin server or server for the video

content), andM receivers (subscribers of the video). TheM receivers are then grouped intoQ groups, where
each group is served by a separate (independent) MD-FEC coded bitstream via multicast. In a video distribution
network as described in the previous section, each group maycorrespond to the set of receivers assigned to
(served by) a single relay server. The focus of this work is onfinding a receiver grouping strategy that is optimal
or near-optimal, and yet computationally efficient.

Towards this end, we study the class ofsequential grouping solutions, which – as we show later in this work
– attains the above desirable properties. A sequential grouping solution is ofmulti-threshold type, i.e., there



exists a set ofQ + 1 bandwidth thresholds,θ0, θ1, · · · θQ, (whereθ0 = 0, and θQ is the maximum possible
receiver path bandwidth) such that any receiverk with path bandwidth in(θq−1, θq] is a part of groupq, for
q = 1, · · · , Q.

We consider a scalable video bitstream that is coded intoN descriptions, where each description is of rate
∆. We assume discrete bandwidth levels, where the minimum bandwidth granularity is∆ and all receivers have
path bandwidths in multiples of∆. Let ρn (given) be the number of receivers whose bandwidth isn∆, for
n = 1, · · · , N . We can see that

∑N

i=1 ρi = M . Note that there areO(QM ) ways to putM receivers intoQ
groups, which is a very large number. Our optimization objective is to minimize the average distortion:

min
{ρn,q,Rn,q}

1

M

Q∑

q=1

N∑

n=1

ρn,qD(Rn,q), (1)

subject to
Q∑

q=1

ρn,q = ρn, n = 1, 2, ..., N, (2)

and for everyq ∈ {1, . . . , Q},

N∑

n=1

αnRn,q ≤ N∆, R1,q ≤ R2,q ≤ . . . RN,q, (3)

whereD(R) is the distortion-rate function, assumed to be convex decreasing,ρn,q is the number of receivers
with path bandwidthn∆ that are assigned to groupq, Rn,q is the source rate decodable by receivers at bandwidth
level n∆ in groupq, andαn = N

n(n+1) for 1 ≤ n ≤ N − 1, andαN = 1. We minimize the objective over the
variablesρn,q, Rn,q for n = 1, . . . , N, q = 1, . . . , Q.

In our model and MD-FEC solution, we implicitly assume that areceiver with path bandwidthn∆ suffers
an apparent (packet) loss ofn∆

N∆ = n
N

. We relax this assumption later in our simulation study in Section IV-B,
where we also consider random losses.

In general, it can be shown that there exists an optimal grouping solution where all receivers at the same
bandwidth level are assigned to the same group. In other words, there is an optimal solution in which for each
n, there exists ãq(n) such thatρn,q̃(n) = ρn. The solutions that we find in this work satisfy this property.

III. A NALYTICAL RESULTS

In this section, we analyze the properties of the optimal sequential (multi-threshold) grouping solution, and
analyze theoretically how it compares with the “globally optimal” solution. Note that in the globally optimal
solution, no constraint is placed on the policy type, so thissolution may or may not be sequential. We have
proved that the optimal sequential solution can be computedin polynomial-time using dynamic programming.

A. Global optimality of sequential grouping for linear distortion-rate functions

Distortion-rate functions are decreasing, theoreticallyconvex functions of the rate. To obtain important insights
to the grouping problem, however, we first analyze the special case oflinear distortion-rate functions. If the
range of rate variations is “small,” then the convex distortion-rate functions are well approximated by a linear
function; otherwise the linear distortion-rate functionsthat we analyze can be viewed as the outer (upper)
approximation of the actual convex distortion-rate function.

Proposition 1: For linear distortion-rate functions, there exists a sequential MD-FEC grouping solution that
is globally optimal, i.e., attains the minimum value in (1).

The proof of this result can be found in Section VI Appendix.
The above result states that if distortion-rate functions are linear, the optimal sequential MD-FEC grouping

solution, i.e., a sequential grouping solution with MD-FECcoding, where the grouping thresholds are chosen
“optimally”, performs as good as any other possible solution. We next analyze the case of general convex
distortion-rate functions.

