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Abstract. We describe the structure of infinitely generated projective mod-
ules over hereditary Noetherian prime rings. The isomorphism invariants are
uniform dimension and ranks at maximal ideals. Infinitely generated projective
modules need not be free. However, every uncountably generated projective
module is the direct sum of a finitely generated module and free modules over
specific finite overrings of the given ring in its Goldie quotient ring.

1. Introduction

J. Algebra 225 (2000), 275–298.

Relatively little seems to be known about infinitely generated (i.e. not finitely
generated) projective modules over noncommutative Noetherian rings. A well-
known result of Kaplansky states that all infinitely generated projective modules
over commutative Dedekind domains are free [9]. Bass extended this by showing
that every uniformly big projective module P over any (noncommutative) Noether-
ian ring is free [1]. Here ‘uniformly big’ means that, for every maximal ideal M of
the ring, P/PM requires the same infinite cardinal number of generators as does
P .

The present paper adds to these a different type of result. It describes precisely
the structure of all infinitely generated projective modules (and their direct sum
behaviour) over certain Noetherian rings in a context where these modules can be
neither free nor unique direct sums of indecomposables.

Let R denote an HNP (‘hereditary Noetherian prime’) ring; that is, a prime ring
in which every left ideal and every right ideal is a finitely generated projective mod-
ule. Our recent paper [12] describes the structure of finitely generated projective
modules over R. Here we complete the analysis of projective modules over these
rings (which, in the commutative case, become the Dedekind domains studied by
Kaplansky).

Our results take their simplest form when either the modules are uncountably
generated or else R is a classical hereditary order (i.e. is module-finite over a central
Dedekind domain). So it is a pair of results in these situations which we mention
first. Each involves free modules Sα over some overrings S of R in its Goldie
quotient ring Rquo where α is a cardinal number.

Theorem 1.1. (See Theorem 4.3) Let R be a classical hereditary order and P a
countably generated projective R-module. Then P ∼= H ⊕ Sℵ0 where H is a finitely
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generated projective R-module and S is a ring with R ⊆ S ⊂ Rquo such that S is a
finitely generated right R-module.

Theorem 1.2. (See Theorem 4.9) Let P be an uncountably generated projective
module over any HNP ring R. Then

P ∼= H ⊕ Sα1
1 ⊕ Sα2

2 ⊕ . . .(1.2.1)

where H is a finitely generated projective R-module, the αn are infinite cardinal
numbers satisfying α1 < α2 < . . . , with at least one αi uncountable, and S1 ⊂ S2 ⊂
. . . is a finite or countably infinite sequence of rings, each a finitely generated right
R-module with R ⊆ Sn ⊂ Rquo.

Furthermore, Theorem 4.10 shows that the sequence of ordered pairs (Si, αi) is
unique. The contribution of H to the isomorphism class of P is the collection of
ranks of H at a certain finite number of maximal ideals of R. Whilst these are
determined by P , H itself is not unique.

There remains one case not covered by Theorems 1.1 and 1.2, namely when R
is an arbitrary HNP ring and P is countably generated. Here we give a full set
of invariants for the isomorphism class of P , but not an easily visualized canonical
form for P . See Remark 4.12.

The approach to these results involves the notion of the ‘genus’ of P which we
now describe. First consider a simple Artinian ring, A say. Every right A-module
H is the direct sum of some unique number (finite or infinite) of copies of the unique
simple A-module. We call this number the A-rank of H.

Since our HNP ring R is prime and Noetherian, Rquo is a simple Artinian ring.
Therefore, for every projective right R-module P , we can define the uniform di-
mension udim(P ) to be the Rquo-rank of P ⊗R Rquo. Let W be an unfaithful simple
R-module, with annihilator M . Then R/M is a simple Artinian ring [11, Lemma
2.5]. We define ρ(P, W ) = ρ(P, M), the rank of P at W — equivalently, at M — to
be the R/M -rank of P/PM . Thus ρ(P, W ) is the largest cardinal number α such
that P can be mapped onto the direct sum Wα of α copies of W .

Let W be a set of representatives of the isomorphism classes of unfaithful simple
right R-modules. We define the genus Ψ(P ) of a projective right R-module P to
be the function, defined on {0}

⋃
W, such that Ψ(P )0 = udim(P ) and Ψ(P )W =

ρ(P, W ) (W ∈ W). We usually think of Ψ(P ) as a family of cardinal numbers —
namely Ψ(P )0 and Ψ(P )W — indexed by {0}

⋃
W. Equivalently, the genus of P

is the class of all projective right R-modules Q such that Ψ(Q) = Ψ(P ). When
the HNP ring R is a finitely generated module over a central Dedekind domain,
thinking of the genus of P as a class of modules, in this way, agrees with the classical
notion of the genus of P [13, 5.1].

The main theorem about genus states simply:

Theorem 1.3. (See Theorem 4.11) Let P, P ′ be infinitely generated projective R-
modules. Then P ∼= P ′ if and only if Ψ(P ) = Ψ(P ′).

As with Kaplansky’s result, this displays a simplification when compared with
the corresponding result for finitely generated projective modules [12, Theorem
4.4] where the Steinitz class of P and P ′ must also match. One consequence is the
determination, in terms of genera, of when one projective R-module P is isomorphic
to a proper direct summand of a given infinitely generated projective R-module Q.
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When udim(Q) is uncountable or R is a classical hereditary order, the condition is
simply that Ψ(P ) ≤ Ψ(Q).

The paper is organized as follows: Section 2 reviews some frequently needed
results about the finitely generated case; Section 3 establishes precisely when a
family of cardinal numbers, indexed by {0} ∪ W, is the genus of some infinitely
generated projective R-module; Section 4 gives the proofs of Theorems 1.1, 1.2 and
1.3; and Section 5 demonstrates when one projective R-module P is isomorphic to
a proper direct summand of another.

Notation 1.4. Throughout the paper R denotes a hereditary Noetherian prime
ring — an HNP ring, for short. To avoid trivialities, we always assume that R is
not simple Artinian; i.e. R 	= Rquo. We usually use the word ‘module’ to indicate
a right module. In particular, a finite overring of R is a ring S such that SR is
finitely generated and R ⊆ S ⊂ Rquo.

The phrase ‘infinitely generated’ will be taken to mean ‘not finitely generated’;
and ‘uncountably generated’ means ‘not countably generated’. Finally, W denotes a
set of representatives of the isomorphism classes of unfaithful simple right modules.

2. Results about the Finitely Generated Case

There is a relatively complete structure theory for finitely generated projective
R-modules which appears in [12]. That, in turn, relies upon results from [11] about
simple R-modules and their extensions. We collect together here the basic ideas
and facts needed in this paper.

A cycle tower is [11, Definition 3.3] a finite sequence W1, W2, . . . , Wn of non-
isomorphic unfaithful simple right R-modules such that Ext1R(Wi, Wi+1) 	= 0 for
i 	= n and Ext1R(Wn, W1) 	= 0. As suggested by the name, this is considered to
be the same cycle tower as W2, W3, . . . , Wn, W1. For any cycle tower C we define
ρ(R, C) =

∑
W∈C ρ(R, W ).