B. Optimality properties of sequential grouping for general convex distortion-rate functions

For general convex distortion-rate functions, it can be shown that the optimal sequential grouping is not
necessarily globally optimal. As an example, consider 3 bandwidth levels (1, 2, 3), and 2 groups, i.e.N =
3, Q = 2, and Gaussian distortion-rate functionD(R) = σ2

g2
−2R, for R ≥ 0. The user population across the

bandwidth levels is:ρ1 = 1, ρ2 = 10, ρ3 = 15, which can be represented with the vector−→ρ = (1, 10, 15) to
represent the population. Setσg = 1 and∆ = 1 for computational simplicity.



In the globally optimal solution, the receivers at bandwidth levels 1 and 3 (1 and 15 receivers, respectively)
are grouped together; the rate values (Rn,1) obtained are as follows:R1,1 = 0.1822 = R2,1, R3,1 = 2.6356.
Receivers at bandwidth level 2 (10 receivers) form a group bythemselves, and the rate values obtained are
R1,2 = 0, R2,2 = 2.0 = R3,2. The average distortion is 0.0689.

In the optimal sequential solution, however, the user at bandwidth level 1 forms a group by itself, with the
corresponding rate value being 1.0, i.e.,R1,1 = 1.0 = R2,1 = R3,1. Receivers at bandwidth levels 2 and 3
(10 and 15 receivers, respectively) constitute the second group, and the rate value for all these receivers is
2.0, i.e.,R1,2 = 0, R2,2 = 2.0 = R3,2. The average distortion is 0.0697. So we observe that the optimal
sequential distortion value is about 1% more than the globally minimal distortion value. Next, we upper-bound
this difference in performance in terms of the convexity of the distortion-rate function.

Given a decreasing, convex distortion-rate functionD, letDL represent its linear (outer) relaxation, constructed
as a line joining(0, D(0)) and(N∆, D(N∆)). We haveDL ≥ D for R ∈ [0, N∆]. Assume the maximal ratio
betweenDL(R) andD(R) in this range isr, i.e. r = max0≤R≤N∆

DL(R)
D(R) . Then we have the following result,

showing that the distortion of the optimal sequential solution differs from the globally optimal distortion by at
most the multiplicative factorr.

Proposition 2: For convex distortion-rate functions, the distortion attained by the optimal sequential MD-FEC
grouping solution is within a factor ofr of the globally optimal distortion value.

The proof of this result can be found in Section VI Appendix.
More precisely, let

H(−→ρ ,
−→
R ) =

1

M

Q∑

q=1

N∑

n=1

ρn,qD(Rn,q)

denote the distortion-rate function that we want to minimize, as a function of the decision variables (vectors)
−→ρ ,

−→
R . LetH∗ be the globally optimal distortion (1), and−→ρ ∗

S ,
−→
R∗

S be the optimal sequential MD-FEC grouping
solution. Then, the above result states the following:

H(−→ρ ∗
S ,

−→
R∗

S) ≤ rH∗.

Our numerical/experimental studies withN ≤ 8 andQ ≤ 3 reveal that in general, the performance of the
optimal sequential solution is much closer to the globally optimal distortion than that predicted by Proposition 2;
in many cases, they are exactly the same. Numerical studies for larger values ofN,Q could not be conducted
due to the high computational complexity of running the globally optimal solution (which requires enumeration
over a number of points that is exponential in the problem parameters).

C. Computation of optimal sequential grouping

We next present a polynomial-time algorithm based on dynamic programming that finds the optimal sequential
grouping solution for general convex distortion-rate functions. LetK(i, i+1, ..., j) be the minimal total distortion
of receivers with bandwidth level indicesi, i + 1, ..., j when they are put into one group. Note that once the
set of receivers in a group is given, the minimal total distortion value can be computed by solving a convex
optimization problem, and the rate allocations (Rn,q) correspond to an MD-FEC solution. This implies that
findingK(i, i+1, ..., j) in general requires solving a convex optimization problem,which can be solved exactly,
or be approximated to any desired approximation factor, in polynomial-time [3]. Now we introduce the algorithm:
Algorithm SEQOPT-MDFEC:
(1) Initialization: Initialize an(N + 1)× (Q + 1) matrix J(·, ·) as,

J(0, 0) = 0, J(0, 1) = 0, ..., J(0, Q) = 0;
J(1, 0) = ∞, ..., J(N, 0) = ∞.