A faithful tower is a finite sequence W0, W1, . . . , Wn of nonisomorphic simple
right R-modules such that each Ext1R(Wi, Wi+1) 	= 0, W0 is faithful, each other
Wi is unfaithful, and the sequence cannot be extended to the right. In fact, every
simple right R-module W belongs to a unique cycle tower or faithful tower (but
never both) [11, Theorem 3.4]. A tower is trivial if it consists of a single simple
module.

Theorem 2.1. [12, Theorem 2.16] Let Φ be a family of nonnegative integers, in-
dexed by {0} ∪W, such that Φ0 	= 0. Then Φ is the genus of some nonzero finitely
generated projective R-module if and only if the following two conditions hold.

(i) Φ has almost standard rank; that is, ΦW = ρ(R, W )·Φ0/ udim(R) for al-
most all (ı.e. all but finitely many) W ∈ W; and

(ii) Φ has cycle-standard rank; that is,∑
W∈C

ΦW = ρ(R, C) · Φ0/ udim(R)

for every cycle tower C.

The special case of this that we use most often in the present paper involves an
essential right ideal H — that is, a right ideal with udim(H) = udim(R). In this
situation the theorem becomes:
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Corollary 2.2. Let Φ be a family of nonnegative integers, indexed by {0} ∪ W,
such that Φ0 = udim(R). Then Φ = Ψ(H) for some essential right ideal H if and
only if

(i) (Almost standard rank) ΦW = ρ(R, W ) for almost all W ∈ W;
(ii) (Cycle-standard rank)

∑
W∈C ΦW = ρ(R, C) for every cycle tower C.

We use the name essential genus for any indexed family Φ satisfying the condi-
tions in this corollary; i.e. for the genus of some essential right ideal.

Corollary 2.3. Let F be a finite subset of W containing no entire cycle tower,
and for each W ∈ F , let r(W ) be a nonnegative integer. Then there is a finitely
generated projective R-module H such that ρ(H, W ) = r(W ) for all W ∈ F .

Proof. By Theorem 2.1 a family Φ of nonnegative integers indexed by {0}
⋃
W is

the genus of some nonzero finitely generated projective R-module H if and only if
Φ has almost standard rank and cycle-standard rank.

We construct Φ as follows. Let Φ0 = udimR · sup{r(W ) | W ∈ F} and let
ΦW = r(W ) for each W ∈ F . For each W not so far considered and either
belonging to a faithful tower, or belonging to a cycle tower which does not include
any member of F , we set ΦW to be standard; i.e. ΦW = ρ(R, W )·Φ0/ udim(R).

Finally, consider the simple modules belonging to some cycle tower C which does
include a member of F . Those in F are already dealt with. By hypothesis, some
W still remain. For all but one, we make ΦW standard. Note that the choice of Φ0

ensures that all ranks so far chosen are either standard or less than standard. For
the remaining W in C we choose ΦW so as to ensure cycle-standard rank for C. We
repeat this for each of the finitely many cycle towers thus involved.

We can now apply Theorem 2.1 to give the desired module H. �

Given two genera Ψ and Φ, we write Ψ ≤ Φ to mean that Ψ0 ≤ Φ0 and ΨW ≤ ΦW

for all W ∈ W. The next result is proved in [19, Corollary 7.2] and in [12, Theorem
5.1].

Theorem 2.4. Let P and Q be finitely generated projective R-modules such that
Ψ(P ) ≤ Ψ(Q) and udim(P ) < udim(Q). Then Q ∼= P ⊕ X for some X 	= 0.

This result is closely connected with the following cancellation theorem [12, The-
orem 3.13].

Theorem 2.5. Suppose that P ⊕ X ∼= Q ⊕ X for finitely generated projective
R-modules P, Q, X such that udim(P ) ≥ 2. Then P ∼= Q.

We end this section with a part of [11, Theorem 7.17]. Recall that a finite
overring S of R is a ring such that SR is finitely generated and R ⊆ S ⊆ Rquo.
When dealing with R together with other subrings of Rquo, we write ρR for rank
as an R-module.

Theorem 2.6. Let F be any finite subset of W containing no entire cycle tower.
Then there exists a unique finite overring S(F) of R such that, for every W ∈ W,

ρR(S(F), W ) = 0 ⇐⇒ W ∈ F .(2.6.1)

Moreover:
(i) S(F) ⊆ S(G) ⇐⇒ F ⊆ G.
(ii) Every finite overring of R equals S(F) for some unique F .
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(iii) Let P be a finitely generated projective R-module. Then P is an S(F)-
module if and only if ρR(P, W ) = 0 for all W ∈ F .

3. Pregenus and genus

Throughout this section P denotes an infinitely generated projective R-module.
We claim that P has a decomposition:

P = ⊕i∈I Pi
with each Pi isomorphic to an
essential right ideal of R.

(3.0.1)

Since R is hereditary, every projective R-module is isomorphic to a direct sum
of right ideals of R [2, Theorem 5.3]. Since R is Noetherian, each of these right
ideals is finitely generated. Therefore the preceding decomposition can be refined
to a decomposition of P into a direct sum of modules isomorphic to uniform right
ideals [11, Lemma 2.1]. Finally, since this last decomposition contains infinitely
many terms, we can group the terms together — udim(R) at a time — getting the
desired decomposition (3.0.1).

Next we note, by tensoring (3.0.1) with Rquo over R and remembering that each
udim(Pi) is finite, that

udim(P ) = |I|(3.0.2)

where |I| denotes the cardinality of I. This is the way we always view udim(P ).
Note that P is countably or uncountably generated precisely when |I| is countable
or uncountable, respectively.

We fix decomposition (3.0.1) throughout this section.

Definitions 3.1. Let Φ be a family of cardinals indexed by {0}∪W (for example,
the genus of an infinitely generated projective module). We call Φ a pregenus if it
satisfies the following three conditions.

(i) Φ0 is infinite, and Φ0 ≥ ΦW for all W ∈ W.
(ii) (a) For every cardinal number α < Φ0, there are only finitely many W ∈

W such that ΦW ≤ α.
(b) For every positive integer n there are only finitely many W ∈ W such

that ΦW ≤ n · ρ(R, W ).
(iii) In each cycle tower C there is at least one member W such that ΦW = Φ0.

Our aim in the present section is to show that a pregenus is the same thing as
the genus of an infinitely generated projective module. We do the easier half of this
now.

Theorem 3.2. Let P be an infinitely generated projective R-module. Then Ψ =
Ψ(P ) is a pregenus.

Proof. We check the three conditions in the definition of ‘pregenus’.
(i) (3.0.2) shows that Ψ0 = udim(P ) = |I|, which is infinite by hypothesis. Now

consider any W ∈ W. Since each Pi in decomposition (3.0.1) is finitely generated,
we have ρ(Pi, W ) < ℵ0 and therefore

ρ(P, W ) =
∑
i∈I

ρ(Pi, W ) ≤ |I| · ℵ0 = |I| = Ψ0.
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(ii)(a), when α is infinite. Suppose, to the contrary, that infinitely many such W
exist, and choose a countably infinite subset {W1, W2, . . . } of W such that every
ρ(P, Wj) ≤ α. Let I(Wj) = {i ∈ I | ρ(Pi, Wj) 	= 0}. It follows that

|I(Wj)| ≤
∑

i∈I(Wj)

ρ(Pi, Wj) = ρ(P, Wj) ≤ α.

Let I ′ =
⋃

I(Wj). Since the number of sets I(Wj) is ℵ0 we have |I ′| ≤ ℵ0·α = α <
|I|. Hence there exists i ∈ I − I ′; and then ρ(Pi, Wj) = 0 for all Wj , contradicting
almost standard rank of the essential right ideal Pi [Corollary 2.2].

(ii)(a) when α = n is finite, and (ii)(b). Choose any n + 1 of the summands Pi,
calling them P1, . . . , Pn+1. For almost all W ∈ W, each of the essential right ideals
P1, . . . , Pn+1 has the standard W -rank, ρ(R, W ). For any such W we have

ρ(P, W ) ≥ ρ(P1 ⊕ . . . ⊕ Pn+1, W ) = (n + 1) · ρ(R, W ) > n · ρ(R, W )

which proves (ii)(b) and completes the proof of (ii)(a).
(iii) This holds by cycle-standard rank [Corollary 2.2], since udim(Pi) = udim(R) <

∞ for all i ∈ I. �

Definitions 3.3. Given a pregenus Φ we define D(Φ) to be the set of distinct
cardinals in Φ, that is, of the form ΦW or Φ0. Note that D(Φ), like any set of
cardinals, is well-ordered by the ordering of the cardinal numbers.

Before establishing the converse to Theorem 3.2, we need some facts about D(Φ).
We use the notation ω to denote the order type of the natural numbers.

Lemma 3.4. Let Φ be a pregenus.
(i) The well-ordered set D(Φ) is either finite or has order type ω + 1.
(ii) If the order type is ω + 1 — that is, D(Φ) = {α1 < α2 < · · · < αω (= Φ0)}

— we have sup{αi | i < ω} = Φ0.
(iii) If Φ0 is uncountable, then only finitely many elements of D(Φ) are finite

(and each of these finite ranks is attained at only finitely many W ∈ W).

Proof. (i) These are the well-ordered sets having a greatest element and such that
all but the greatest element have only finitely many predecessors.

(ii) Let sup{αi | i < ω} = γ. Since Φ0 is the largest element in D(Φ), then
γ ≤ Φ0. If γ < Φ0 then (by the definition of pregenus) γ can have only finitely
many predecessors in D(Φ), yielding the contradiction that D(Φ) is a finite set.

(iii) If Φ0 is uncountable then ℵ0 < Φ0. Now use condition (ii) in Definitions
3.1. �

The restriction that D(Ψ(P )) contains only finitely many finite elements when
Ψ(P )0 = udim(P ) is uncountable [Lemma 3.4(iii)] can fail if P is countably gen-
erated, as we show in the next example. However, this cannot occur for classical
hereditary orders – see Theorem 4.3.

Example 3.5. Let R be some HNP ring which has infinitely many nontrivial
towers (as provided by [17] or [18]; or see [11, remarks above Lemma 3.8]). Choose
a countably infinite subset F = {W1, W2, . . . } of W which does not include any
complete cycle tower. Let Fn denote the subset {W1, W2, . . . , Wn−1}. By Theorem
2.6 there is a finite overring Sn = S(Fn) of R such that ρR(Sn, Wi) = 0 if and only
if i < n. Let P = ⊕Sn. Then n ≤ ρ(P, Wn) < ℵ0 for each n, and ρ(P, W ) = ℵ0
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for all unfaithful simple modules W /∈ F . Thus D(Ψ(P )) contains infinitely many
positive integers.

Note also that, in this example, D(Ψ(P )) has order type ω + 1. Moreover,
Ψ(P )W = ρ(P, W ) is finite for all W ∈ W if and only if F = W. (This can happen
if R has only countably many nontrivial towers, all faithful.)

We can now prove the second half of our main result.

Theorem 3.6. Let Φ be a pregenus. Then Φ is a genus; that is, Φ = Ψ(P ) for
some infinitely generated P .

Proof. By Lemma 3.4, D(Φ) is either a finite sequence or an infinite sequence
α1 < α2 < . . . , followed by αω = Ψ0. We consider two cases separately.

Case 1: Suppose that only finitely many αi are finite. Note that each finite αi

has only finite multiplicity in Φ, by condition (ii)(a) in the definition of pregenus.
Hence the set F of all W ∈ W such that ΦW is finite is again a finite set. Note that
F contains no entire cycle tower, by condition (iii) in the definition of pregenus.
Therefore, by Corollary 2.3, there is a finitely generated H such that ρ(H, W ) = αi

for all W such that ΦW = αi is finite.
Next, let β1 < β2 < . . . be the infinite elements of the sequence α1 < α2 < . . . .

(Thus we are excluding αω, if it exists.) Consider some βi. Since βi < Φ0, which is
infinite, the definition of pregenus implies that the set Gi = {W ∈ W | ΦW < βi}
is finite. Moreover, Gi contains no entire cycle tower by (iii) in the definition of
pregenus. Let Si = S(Gi), the finite overring of R given by Theorem 2.6. Then, for
W ∈ W, ρ(Si, W ) = 0 if and only if ΦW < βi. We set

P = H ⊕ Sβ1
1 ⊕ Sβ2

2 ⊕ . . . ,

noting that the βi can form either a finite or infinite sequence. It is easily checked
that Ψ(P ) = Φ, which completes the proof in this case.

Case 2: Now consider the alternative case, when infinitely many αi are finite.
Lemma 3.4 (i) and (ii) imply that αω exists and that αω = Φ0 = ℵ0; so the P we
want is countably generated. Also αi is finite whenever i 	= ω.

It suffices to describe a collection of essential genera Φn such that
∑∞

n=1 Φn = Φ.
For then, since each Φn is an essential genus, there is an essential right ideal Pn

such that Φn = Ψ(Pn). Then P = ⊕Pn is as required.
Fix a value of n. Since we want Φn to be essential, we set (Φn)0 = udim(R). We

still need to choose (Φn)W for each W ∈ W, bearing in mind the two requirements
of Corollary 2.2 that Φn satisfy almost standard rank and cycle-standard rank.
First we define some subsets of W, namely

Fn = {W ∈ W | ΦW ≤ n · ρ(R, W )},

with the convention that F0 is the empty set. Note that Fn−1 ⊆ Fn and, by (ii)(b)
in the definition of a pregenus, Fn is a finite set. The basic formula for (Φn)W

which comes next will apply to most W ∈ W, as specified later.

(Φn)W =


ρ(R, W ) if W 	∈ Fn;
ΦW − (n − 1)ρ(R, W ) if W ∈ Fn −Fn−1;
0 if W ∈ Fn−1.

(3.6.1)
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For the second part of (3.6.1) to be a legitimate definition we need to know that
(Φn)W ≥ 0. In fact, the definition of Fn shows that

0 < (Φn)W ≤ ρ(R, W ) if W /∈ Fn−1.(3.6.2)

Now we need to specify to which W this applies. Every W belongs to some unique
tower C. We subdivide the definition of (Φn)W into three cases according to the
nature of C.