(2) Iterative update: For1 ≤ n ≤ N , 1 ≤ q ≤ Q,

J(n, q) = min





J(n, q − 1),
J(n− 1, q − 1) +K(n),
J(n− 2, q − 1) +K(n− 1, n),
......
J(0, q − 1) +K(1, 2, ..., n).

(3) Output minimal average distortionJ(N,Q)
M

.
Proposition 3: On termination ofSEQOPT-MDFEC, J(N,Q)/M corresponds to the minimum average

distortion that can be attained by any sequential grouping solution with MD-FEC coding.
The proof of this result can be found in Section VI Appendix.



We now consider the computation time of the algorithm. The computation time is dominated by step 2 (the
iterative update procedure), which requiresO(N2Q) computations of a convex programming problem (MD-FEC
computation for a single group/stream), for findingK(i, i+1, ..., j). As mentioned earlier,K(i, i+1, ..., j) can
be computed or approximated closely in polynomial-time.

IV. N UMERICAL RESULTS

In this section we evaluate SEQOPT-MDFEC, or optimal sequential grouping with MD-FEC coding, by
analyzing simulation results based on real video sequences. We show how it compares with the globally optimal
solution (which may not be sequential) on some representative examples. We then compare SEQOPT-MDFEC
and three other sequential receiver grouping and video streaming methods:

(i) Equal partitioning with MD-FEC: In this solution, the bandwidth levels are divided into the groups evenly
(and in a sequential manner), and MD-FEC is applied within each group. This is a special case of sequential
grouping (one in which the thresholdsθ0, θ1, · · · , θQ are evenly spaced), but is not necessarily the optimal.

(ii) Equal partitioning with unirate: The grouping in this solution is the same as in (i), but unirate video coding
is used instead of MD-FEC. In unirate video coding, the videois only sent at a single rate per group. Note
that the unirate solution, where there is a single rate pointper group, is a special case of the MD-FEC
solution. The rate assigned to a group is computed by minimizing the distortion for that group.

(iii) Optimal unirate grouping: In this case, unirate video streaming used, but the groupingsolution is optimized
(taking unirate transmission into account). A dynamic programming procedure similar to the SEQOPT-
MDFEC algorithm can be used to obtain the optimal grouping inthis case; this has been observed before
in [6] which addresses the optimal grouping question for unirate video streaming.

Note that performance comparison of our proposed solution (SEQOPT-MDFEC) with (i) helps us identify the
benefits of optimal grouping alone, for MD-FEC streaming. Performance comparison of the proposed solution
and (iii) allows us to evaluate the benefits of using MD-FEC alone, when receiver grouping is done optimally
for the two cases. Performance comparison of the proposed solution and (ii) would show the joint benefits of
optimal sequential grouping and MD-FEC coding over a simplebaseline grouping solution and unirate coding.

In the following, performance is measured in terms of average PSNR, which is popularly used to quantify
video quality. The average PSNR measure is equivalent to theaverage distortion (D) measured in terms of
MSE, and the two are related as follows:PSNR = 10 log10(255

2/D). We assume that all packet losses follow
a binomial distribution. The results shown below are for GOP1 of the CIF@30fpsForeman video; we have
processed all 18 GOPs of the Foreman video and verified that the results are similar in nature to those for the
first GOP presented here.

In this case, it also turns out that the globally optimal solution is sequential in nature, when the number
of bandwidth levels is restricted to 8, and the receiver population across bandwidth levels follows a uniform
distribution. Thus SEQOPT-MDFEC results in the globally optimal distortion value for these settings.

A. Results comparison

For the results discussed below, the number of bandwidth levels (also equal toN ) is 32. The number of
groups (Q) is varied from 1 to 6, and the total bandwidthN∆ considered is 1 Mbps. We consider two cases
based on the number of receivers at each bandwidth level.

(1) Uniform distribution:−→ρ = (0, 0, 0, 0, 1, ..., 1), i.e. it includes 32 bandwidth levels,where the lowest 4
bandwidth levels have no receivers, and the rest have one (same number of) receiver(s) per bandwidth
level.

(2) Gaussian distribution:ρn = Ae−
(n−µ)2

2σ2 , whereA=1000,µ=(1+32)/2=16.5,σ=25 for n = 5, 6, . . . , 32. In
addition,ρ1 = ρ2 = ρ3 = ρ4 = 0.