Case (a): If C is a faithful tower then we simply apply (3.6.1).
Case (b): If C is a cycle tower that does not meet Fn, we use (the first part of)

(3.6.1).
Case (c): Suppose C is a cycle tower that meets Fn. By condition (iii) in the

definition of a pregenus, ΦW cannot be finite for all W ∈ C. Fix an element
W ′(C) ∈ C such that ΦW ′(C) = ℵ0. For W ∈ C − {W ′(C)}, use (3.6.1); and, having
done this, set:

(Φn)W ′(C) = ρ(R, C) −
∑

{(Φn)W | W ∈ C − {W ′(C)} }.(3.6.3)

Again we must verify that this is positive. In fact, we prove:

(Φn)W ′(C) ≥ ρ(R, W ′(C)).(3.6.4)

First note that, by definition of ρ(R, C), equality holds when (Φn)W is standard for
all W ∈ C−{W ′(C)}. Therefore it suffices to verify that any nonstandard rank that
we assigned in (3.6.1) is less than the standard rank ρ(R, W ). Only the second of
the three situations in (3.6.1) is nontrivial, and this is done in (3.6.2).

We now verify that Φn is an essential pregenus.
Almost standard rank. Only finitely many cycle towers meet the finite sets Fn

and Fn−1. Therefore, in verifying almost standard rank, we can ignore any W
in cases (a)–(c) that belongs to either of these sets; and we can ignore case (c)
completely. For all remaining W , (Φn)W equals the standard rank ρ(R, W ).

Cycle-standard rank. We may ignore case (a); and cycle-standard rank is obvi-
ously satisfied in case (b). It holds in case (c) by (3.6.3).

Finally, having established that each Φn is an essential pregenus, we need to
check that

∑
n(Φn)W = ΦW for every W . Suppose first that ΦW is infinite, and

hence W 	∈
⋃

n Fn. Here it suffices to prove that (Φn)W > 0 for all n. In cases (a)
and (b) this is given in the first part of (3.6.1). In case (c) it is true by the first
part of (3.6.1) except if W = W ′(C), where it is given by (3.6.4).

This leaves the case that ΦW is finite, in which case there is a smallest n, which
we fix, such that W ∈ Fn; and then W ∈ Fi for all i ≥ n. In case (a) (3.6.1)
states that (Φi)W is standard for the first n−1 values of i and is zero for i ≥ n+1.
Adding all this to the second part of (3.6.1) gives the desired sum. Case (b) does not
concern us here. In case (c) we can ignore W ′(C) since ΦW ′(C) is infinite. Therefore
the proof for case (a) works here, too. �

Case 2 of the above proof is the first instance of a recurring theme in this paper:
countably generated projective modules can be more complicated than uncount-
ably generated projectives because they can have infinitely many finite ranks. (As
mentioned above, this does not happen with classical hereditary orders.)

As we shall see in the next section, the module P in the above theorem is
determined up to isomorphism by Φ.
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4. Structure Theorems

Throughout this section P denotes an infinitely generated projective R-module
which therefore has a decomposition P = ⊕{Pi | i ∈ I} with |I| infinite and each Pi

isomorphic to an essential right ideal [see(3.0.1)]. The first main result establishes
Theorem 1.3 when P is countably generated.

Theorem 4.1. If P is countably generated and if Ψ(P ) = Ψ(Q) then P ∼= Q.

Proof. Write both P and Q as countable direct sums of essential right ideals, as
at the beginning of this section: P = P1 ⊕ P2 ⊕ . . . and Q = Q1 ⊕ Q2 ⊕ . . . . We
start by comparing certain initial segments of these sums.

Choose n. Since the rank of each Pi and each Qi is almost standard (i.e. equals
ρ(R, W ) for almost all W ), we have ρ(P1 ⊕ P2 ⊕ . . .⊕ Pn, W ) = ρ(Q1 ⊕Q2 ⊕ . . .⊕
Qn, W ) for almost all W . Suppose that W is one of the finite number of exceptions
to this, and recall that ρ(P, W ) = ρ(Q, W ) for all W since Ψ(P ) = Ψ(Q). Therefore
we can choose an m > n so that

∑m
i=1 ρ(Pi, W ) ≥

∑n
i=1 ρ(Qi, W ). Since the number

of exceptions is finite, we can deduce the first statement in (4.1.0) — and the second
statement follows by symmetry.

(∀n)(∃m > n) Ψ(P1 ⊕ P2 ⊕ . . . ⊕ Pm) ≥ Ψ(Q1 ⊕ Q2 ⊕ . . . ⊕ Qn).

(∀m)(∃n > m) Ψ(P1 ⊕ P2 ⊕ . . . ⊕ Pm) ≤ Ψ(Q1 ⊕ Q2 ⊕ . . . ⊕ Qn).

(4.1.0)

Now choose any positive integer m(1), and let S1 = P1 ⊕ . . . ⊕ Pm(1). Then
there exists n(1) > m(1) such that Ψ(S1) ≤ Ψ(T1) where T1 = Q1 ⊕ . . . ⊕ Qn(1).
Therefore, by Theorem 2.4, S1 is isomorphic to a direct summand of T1. This yields
X1 	= 0 such that the first isomorphism in (4.1.1) below holds. In the same way,
there exists m(2) > n(1) such that the initial segment S2 = P1⊕ . . .⊕Pm(2) satisfies
the second isomorphism in (4.1.1) for some Y1 	= 0.

S1 ⊕ X1
∼= T1, T1 ⊕ Y1

∼= S2.(4.1.1)

Continuing in this fashion, we obtain an infinite sequence of initial segments
S1, T1, S2, T2, . . . each containing strictly more terms than the previous one. Then,
as in (4.1.1), we have another pair of relations

S2 ⊕ X2
∼= T2, T2 ⊕ Y2

∼= S3;(4.1.2)

and so on.
Now, for j > i (and by slight abuse of notation) define Sj−Si = ⊕m(i)<k≤m(j) Pk,

the direct sum of all Pk that appear in Sj but not in Si; and define Tj − Ti analo-
gously. The two isomorphisms in (4.1.1) yield:

S1 ⊕ (S2 − S1) ∼= S2
∼= S1 ⊕ X1 ⊕ Y1.

We have udim(X1 ⊕ Y1) ≥ 2 since both X1 and Y1 are nonzero. Therefore we can
cancel S1 [Theorem 2.5] getting the first isomorphism in (4.1.3) below. To obtain
the second isomorphism in (4.1.3), use the first isomorphism in (4.1.2) together
with the second isomorphism in (4.1.1).

S2 − S1
∼= X1 ⊕ Y1, T2 − T1

∼= Y1 ⊕ X2.(4.1.3)
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After obtaining an infinite sequence of pairs of isomorphisms analogous to (4.1.3)
we show that P ∼= Q as follows:

P ∼= S1 ⊕ (S2 − S1) ⊕ (S3 − S2) ⊕ . . .

∼= S1 ⊕ (X1 ⊕ Y1) ⊕ (X2 ⊕ Y2) ⊕ . . .

∼= (S1 ⊕ X1) ⊕ (Y1 ⊕ X2) ⊕ (Y2 ⊕ X3) ⊕ . . .

∼= T1 ⊕ (T2 − T1) ⊕ (T3 − T2) ⊕ . . . ∼= Q. �

This enables us to provide a simple description of all countably generated pro-
jective modules over a classical hereditary order (that is, an HNP which is a finitely
generated module over a central Dedekind domain). Our proof requires the follow-
ing lemma , which uses the notions of “Dedekind closure” and “merging” from [11,
7.12 and 6.1].

Lemma 4.2. Suppose that R is a classical hereditary order. Then:
(i) The centre C of R is a Dedekind domain and R is a finitely generated

C-module.
(ii) R has only finitely many nontrivial cycle towers and no faithful towers.
(iii) Every Dedekind closure S of R is a finitely generated C-module (i.e. S is a

classical maximal C-order containing R).

Proof. (i) Since R is module-finite over a central commutative ring, R satisfies a
polynomial identity. In view of this, (i) is proved in [14, 13.9.16].

(ii) By Kaplansky’s Theorem on rings satisfying a polynomial identity, each
primitive factor ring of R is simple Artinian. Therefore each simple R-module is
unfaithful and so R has no faithful towers. By [14, 13.9.13], R has only finitely
many idempotent prime ideals. Therefore, by [11, Lemma 3.7], R has only finitely
many nontrivial cycle towers.

(iii) [11, Theorem 7.13] shows that each such S is obtained by merging all non-
trivial R-towers into simple S-modules. Since these towers are finite in number,
[11, Corollary 6.5] asserts that S is a finite overring of R and so is finitely generated
over C. �

Theorem 4.3. Let R be a classical hereditary order. Then every countably gener-
ated projective right R-module has the form Q = H ⊕ Sℵ0 for some finite overring
S of R and some finitely generated projective right R-module H.

Proof. Let P = ⊕{Pi | i ∈ I} be given, with udim(P ) = ℵ0. Lemma 4.2 shows
that R has only finitely many nontrivial cycle towers and no faithful towers. Let
F = {W1, . . . , Wu} be the finite set of elements in these towers at which P has finite
rank. Note that F contains no entire cycle tower, since every cycle tower contains
at least one element at which P has infinite rank [Theorem 3.2 and Definition 3.1].
Let H be the direct sum of the finite set of all Pi such that ρ(Pi, W ) is nonzero for
some W ∈ F ; and let S(F) be the finite overring of R such that ρ(S(F), W ) = 0 if
and only if W ∈ F [Theorem 2.6]. It is easy to check from this that P and Q have
the same ranks at all elements of W and hence, by Theorem 4.1, that P ∼= Q. �

Exactly the same proof establishes:

Corollary 4.4. Let P be a countably generated projective module over any HNP
ring R. Then the following are equivalent:
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(i) P has only finitely many distinct finite ranks at elements W ∈ W;
(ii) P ∼= H ⊕ Sℵ0 for some finite overring S of R and some finitely generated

projective right R-module H.

Example 3.5 shows that countably generated modules over HNP rings can have
infinitely many distinct finite ranks. Such modules are discussed in Remark 4.12.

We now turn towards the uncountably generated case; so we fix P = ⊕i∈I Pi

with |I| uncountable and each Pi isomorphic to an essential right ideal. The proof
of Theorem 1.3, in this case, involves an intricate grouping of the summands in this
decomposition, and our next few results prepare for that.

Recall that D(Ψ(P )) denotes the set of distinct cardinal numbers in the genus
Ψ(P ) [Definitions 3.1]. Let D′(Ψ(P )) be the set of distinct nonzero cardinal numbers
in Ψ(P ) of the form Ψ(P )W with W ∈ W. Notice that it may or may not be the
case that udim(P ) ∈ D′(Ψ(P )).

We first deal with an easy special case.

Lemma 4.5. If D′(Ψ(P )) is empty, then:
(i) W is a finite set and R has no cycle towers;
(ii) P ∼= S|I| where S = S(W) is the finite overring of R [given by Theorem

2.6] such that ρR(S, W ) = 0 for all W ∈ W.

Proof. (i) Consider any of the summands Pi. By hypothesis, ρ(Pi, W ) = 0 for all
W ∈ W. This contradicts Pi having almost standard rank unless W is finite; and
it contradicts Pi having cycle-standard rank unless there are no cycle towers.

(ii) It suffices to prove this assertion when |I| = ℵ0 since I is a disjoint union
of countably infinite sets. Since both P and S|I| are now countably generated, it
therefore suffices to check that Ψ(P ) = Ψ(S|I|) [Theorem 4.1]. But, by hypothesis,
udim(P ) = udim(S|I|) = ℵ0 and ρ(P, W ) = ρ(S|I|, W ) = 0 for all W ∈ W. �

The crux of our argument involves the following temporary hypothesis.

Hypothesis 4.6. D′(Ψ(P )) is nonempty and all of its elements are infinite.

Lemma 4.7. Assume that Hypothesis 4.6 holds. Let α be the smallest element of
D′(Ψ(P )). Then there is a decomposition P = P (α) ⊕ P ′ in which P (α) and P ′

are direct sums of complementary subsets of the set of summands Pi of P , and for
each W ∈ W:

(i) ρ(P (α), W ) = α if ρ(P, W ) ≥ α and ρ(P (α), W ) = 0 otherwise;
(ii) P (α) = ⊕c Q(α, c) where the index of summation c ranges through a set

of cardinality α, each Q(α, c) is non-zero and is the direct sum of a finite
number of the summands Pi, and

ρ(Q(α, c), W ) 	= 0 ⇐⇒ ρ(P, W ) ≥ α ( ⇐⇒ ρ(P, W ) 	= 0);
(4.7.1)

(iii) ρ(P ′, W ) = 0 for every W such that ρ(P, W ) = α and ρ(P ′, W ) = ρ(P, W )
for every W such that ρ(P, W ) > α;

(iv) D′(Ψ(P ′)) = D′(Ψ(P )) − {α}.
Proof. For W ∈ W, let I(W ) = {i ∈ I | ρ(Pi, W ) 	= 0}. Similarly, for any cardinal
number α, let W(α) = {W ∈ W | ρ(P, W ) = α}. Note that if W ∈ W(α) then,
since each ρ(Pi, W ) is finite, Hypothesis 4.6 insists that |I(W )| is infinite and hence
|I(W )| = α.
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Now let J =
⋃
{I(W ) | W ∈ W(α)}, the set of j ∈ I such that ρ(Pj , W ) 	= 0 for

some W ∈ W(α). We claim that |J | = α. To see this, first consider the case that
α = udim(P ). Choose any W ∈ W(α). Then we have

udim(P ) = α = |I(W )| ≤ |J | ≤ |I| = udim(P )

and therefore |J | = α. Suppose, on the other hand, that α < udim(P ). Since every
genus is a pregenus, Definitions 3.1(ii) shows that W(α) is a finite set. Therefore
J is the union of a finite number of sets each having (infinite) cardinality α. Thus
we again have |J | = α as claimed.

We now begin the construction. We will define the Q(α, c) by transfinite induc-
tion, with their indices c running through a subset of J . Well-order J , making its
order type the smallest ordinal, necessarily a limit ordinal, of cardinality |J |. Then
every j ∈ J has fewer than |J | predecessors in J .

Choose c ∈ J . Suppose that, for every j < c, we have either: (a) decided not
to define Q(α, j); or (b) chosen a module Q(α, j) which has the property described
in (4.7.1) and which is the direct sum of Pj and finitely many summands Pi with
i > j. Now we describe whether and (if so) how to construct Q(α, c).

If Pc is a summand of Q(α, j) for some j < c then we do not construct Q(α, c).
Suppose, on the other hand, that Pc is not a summand of any previously defined
Q(α, j). Then we make Pc a summand of a new module Q(α, c). By almost standard
rank [Corollary 2.2] we have ρ(Pc, W ) 	= 0 for almost all W . Consider now the
finite set of W such that ρ(Pc, W ) = 0 but ρ(P, W ) 	= 0. If the set is empty, let
Q(α, c) = Pc. Otherwise, for each W in that set, we will include an additional direct
summand Pi in Q(α, c) chosen such that ρ(Pi, W ) 	= 0 and Pi is not contained in
any Q(α, j) with j < c. We need to show that there is such a Pi.