The reason we set the number of receivers at very low bandwidth levels to be zero is that the video cannot
be decoded at those rates.

The average PSNRs of SEQOPT-MDFEC, the proposed solution (labeled ‘Optimal Sequential; MDFEC’ in
the figures), and solutions (i), (ii) and (iii) as described above, are shown in Figures 2 and 3.

From the figures, we observe that average PSNR increases as the number of groups increases, as expected,
but with diminishing returns. Our solution (SEQOPT-MDFEC)provides the best performance in all cases, but
the difference with the optimal sequential unirate solution (iii) goes away for more than two groups. The results
also show that MD-FEC provides significant benefits, but onlyfor small number of groups; for larger number of
groups, the grouping strategy makes a greater difference, and the performance difference between the optimal
grouping and equal partitioning cases is significant even when the number of groups is five or more.
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Fig. 2. Average PSNR versus number of groups for the four grouping/coding strategies withuniform receiver distribution across bandwidth
levels.
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Fig. 3. Average PSNR versus number of groups for the four grouping/coding strategies withGaussian receiver distribution across bandwidth
levels.

B. Results with random path losses

So far in our formulation, analysis and simulation, we have assumed only “apparent losses” of packets in the
network, i.e. deterministic losses that happen only due to bandwidth limitations of the paths from the source
to the receivers. In addition to these inevitable losses, there can be random losses due to faulty/noisy links (as
in wireless networks), buffer overflows, etc. Next, we consider such additional losses in our simulation model;
since such loss rates are typically small, this additional loss rate is set between 0 and 0.2 in our simulations.
The rest of the parameters remain the same as in Section IV-A.While we have studied both cases of uniform
and Gaussian receiver distributions (across the bandwidthlevels) as before, we only show the results for the
Gaussian case below.

Figure 4 shows the corresponding performance results, whenall receivers have the same additional loss rate
of 0.1. In this case, it can be shown that SEQOPT-MDFEC can again compute the optimal sequential grouping
solution for MD-FEC coding (Proposition 3). For Figure 5, the additional loss rates for different receivers are
different, and follows a uniform distribution between 0 and0.2. Note that in the latter case, the notion of a
“sequential solution” is not well-defined. In this case, we order the receivers in terms of theireffective path
bandwidths, i.e., path bandwidth× (1 - loss rate), where the loss rates vary between 0 and 0.2, asmentioned
above. The sequential solution is now defined in terms of these effective path bandwidths (as opposed to the
raw path bandwidths), and the algorithm SEQOPT-MDFEC is utilized to compute the solution that is labeled
“Optimal Sequential; MDFEC” in Figure 5. Numerical studieson some small instances of the problem revealed
that this grouping strategy, along with MD-FEC, attains close-to-minimal distortion in most cases (the latter
being computed through enumeration over all possible groups).

C. Discussion

Comparing the results in Figures 4 and 5 with those in Figures3, we observe that while the general trends
are similar, use of MD-FEC makes a significant difference in the lossy case (as compared to unirate), both
with optimal grouping and equal partitioning, and even whenthe number of groups is five or more. We also
observe that better performance of our solution (SEQOPT-MDFEC) as compared to the baseline solution (ii)
comes in nearly equal measure due to optimal sequential grouping the use of MD-FEC. We also observed that
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Fig. 4. Average PSNR versus number of groups in four grouping/coding strategies, forsame loss rate across receivers, andGaussian
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Fig. 5. Average PSNR versus number of groups in four groupingstrategies, fordifferent loss rate across receivers, andGaussian receiver
distribution across bandwidth levels.

the performance difference (between SEQOPT-MDFEC and other solutions that do not use optimal grouping
or MD-FEC coding or both) is more significant when (i) receivers are distributed unevenly across bandwidth
levels, (ii) losses due to path bandwidth limitations and bandwidth-independent losses are both present, and (iii)
packet loss rates vary across receivers. Thus in realistic network scenarios involving video streaming, optimal
sequential grouping and MD-FEC coding are likely to complement each other, and attain good PSNR (distortion)
performance across a wide range of network characteristics.