By our choice of well-ordering of J , the number of predecessors of c is less than
|J | = α. Since each Q(α, j) that is already defined contains only finitely many
summands Pi, and only finitely many additional summands can already have been
chosen for Q(α, c) then the total number of Pi that already belong to some Q(α, j)
is less than α. On the other hand, |I(W )| = α, as shown at the beginning of this
proof. This proves that at least one such Pi is available for inclusion in Q(α, c).
Thus we have found a Pi for each W . We then let Q(α, c) be the direct sum of
them and Pc.

This completes the construction of Q(α, c) satisfying (4.7.1). Then transfinite
induction completes the construction of all the Q(α, c).

To see that the number of Q(α, c) that we have defined is α, first note that since
c runs through a subset of J , the number of these modules is no more than |J | = α.
The opposite inequality follows from the fact that every Pi with i ∈ J is contained
in some Q(α, c), and each Q(α, c) contains only finitely many Pi.

The remaining properties are easily verified. �

Lemma 4.8. Assume that Hypothesis 4.6 holds and let the elements of D′(Ψ(P ))
be α1 < α2 < . . . , a finite sequence, or an infinite sequence possibly followed by αω.
Then there is a decomposition

P =
[
⊕n �=ω P (αn)

]
⊕ P (0)(4.8.1)

in which each term P (αn) and P (0) is a direct sum of a subset of the original
summands Pi of P , and for W ∈ W and for all n:

(i) ρ(P (αn), W ) = αn if ρ(P, W ) ≥ αn and ρ(P (αn), W ) = 0 otherwise.
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(ii) P (αn) = ⊕c Q(αn, c) where the index of summation c ranges through a set
of cardinality αn, each Q(αn, c) is non-zero and is the direct sum of a finite
number of the summands Pi, and

ρ(Q(αn, c), W ) 	= 0 ⇐⇒ ρ(P, W ) ≥ αn.(4.8.2)

(iii) ρ(P (0), W ) = 0 for all W ∈ W and, if P (0) 	= 0, then udim(P (0)) =
udim(P ) > αn for all n, and only finitely many αn occur.

Proof. Lemma 4.7 yields a decomposition P = P (α1)⊕P ′ where P (α1) is as desired
and D′(Ψ(P ′)) = D′(Ψ(P )) − {α1}.

If D′(Ψ(P ′)) is nonempty, apply the previous procedure to P ′ in place of P ,
getting P = P (α1) ⊕ P (α2) ⊕ P ′′ with D′(Ψ(P ′′)) = D′(Ψ(P )) − {α1, α2}, and
so on. Let the result of the nth iteration of this procedure be P = Sn ⊕ Tn,
where Sn = ⊕n

k=1 P (αk) and ρ(Tn, W ) = 0 whenever ρ(P, W ) ∈ {α1, . . . , αn}. We
distinguish two cases.

Case 1: D′(Ψ(P )) is an infinite set. Then we have a decomposition P = Sn ⊕Tn

for every positive integer n. Letting S∞ =
⋃

n Sn and T∞ =
⋂

n Tn yields the
decomposition P = S∞ ⊕ T∞. Note that no subtleties are involved here: we are
only rearranging the terms of the original decomposition of P . To complete the
proof of the lemma in this case, it suffices to show that T∞ = 0. If T∞ 	= 0,
it contains some summand Pi. On the one hand, Pi has almost standard rank
[Corollary 2.2], and hence ρ(Pi, W ) = 0 for only finitely many W . On the other
hand, Pi ⊆ T∞ ⊆ Tn for all n and therefore ρ(Pi, W ) = 0 for infinitely many W (at
least one for each αn). This contradiction completes the proof of Case 1.

Case 2: D′(Ψ(P )) is a finite set. Let αs be the largest cardinal in D′(Ψ(P )).
Then D′(Ts) is empty, and we have P = Ss ⊕ Ts; that is:

P = P (α1) ⊕ . . . ⊕ P (αs) ⊕ Ts(4.8.3)

If Ts = 0 we are done: take P (0) = 0. So suppose that Ts 	= 0.
We split the rest of the proof into two cases.
Case 2a: udim(Ts) ≤ αs. We complete the proof here by showing that we can

modify the summands P (αs) and Ts in (4.8.3) so that Ts = 0, and then we again
set P (0) = 0. The number of summands Q(αs, c) ⊆ P (αs) is αs. Since the number
of direct summands Pi of Ts is αs or less, we can modify a subset of the summands
Q(αs, c) of P (αs) by including one of the summands Pi of Ts in each of them. This
does not change any ranks of P (αs) at elements of W, and does not change the fact
that each Q(αs, c) is the direct sum of finitely many summands Pi of P . Moreover,
(4.8.3) still holds, with this new P (αs) and with Ts = 0.

Case 2b: udim(Ts) > αs. From (4.8.3) we have udim(P ) = α1 + · · · + αs +
udim(Ts). Since every αn < udim(Ts) this shows that udim(Ts) = udim(P ). Set
P (0) = Ts. �

Our next objective is to show that every summand listed in (4.8.1) is a free
module over an appropriate finite overring of R, thus establishing the second main
result of this section.

Theorem 4.9. For every uncountably generated projective right R-module P , we
have

P ∼= H ⊕ Sα1
1 ⊕ Sα2

2 ⊕ . . .(4.9.1)
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where H is a finitely generated projective R-module, the αn are infinite cardinal
numbers satisfying α1 < α2 < . . . with at least one being uncountable, and S1 ⊂
S2 ⊂ . . . is a finite or a countably infinite sequence of finite overrings of R.

Proof. Assume first that Hypothesis 4.6 holds. We will obtain decomposition
(4.9.1), with H = 0, in this situation.

Start with the decomposition in (4.8.1), and fix n. We claim that

P (αn) ∼= Sαn
n(4.9.2)

for some finite overring Sn of R which we need to define. First we define Fn by
the first equality in (4.9.3) below. Then note that, for each of the direct summands
Q(αn, c) of P (αn), the second equality in (4.9.3) holds by (4.8.2).

Fn = {W ∈ W | ρ(P, W ) < αn} = {W ∈ W | ρ(Q(αn, c), W ) = 0}.
(4.9.3)

Since Q(αn, c) is finitely generated, it has almost standard rank [Theorem 2.1]
and therefore Fn is a finite set. Since ρ(Q(αn, c), W ) = 0 for every W ∈ Fn,
cycle-standard rank [Theorem 2.1], shows that Fn contains no entire cycle tower.
Therefore, by Theorem 2.6, there is a finite overring Sn = S(Fn) of R such that for
W ∈ W we have:

ρR(Sn, W ) = 0 ⇐⇒ W ∈ Fn.(4.9.4)

The first equality in (4.9.3) shows that Fn ⊂ Fn+1 if αn+1 exists and so Sn ⊂ Sn+1

by Theorem 2.6.
We now turn to isomorphism (4.9.2). The R-module P (αn) is the direct sum

of αn modules Q(αn, c). Since αn is an infinite cardinal number, every set of
cardinality αn is the disjoint union of αn countably infinite sets. Consequently,
P (αn) can be written as the direct sum of modules Q′(αn, d), where the index of
summation d runs through a set of cardinality αn and each Q′(αn, d) is the direct
sum of ℵ0 of the modules Q(αn, c). Similarly, Sαn

n is the direct sum of αn copies of
Sℵ0

n . Therefore, in order to prove (4.9.2) it suffices to prove that, for each d,

Q′(αn, d) ∼= Sℵ0
n (as R-modules).(4.9.5)

Since Sn and each Q(αn, c) is a nonzero finitely generated R-module, both sides
of (4.9.5) are countably generated. It therefore suffices, by Theorem 4.1, to prove
that both sides of (4.9.5) are in the same genus; and we already know that each has
uniform dimension ℵ0. Take any W ∈ W. By (4.9.3) and (4.9.4) both Q(αn, c) and
Sn have W -rank 0 if W ∈ Fn and have finite nonzero W -rank otherwise. It follows
that both sides of (4.9.5) have W -rank 0 if W ∈ Fn and W -rank ℵ0 otherwise,
proving (4.9.5), and therefore proving (4.9.2).

In view of (4.9.2), decomposition (4.8.1) can be rewritten

P ∼=
[
⊕n Sαn

]
⊕ P (0).(4.9.6)

Thus we have proved (4.9.1) when P (0) = 0, and can now assume that P (0) 	= 0,
in which case Lemma 4.8 shows that only finitely many αn occur. Let αs be the
largest. Lemma 4.8 further shows that udim(P (0)) = udim(P ) > αs . We set
udim(P (0)) = αs+1 and note, by Lemma 4.5 that P (0) ∼= S

αs+1
s+1 where Ss+1 =

S(W).
This proves the theorem when Hypothesis 4.6 is satisfied. Now drop Hypothesis

4.6. It suffices to prove that P is the direct sum of a finitely generated module H and
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a module that satisfies Hypothesis 4.6. Since P is uncountably generated, there are
only finitely many W ∈ W such that ρ(P, W ) is finite [Lemma 3.4 and Theorem
3.2]; and if ρ(P, W ) is finite and nonzero, there are only finitely many terms Pi

such that ρ(Pi, W ) 	= 0. Let H be the direct sum of all Pi such that, for some W ,
ρ(Pi, W ) is finite and nonzero. Then H is finitely generated, and P = H⊕P ′ where
P ′ is the direct sum of all Pi not contained in H. Then udim(P ′) = udim(P ) and
either P ′ satisfies Hypothesis 4.6 or else P ′ satisfies the hypotheses of Lemma 4.5.
Thus the proof is complete. �

We next demonstrate what level of uniqueness there is in the description of P
in the preceding result and in Theorem 4.3 and Corollary 4.4.

Theorem 4.10. Let Q be a right R-module of the form

Q = H ⊕ Sα1
1 ⊕ Sα2

2 ⊕ . . .(4.10.1)

where H is a finitely generated projective R-module and S1 ⊂ S2 ⊂ . . . is a
nonempty, strictly increasing, finite or countably infinite sequence of finite over-
rings of R, and ℵ0 ≤ α1 < α2 < . . . . Then the sequence of ordered pairs
(S1, α1), (S2, α2), . . . together with the ranks ρ(H, W ) for those W ∈ W such
that ρ(S1, W ) = 0

(i) is determined by Ψ(Q), and
(ii) determines the isomorphism class of Q.

Proof. (i) Let Q be as in (4.10.1). By Theorem 2.6 we know that each Sn = S(Fn)
for some unique finite set Fn of elements of W containing no entire cycle tower,
and Fn ⊂ Fn+1 whenever both sets are defined. The nontrivial part of this proof
is to establish the following statement:

(4.10.2) The sequence (S1, α1), (S2, α2), . . . is determined by Ψ(Q).

To establish this, it suffices to prove that the sequence (F1, α1), (F2, α2), . . . is
determined by Ψ(Q).

First we identify F1 as the set of all W ∈ W such that ρ(Q, W ) is finite.
To see this, note first that, when W ∈ F1, every ρ(S(Fn), W ) = 0. Therefore
ρ(Q, W ) = ρ(H, W ) which is finite since H is finitely generated. On the other
hand, for any other W , ρ(Q, W ) ≥ ρ(S(F1)α1 , W ) = α1 which is infinite. Notice
that this establishes the other part of what is claimed in (i); namely that Ψ(Q)
determines the ranks ρ(H, W ) for those W ∈ W such that ρ(S1, W ) = 0. It also
shows that α1 is identified as the smallest infinite cardinal α such that, for some
W , ρ(Q, W ) = α.

Next we show that the set of W such that ρ(Q, W ) = α1 is F2 −F1; thus F2 is
identified. The critical observation establishing this is that, for W ∈ F2 − F1 we
have ρ(Q, W ) = ρ(H, W ) + ρ(S(F1)α1 , W ) = ρ(H, W ) + α1 = α1 (the last equality
since H is finitely generated). Now α2 is identified as the smallest cardinal α > α1

such that, for some W , ρ(Q, W ) = α.
If there are infinitely many Fn, then we continue in this way, eventually proving

that every αn and Fn is determined by Ψ(Q).
Suppose, therefore, that there are only finitely many Fn, and call the last one

Fu. We can continue the foregoing reasoning until we have proved that αu−1 and
Fu − Fu−1 (hence Fu) are determined by Ψ(Q). We still need to prove that αu is
so determined. We must use different reasoning here because, in the case that W
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is a finite set and Fu = W, there are no further W ∈ W to use. Instead, we note
that

udim(Q) = udim(H) + α1 + α2 + · · · + αu = αu

with the latter equality because udim(H) is finite and the terms αn form an in-
creasing sequence of infinite cardinal numbers. This completes the proof of (i).

(ii) By hypothesis, all terms in (4.10.1) other than H are given. It remains to
consider H (which, as we shall see, is not uniquely determined).

We can replace the module H in (4.10.1) by X = H ⊕ S(F1)ℵ0 without altering
the isomorphism class of Q because S(F1)ℵ0 ⊕ S(F1)α1 ∼= S(F1)α1 . It is therefore
enough to prove that the module X is determined up to isomorphism by the given
invariants. Since X is countably generated, its isomorphism class is determined by
its ranks at elements of W [Theorem 4.1]. If W ∈ F1, we have ρ(X, W ) = ρ(H, W )
which is given. Otherwise ρ(X, W ) = ρ(H ⊕ S(F1)ℵ0 , W ) = ℵ0. This completes
the proof of the theorem. �

We can now complete the proof of Theorem 1.3

Theorem 4.11. Let P, P ′ be infinitely generated projective R-modules. Then P ∼=
P ′ if and only if Ψ(P ) = Ψ(P ′).

Proof. This has already been established in Theorem 4.1 in the case of countably
generated projective modules. So the case remains when P is uncountably gener-
ated. We know, by Theorem 4.9, that P is isomorphic to a module of the form
Q in (4.10.1). However, Theorem 4.10 shows that the isomorphism class of Q is
determined by its genus; i.e. by Ψ(P ). �

Remark 4.12. Unfortunately, we have no canonical form for those countably gen-
erated projective R-modules P such that D(Ψ(P )) is an infinite set. However, the
complete structural details are located in various parts of this paper, and we give
a brief directory to them, here.