V. CONCLUSION AND FUTURE WORK

For the distortion-optimal receiver grouping problem for MD-FEC video streaming, we showed that the best
sequential grouping solution is globally optimal when the distortion-rate function is linear. In general cases
where the distortion-rate function is non-linear, we further showed that the same solution is approximately
optimal – by a factor that depends on the degree of convexity of the distortion-rate curve. The best sequential
grouping solution can be obtained by a dynamic programming algorithm in polynomial time, and it performs
significantly better than the equal partitioning approach in numerical experiments. We also observed that in terms
of performance benefits obtained, optimal sequential grouping and MD-FEC coding seem to nicely complement
each other.

In future work, we plan to consider additional constraints on the bandwidths used for serving each group of
receivers, which may arise due to access capacity limitations of the relay servers. We also plan to evaluate our
sequential grouping solution on other test video sequences.
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VI. A PPENDIX

A. Proof for Proposition 1

Proof: AssumeD(x) = −ax+ b, a > 0, b > 0. As mentioned above, our aim is to minimize:

min
{ρn,q,Rn,q}n=1,...,N,q=1,...,Q

Q∑

q=1

N∑

n=1

ρn,qD(Rn,q).

Since we have two vector variablesρn,q andRn,q, it is better to consider them separately. Assumeρn,q is
fixed, then considerRn,q for given ρn,q. Let Dq be the distortion of groupq, 1 ≤ q ≤ Q.

Dq =

N∑

n=1

ρn,qD(Rn,q)

Then the total distortionDtot would be:

Dtot =

Q∑

q=1

Dq

From the expression ofDq, Rn,q andRn,p are independent ifq 6= p. Hence we can minimize them respectively.
Then

Dq =

N∑

n=1

ρn,q(−a · Rn,q + b)

= b

N∑

n=1

ρn,q − a

N∑

n=1

ρn,qRn,q

For ∀q, Rn,q need to satisfy the constraints:

N∑

n=1

αnRn,q ≤ N∆, R1,q ≤ R2,q ≤ . . . RN,q,

whereαn = N
n(n+1) for 1 ≤ n ≤ N − 1, andαN = 1.

Equivalently,

N [R1,q +
N∑

n=2

Rn,q −Rn−1,q

n
] ≤ N∆.

That is,
R1,q

∆
+

N∑

n=2

Rn,q −Rn−1,q

n∆
≤ 1.

So letβ1,q = R1

∆ , andβn,q =
Rn,q−Rn−1,q

n∆ for 2 ≤ n ≤ N , 1 ≤ q ≤ Q.
Then we haveRn,q =

∑n

i=1 βi,q · i∆, whereβi,q satisfies
∑N

i=1 βi,q ≤ 1 andβi,q ≥ 0.
Then the expression ofDq in terms ofβi,q is:

Dq = b

N∑

n=1

ρn,q − a

N∑

n=1

ρn,qRn,q

= b

N∑

n=1

ρn,q − a

N∑

n=1

ρn,q

n∑

i=1

βi,q · i∆

This is a linear objective function with linear constraints. So the optimal solution would be obtained
at some vertex(vertices) of the polyhedral feasible region. Thus in the optimal solution,{β1,q, ..., βN,q} =
(0, ..., 0, 1, 0, ..., 0), i.e. there iŝn such thatβn,q = 1 if n = n̂ andβn,q = 0 if n 6= n̂. This can be interpreted
as: if n < n̂, Rn,q = 0; if n > n̂, Rn,q = Rn̂,q. Each group has an̂n that can be considered to be the index of
the dominating bandwidth level of the group, as long as thereare some users in that group.

Assume the globally optimal solution is not sequential, then we can construct a sequential solution at least
as good as the globally optimal solution. Suppose the dominating bandwidth level indices forQ groups aren1,
n2, ... , nQ respectively. Without loss of generality, we assumen1 < n2 < ... < nQ. Then we construct the



following sequential solution: we put users with bandwidthlevel indices1, 2, ..., n2 − 1 in group 1, put users
with bandwidth level indicesni, ni+1, ..., ni+1−1 in groupi (for i from 2 toQ−1), put users with bandwidth
level indicesnQ, nQ+1, ..., N in groupQ. This sequential solution would not be worse than the globaloptimal
solution, since the distortion of receivers at any bandwidth level would not get worse after the construction.

B. Proof for Proposition 2

Proof: In general, the total distortion is:

H(−→ρ ,
−→
R ) =

Q∑

q=1

N∑

n=1

ρn,qD(Rn,q)

and its linear relaxation is:

HL(
−→ρ ,

−→
R ) =

Q∑

q=1

N∑

n=1

ρn,qDL(Rn,q)

DL, which is defined in section 3.2, is the outer linear relaxation ofD. defined in section 3.2. LetH(ρ∗,
−→
R ∗)

be the global minimum ofH , HL(ρ
∗
L,

−→
R ∗

L) be the global minimum ofHL, H(ρ∗S ,
−→
R ∗

S) be the optimal sequential
solution toH , andHL(ρ

∗
LS ,

−→
R∗

LS) be the optimal sequential solution toHL. Besides, as defined in section 3.2,
r is the max ratio ofDL(R) overD(R), i.e. r = max{DL(R)

D(R) }.

SinceHL is the linear relaxation, the optimal sequential solution is globally optimal. ThereforeHL(ρ
∗
L,

−→
R ∗

L) =

HL(ρ
∗
LS ,

−→
R∗

LS). Then we have:

H(−→ρ ∗,
−→
R∗) =

Q∑

q=1

N∑

n=1

ρ∗n,qD(R∗
n,q)

≥

Q∑

q=1

N∑

n=1

ρ∗n,q
1

r
DL(R

∗
n,q) ( Becauser = max{DL(R)

D(R) } )

=
1

r
HL(

−→ρ ∗,
−→
R ∗)

≥
1

r
HL(

−→ρ ∗
L,

−→
R∗

L) ( Because−→ρ ∗
L,

−→
R∗

L is assumed optimal forHL )

=
1

r
HL(

−→ρ ∗
LS,

−→
R∗

LS) ( Because forHL, optimal sequential solution is globally optimal. )

≥
1

r
H(−→ρ ∗

LS,
−→
R∗

LS) ( BecauseHL is a relaxation ofH )

≥
1

r
H(−→ρ ∗

S ,
−→
R ∗

S) ( Because(−→ρ ∗
LS,

−→
R∗

LS) is sequential and is feasible, and(−→ρ ∗
S ,

−→
R∗

S)

is the optimal sequential solution. )

Therefore,
H(−→ρ ∗

S ,
−→
R∗

S) ≤ r ×H(−→ρ ∗,
−→
R∗)

C. Proof for Proposition 3

Proof:
To show the correctness of the dynamic programming solution, we need equivalently to showJ(n, q) solves

the subproblem for0 ≤ n ≤ N, 0 ≤ q ≤ Q. Let J∗(n, q) be the minimal total distortion attained with receivers
at the firstn bandwidth levels andq groups. We want to showJ(n, q) = J∗(n, q).

Firstly we considerq = 0, i.e. there is no group. Then it is obvious thatJ∗(n, q) = 0 if n = 0 and
J∗(n, q) = ∞ if n ≥ 1. In the initialization of the dynamic programming algorithm in section 3.3, we set
J(0, 0) = 0 andJ(n, 0) = ∞ whenn ≥ 1. HenceJ(n, q) = J∗(n, q) holds whenq = 0.

Next we want to showJ(n, q) = J∗(n, q) holds given thatJ(k, q − 1) = J∗(k, q − 1) for 0 ≤ k ≤ n.
AssumeJ(n, q) 6= J∗(n, q), thenJ(n, q) > J∗(n, q) sinceJ∗(n, q) is the minimum. Let(1, 2, ..., iq−1) be the
bandwidth level indices of users in the first(q − 1) groups inJ∗(n, q). As defined in the algorithm,



J(n, q) = min





J(n, q − 1),
J(n− 1, q − 1) +K(n),
J(n− 2, q − 1) +K(n− 1, n),
......
J(0, q − 1) +K(1, 2, ..., n).

Then we have:

J(n, q) ≤ J(iq−1, q − 1) +K(iq−1 + 1, ..., N)

= J∗(iq−1, q − 1) +K(iq−1 + 1, ..., N)

= J∗(n, q)

(4)

Contradiction. ThereforeJ(n, q) = J∗(n, q) holds. HenceJ(n, q) solves the problem that put the receivers
at firstn bandwidth levels intoq groups. Letn = N andq = Q, J(N,Q) solves the problem ofN bandwidth
levels andQ groups. In other words,J(N,Q) gives the minimal total distortion, and thenJ(N,Q)

M
gives the

minimal average distortion.