Let Φ be any ‘countable’ pregenus; that is, a function from {0}
⋃
W to the

set of finite and countably infinite cardinals, such that Φ satisfies the conditions of
Definitions 3.1. Since every pregenus is a genus [Theorem 3.6] there is a P such that
Ψ(P ) = Φ. The proof of this theorem contains a construction of such a P . What
that theorem does not state, but is proved in Theorem 4.1, is that this determines
P up to isomorphism.

Remark 4.13. The canonical form (4.9.1) of an uncountably generated projective
R-module is not well-suited to determining the canonical form of a direct sum of
such modules. For example, let S be a finite overring of R such that S 	= R, and
let α ≥ β be uncountable cardinals. Then the uncountably generated projective
R-module P = Rα ⊕ Sβ does not appear to have the form displayed in (4.9.1).
However, one can readily check that Ψ(P ) = Ψ(Rα) and so Theorem 4.11 shows
that P ∼= Rα.

As this example illustrates, whether we are discussing countably or uncountably
generated projective modules, we can check the isomorphism class of a direct sum
simply by adding the genera and then using Theorem 4.11; and if the resulting
genus is of an appropriate type, we can readily obtain its canonical form.
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5. Direct Summand Theorem

Let P, Q be projective R-modules, with Q infinitely generated. When is P iso-
morphic to a proper direct summand of Q? i.e. Q ∼= P ⊕ X for some X 	= 0? An
obviously necessary condition is Ψ(P ) ≤ Ψ(Q). In the finitely generated case we get
a necessary and sufficient condition by adding the condition udim(P ) < udim(Q)
[Theorem 2.4]. This last condition is not necessary in the infinitely generated case.
For example, every infinitely generated free module is obviously isomorphic to a
proper direct summand of itself. The answer in brief, when Q is infinitely generated,
is that the condition Ψ(P ) ≤ Ψ(Q) is necessary and sufficient if Q is uncountably
generated or R is a classical hereditary order. But additional complications arise if
Q is countably generated, as we show at the end of the section.

Theorem 5.1. Let P, Q be projective R-modules such that Q is infinitely generated
and Ψ(P ) ≤ Ψ(Q). Then there is an infinitely generated projective R-module X
such that P ⊕ X ∼= Q if and only if:

(5.1.1) For every nonnegative integer n, there exist only finitely many W ∈ W such
that ρ(Q, W ) [hence ρ(P, W )] is finite and ρ(Q, W ) − ρ(P, W ) ≤ n · ρ(R, W ).

Proof. Suppose that P ⊕ X ∼= Q — and hence Ψ(P ) + Ψ(X) = Ψ(Q) — but
condition (5.1.1) fails. Then there exist a nonnegative integer n and infinitely
many W such that ρ(X, W ) ≤ n · ρ(R, W ). Therefore Ψ(X) does not satisfy the
finite multiplicity condition (ii)(b) in the definition of a pregenus, and hence X
cannot be an infinitely generated projective R-module [Theorem 3.2].

Conversely, suppose that P and Q are given and condition (5.1.1) holds. Define
the function Φ by ΦW = ρ(Q, W ) − ρ(P, W ) whenever W ∈ W and ρ(Q, W ) is
finite, ΦW = ρ(Q, W ) when the ρ(Q, W ) is infinite, and Φ0 = udim(Q). We claim
that Φ is a pregenus.

Condition (ii)(b) in the definition of a pregenus [Definitions 3.1] is satisfied by
hypothesis (5.1.1). The remaining conditions in the definition of a pregenus are
satisfied because Ψ(Q) is the genus of an infinitely generated projective module.

Since the claim holds, Φ is the genus of an infinitely generated projective module
[Theorem 3.6], say Φ = Ψ(X). It is then easily verified that Ψ(P )+Ψ(X) = Ψ(Q),
and therefore P ⊕ X ∼= Q [Theorem 4.11]. �

Corollary 5.2. Let P, Q be nonzero projective R-modules such that Ψ(P ) ≤ Ψ(Q)
and such that ρ(Q, W ) is infinite for almost all W ∈ W. Then there exists an
infinitely generated projective R-module X such that P ⊕ X ∼= Q.

Proof. Clear from the theorem. �

Corollary 5.3. Let P, Q be nonzero projective R-modules such that Ψ(P ) ≤ Ψ(Q).
Suppose that either:

(i) Q is uncountably generated, or
(ii) R is a classical hereditary order.

Then ρ(Q, W ) is infinite for almost all W ∈ W and (therefore) P is isomorphic to
a proper direct summand of Q.

Proof. By Corollary 5.2 it is enough to establish the first half of the claim. In
situation (i) this is done in Lemma 3.4. So consider situation (ii). By Lemma 4.2
R has only finitely many nontrivial cycle towers and no faithful towers. Moreover
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every cycle tower contains at least one W such that ρ(Q, W ) is infinite [Theorem
3.2 and Definitions 3.1(iii)]; and therefore ρ(Q, W ) is infinite for all W ∈ W except
some of the finitely many belonging to nontrivial cycle towers. �

Corollary 5.4. Let P be an infinitely generated projective R-module. Then the
following are equivalent:

(i) P ⊕ X ∼= P for some nonzero R-module X;
(ii) P ⊕ X ∼= P for some infinitely generated R-module X;
(iii) ρ(P, W ) is infinite for almost all W ∈ W.

Proof. It is a triviality that (ii) implies (i); and it is immediate from Corollary
5.2 that (iii) implies (ii). Finally, suppose that (i) holds but (iii) fails. Then
ρ(X, W ) = 0 for the infinitely many W ∈ W for which ρ(P, W ) is finite. If X
were infinitely generated, this would contradict condition (ii)(a) in the definition of
‘pregenus’; and if X were finitely generated and nonzero this would violate almost
standard rank [Theorem 2.1]. This contradiction completes the proof. �

Corollary 5.5. (i) Every uncountably generated projective R-module is iso-
morphic to a proper direct summand of itself.

(ii) Every infinitely generated projective module over a classical hereditary order
is isomorphic to a proper direct summand of itself.

Proof. This follows directly from Corollaries 5.3 and 5.4. �

We conclude this section with some anomalies that occur in the countably gen-
erated case, beginning with an extreme illustration of the fact that Ψ(P ) ≤ Ψ(Q)
does not imply that P is isomorphic to a proper direct summand of Q.

Example 5.6. There exists a countably generated projective R-module which is
not isomorphic to a proper direct summand of itself. This follows from Corollary
5.4 if we take any projective R-module P (necessarily countably generated) with
infinitely many finite ranks at elements of W — for example, as in Example 3.5.

Example 5.7. There exist infinitely generated projective R-modules P, Q (nec-
essarily with countable udim) such that P ⊕ X ∼= Q for some nonzero finitely
generated X but for no infinitely generated X. To see this, let P be as in Example
5.6 and let Q = P ⊕ R. Then there are infinitely many W such that ρ(Q, W ) is
finite and ρ(Q, W )− ρ(P, W ) = ρ(R, W ). Therefore there is no infinitely generated
X such that Q ∼= P ⊕ X [Lemma 5.1].

A particularly interesting case of this example occurs if W is infinite, and all
ranks ρ(P, W ) are finite. Then one can show that P ⊕ X ∼= P ⊕ R if and only if
Ψ(X) = Ψ(R).
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